当前位置:文档之家› 锅炉燃烧控制系统_毕业设计

锅炉燃烧控制系统_毕业设计

锅炉燃烧控制系统_毕业设计
锅炉燃烧控制系统_毕业设计

锅炉燃烧控制系统

摘要

锅炉的燃烧控制对于锅炉的安全、高效运行和节能降耗都具有重要意义,其控制和管理随之要求也越来越高。本设计主要针对锅炉燃烧控制系统的工作原理,根据控制要求,设计了一套基于PLC的锅炉燃烧控制系统。

在控制算法上,综合运用了单回路控制、串级控制、比值控制、前馈控制等控制方式,实现了燃料量控制调节蒸汽压力、送风量控制调节烟气含氧量、引风量控制炉膛负压,并有效地克服了彼此的扰动,使整个系统稳定的运行。

在可编程控制器的选择上,采用了AB公司Logix5000系列PLC,设计了控制系统的硬件配置图、I/O模块接线图,并用其编程软件编写了实现控制算法的梯形图。同时,采用RSView32设计监控界面,使得在上位机上能够实时监控系统的运行状况并可以设置系统的工作参数,使对系统的控制简单易行。

关键词:锅炉燃烧控制系统,控制方式,PLC,监控

ABSTRACT

The control of the boiler combustion which is for boilers safe, efficient operation and energy saving are of great significance, and its subsequent control and management is getting higher and higher requirements. According to the control requirements and the working principle, we design a system of a PLC based on the boiler combustion control system.

In the control algorithm, we integratedly applied the single-loop control, cascade control, ratio control, feed-forward control and so on which is moded the control to achieve a fuel vapor pressure control regulator, air-conditioning of flue gas oxygen content control, citing the negative air volume control of the furnace pressure.It also effectively overcome the disturbance of each other, so that the operation of the entire system is stable.

Choice in the programmable logic controller, we choose AB, Logix5000 series PLC, and applied it to the design of the control system hardware configuration diagram and I / O module wiring diagram. Then we use the preparation of its programming software control algorithm to achieve the ladder. At the same time, the use of RSView32 interface to design monitor makes PC can run real-time monitoring of system status and can set the system parameters, so that the system is easy to control.

Keywords: boiler combustion control system, control, PLC ,supervisory control

目录

1 绪论 (1)

1.1课题研究背景及意义 (1)

1.2 锅炉燃烧控制系统概述 (2)

1.3 本设计的主要工作 (2)

2 控制方案的设计 (4)

2.1系统总体控制方案设计 (4)

2.2燃料控制系统的设计 (7)

2.3送风控制系统的设计 (10)

2.4引风控制系统设计 (12)

3 硬件选型 (14)

3.1主蒸汽压力变送器的选型 (14)

3.2炉膛负压变送器的选型 (14)

3.3氧化锆氧量变送器的选型 (15)

3.4调节阀的选型 (15)

3.5变频器的选型 (18)

3.6 PLC工作原理和选型 (19)

4 硬件接线图 (23)

4.1电气线路图设计 (23)

4.2控制线路图设计 (24)

4.3 I/O模块分配与接线 (25)

5 系统整定 (27)

5.1燃料控制系统的整定 (27)

5.2送风控制系统的整定 (32)

5.3引风控制系统的整定 (38)

6 软件编程 (42)

7 监控系统 (46)

7.1通信的建立 (46)

7.2监控界面的设计 (48)

8 总结语 (54)

参考文献 (55)

致谢 (56)

附录 (57)

附录A (57)

附录B (1)

1 绪论

1.1课题研究背景及意义

锅炉是工业生产中普遍使用的动力设备,是能源转换的重要设备。我国锅炉应用面宽,投运数量多,耗用一次能源大。锅炉运行的好坏,对于节约能源、保护环境等有着重大的社会经济效益。

进入21世纪以来,与人类生存和社会发展密切相关的能源和环保问题得到了人们的广泛关注。目前,我国每年用于锅炉燃烧的煤炭约为9000万吨,占总产量的7%。面对日趋减少的有限煤炭资源,节约能源、保护环境已成为国家产业政策的核心,确保燃烧过程始终处于最优状态可最大限度的节约能源、保护环境,这也是改善锅炉燃烧控制系统的目的之一。采用先进的锅炉燃烧控制技术,提高锅炉燃烧效率成为摆在致力于锅炉产业研究的众多学者面前的艰巨任务[1]。

通过使用PLC来对整个锅炉燃烧过程进行实时控制,配置计算机控制与管理系统,结合现代工业组态软件进行控制界面的组态与设计,是提高锅炉燃烧效率的重要方法。通过计算机控制管理系统进行作业流程操作,全部由计算机实现自动控制,系统的操作只需操作员在控制室就可以完成,而且除了工程师外,操作员也可以很容易操作整个系统的运行,这样就节省了大量的人力资源。整个锅炉燃烧控制系统的操作界面设计成易于操作的windows人机交互界面、主要功能通过计算机后台自动完成,系统实现现场控制和远程监控功能,此外,考虑到系统的可移植性,系统设计成能够根据不同被控锅炉的具体控制指标的要求灵活的调整控制参数,克服了需要重新进行设计、硬性修改等缺点,缩短了锅炉燃烧控制系统开发的周期,可以大范围推广,具有较强的现实意义[2]。

近年来,随着能源与环保意识的增强,我国锅炉生产现状已经引起一些致力于行业发展的有关学者和部门的高度重视,工业锅炉燃烧过程控制的理论与应用研究,己成为能源和控制领域的热点课题。

1.2 锅炉燃烧控制系统概述

燃烧控制系统是锅炉控制的重要环节。它是一个具有严重非线性、时变特性、扰动变化激烈且幅值大的多变量系统,其中送风量、引风量、给煤量、炉膛负压、等参数的变化都将对燃烧系统产生直接扰动,当波动较大时,就会造成整个燃烧系统出现振荡现象,严重影响锅炉的安全运行;同时,锅炉燃烧效率的高低将直接关系到锅炉煤烟的排放质量,关系到是否会对环境造成污染。因此,燃烧不仅直接影响锅炉供热工况的稳定,而且对节能降耗,保护环境,提高锅炉的热效率有着重要的意义。锅炉燃烧控制系统的基本任务是使燃料燃烧所产生的热量能够适应负荷的需要,同时还要保证锅炉运行的经济性和安全性。概括起来,燃烧过程控制系统有三大任务[3]:

(1)维持蒸汽压力恒定。蒸汽压力的变化表示锅炉蒸汽量和负荷的耗汽量不相适应,必须相应地改变燃料量,以改变锅炉的蒸汽量。

(2)保证燃烧过程的经济性。随着送入炉内燃料量的变化,供热温度和烟气含氧量发生变化,必须根据烟气含氧量的变化相应地调节送风量,达到最优燃烧,保证燃烧过程有较高的经济性。

(3)调节引风量与送风量相配合,以保证炉膛压力不变。

1.3 本设计的主要工作

本设计以锅炉为被控对象,采用PID控制方法,利用PLC和变频调速技术,完成了一套锅炉燃烧控制系统的设计。具体的课题内容有:

(1)总体设计方案的制定:选择被控参数、控制参数、控制器、执行器;设计控制系统;绘制系统方框图。

(2)相关硬件设计:根据控制要求,合理选择变送器和变频器;PLC选择实验室现有的AB公司Logix5000系列;绘制系统硬件配置图和输入输出接线图。

(3)相关软件设计:根据硬件连接情况,编写输入输出定义表;根据控制要求,编写梯形图程序;调试和修改程序。

(4)系统中相关参数的计算:建立被控对象模型,利用MATLAB软件从理论上确定PID参数。

(5)监控系统设计:利用组态软件设计该系统的监控画面。

2 控制方案的设计

2.1系统总体控制方案设计

燃烧控制系统是电厂锅炉的主控系统,主要包括燃料控制系统、送风控制系统、引风控制系统。其控制目的是使燃料燃烧所产生的热量负荷适应蒸汽压力的需要;使燃料与空气量之间保持一定的比值,以保证经济燃烧;使引风量与送风量相适应,以保持锅炉负压在一定的范围内。系统总体方案设计和比较如下[4]。

方案一的原理框图如图2.1所示。 蒸汽压力

调节器

燃料调节器燃料机送风量调

节器送风机引风量调节器

引风机

---

-蒸

力蒸汽压力给定值

燃料量送风量引风量

炉膛负压给定值炉膛负压比值器

LD

图2.1 方案一

如图2.1所示,主蒸汽压力调节器接受主蒸汽压力信号,根据主蒸汽压力信号与给定值的偏差,给出负荷指令LD,燃料调节器和送风调节器根据负荷指令LD,分别调节燃料量与送风量。引风调节器接受炉膛压力信号。通过调节引风量确保炉膛压力给定值。方案中,燃料控制与送风控制两个子系统组成比值控制,其作用是保持送风量与燃料量之间的比值关系不变,以保证一定的风、煤比。

该方案的优点是结构简单,整定方便。由于直接以燃料量信号代表燃烧率与负荷LD相平衡,因此在蒸汽压力变化时,能迅速改变燃料量,保持蒸汽压力稳定。

然而该方案燃料量与送风量控制的精度,依赖于燃料量与送风量的准确测量。当发生燃料侧扰动时,需由主蒸汽压力调节器改变负荷指令LD来消除,这对蒸汽压力的稳定是不利的,而且无法保证风、煤之间的最佳比值。

为克服上述缺点,在方案一的基础上,我们做了进一步改进,使主蒸汽压力得到稳定调节,使风、煤比保持最佳比值,具体控制方案如图 2.2方案二所示。在此系统中我们引入了锅炉烟气含氧量信号,并和送风控制系统组成串级控制系统。烟气含氧量的偏差信号经烟气含氧量校正调节器,对燃料量与送风量之间比值进行修正。由于烟气含氧量代表烟气中的过剩空气系数,保持一定的过剩空气系数,既保证了总燃料量与总送风量之间的最佳比值。与此同时,在蒸汽压力变化时,能迅速改变燃料量,保持蒸汽压力稳定。

蒸汽压力调节器燃料调节

器燃料机送风量调节器

送风机引风量调节器引风机

--

--蒸汽压力蒸汽压力给定值燃料量送风量引风量

值炉膛负压比值器烟气含氧量调节器前馈

补偿

-烟气含氧量烟气含氧量给定值LD

图2.2 方案二

在方案二中,由于烟气含氧量的测量有较大的惯性迟延,因此氧量校正回路的工作频率通常低于送风量调节回路。当燃料量依负荷指令LD 而改变时,送风量调节器同时按比例改变送风量,以减少动态过程中的风、煤比例失调。随着燃料量调节过程结束,燃料量基本稳定。由烟气含氧量校正调节器根据烟气含氧量信号,对送风量进行细调,确保烟气含氧量为最佳值,即间接保证了燃料量与送风量之间为最佳比值。

为减少送风量改变时送、引风之间动态失调而造成炉膛压力波动,自送风调节器的输出静动态补偿装置,向引风量调节器引入一前馈信号,动态补偿装置通常采用微分器,以保证静态时炉膛压力等于给定值。

由此看来方案二的性能要比方案一优越的多,因此在此设计中选用方案二。

燃烧控制系统是由燃料控制系统、送风控制系统、引风控制系统组成的,下面分别对三个子系统进行分析和设计。

2.2 燃料控制系统的设计

2.2.1 控制系统分析

燃料控制的任务在于进入锅炉的燃料量随时与蒸汽压力要求相适应。因为蒸汽压力是衡量锅炉热量平衡的标志,燃料又是影响蒸汽压力的主要因素,因此蒸汽压力可以作为燃料控制系统的被调量。

锅炉蒸汽压力是燃烧过程调节对象的主要被调量,引起蒸汽压力变化的因素有很多,如燃料量、送风量、给水量、蒸汽流量以及各种使燃烧工况发生变化的原因。它受到的主要扰动分为内扰(燃料的变化)和外扰(蒸汽流量的改变)[4]。为此,下面分析一下在主要扰动作用下,汽包蒸汽压力变化的动态特性。

(1)内扰特性

如图2.3所示。当燃料量阶跃改变时,由于燃料由加入到发热有一段时间的延迟,热量被蒸汽发生系统吸收又有一段延迟,因此,在燃料加入的一段时问内,蒸汽压力并不上升,而是过一段时间才开始上升。

M

Pm t

t

图2.3 燃料量阶跃变化时,蒸汽压力反应曲线D

Pm t

t

图2.4 蒸汽流量阶跃变化时,蒸汽压力反应曲线

(2)外扰特性

从图2.4中可以看出,蒸汽压力随蒸汽流量的增加而下降。如果蒸汽流

量继续保持增大后的数值,由于燃料量没有增加,热量不能平衡,所以蒸汽压力一直下降,直到改变给煤量使其产生的热量与蒸汽流量相平衡时,才能恢复保持锅炉的蒸汽压力。

2.2.2 控制方案设计

以蒸汽压力为被调节量,以燃料量为调节量的串级控制系统设计如图

2.5所示。 燃料调节器燃料机蒸汽压力变送器炉膛主蒸汽压力调节器--Pm0

蒸汽扰动燃料扰动

Pm

LD M 燃料变送器

图2.5 燃料控制系统结构图

在图2.5中,燃料控制系统采用串级控制,主蒸汽压力调节器为主调节器,燃料调节器为副调节器。主调节器具有自己独立的设定值,它的输出作为副调节器的设定值,而副调节器的输出信号则是通过燃料调节阀去控制生产过程。由于燃料量用调节阀控制比较困难,这里用调节燃料机转速的方法来控制燃料量的供给。

串级控制系统的主回路是一个定值控制系统,在副回路确定后,相当于一个单回路系统,外扰——蒸汽压力扰动可以在此回路中得到有效抑制。副回路是一个随动系统,能够快速有效地克服二次扰动的影响,因此内扰——给煤扰动可以在副回路中得到有效地抑制。同时提高了对一次扰动的克服能力和对回路参数变化的自适应能力,改善了被控过程的动态特性,

提高了系统的工作频率。

2.3送风控制系统的设计

2.3.1 控制系统分析

送风调节系统的任务在于保证燃烧的经济性,而以烟气含氧量作为锅炉燃烧经济性指标,可以保证锅炉安全有效的运行。但由于烟气含氧量的测定具有较大的滞后,且它主要由送风量来决定,所以采用以烟气含氧量为主回路,以送风量为副回路的串级控制。由于燃料量对烟气含氧量也有影响,因而采用比值控制的方法来使送风量和给煤量协调变化,以改善系统的动态性能,并且保证烟气含氧量的稳定。

烟气含氧量,即过剩空气系数α。实际供给空气量的大小,通常以烟气含氧量或过剩空气系数表示。燃烧过程中要保证一定的剩余空气系数α,如果空气不足,就会造成不完全燃烧,造成燃烧效率下降,污染环境;反之如果空气过量,高温燃烧就会从炉内由排烟带走大量的热量,排烟损失加大,同样造成环境污染。因此必须有效地控制剩余空气系数α。当燃料确定后,过剩空气系数与热量损失的关系[4]如图2.6所示。

热效率

排烟损失

不完全燃烧损失

α1α0α2

α

图2.6 过剩空气系数与热量损失示意图

由图2.6可见,存在一个适当的α值使煤能够完全燃烧,而其热损失最小,效率最高。一般认为,当α落在α0附近的一个区域(α1到α2)时,燃

烧是最好的,该区域叫最佳燃烧区,对于一般的工业锅炉,α一般控制在此区域较为理想。这样我们就可以通过检测烟道中的含氧量来判断过剩空气系数的大小,从而去控制送风量与给煤量的配比,保证燃烧过程处于最佳燃烧状态。

为了有效地克服送风控制系统扰动的影响,烟气含氧量和送风量采用串级控制方案,同时燃料量和送风量保持一定的比例,采用比值控制。

2.3.2 控制方案设计

送风量是否适当用烟气含氧量来衡量,以送风量为调节量,以烟气含氧量为被调节量构成控制方案设计结构图如图2.7所示。 氧量校正调节器送风调节器送风量调节阀炉膛烟气含氧量

变送器

--

O 2%O 20%

V 送风量变送器燃料量变送器比

器M

图2.7 送风控制系统结构图

如图2.7所示,为一个串级比值控制系统,氧量校正调节器为主调节器,送风调节器为副调节器。主调节器接受氧量与氧量定值信号。副调节器接受燃料信号,送风量反馈信号及氧量校正调节器的输出,副回路保证风、煤的基本比例,起粗调作用。主回路用来进行氧量校正,起细调作用。当烟气含氧量高于给定值时,氧量校正调节器发生校正信号,修正送风控制系统的给定值,使送风调节器减少送风量。经过校正后的送风量将保证烟

气含氧量等于给定值。

调节过程中,由于烟气含氧量的测量有较大的惯性迟延,因此氧量校正回路的工作频率通常低于送风量调节回路。当燃料量依负荷指令LD而改变时,送风量调节器同时按比例改变送风量。以减少动态过程中的风、煤比例失调。随着燃料量调节过程结束,燃料量基本稳定。由主调节器根据烟气含氧量信号,对送风量进行细调,确保烟气含氧量为最佳值,即间接保证了燃料量与送风量之间为最佳比值。

2.4 引风控制系统设计

2.4.1 控制系统分析

引风控制的任务是保持炉膛负压在规定的范围之内。炉膛负压是反映燃烧工况稳定与否的重要参数,是运行中要控制和监视的重要参数之一。炉内燃烧工况一旦发生变化,炉膛负压随即发生相应变化。当锅炉的燃烧系统发生故障或异常时,最先将在炉膛负压上反映出来。因此,监视和控制炉膛负压对于保证炉内燃烧工况的稳定、分析炉内燃烧工况等均有极其重要的意义。

所谓炉膛负压,即指炉膛顶部的烟气压力。炉膛负压的大小对于系统安全运行和节能影响都很大。负压大,被烟气带走的热量大,热损失增加,煤耗量增大,理想运行状态应在微负压状态,此时它能明显增加悬浮煤颗粒在炉膛内的滞留时间,减少飞灰,使煤充分燃烧提高热效率。因此,需要维持炉膛压力在一定的范围之内。

但由于负荷变化,需要改变给煤量和送风量,随之也要改变引风量,以保证炉膛负压的稳定,为避免送风变化而引起炉膛负压的波动,系统中引入送风信号作为前馈信号对引风机进行超前调节。同时由于炉膛负压主

要受引风和送风的影响,而其他各量对它的影响都很小,因此可以把炉膛负压作为带送风前馈的单回路控制系统处理。

2.4.2 控制方案设计

炉膛负压控制系统一般采用的控制系统结构图如图2.8所示。 引风控制器引风量调节阀炉膛负压

变送器炉膛Ps 0-

+

f(x)

V

Vs Ps

图2.8 引风控制系统结构图

图中f(x)为前馈补偿装置。送风量信号通过前馈补偿装置f(x)送到引风调节器而使引风量跟着改变,是一个快速的补偿系统。但当系统处于静态时,前馈补偿装置f(x)的输出应为零,以使炉膛负压保持为给定值。

如图2.8所示,由于引风调节对象的动态响应快,测量也容易,所以引风控制系统一般只需采取以炉膛负压作为被调量的单回路控制系统。送风量和引风量都是引起炉膛负压波动的重要原因,为了能使引风量快速的跟踪送风量,以保持二者的比例,可将送风量作为前馈信号引入引风调节器。这样当送风控制系统动作时,引风控制系统立即跟着动作,而不是等炉膛负压偏离给定值后再动作,从而能使炉膛负压基本不变。所以引风控制系统引入送风前馈信号以后,将有利于提高引风控制系统的稳定性和减少炉膛负压的动态偏差。

3 硬件选型

3.1 主蒸汽压力变送器的选型

主蒸汽压力控制系统的主要目的是维持主蒸汽压力恒定,因此主蒸汽压力能否准确测量直接关系到控制质量的优劣。合理的选择压力变送器在设计中有关键作用。蒸汽压力变送器将测量信号转换成标准统一信号DC4~20mA电流输出,并送到PLC,使之根据转换的电信号来控制系统的运行。根据设计要求蒸汽压力应该控制在7.5±0.75MP,根据过程控制仪表量程选择原则:选择变送器时,应选择一个具有比最大值还要大1.5倍左右的变送器。因此所选变送器的最大量程为11.25MP左右。由于蒸汽压力应该控制在7.5±0.75MP,因此所选压力传感器的精度应该高于0.75/11.25=0.067FS,才可以满足要求。

上海适科暖通机电设备科技有限公司生产的型号为256EX的Setra蒸汽压力变送器可以满足控制要求,此蒸汽压力变送器工作温度范围宽,耐腐蚀性能好,抗冲击,振动性能高。其最大量程为14MP,精度为±0.25% FS,输出为4~20mA(两线制),电气连接为2个1/2内螺纹导管连接。

3.2 炉膛负压变送器的选型

炉膛负压是控制炉膛安全运行的重要参数,根据设计要求炉膛负压应该控制在-20±0.05Pa,根据过程控制仪表量程选择原则:选择炉膛负压变送器时,应选择一个具有比最大值还要大1.5倍左右的变送器。因此所选变送器的最大量程为:±27~±30MP。根据要求压力表的精度应在0.4级,此设计中选择0.25% FS。

北京英泰德科技有限公司生产的B0600型差压变送器适用于测量炉膛

负压。它将被测介质的差压信号转换成4~20mADC (两线制)标准信号,测量范围为0~±30Pa ,工作电压为14~36VDC(两线制),测量精度为±0.25 %FS ,电气连接为三芯航空插头。

3.3 氧化锆氧量变送器的选型

实际控制中要获取空气的过剩系数比较好的方法是利用氧化镐直接测量烟气中的含氧量,这是因为:

(1)空气过剩系数和含氧量间有如下的近似的线性关系:

%

21212O -=α (3.1) (2)氧化镐氧量计滞后时间和惯性较小。

送风控制系统中的烟气含氧量变送器就是采用氧化锆氧量变送器来测量烟气中含氧量的,其测量的含氧量为2%左右。氧量变送器将所测氧量信号转换成4~20mA 电流信号,送到PLC ,使之控制整个系统的运行。

山海晓周电子仪表工贸有限公司的YYB94型氧量变送器,具有电源电压的适应范围大,抗干扰能力强等优点。氧量量程为0.1%~25%O2,系统精度为2.5级,输出信号为4~20mA 电流,电源电压为220±15%V 。

3.4 调节阀的选型

调节阀是过程控制工程中的一个重要的组成环节,它接受调节器输出的控制信号,并转换成直线位移或角位移,来改变流通截面积以控制流入或流出被控过程的流体介质的流量,从而实现对过程参数的控制。调节阀使用得合理与否直接关系到系统能否安全运行及其控制质量的好坏。

根据使用能源的不同,调节阀可以分为气动调节阀、电动调节阀和液动调节阀三类[5]。在过程控制过程中,气动调节阀应用最为广泛。它具有结

构简单,动作可靠,性能稳定,维修方便,价格便宜,适用于防火防爆场合等特点。根据本设计所涉及的调节阀—送风量调节阀、引风量调节阀的特点,选用气动调节阀可以很好的实现控制功能。

(1)调节阀气开、气关的选择

气动调节阀分为气开阀和气关阀两种类型。气开阀是当气动执行器输入压力>20KPa 时阀开始打开,即有压力信号时阀开,无压力信号时阀关;气关阀则恰好相反。在工程上调节阀气开、气关型式的确定主要是从生产安全角度来考虑的,即当压力信号中断时,应避免损坏设备及伤害工作人员。在本设计系统中,从事故状态时人身、工艺设备的安全方面考虑时,当事故发生时,应减少送风量,增加引风量,因而送风量调节阀应选气开式,引风量调节阀应选气关式。

(2)调节阀流量特性的选择

在过程控制工程中,调节阀的流量特性将直接影响系统的稳定性和控制质量。调节阀的流量特性是指被控介质流过阀门的相对流量与阀门的相对开度之间的关系,即

max

q

l f q L ??= ??? (3.2) 式中:

max q q

——相对流量,即执行器某一开度流量与全开流量之比;

L

l ——相对开度,即执行器某一开度行程与全开行程之比。 当调节阀前后压差为一定值时,流量特性有理想流量特性和工作流量特性。在此设计中,按照理想流量特性来选择调节阀的流量特性。阀前后压差为一定的情况下得到的流量特性称为理想流量特性,它取决于阀芯的形状,不同的阀芯曲面可以得到不同的理想流量特性。一般说来,理想流

锅炉控制系统的组态设计

; 济南铁道职业技术学院 电气工程系 毕业设计指导书 课题名称: 锅炉控制系统的组态设计《 专业电气自动化 班级电气0831 姓名 cmy ~ 设计日期至 指导教师 ly ? 2010、11

济南铁道职业技术学院电气工程系 毕业设计指导书 2010、11 一、设计课题: ! 锅炉控制系统的组态设计 锅炉设备是工业生产中典型的控制对象,而组态控制技术是当今自动化系统应用广泛的技术之一。本课题采用组态王组态软件设计上位机监控画面,实时监控液位参数,并采用实时趋势曲线显示液位的实时变化。由此组成一个简单的液位控制系统。 二、设计目的: 通过本课题的设计,培养学生利用组态软件、PLC设计控制系统的能力,理解、掌握工业中最常用的PID控制算法,有利于进一步加深《自动控制原理》、《组态软件》和《过程控制》等课程的理解,为今后工作打好基础。 三、设计内容: 掌握锅炉生产工艺,实现锅炉自动控制的手段,利用“组态王”软件做出上位机监控程序,具体有主监控画面、实时曲线、历史曲线;掌握PID参数调整方法。 — 四、设计要求及方法步骤: 1.设计要求: (1)监控系统要有主监控画面和各分系统的控制画面,包括实时曲线、历史曲线和报表等。 (2)各控制画面要有手/自动切换。

(3)掌握PID控制算法。 2.运用的相关知识 (1)组态控制技术。 (2)过程控制技术。 ~ 3.设计步骤: (1)熟悉、掌握锅炉的生产工艺。 (2)设计各分系统的控制方案。 (3)构思系统主监控画面和分画面,包括实时曲线、历史曲线和报表等。 (4)编写设计论文。 五、设计时间的安排: 熟悉题目、准备资料 1周 @ 锅炉控制系统的工艺了解 1周 监控画面的设计 2周 控制算法的编制和系统调试 3周 论文的编写 2周 准备毕业设计答辩 1周 六、成绩的考核 在规定时间内,学生完成全部的设计工作,包括相关资料的整理,然后提交给指导教师,指导教师审阅学生设计的全部资料并初步通过后,学生方可进入毕业答辩环节,若不符合设计要求,指导教师有权要求学生重做。 … 答辩时,设计者首先对自己的设计进行10分钟左右的讲解,然后进行答辩,时间一般为30分钟。 成绩根据学生平时的理论基础、设计水平、论文质量和答辩的情况综合考虑而定。 成绩按优秀、良好、中、及格、不及格五个等级进行评定。

燃气热水锅炉控制方案要求

燃气热水锅炉控制 方案要求

基于PLC的锅炉供热控制系统及节能管理平台的设计需求 一、需求目的: 一个锅炉监控系统应主要包含以下几个部分: (1)各种设备状态和系统状态的采集; (2)锅炉和各种执行机构的控制。 设备状态的采集主要是锅炉输出的状态点,循环泵和补水泵给出的状态点,以及水箱等设备的状态点。锅炉的状态点主要包括锅炉的运行状态点、水箱的液位状态点、锅炉故障状态点、锅炉出水温度、锅炉回水温度、锅炉排烟温度;循环泵、补水泵以及电动调节阀等辅助其工作的变频设备的状态点。 系统状态的采集主要分为一次侧和二次侧。一次侧是锅炉到换热器之间的水循环系统,二次侧是到末端的水循环系统主要是指换热器循环系统。一次侧采集的状态包括一次侧供水温度、一次侧回水温度、一次侧供水压力、一次侧回水压力、烟温及燃烧机的工作状态及水箱水位、;二次侧采集的状态包括二次侧供水温度、二次侧回水温度、二次侧供水压力、二次侧回水压力;还有室外温度的采集,即可根据室外温度实现锅炉监控系统的自动控制。 锅炉和各种执行机构的控制主要是对锅炉本体的启停控制和

各种电动阀门的控制。将锅炉房内各个设备、仪器仪表、传感器、执行机构及通讯模块组成在线监控系统,经过完成对锅炉房和其它现场设备的数据采集和控制功能从而实现锅炉房的全自动控制,能够安全启停机组,达到无人值守。 供热管网经过控制系统的在线监测应实现以下目的: (1)监控各管网节点的实时数据,为系统管理和科学管理进行调度提供参数数据; (2)系统平衡功能计算,供热管网内的热水流动需要一定的水泵做功来完成,不合理的管网设计和建造将带来极大的能源浪费,经过对管网的相关部位的压力检测、增设压力调节阀,对管网的各部分压力进行合理的平衡分配(水平衡、热平衡等),能够大大地降低管网水泵的能源消耗; (3)异常报警,做到对管网异常及时准确响应; (4)能够监测各个主、支线管网,重要客户的实时用气量、对水、电、气实时采集,以便监管和控制。 二、燃气锅炉供热控制系统硬件部分: 1、PLC是整个控制系统的核心部件,采用西门子系列可编程逻辑控制器; 2、现场数据采集系统由温度传感器、压力传感器、燃气报警器、火焰监视器、水位传感器等组成;

锅炉燃烧时时序控制工作原理

标题:锅炉燃烧时时序控制工作原理现代内燃机动力装置的船舶上,辅助蒸汽锅炉(简称辅锅炉)是对水进行加热而产生蒸汽的设备。锅炉自动控制环节主要包括:水位自动调节、蒸汽压力自动控制、燃烧程序控制以及报警和保护环节。其中水位自动调节的任务是保证锅炉给水量适应蒸发量的变化,使水位波动不超过一定范围。允许变化范围是60—120mm,一般采用双位控制;燃烧过程的自动调节主要任务是使锅炉气压维持在规定值或规定之允许的的范围内,同时为了保证工作良好必须使供风量与供油量相适应;报警环节是为了在锅炉运行过程中为了达到安全、可靠、无人值班的目的,除了对锅炉水位与燃烧采用自动控制外还必须对各种危险工况采取安全保护措施。 燃烧程序自动控制辅助锅炉燃烧时序程序控制是指给锅炉一个起动信号后,能按时序的先后自动进行预扫风、预点火、喷油点火,点火成功后对锅炉进行预热,接着转入正常燃烧的负荷控制阶段。同时对锅炉的运行进行一系列的安全保护。辅助锅炉燃烧时序控制框图如图3-1所示。按下锅炉起动按钮后,自动起动姗烧油泵和鼓风机,关闭燃油电磁阀使ilk油在锅炉外面打循环,此时风门开得最大,以大风量进行预扫风,防止锅炉内残存的油气在点火时发生冷爆。预扫风的时间根据锅炉的结构形式不同而异,炉燃烧时序控制框图一般20s-60s。达到预扫风的时间自动关小风门,同时点火电极给出电火花进行预点火,时间为3秒左右。然后打开燃油电磁阀,或开大回油阀,或让一个油头喷油工作,即以小风量和少喷油进行点火。点火成功后维持一段时间低火燃烧即进入正常的负荷控制阶段。在预定的时间内若点火不成功,或风机失压,或中间熄火等现象发生,会自动停炉,待故障排除后按复位按钮方能重新起动锅炉。 炉燃烧时序控制框图一般20s-60s。达到预扫风的时间自动关小风门,同时点火电极给出电火花进行预点火,时间为3秒左右。然后打开燃油电磁阀,或开大回油阀,或让一个油头喷油工作,即以小风量和少喷油进行点火。点火成功后维持一段时间低火燃烧即进入正常的负荷控制阶段。在预定的时间内若点火不成功,或风机失压,或中间熄火等现象发生,会自动停炉,待故障排除后按复位按钮方能重新起动锅炉。

锅炉燃烧控制系统仿真

锅炉燃烧过程控制系统仿真 目的:通过该项目的训练,掌握串级控制、比值控制、前馈控制在锅炉燃烧过程控制系统的综合应用。 原理简述: 燃烧过程控制系统:燃油锅炉的燃烧过程控制主要由三个子系统构成:蒸汽压力控制系统、燃料空气比值控制系统以及炉膛负压控制系统。 1 、蒸汽压力控制和燃料空气比值控制系统 锅炉燃烧的目的是生产蒸汽供其他生产环节使用。一般生产过程中蒸汽的控制是通过压力实现的,后续环节对蒸汽的生产用量不同,反映在蒸汽锅炉环节就是蒸汽压力的波动。维持蒸汽压力恒定是保证生产正常进行的首要条件。 保证蒸汽压力恒定的主要手段是随着蒸汽压力波动及时调节燃烧产生的热量,而燃烧产生热量的调节是通过控制所供应的燃料量以及适当比例的助燃空气的控制实现的。 因此,蒸汽压力是最终被控制量,可以根据生成情况确定; 燃料量是根据蒸汽压力确定的;空气供应量根据空气量与燃料量的合理比值确定。 2 、炉膛负压控制系统 锅炉炉膛负压过小时,炉膛内的热烟、热气会外溢,造成热量损失,影响设备安全运行甚至会危及工作人员安全;当炉膛负压太大时,会增加燃料损失、热量损失和降低热效率。 使外部大量冷空气进入炉膛,改变燃料和空气比值,

控制方案: 某锅炉燃烧系统要求对系统进行蒸汽压力控制。本项目采用燃烧炉蒸汽压力控制和燃料空气比值控制系统,并辅以炉膛负压控制的方案,控制系统框图如图所示。 已知控制系统传递函数: 燃料流量系统的数学模型:G(s)=s e s 31 122-+

空气流量模型:G(s)=s e s 21102-+ 引风量与负压关系模型:G(s)=s e s -+156 送风量对负压的干扰模型:G(s)=122 +s 并取: 燃料流量至蒸汽压力关系约为:G(s)=4 蒸汽压力至燃料流量关系约为:G(s)=1/4 燃料流量与控制流量比值:G(s)=2 空气流量与燃料流量比值:G(s)=1 实现步骤: 1、系统稳定性分析 作出伯德图,如果相角裕度Pm>0°或幅值裕度Gm>1,表示系统稳定。 (1) 燃料流量系统数学模型:G(s)=s e s 31122-+的伯德图: 空气流量数学模型G(s)=s e s 21102 -+的伯德图:

基于DCS的锅炉控制系统设计

DCS控制系统设计 一.被控对象: 图1 锅炉设备工艺 二.工艺要求 燃料和热空气按一定比例送入燃烧室燃烧,生成热量传递给蒸汽发生系统,产生饱和蒸汽Ds,然后经过热器,形成一定气温的过热蒸汽D,汇集至蒸汽母管。压力为Ph的过热蒸汽经负荷设备调节阀供给生产设备负荷用。与此同时,燃烧过程中产生的烟气,除将饱和蒸汽变成过热蒸汽外,还经省煤器预热锅炉给水和空气预热器预热空气,最后经引风机送往烟囱,排入大气。 三.DCS选型 本控制系统选择浙大中控Webfield JX-300XP系统。 四.硬件 ①控制站硬件 1.机柜:SP202 结构:拼装 尺寸:2100*800*600 ESD:防静电手腕 散热:两风扇散热 接地:工作接地,安全接地 2.机笼 电源机笼:四个电源模块,型号:XP521 I/O机笼:20个槽位,用于固定卡件 3.接线端子板 冗余端子板:XP520R 4.端子转接板 5.主控卡:XP243X 地址范围:2到127。 后备锂电池模块:JP2,保持参数不丢失。 6.数据转发卡:XP233

地址范围:0到15 7.I/O卡件 (a)I/O点数计算 Ⅰ.锅炉控制系统中数字量输入点数: 启动;停止;点火;手动关闭蒸汽阀 以上共计四个数字量输入。 Ⅱ.锅炉控制系统中数字量输出点数: 给风;1号风机;给燃料;2号风机;蒸汽阀 以上共计五个数字量输出。 Ⅲ.锅炉控制系统中模拟量输入点数: 汽包液位、温度、压力。 以上共有三个模拟量输入(为了使模拟信号可以远传,变送器均选择电压式)。 (b)卡件选择 Ⅰ.XP363:触点型开关量输入卡。8路输入,统一隔离。 Ⅱ.XP362:触点型开关量输出卡。8路输出,统一隔离。 Ⅲ.SP314X:电压信号输入卡。4 路输入,点点隔离,可冗余 Ⅳ.XP221:电源指示灯。 ②操作员站硬件 1.PC机: 显示器;主机;操作员键盘,鼠标;操作员站狗; 2.Windows XP操作系统 3.安装Advan Trol-Pro实时监控软件。 ③工程师站硬件 1.PC机 显示器;主机;工程师键盘,鼠标;工程师站狗 2.工程师站硬件可以取代操作员站硬件 3.Windows XP操作系统 4.安装Advan Trol-Pro实时监控软件 5.安装组态软件包 ④通信网络 (a)信息管理网 通讯介质:双绞线(星形连接),50Ω细同轴电缆、50Ω粗同轴电缆(总线形连接,带终端匹配器),光纤等; 通讯距离:最大 10km; 传输方式:曼彻斯特编码方式; (b)过程控制网络(SCnet Ⅱ网) 传输方式:曼彻斯特编码方式; 通讯控制:符合 TCP/IP 和 IEEE802.3 标准协议; 通讯速率:10Mbps; 节点容量:最多 15个控制站,32个操作站、工程师站或多功能站; 通讯介质:双绞线,50Ω细同轴电缆、50Ω粗同轴电缆、光缆;

发电厂燃煤锅炉燃烧PLC控制系统设计说明

发电厂燃煤锅炉燃烧控制系统设计 摘要 在热电厂中,以单位机组为控制对象有:锅炉汽包水位控制、燃烧过程控制以及过热蒸汽温度,过热蒸汽温度控制又包括过热蒸汽温度控制和再热蒸汽温度控制。其中,热电厂锅炉的燃烧控制对整个发电过程的安全性与经济性起着重要的作用,所以对它高效率的控制是现在热电厂的一个重要任务。 本文以一台工业控制机作为上位机,以西门子S7-300可编程控制机为下位机,系统通过变频器控制电机的启动,运行和调速。上位机监控采用WinCC设计,主要完成系统操作界面设计,实现系统启停控制,参数设定,报警联动,历史数据查询等功能。下位机控制程序采用西门子公司的STEP7编程软件设计,主要完成模拟量信号的处理,温度和压力信号的PID控制等功能,并接受上位机的控制指令以完成风机启停控制,参数设定,循环泵的控制和其余电动机的控制。 关键词:热电厂;锅炉燃烧;单片机;控制 Coal-fired power boilers burning single chip control system design Abstract Thermal power plant boiler combustion control plays an important role in security and economy of the entire power generation process, the control of its high efficiency thermal power plant is an important task. In this paper, the analysis and study of the entire combustion system,

锅炉燃烧控制系统_毕业设计

锅炉燃烧控制系统 摘要 锅炉的燃烧控制对于锅炉的安全、高效运行和节能降耗都具有重要意义,其控制和管理随之要求也越来越高。本设计主要针对锅炉燃烧控制系统的工作原理,根据控制要求,设计了一套基于PLC的锅炉燃烧控制系统。 在控制算法上,综合运用了单回路控制、串级控制、比值控制、前馈控制等控制方式,实现了燃料量控制调节蒸汽压力、送风量控制调节烟气含氧量、引风量控制炉膛负压,并有效地克服了彼此的扰动,使整个系统稳定的运行。 在可编程控制器的选择上,采用了AB公司Logix5000系列PLC,设计了控制系统的硬件配置图、I/O模块接线图,并用其编程软件编写了实现控制算法的梯形图。同时,采用RSView32设计监控界面,使得在上位机上能够实时监控系统的运行状况并可以设置系统的工作参数,使对系统的控制简单易行。 关键词:锅炉燃烧控制系统,控制方式,PLC,监控

ABSTRACT The control of the boiler combustion which is for boilers safe, efficient operation and energy saving are of great significance, and its subsequent control and management is getting higher and higher requirements. According to the control requirements and the working principle, we design a system of a PLC based on the boiler combustion control system. In the control algorithm, we integratedly applied the single-loop control, cascade control, ratio control, feed-forward control and so on which is moded the control to achieve a fuel vapor pressure control regulator, air-conditioning of flue gas oxygen content control, citing the negative air volume control of the furnace pressure.It also effectively overcome the disturbance of each other, so that the operation of the entire system is stable. Choice in the programmable logic controller, we choose AB, Logix5000 series PLC, and applied it to the design of the control system hardware configuration diagram and I / O module wiring diagram. Then we use the preparation of its programming software control algorithm to achieve the ladder. At the same time, the use of RSView32 interface to design monitor makes PC can run real-time monitoring of system status and can set the system parameters, so that the system is easy to control. Keywords: boiler combustion control system, control, PLC ,supervisory control

锅炉温度控制系统设计方案

锅炉温度控制系统设计方案 第1章绪论 1.1课题背景及研究的意义 锅炉是工业生产中最常用的能量转换设备之一,它通过转化燃料中的化学能或利用电能转化为能,成为人们广为依赖的采暖工具。在电锅炉中,利用电阻在通电流状态下发热的原理,通过对电流的大小的控制对温度的控制。由于电流易控制的特点,电锅炉在小型锅炉和精密控温的到使用者的青睐。但是,在大部分城市中,由于国家实行“西气东输”计划,燃气价格为普通人家所接受,经数据统计和计算,燃气锅炉更便宜,比电锅炉应用更受欢迎。 锅炉温度的稳定是锅炉性能的一项重要指标,温度过高和温度过低都会给锅炉的稳定运行和生产造成重大的的影响,甚至发生安全事故。温度过高,导致锅炉金属材料和相关部件的超温过热,加速管材金属氧化,降低锅炉和相关部件的使用寿命;温度过低,假定在保持锅炉蒸发量不变的情况下,锅炉的损耗将大幅上升,能源利用率因此下降,而且负荷也将受到限制。所以,限定锅炉在安全温度成为每一个温度控制系统的核心部分。 随着科技发展,人们对采暖方式和热水方式渐渐发生变化,家用燃气锅炉进入寻常百姓家,但是国燃气锅炉的开发与应用还处于较落后的阶段,市场上的大多数此类商品还是以国外为主,所以燃气锅炉依然有广大市场与研究价值。 本设计以家用燃气锅炉为研究目标,使用AT89C51单片机为控制核心组成温度控制系统,采用热电阻感应温度的变化,单片机实现收集数据、处理数据、发送控制命令的功能,从各方面详细的说明单片机在温度控制的应用。 1.2 温度传感技术 自工业时代以来,随着大型机械的出现和广泛应用,温度对机械工作性能的影响越来越被人们所重视,对温度的未知可能造成机械损坏或发生重大事故。于是温度传感器便应运而生。温度传感器用在生活的方方面面,从冶金行业到每一个人身边中的一部分,它已经随着时代的步伐在进步。 目前使用的较为先进的温度传感器是数字传感器。数字传感器的优点是不需要像传统方式一样加入转换部分,利用当今成熟的集成技术,在其部已经集成了感应温度系统和温度转换系统,尤其是它单端数据输出的功能,极大减少对主控

锅炉燃烧过程控制系统设计毕业论文

锅炉燃烧过程控制系统设计毕业论文

毕业论文 锅炉燃烧过程控制系统设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

辅锅炉燃烧模拟控制系统设计

学校 毕业论文 题目:辅锅炉燃烧模拟控制系统设计Auxiliary boiler combustion control system simulation 系别: 专业: 班级: 姓名: 学号: 指导教师: 2011年月日

目录 前言 (3) 摘要 (3) 1 可编程序控制器的基本特点 (4) 2系统设计要求 (5) 2.1水位控制 (5) 2.2燃烧程序自动控制 (5) 2.3蒸汽压力控制 (7) 2.4自动保护和报警 (7) 3控制部分的设计 (7) 3.1硬件设计 (8) 3.2控制部分的软件设计 (9) 一、控制系统流程图 (10) 二、时序图 (11) 三、控制程序 (12) 四、控制程序的说明 (15) 4 结束语 (16) 参考文献 (16)

前言 在内燃机动力装置的船舶上,锅炉是船舶的重要辅机设备,主要产生蒸汽用于加热燃油、主机暖缸、驱动辅助机械及生活杂用。当前船舶机舱自动化的要求越来越高,锅炉的自动控制在实现无人机舱中是必不可少的。但是目前我国船舶(特别在远洋渔船)上,虽有一定程度的自动化控制,但控制系统基本上是采用接触器—继电器系统, 系统线路复杂、可靠性差、维护工作量大。为改造船舶设备,改善船员劳动强度,提高生产效率, 采用可编程序控制器来实现锅炉的自动控制, 可以使线路简单、可靠性提高、维护方便且容易实现现场调试等。可编程序控制器控制系统的经济性能比高于接触器—继电器控制系统。 随着船舶技术的发展,船舶自动化的程度越来越高,而PLC因其可靠性高、运用灵活,在自动控制领域获得了广泛的应用。目前,在船舶自动化设备中,船舶电站自动化、分油机自动控制、锅炉自动控制等领域,都已成功地应用了可编程序控制器,相信随着市场的发展和技术的进步,PLC技术在船上会有更广阔的前景。 船舶辅锅炉是一个多输入、多输出且相互关联的复杂的控制对象,其实际操作必须遵循严格的步骤,在实习和教学环节中,实现每个人都进行实际操作有难度。因燃油运行成本且可能出现操作失误,会给实习和教学带来一定的困难和不安全因素。随着虚拟现实技术的产生,这些问题将逐步得到解决。以下将会用PLC设计一个辅锅炉模拟控制系统。 摘要 目前我国船舶自动化控制程度较低,控制系统基本上是采用接触器—继电器系统, 系统线路复杂、可靠性差、维护工作量大。为改造船舶设备,改善船员劳动强度,提高生产效率, 采用可编程序控制器来实现锅炉的自动控制, 可以使线路简单、可靠性提高、维护方便且容易实现现场调试等。随着船舶自动化的发展,PLC技术越来越多的在船舶中得到应用。本文分析了PLC的特点以及在船用辅锅炉自动控制系统的应用,主要应用在船用辅锅炉锅炉水位自动控制、蒸汽压力自动控制、燃烧程序的自动控制、保护与报警,使锅炉实现自动控制,逐渐达到无人机舱的目的。 本文主要包括以下几方面内容:一、介绍可编程序控制器(PLC)的基本特点,使人了解PLC工作原理及方式;二、说明该控制系统的设计要求,也就是本文用S7—200 PLC实现自动锅炉控制要达到的目的;三、是本文最重要的一环,系统自动控制的设计包括硬件和软件方面。

基于DCS的燃气锅炉自动控制系统

基于DCS的燃气锅炉自动控制系统 作者:李婕姝杨润清来源:v黑龙江科技信息发布时间:2010-1-26 17:29:14 [收藏] [评论] 基于DCS的燃气锅炉自动控制系统 1 工艺介绍 本锅炉系统主要通过燃烧高炉煤气和焦炉煤气为某钢铁公司1000M3高炉提供动力,并季节性提供工业用暖。锅炉主要包括煤气(高炉煤气、焦炉煤气)系统、炉体部分、对流受热面(汽包及冷却壁,I、II 过热器,I、II省煤器,I、II空气预热器)、点火器、送引风设备等组成。 按照各部分的功能大致分为汽水系统、风烟系统、燃烧系统、减温减压及公用系统几个子系统。 本控制系统主要控制锅炉及相关辅助设备的生产过程,使其符合工艺所要求达到的蒸汽温度(450℃)、压力(3.82MPa)、流量(130t/h)、纯度(过热蒸汽)。 1.1 汽水系统 汽水系统是供给锅炉保护和产生蒸汽的除氧水,生成载热的过热蒸汽送到汽机膨胀做功或者经过减温减压后供热。来自除氧给水系统的除氧水经过调节后送到I、II省煤器预热,然后送到锅炉汽包和与汽包相连的锅炉冷却壁中,经过锅炉燃烧生成的高温烟气的加热生成不饱和蒸汽,不饱和蒸汽经过I级过热器、I级过热器蒸汽集箱,经过喷水减温器减温处理后,再经过II级过热器、II级过热器蒸汽集箱后生成饱和的过热蒸汽,然后送到蒸汽母管,一部分送到汽机膨胀做功,一部分进入减温减压系统, 一部分提供除氧汽动给水泵做功给水。 1.2 风烟系统 空气(冷风)经过净化后通过1#、2#送风机送到I、II空气预热器中进行预热成为热风,热风送到热风烧嘴和煤气混合燃烧;高炉煤气和焦炉煤气通过高炉煤气管道和焦炉煤气管道送到燃烧喷嘴和热风混合 燃烧,生成高温烟气,加热锅炉汽包中的除氧水使之成为不饱和蒸汽,然后高温烟气依次通过I过热器、II过热器、II省煤器、II空气预热器、I省煤器、I空气预热器将不饱和蒸汽加热成为高温高压的饱和蒸汽,并预热送到锅炉汽包中的除氧水和送到锅炉炉膛中的空气,最后通过引风机引至烟囱中排放。 1.3 燃烧系统 高炉煤气由外部接入,分为4路,分别进入锅炉的4个角(每角4个燃烧喷嘴),参与燃烧;进入锅炉和高炉煤气混合燃烧的热风分别进入锅炉的4个角(每角4个燃烧喷嘴),参与燃烧;焦炉煤气由外部接入,分为4路,分别进入锅炉的4个角(每角2个燃烧喷嘴),参与燃烧。正常情况下,燃料为高炉煤气,焦炉煤气只是在点火的时候用到,平时只是作为保安气(作为锅炉燃烧过程中的炉膛温度低时保护气)。 燃烧过程中通过热电偶和火焰观测器来检测炉膛温度变化。通过调节高炉煤气、焦炉煤气、风的配比来调节锅炉炉膛温度(燃料配比一般为100%高炉煤气,另外也有80%——90%高炉煤气加20%——10%焦炉煤气或者50%焦炉煤气)。整个燃烧过程中炉膛温度控制在1100±10℃左右。 1.4 减温减压及公用系统 本锅炉产生的过热蒸汽大部分送到汽机做功给高炉供风,其余的一部分送到中温中压联络管,另一部分送到1#、2#减温减压器经过工业水的减温减压后变为低温低压蒸汽,一部分送到厂区供热,另一部分通过加热蒸汽母管送到除氧器,一部分提供除氧汽动给水泵做功给水。 2.系统配置 2.1 DCS系统 计算机集散控制系统(DCS)由上位系统和下位系统组成。上位系统采用工业控制计算机,用Siemens 组态软件WinCC完成现场数据的实时显示、存储、报警处理、打印及控制参数设定。下位系统由Siemens PLC 构成,与现场设备相连。上位系统和下位系统之间的通讯采用Ethernet方式,其最高传输速率可达 10-100Mbit/s,完全满足对数据实时监控的要求。自动控制系统采用S7 400 系列PLC硬件组成基础自动

锅炉燃烧系统的控制系统设计解析

目录 1锅炉工艺简介 (1) 1.1锅炉的基本结构 (1) 1.2工艺流程 (2) 1.2煤粉制备常用系统 (3) 2 锅炉燃烧控制 (4) 2.1燃烧控制系统简介 (4) 2.2燃料控制 (4) 2.2.1燃料燃烧的调整 (4) 2.2.2燃烧调节的目的 (5) 2.2.3直吹式制粉系统锅炉的燃料量的调节 (6) 2.2.4影响炉内燃烧的因素 (7) 2.3锅炉燃烧的控制要求 (11) 2.3.1 锅炉汽压的调整 (11) 3锅炉燃烧控制系统设计 (14) 3.1锅炉燃烧系统蒸汽压力控制 (14) 3.1.1该方案采用串级控制来完成对锅炉蒸汽压力的控制 (14) 3.2燃烧过程中烟气氧含量闭环控制 (17) 3.2.1 锅炉的热效率 (18) 3.2.2反作用及控制阀的开闭形式选择 (20) 3.2.3 控制系统参数整定 (20) 3.3炉膛的负压控制与有关安全保护保护系统 (21) 3.3.1炉膛负压控制系统 (22) 3.3.2防止回火的连锁控制系统 (23) 3.3.3防止脱火的选择控制系统 (24) 3.4控制系统单元元件的选择(选型) (24) 3.4.1蒸汽压力变送器选择 (24) 3.4.2 燃料流量变送器的选用 (25) 4 DCS控制系统控制锅炉燃烧 (26) 4.1DCS集散控制系统 (26) 4.2基本构成 (28)

锅炉燃烧系统的控制 4.3锅炉自动燃烧控制系统 (31) 总结 (34) 致谢 (35) 参考文献 (36)

1锅炉工艺简介 1.1锅炉的基本结构 锅炉整体的结构包括锅炉本体和辅助设备两大部分。 1、锅炉本体 锅炉中的炉膛、锅筒、燃烧器、水冷壁、过热器、省煤器、空气预热器、构架和炉墙等主要部件构成生产蒸汽的核心部分,称为锅炉本体。锅炉本体中两个最主要的部件是炉膛和锅筒。 炉膛又称燃烧室,是供燃料燃烧的空间。将固体燃料放在炉排上进行火床燃烧的炉膛称为层燃炉,又称火床炉;将液体、气体或磨成粉状的固体燃料喷入火室燃烧的炉膛称为室燃炉,又称火室炉;空气将煤粒托起使其呈沸腾状态燃烧、适于燃烧劣质燃料的炉膛称为沸腾炉,又称流化床炉;利用空气流使煤粒高速旋转并强烈火烧的圆筒形炉膛称为旋风炉。炉膛的横截面一般为正方形或矩形。燃料在炉膛内燃烧形成火焰和高温烟气,所以炉膛四周的炉墙由耐高温材料和保温材料构成。在炉墙的内表面上常敷设水冷壁管,它既保护炉墙不致烧坏,又吸收火焰和高温烟气的大量辐射热。炉膛的结构、形状、容积和高度都要保证燃料充分燃烧,并使炉膛出口的烟气温度降低到熔渣开始凝结的温度以下。当炉内的温度超过灰熔点时,灰便呈熔融状态。熔融的灰渣颗粒在触及炉内水冷壁管或其他构件时会粘在上面。粘结的灰粒逐渐增多,遂形成渣块,称为结渣。结渣会降低锅炉受热面的传热效果。严重时会堵塞烟气流动的通道,影响锅炉的安全和经济运行。一般用炉膛容积热负荷和炉膛截面热负荷或炉排热负荷表示其燃烧强烈程度。炉膛容积热负荷是单位炉膛容积中每单位时间内释放的热量。在锅炉技术中常用炉膛容积热负荷来衡量炉膛大小是否恰当。容积热负荷过大,则表示炉膛容积过小,燃料在炉内的停留时间过短,不能保证燃料完全燃烧,使燃烧效率下降;同时这还表示炉墙面积过小,难以敷设足够的水冷壁管,结果炉内和炉膛出口处烟气温度过高,受热面容易发生结渣。室燃炉的炉膛截面热负荷是单位时间内单位炉膛横截面上燃料燃烧所释放的热量。在炉膛容积确定以后,炉膛截面热负荷过大会使局部区域的壁面温度过高而引起结渣。层燃炉的炉排热负荷是单位时间内燃料燃烧所释放的热量与炉排面积的比值。炉排热负荷过高会使飞灰大大增加。炉膛设计需要充分考虑使用燃料的特性。每台锅炉应尽量燃用原设计的燃料。燃用特性差别较大的燃料时,锅炉运行的经济性和可靠性都可能降低。 锅筒它是自然循环和多次强制循环锅炉中接受省煤器来的给水、联接循环回路,并向过热器输送饱和蒸汽的圆筒形容器。锅筒筒体由优质厚钢板制成,是锅炉中最重的部件之一。锅筒的主要功能是储水,进行汽水分离,在运行中排除锅水中的盐水和泥渣,

锅炉燃烧调整总结

锅炉燃烧调整总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

#2 炉优化调整 机组稳定运行已有3个多月,但在调试结束后我厂#2机组在3月份前在满负荷时床温在960℃左右,总风量大,风机电流大,厂用电率居高不下,一直困扰着我们。通过三个月的分析、调整,近期床温整体回落,总结出主要原因有以下两点: 一、煤颗粒度的差异。前一段时间负荷300MW时床温高炉膛差压在1.5KPa,下部压力2.6KPa,近期炉膛差压在2.1KPa,下部压力3.6KPa,这说明锅炉外循环更好了,分离器能捕捉更多的物料返回炉膛,同时也减少了飞灰含碳量,否则小于1mm的煤粒份额太多分离器使分离效率下降,小于1mm细颗粒太多就烧成煤粉炉的样子,从而导致高床温细颗粒全给飞灰含碳量做贡献了,大于10mm煤粒太多就烧成鼓泡床了,导致水冷壁磨损加剧爆管、冷渣器不下渣和燃烧恶化等一系列问题,所以控制好入炉煤粒度(1—9mm)是保证燃烧的前提,当煤颗粒度不合适时只能通过加大风量使床温下降,在煤颗粒度不合适时加负荷一定要先把风量加起来,否则负荷在300MW时床温会上升到接近980℃,甚至会因床温高被迫在高负荷时解床温高MFT保护,如果处理不当造成结焦造成非停。所以循环流化床锅炉控制煤粒度是决定是否把锅炉烧成真正循环流化床最为重要的因素,可以说粒度问题解决了,锅炉90%的问题都解决了,国内目前最好的煤破碎系统为三级筛分两级破碎。 二、优化燃烧调整。3月份以来#2炉床温虽然整体下降,但仍不够理想,由于我厂AGC投入运行中加减负荷频繁,所以在负荷变

化时锅炉床温变化幅度较大,在最大出力和最小出力时床温相差接近200℃,不断的调整风煤配比使其达到最优燃烧工况,保证床温维持在850℃-900℃。负荷150MW时使总风量维持32万NM3/h左右,一次流化风量21万NM3/h,二次风量11万NM3/h左右,同时关小下二次风小风门(开度20%左右,减小密相区燃烧,提高床温)和开大上二次小风门(开度40%左右,增强稀相区燃烧,提高循环倍率),可使床温维持850℃左右,正常运行中低负荷时一次风量保证最小临界流化风量的前提下尽可能低可使床温维持高一点,以保证最佳炉内脱硫脱硝温度。负荷300MW时总风量维持62万NM3/h左右,一次风量27万NM3/h左右,二次风量35万NM3/h左右,同时开大下二次小风门(开度80%左右,增强密相区扰动,降低床温),关小上二次小风门(开度60%左右,使稀相区进入缺氧燃烧状态),因为东锅厂设计原因,二次上下小风门相同开度情况下上二次风是下二次风风量的三倍,所以加减负荷时根据负荷及时调整二次小风门开度对床温影响较大。高负荷时在床温不高的情况下尽量减小一次风,以达到减少磨损的目的,二次风用来维持总风量,高负荷时床温尽量接近900℃,以达到最佳炉内脱硫脱硝温度,同时加负荷时停止部分或全部冷渣器,床压高一点增强蓄热量可降低床温,减负荷相反,稳定负荷后3台左右冷渣器可保证床压稳定。 在优化燃烧调整基本成熟的基础上,配合锅炉主管薛红军进行全负荷低氧量燃烧运行,全负荷使床温尽量靠近900℃。根据#2炉目前脱硝系统运行情况,负荷150MW时根据氧量及时减减小二次

锅炉自动燃烧控制系统

锅炉自动燃烧控制系统 1、实时数据采集 能够对锅炉本体和辅助设备各种运行数据(包括总供回水温度、压力、流量、省煤器进出口水温度﹑压力烟气温度、除尘器进出口烟气温度压力、鼓引风压力、炉膛温度压力含氧量、煤层厚度、室外温度、鼓引风炉排电机频率速度电流状态、除渣除尘状态) 等信号通过总线进行动态采集,控制中心能够实时监控到锅炉本体﹑锅炉上煤﹑除渣等辅助设备的运行情况。 2、完整的报警机制 当锅炉调节系统发生异常情况时或报警时,上位机人机界面自动接受控制系统器发送报警信号,将报警状态及异常点在上位机上进行显示,并诊断提出相应问题大概原因,提供相应的处理办法提示,系统自动能把报警分为高中低三种报警级别,低级别的报警只做提示用,当发生低级别报警时不影响燃烧自动调节,中级别报警发生时需要做相应处理,高级别报警发生时系统能立即连锁停炉,并发出尖锐声光报警和相关提示信息,等待工程师处理后再次投入运行,所有报警系统会自动的写入永久数据库备份,供以后随时查询和故障诊断和决策处理。 报警内容有: 系统报警 包括DCS控制器自诊断硬件或致命软件命令错误

自动启动燃烧失败 通讯建立连接失败 数据报警 炉膛温度超高低报警 炉膛负压超高低报警 锅炉出口温度超高低报警 锅炉出口压力超高低报警锅炉回水温度﹑压力超高低报警 引风机风压高低报警 鼓风机风压高低报警 高级别报警 引风机变频器(电流﹑电压﹑故障)超速等报警 连锁控制保护报警 鼓风机变频器(电流﹑电压﹑故障)超速等报警 上煤系统综合保护报警 炉排机变频器(电流﹑电压﹑故障)超速等报警 除渣系统综合保护报警 3、循环水控制系统 循环水是锅炉系统与外界交互的接口,循环系统通过泵不断的把热水源源不断的输送给用户或热站,把经过热释放后的二次低温水循环到锅炉系统再加热。我们采用保持循环水进、出口温差恒定,通过改变循环流量来控制热负荷的方式,是一种新方式。

基于PLC的锅炉燃烧控制系统

基于PLC的锅炉燃烧控制系统 1、引言 燃烧控制系统是电厂锅炉的主控系统,主要包括燃料控制系统、风量控制系统、炉膛压力控制系统。目前大部分电厂的锅炉燃烧控制系统仍然采用PID控制。燃烧控制系统由主蒸汽压力控制和燃烧率控制组成串级控制系统,其中燃烧率控制由燃料量控制、送风量控制、引风量控制构成,各个子控制系统分别通过不同的测量、控制手段来保证经济燃烧和安全燃烧。如图1所示。

图1 燃烧控制系统结构图 2、控制方案 锅炉燃烧自动控制系统的基本任务是使燃料燃烧所提供的热量适应外界对锅炉输出的蒸汽负荷的要求,同时还要保证锅炉安全经济运行。一台锅炉的燃料量、送风量和引风量三者的控制任务是不可分开的,可以用三个控制器控制这三个控制变量,但彼此之间应互相

协调,才能可靠工作。对给定出水温度的情况,则需要调节鼓风量与给煤量的比例,使锅炉运行在最佳燃烧状态。同时应使炉膛内存在一定的负压,以维持锅炉热效率、避免炉膛过热向外喷火,保证了人员的安全和环境卫生。 2.1 控制系统总体框架设计 燃烧过程自动控制系统的方案,与锅炉设备的类型、运行方式及控制要求有关,对不同的情况与要求,控制系统的设计方案不一样。将单元机组燃烧过程被控对象看作是一个多变量系统,设计控制系统时,充分考虑工程实际问题,既保证符合运行人员的操作习惯,又要最大限度的实施燃烧优化控制。控制系统的总体框架如图2所示。

图2 单元机组燃烧过程控制原理图

P为机组负荷热量信号为D+dPbdt。控制系统包括:滑压运行主汽压力设定值计算模块(由热力系统实验获得数据,再拟合成可用DCS折线功能块实现的曲线)、负荷—送风量模糊计算模块、主蒸汽压力控制系统和送、引风控制系统等。主蒸汽压力控制系统采用常规串级PID控制结构。 2.2 燃料量控制系统 当外界对锅炉蒸汽负荷的要求变化时,必须相应的改变锅炉燃烧的燃料量。燃料量控制是锅炉控制中最基本也是最主要的一个系统。因为给煤量的多少既影响主汽压力,也影响送、引风量的控制,还影响到汽包中蒸汽蒸发量及汽温等参数,所以燃料量控制对锅炉运行有重大影响。燃料控制可用图3简单表示。

锅炉集中控制系统设计

锅炉集中控制系统 班级:电气08-11班 姓名:孙琛智 学号:7号 日期:2010年11月7日

1.燃煤锅炉的工作原理: 首先除氧水通过给水泵进入给水调节阀,通过给水调节阀进入省煤器,冷水在经过省煤器的过程中被由炉膛排出的烟气预热,变成温水进入汽包,在汽包内加热至沸腾产生蒸汽,为了保证有最大的蒸发面因此水位要保持在锅炉上汽包的中线位置,蒸汽通过主蒸汽阀输出。空气经过鼓风机进入空气预热器,在经过空气预热器的过程中被由炉膛排出的烟气预热,变成热空气进入炉膛。燃料进入炉膛被前面的火点燃,在燃烧过程中发出热量加热汽包中的水,同时产生热烟气。在引风机的抽吸作用下经过省煤气和空气预热器,把预热传导给进入锅炉的水和空气。通过这种方式使锅炉的热能得到节约。降温后的烟气经过除尘器除尘,去硫等一系列净化工艺通过烟囱排出。锅炉微机控制系统,一般由以下几部分组成,即由锅炉本体、一次仪表、控制系统、上位机、手自动切换操作、执行机构及阀、电机等部分组成,一次仪表将锅炉的温度、压力、流量、氧量、转速等量转换成电压、电流等送入微机。控制系统包括手动和自动操作部分,手动控制时由操作人员手动控制,用操作器控制变频器、滑差电机及阀等,自动控制时对微机发出控制信号经执行部分进行自动操作。微机对整个锅炉的运行进行监测、报警、控制以保证锅炉正常、可靠地运行,除此以外为保证锅炉运行的安全,在进行微机系统设计时,对锅炉水位、锅炉汽包压力等重要参数应设置常规仪表及报警装置,以保证水位和汽包压力有双重甚至三重报警装置,以免锅炉

发生重大事故。 2.燃煤锅炉的组成 锅炉按燃料种类分,大致有燃油锅炉,燃煤锅炉和燃气锅炉。所有的这些锅炉,虽然燃料及供给方式不同,但其结构大同小异,蒸汽发生系统和蒸汽处理系统是基本相同的。列举一个燃煤锅炉如图所示。 该系统所用的锅炉是以煤为燃料,两台20T/H的热水炉,一台 10T/H的热水炉和一台6T/H蒸汽量的水管锅炉,属中小型锅炉。以6T/H的蒸汽锅炉为例,工艺流程图所示,它由以下几个部分构成 1.汽包:由上下锅筒和沸水管组成。水在管内受管外烟气加热,因而在管簇内发生自然循环流动,并逐渐汽化,产生的饱和蒸汽聚集在锅筒罩面。为了得到干度比较大的饱和蒸汽,在上锅筒还装有汽水分离设备,下锅筒做为连接沸水管之用,同时储存水和水垢。

燃气蒸汽锅炉DCS控制系统

河南xxx工业有限责任公司 锅炉房3台10T蒸汽锅炉自控系统 控 制 方 案 xxxx电气系统有限公司

一:概述 xxxx电气有限公司是暖通、供暖节能、锅炉、热能设备等领域自动化控制的高科技股份制公司,是国内最大的锅炉电脑控制器厂家。 xx公司于1995年在全国率先推出锅炉电脑控制器,至今已发展到全系列燃煤、燃油(气)和电热锅炉的电脑控制、PLC控制、小型和大型DCS控制和供暖节能控制,控制锅炉的吨位达到150t/h,并且始终保持技术领先地位。目前xx公司产品已遍布全国,部分出口国外,近1000家国内锅炉厂和11家外资锅炉厂配套使用,已成为我国锅炉控制的主流产品和著名品牌,是中国锅炉行业“工业锅炉控制标准”起草单位。 公司资质: 中国锅炉行业“工业锅炉控制标准”起草单位 省级高新技术企业 国家级高新区企业 计算机软件企业 中国锅炉行业协会团体会员 二、控制对象和设备 10T燃油气两用饱和蒸汽锅炉3台,每台包括: ●程控器外置式燃烧器1台;风机功率12KW, ●给水泵2台,功率15kw(一主一备); ●循环泵 ●节能泵 由上述设备组成锅炉补水及蒸汽负荷输出系统。 三、关于标准 1、目前尚无锅炉控制器的国家标准或行业标准,我公司执行的是xxxx公司企业标准Q/3201RTG01-2000,是 目前国内唯一具有企业标准的锅炉电脑控制厂家。 2、我国工业锅炉控制装置的行业标准正在制定中,我公司为该标准的第一起草单位。 3、本控制方案依照国家有关标准和规程及xxxx公司企业标准编制,全面满足招标方要求。 四:系统设计原则 我方在进行本控制系统设计时,将严格遵循以下系统设计原则:

相关主题
文本预览
相关文档 最新文档