当前位置:文档之家› 中考数学专题资料

中考数学专题资料

中考数学专题资料
中考数学专题资料

2017学思教育中考数学专题复习资料汇总

第一讲填空选择题专项训练

第二讲6分、8分、9分题专项训练

第三讲化归思想专项训练

第四讲分类讨论专项训练

第五讲函数问题专项训练

第六讲代数几何综合题专项训练

第七讲动点问题专项训练

第八讲存在性问题专项训练

第九讲定义型、阅读型新题型

第十讲方案设计型问题专项训练

第十一讲数学思想方法(方程、函数、数形结合)

第十二讲2016中考模拟试题选讲

第一讲、填空选择题专项训练

Ⅰ、专题精讲

复习后阶段,学习方法、思维和生活学习习惯相对有所固定,成绩也相对稳定,于是就认为自己也许就是这个水平,孰不知,只要讲究应试技巧与策略,就能把分数提高一个档次。

一、整体上安排要坚持“两先两后”

1、先览后做,平时训练和模拟考试中,有的同学便急急忙忙“偷偷”做题,加重了自己的心理紧张程度,就有可能影响发挥,而正确的做法就是应是先统览试卷,摸清“题情”。对题型和难度作总体了解,在头脑中寻找解决这部分题的知识内容。

2、先易后难,部分学生善“钻研”,先做难题,无功后返,以致该得的分没得到,还浪费了宝贵的时间,造成总分较低。

二、解题中要坚持“两快两慢”

1、审题要慢,答题要快。所谓“成在审题,败在审题”,要咬文嚼字,抓住“题眼”,观察分析抓“特征”,深刻挖掘其隐含的内在联系;

2、计算要慢,书写要快,平时练习就要养成这种习惯,否则计算失误,后面就是“赔了夫人又折兵”了。

三、不同题型,区别对待

1、选择题灵活做,选择题一定坚持“小题小做”原则,采用间接、直接、特殊值代入法、排除法等各种方法并用,在确保无误的情况下提高解题效率;

2、填空题仔细做,一类是定性的概念判断填空,一类是定量的推理计算填空,适当提高运算速度,但解题过

程要确保“百分之百”;

Ⅱ、典型例题剖析

填空题解题方法:

例1根据表中一次函数的自变量x与函数y的对应值,可得p的值为()

x -2 0 1

y 3 p 0

A.1 B.-1 C.3 D.-3

例2.(若y=(a+1)x a2-2是反比例函数,则a的取值为()

A.1 B.-l C.±l D.任意实数

例3、(扑克牌游戏)小明背对小亮按下列四个步骤操作:

第一步分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同;

第二步从左边一堆拿出两张,放入中间一堆;

第三步从右边一堆拿出一张,放入中间一堆;

第四步左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆。

这时,小明准确说出了中间一堆牌现有的张数,你认为中间一堆牌现有的张数是____________.

二、特殊化法

例5、填空题:已知a<0,那么,点P(-a2-2,2-a)关于x轴的对称点是在第_______象限.

例6、无论m为任何实数,二次函数y=x2+(2-m)x+m的图像都经过的点是 _______.

三、数形结合法

例7、在直线l上依次摆放着七个正方形(如图所示)。已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,,则S1+S2+S3+S4=_______。

例8、如图,由10块相同的长方形地砖拼成的一块长方形地面图案(地砖间隙不计),如果图案的宽为75cm,那么图案的长为_______cm.

四、等价转化法

例9、若是方程x2-3x-5=0的两个根,

则的值是________.

例10、如图6,在中,E为斜边AB上一点,AE=2,EB=1,四边形DEFC为正方形,则阴影部分的面积为________.

选择题解题方法:

一. 直接法

例1. 若有意义,则 ( )。

二. 特例法

例2. 若a<0,-1

三. 检验法 例3. 方程

的解是( )

A. 3

B. 2

C. 1

D.3/7 四. 排除法

例4. 关于x 的一次函数12

++=k kx y 的图像可能是( )

Ⅲ、同步跟踪配套试题: — 选择题

1.负数的引入是数学发展史上的一大飞跃, 使数的家族得到了扩张, 为人们认识世界提供了更多的工具,最早使用负数的国家是( )

A: 中国 B: 印度 C: 英国 D: 法国 2.下列运算正确的是( )

A :a 2+a 3=a 5

B :4=±2

C :(2a)3=6a 3

D :(-3x-2)(3x-2)=4-9x 2 3. )

A:圆锥 B: 正三棱柱 C :正三棱锥 D :圆柱 4. 下列说话正确的是( )

A 、要调查人们对“低碳生活”的了解程度,宜采用普查方式

B 、一组数据3,4,4,6,8,5的众数和中位数都是3

C 、必然事件的概率是100%,随机事件的概率是50%

D 、若甲组数据的方差S 2甲 =0.128 ,乙组数据的方差S 2

乙 =0.036,则乙组数据比甲组数据稳定

5.下列四句话的文字有三句具有对称规律,其中没有这种规律的一句是( ) A 、上海自来水来自上海 B 、有志者事竟成 C 、清水池里池水清 D 、蜜蜂酿蜂蜜

6.小芳家房屋装修时,选中了一种漂亮的正八边形地砖,建材店老板告诉她,只用一种八边形地砖是不能密铺地面的,便向她推荐了几种形状的地砖,里认为要使地面密铺,小芳应选择另一种形状的地砖是( )

A D

C

F

E

A

B

D

C

7.如图,把一张长方形纸片ABCD沿对角线BD折叠,使C点落在E处,BE与AD相交于点F,下列结论:

① BD=AD2+AB2, ②△ABF≌△EDF, ③

DE

AB=

EF

AF, ④AD=BD·COS45°( )

A:①②B:②③C:①④D:③④

8.如图,边长都是1的正方形好正三角形,其一边在同一水平线上,三角形沿该水平线自左向右匀速穿过正方形,设穿过的时间为t,正方形与三角形重合部分的面积为S(空白部分),那么S关于t的函数大致图像应为()

二、填空题

9.函数y=

1

x+3中自变量x的取值范围是____________

10.分解因式:a4-1=____________

11今年3月7日,岳阳市人民政府新闻发布会发布,2010年全市经济增长14.8%,岳阳市GDP达到1539.4亿元。1539.4亿元用科学记数法表示为____________亿元。(保留两位有效数字)

12.不等式组

?

?

?6x-7≤0

3x<5x+2

的解集是____________。

13.如图,在等腰梯形ABCD中,AD∥BC,对角线AC、BD把等腰梯形分成了四个小三角形,任意选取其中两个小三角形是全等三角形的概率是____________。

A D

B C

A D

B

C

P

E

A

C

D

14.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E,若PE=2,则两平行线AD与BC间的距离为____________

15.将边长分别为2,22,32,42.…的正方形的面积分别记作S1,S2,S3,S4…,计算S2-S1, S3-S2,S4-S3,…,若边长为n2(n为正整数)的正方形面积记为S n,根据你的计算结果,猜想S N+1-S N=_____。

16.如图,在顶角为30°的等腰△ABC中,AB=AC,若过点C作CD⊥AB于点D,则∠BCD=15°,根据图形计数tan15°=____________

压轴体验:

孔明是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线2(0)

y ax a

=<的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点O,两直角边与该抛物线交于A、B两点,请解答以下问题:(1)若测得22

OA OB

==1),求a的值;

(2)对同一条抛物线,孔明将三角板绕点O旋转到如图2所示位置时,过B作BF x

⊥轴于点F,测得1

OF=,

y x

B

A

O

F E

y x

B

A

O

写出此时点B 的坐标,并求点A 的横坐标...

; (3)对该抛物线,孔明将三角板绕点O 旋转任意角度时惊奇地发现,交点A 、B 的连线段总经过一个固定的点,试说明理由并求出该点的坐标.

第二讲、6分、8分、9分题专项训练

Ⅰ、专题精讲

长沙中考数学试题题型改革,六分题两个,八分题两道,依去年中考的题型看,六分题和八分题题目难度不大,考查基础知识和基本计算能力,主要的内容包括:实数的计算、整式的加减乘除运算及化简求值、数据整理分析与概率、解方程和不等式、解直角三角形及应用、几何证明与推论、圆及其相关计算、一次函数反比例函数的图像性质等等。

中档题认真做,高档题分解做。中档题一般学生都能做,主要缺点是“会而不对,对而不全”,所以对这类题要仔细审题,减少纰漏; 高档题也不过是低档题的综合与迭加,所以只要分解开了,他可能就变成许多简单的问题,这样去分析、解题,就能尽可能得分。

Ⅱ、典型例题剖析 一、计算:

1.计算:-1

1+4cos60|3|92o ??

--+ ???

2、计算:

二、求值:

3.已知1x -1=1,求2

x -1+x -1的值.

零花钱数额(元) 学生人数(个) 0

5 10 15 20 图(九)

4、先化简,再求值:0

(x y)(x y)x(x y)2xy x (3),2y π+--++=-=,其中

三、几何推理证明: 5.

如图,在菱形ABCD 中,AB=2,∠ABC=60°,对角线AC 、BD 相交于点O ,将对角线AC 所在的直线绕点O 顺时针旋转角α(0°<α<90°)后得直线l ,直线l 与AD 、BC 两边分别相交于点E 和点F 。

(1)求证:△AOE ≌△COF ; (2)当α=30°时,求线段EF 的长度。

四、数据分析与图表:

6.某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行了调查统计,并

零花钱数额(元) 5 10 15 20

学生人数(个)

a 15

20

5

(1)求a 的值;

(2)求这50名学生每人一周内的零花钱数额的众数和平均数.

五、图形变换及作图:

7、在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).

(1)请在如图所示的网格平面内作出平面直角坐标系;

(2)请作出△ABC关于y轴对称的△A′B′C′;

(3)写出点B′的坐标.

六、解直角三角形:

8、莲城中学九年级数学兴趣小组为测量校内旗杆高度,如图,在C点测得旗杆顶端A的仰角为30°,向前走了6米到达D点,在D点测得旗杆顶端A的仰角为60°(测角器的高度不计).

(1)AD=米;

(2)求旗杆AB的高度.

七、解方程和不等式:

9、解不等式组

八、概率:

10、在1个不透明的口袋里,装有红、白、黄三种颜色的乒乓球(除颜色外,其余都相同),其中有白球2个,黄球1个,若从中任意摸出一个球,这个球是白色的概率为0.5.

(1)求口袋中红球的个数;

(2)若摸到红球记0分,摸到白球记1分,摸到黄球记2分,甲从口袋中摸出一个球,不放回,再找出一个画树状图的方法求甲摸的两个球且得2分的概率.

九、函数的图形及其性质:

一、方程与不等式:

1、某学校为开展“阳光体育”活动,计划拿出不超过3000元的资金购买一批篮球、羽毛球拍和乒乓球拍,已知篮球、羽毛球拍和乒乓球拍的单价比为8:3:2,且其单价和为130元.

(1)请问篮球、羽毛球拍和乒乓球拍的单价分别是多少元?

(2)若要求购买篮球、羽毛球拍和乒乓球拍的总数量是80个(副),羽毛球拍的数量是篮球数量的4倍,且购买乒乓球拍的数量不超过15副,请问有几种购买方案?

二、解直角三角形及应用:

2、如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1:(指坡面的铅直高度与水平宽度的比),且AB=20m.身高为1.7m的小明站在大堤A点,测得髙压电线杆顶端点D的仰角为30°.已知地面CB宽30m,求髙压电线杆CD 的髙度(结果保留三个有效数字,≈1.732).

三、圆及其相关计算

3、如图,△ABC内接于⊙O,CA=CB,CD∥AB且与OA的延长线交于点D.

(1)判断CD与⊙O的位置关系并说明理由;

(2)若∠ACB=120°,OA=2.求CD的长.

四、二次函数应用问题(最值):

4、(随州)我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每

投入x 万元,可获得利润P=.当地政府拟在“十二?五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投人100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x 万元,可获利润(万元).

(1)若不进行开发,求5年所获利润的最大值是多少?

(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少? (3)根据(1)、(2),该方案是否具有实施价值?

压轴体验:如图,抛物线bx ax y +=2

经过点A (—4,0)、B (—2,2),连接OB 、AB ,

(1)求该抛物线的解析式.

(2)求证:△OAB 是等腰直角三角形.

(3)将△OAB 绕点O 按逆时针方向旋转135°,得到△OA′B′,写出A′B′的中点P 的坐标,试判断点P 是否在此抛物线上. .

资料答案

一、选择题。

B D

C

D D D D B C A 二、填空题。

11、(x+3)(x-3) 12、(1,-2) 13、0和-2 14 (0,4) 15、大于2 16、2.5cm 17、1 18、4.5 三、解答题

19、1 20、 化简:1/(x-2)平方 求值:0.5 四、21、解:(1)30度 (2)

22、(1)50 (2)10 (3)72 (4)160 五、解答题

23、(1)240人,5辆车。 (2)租6辆45座的车合算。 24、(1)AE=ED,BF=GF ,GF=ED,推出AE=BF.

(2)2/3cm. 六、解答题 25.解:

(1)设直线AB 的解析式为b kx y +=

由题意,得???=+=086b k b ,解得?????

=

-

=6

43b k

∴直线AB 的解析式为:64

3

+-

=x y (2)由OA =6, OB =8得AB =10 ∴t AP =,t AQ 210-=

当AOB APQ ∠=∠时,APQ ?∽AOB ?10

2106t t -=

,解得1130

=t (秒). 当AOB APQ ∠=∠时,AQP ?∽AOB ?6

21010t t -=

,解得1150

=t (秒). ∴当1130=t 或13

50

=t 时,APQ ?与AOB ?相似

(3)过点O 作AO QE ⊥于点E

∵5

4

sin ===

∠AB OB AQ QE BAO ∴t T BAO AQ QE 5

88)210(54sin -=-=∠= ∴5)25(54454)588(21212

2+---=+-=-=?=?t t t t t QE AP S APQ

∴当2

5

=t 时,△APQ 的面积最大,最大面积是5个平方单位

26.提示:

(1)A (6.0),B (0,-6),∴C (3.3)

设3)3(2

+-=x a y ,将A (6,0)得:3

1-=a ∴x x x y 23

13)3(3

12

2

+-

=+--= (2)由A (6,0),B (0,-6)得OA =OB =6

∵OD OA OB ?=2

. ∴OB OA OD ===6

∴?=∠90ABD ,∴DB 是⊙C 的切线 (3)设存在点P (x ,y )连结OC

∵AC =BC .OA =OB .∴AB OC ⊥,∴?=∠90ACO

要使以P 、O 、C 、A 为顶点的四边形为直角梯形,?=∠90CAP 或?=∠90COP 若?=∠90CAP 则OC ∥AP ∵OC 的解析式为:x y =

设AP 的解析式为:b x y +=,把A (6,0)代入.得6-=b ,∴6-=x y

解方程组??

?

??+-=-=x x y x y 2316

2得???==0611y x (舍去),???-=-=9322y x ,∴)9,3(1--P

若?=∠90COP 则AC ∥OP ,同理可求:)9,9(2-P ∴存在点)9,3(1--P ,)9,9(2-P 满足题意。

中考数学专题复习最值问题

两点之间线段最短关系密切.在求最短路线时,一般我们先用“对称”的方法化成两点之间的最短距离问题,而两点之间直线段最短,从而找到所需的最短路线.像这样将一个问题转变为一个和它等价的问题,再设法解决,是数学中一种常用的重要思想方法. 类型1 利用“垂线段最短”求最短路径问题 如图所示,AB 是一条河流,要铺设管道将河水引到C ,D 两个用水点,现有两种铺设管道的方案.方案一:分别过C ,D 作AB 的垂线,垂足分别为E ,F ,沿CE ,DF 铺设管道;方案二:连接CD 交AB 于点P ,沿PC 、PD 铺设管道.问:这两种铺设管道的方案中哪一种更节省材料,为什么? 【思路点拨】 方案一管道长为CE +DF ,方案二管道长为PC +PD ,利用垂线段最短即可比较出大小. 本题易错误的利用两点之间线段最短解决,解答时需要准确识图,找到图形对应的知识点. 1.如下左图,点A 的坐标为(-1,0),点B(a ,a),当线段AB 最短时,点B 的坐标为( ) A .(0,0) B .(22,-22) C .(-22,-22) D .(-12,-12 ) 2.在直角坐标系中,点P 落在直线x -2y +6=0上,O 为坐标原点,则|OP|的最小值为( ) A.352 B .3 5 C.655 D.10 3.如上中图,在平面直角坐标系xOy 中,以原点O 为圆心的圆过点A(13,0),直线y =kx -3k +4与⊙O 交于B 、C 两点,则弦BC 的长的最小值为________. 4.如上右图,平原上有A ,B ,C ,D 四个村庄,为解决缺水问题,政府准备投资修建一个蓄水池. (1)不考虑其他因素,请你画图确定蓄水池H 点的位置,使它到四个村庄距离之和最小; (2)计划把河水引入蓄水池H 中,怎样开渠最短并说明根据. 类型2 利用“两点之间线段最短”求最短路径问题 (1)如图1,直线同侧有两点A ,B ,在直线MN 上求一点C ,使它到A 、B 之和最小;(保留作图痕迹不写作法) (2)知识拓展:如图2,点P 在∠AOB 内部,试在OA 、OB 上分别找出两点E 、F ,使△PEF 周长最短;(保留作图痕迹不写作法) (3)解决问题:①如图3,在五边形ABCDE 中,在BC ,DE 上分别找一点M ,N ,使得△AMN 周长最小;(保留作图痕迹不写作法)

最新中考数学中的“新定义”

中考数学中的“新定义” 近年来的中考试题中,“新定义”的题目频频出现.此类题目的解决,可以很好地体现学生的临场发挥能力和知识的迁移能力.现结合具体题目加以分析. 一、定义新符号 例l (2014·新疆维吾尔自治区)规定用符号[ ]表示一个实数的整数部分,例如[3.69]=3, ]=l ,按此规定1]= 分析及解答本题涉及到无理数的估算,∵9<13<16,∴3<<4,∴1<3, ∴1]=2.故应填2. 二、定义新数 例2 (2010·杭州市)定义[,,a b c ]为函数2y ax bx c =++的特征数.下面给出特征数为 [2m ,1一m ,一1一m ]的函数的一些结论: ①当m = 一3时,函数图象的顶点坐标是(18,33 ); ②当m >0时,函数图象截x 轴所得线段的长度大于 32; ③当m <0时,函数在x > 14 时,y 随x 的增大而减小; ④当m ≠O 时,函数图象经过同一个点.其中正确的结论是 ( ). A .①②③④ B .①②④ C .①③④ D .②④ 分析及解答不妨把m = 一3代入知道,a = 一6,b =4,C =2, 22186426()33y x x x =-++=--+ ,所以函数图象的顶点坐标是(18,33 ).①正确排除选项D ;由于当m <0时,对称轴124b m x a m -=-=-大于14 ,所以③错误,排除A 、C .综上可知,故选B . 三、定义新图形 (1)定义新点 例3 (2014·北京市)在平面直角坐标系xOy 中,对于点P (,)x y ,我们把点P (1,1)y x -++叫做点P 的伴随点.已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…

中考数学复习专题讲座

中考数学专题讲座一:选择题解题方法 一、中考专题诠释 选择题是各地中考必考题型之一,这说明选择题有它不可替代的重要性. 选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养. 二、解题策略与解法精讲 选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做. 解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略. 具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效. 三、中考典例剖析 考点一:直接法 从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础. 例1 方程的解是() A.x=±1 B.x=1 C.x=﹣1 D.x=0 思路分析:观察可得最简公分母是(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解:方程的两边同乘(x+1),得 x2﹣1=0, 即(x+1)(x﹣1)=0, 解得:x1=﹣1,x2=1. 检验:把x=﹣1代入(x+1)=0,即x=﹣1不是原分式方程的解; 把x=1代入(x+1)=2≠0,即x=1是原分式方程的解. 则原方程的解为:x=1. 故选B. 点评:此题考查了分式方程的求解方法.此题难度不大,注意掌握转化思想的应用,注意解分式方程一定要验根. 对应训练 1.某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有() A.7队B.6队C.5队D.4队 考点二:特例法 运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。用特例法解选择题时,特例取得愈简单、愈特殊愈好.

专题讲座(数学思想方法与初中数学教学)

专题讲座(数学思想方法与初中数学教学)

数学活动的机会,帮助学生在自主探索和合作交流的过程中,真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。学生只有领会了数学思想方法,才能有效地应用知识,形成能力,从而为解决数学问题、进行数学思维起到很好的促进作用。因此,在初中数学教学中,教师必须重视对学生进行数学思想方法的渗透与培养。 二、几种常见的数学思想方法在初中数学教学中的应用 (一)渗透转化思想,提高学生分析解决问题的能力 所谓“转化思想”是指把待解决或未解决的问题,通过转化,归结到已经解决或比较容易解决的问题中去,最终使问题得到解决的一种思想方法。转化思想是初中数学中常见的一种数学思想,它的应用十分广泛,我们在数学学习过程中,常常把复杂的问题转化为简单的问题,把生疏的问题转化为熟悉的问题。数学问题的解决过程就是一系列转化的过程,转化是化繁为简,化难为

易,化未知为已知的有力手段,是解决问题的一种最基本的思想,对提高学生分析解决问题的能力有积极的促进作用。 我们对转化思想并不陌生,中学数学中常用的化高次为低次、化多元为一元,都是转化思想的体现。在具体内容上,有加减法的转化、乘除法的转化、乘方与开方的转化、数形转化等等。例如:初中数学“有理数的减法”和“有理数的除法”这两节教学内容中,教材是通过“议一议”的形式,使学生在自主探究和合作交流的过程中,经历把有理数的减法转化为加法、把有理数的除法转化为乘法的过程,“减去一个数等于加上这个数的相反数”,“除以一个数等于乘以这个数的倒数”,这个地方虽然很简单,但却充分体现了把“没有学过的知识”转化为“已经学过的知识”来加以解决,学生一旦掌握了这种解决问题的策略,今后无论遇到多么难、多么复杂的问题,都会自然而然地想到把“不会的”转化为“会的”、“已经掌握的”知识来加以解决,这符合学生原有认知规律,作为教师,我们不能因为简单而忽视它的教学,实践告诉我们,往往是越简单、越浅显的例子,越能引起学生的认同,

最全初中数学几何动点问题专题分类归纳汇总训练

最全初中数学几何动点问题专题分类归纳汇总 近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题. 最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴). 我们知道“对称、平移、旋转” 是三种保形变换。通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。 数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。 (1)去伪存真。刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。 (2)科学选择。捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。 (3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。 (4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最

2014年中考数学复习专题讲座(WORD)1:选择题解题方法(含答案)

课件园https://www.doczj.com/doc/3a17227129.html, - 1 - 2014年中考数学专题讲座一:选择题解题方法 一、中考专题诠释 选择题是各地中考必考题型之一,2012年各地命题设置上,选择题的数目稳定在8~14题,这说明选择题有它不可替代的重要性. 选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养. 二、解题策略与解法精讲 选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做. 解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略. 具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效. 三、中考典例剖析 考点一:直接法 从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础. 例1 (2012?白银)方程的解是( ) A .x=±1 B . x =1 C . x =﹣1 D . x =0 思路分析: 观察可得最简公分母是(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解:方程的两边同乘(x+1),得 x 2﹣1=0, 即(x+1)(x ﹣1)=0, 解得:x 1=﹣1,x 2=1. 检验:把x=﹣1代入(x+1)=0,即x=﹣1不是原分式方程的解; 把x=1代入(x+1)=2≠0,即x=1是原分式方程的解. 则原方程的解为:x=1. 故选B . 点评: 此题考查了分式方程的求解方法.此题难度不大,注意掌握转化思想的应用,注意解分式方程一定要验根. 对应训练 1.(2012?南宁)某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有( ) A .7队 B .6队 C .5队 D .4队 考点二:特例法 运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。用特例法解选择题时,特例取得愈简单、愈特殊愈好. 例2 (2012?常州)已知a 、b 、c 、d 都是正实数,且 a c b d ,给出下列四个不等式:

2019年中考数学最值问题专题卷(含答案)

2019年中考数学最值问题专题卷(含答案) 一、单选题 1.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B' 的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是() A. 4 B. 3 C. 2 D. 1 2.如图,点A(a,3),B(b,1)都在双曲线y= 上,点C,D,分别是x轴,y轴上的动点,则四边形ABCD周长的最小值为() A. B. C. D. 3.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为() A. B. 2 C. 2 D. 二、填空题 4.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为________ . 5.如图所示,正方形ABCD的边长为6,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为________. 6.如图,正方形ABCD的边长为1,中心为点O,有一边长大小不定的正六边形EFGHIJ绕点O可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD内(包括正方形的边),当这个正六边形的边长最大时,AE的最小值为________.

7.如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是________ 三、综合题 8.如图,将边长为6的正三角形纸片ABC按如下顺序进行两次折叠,展平后,得折痕AD,BE(如图①),点O为其交点. (1)探求AO到OD的数量关系,并说明理由; (2)如图②,若P,N分别为BE,BC上的动点. (Ⅰ)当PN+PD的长度取得最小值时,求BP的长度; (Ⅱ)如图③,若点Q在线段BO上,BQ=1,则QN+NP+PD的最小值= .

中考数学专题复习几何最值问题

【典例1】如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC 边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连结B′D,则B′D的最小值是(). B.6 C. D.4 A. 【解析】∵AE=BE,BE=B′E,由圆的定义可知,A、B、B′在以点E为圆心, AB长为直径的圆上,如图所示. B′D的长最小值= DE =. 22故选A. 【启示】此题属于动点(B′)到一定点(E)的距离为定值(“定点定长”),联想到以E为圆心,EB′为半径的定圆,当点D到圆上的最小距离为点D到圆心的距离-圆的半径.当然此题也可借助三角形三边关系解决,如B D DE B E '' ≤-,当且仅当点E、B′、D三点共线时,等号成立. 【典例2】如图,E、F是正方形ABCD的边AD上两个动点,满足AE=DF,连接CF交BD于点G,连结BE交AG于点H,若正方形的边长是2,则线段DH长度的最小值是 . 【思路探究】根据正方形的轴对称性易得∠AHB=90°,故点H在以AB为直径的圆上.取AB中点O,当D、H、O三点共线时,DH的值最小,此时DH=OD-OH,问

题得解. 【解析】由△ABE≌△DCF,得∠ABE=∠DCF,根据正方形的轴对称性,可得∠DCF=∠DAG,∠ABE=∠DAG,所以∠AHB=90°,故点H在以AB为直径的圆弧上.取AB中点O,OD交⊙O于点H,此时DH最小,∵OH=1 AB=,OD=,∴DH的最 1 2 小值为OD-OH 1. 【启示】此题属于动点是斜边为定值的直角三角形的直角顶点,联想到直径所对圆周角为直角(定弦定角),故点H在以AB为直径的圆上,点D在圆外,DH的最小值为DO-OH.当然此题也可利用DH OD OH ≤-的基本模型解决. 【针对训练】 1. 如图,在△ABC中,∠ACB=90°,AC=2,BC=1,点A,C分别在x轴,y轴上,当点A在x轴正半轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离为(). B.1.3 A 2.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为(). B. C. D.4 A.3 3. 如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P、Q分别是边BC和半圆上的运点,连接PQ,则PQ长的最大值与最小值的和是().

2020中考数学专题汇编 几何最值 含解析

几何最值 一、选择题 1.(2020·泰安)如图,点A ,B 的坐标分别为A (2,0),B (0,2),点C 为坐标平面内一点,BC ﹦1,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( ) A . 2 +1 B . 2 +1 2 C .2 2 +1 D .2 2 —1 2 {答案} B {解析}本题考查了圆的概念、勾股定理、三角形中位线的性质以及动点运动最值问题,因为点C 为坐标平面内一点,BC ﹦1,所以点C 在以点B 为圆心、1长为半径的圆上,在x 轴上取OA ′=OA=2,当A ′、B 、C 三点共线时,A ′C 最大,则A ′C=2 2 +1,所以OM 的最大值为 2 +1 2 ,因此本题选B . 2.(2020·无锡)如图,等边△ABC 的边长为3,点D 在边AC 上,AD =12,线段PQ 在边BA 上运动,PQ =1 2, 有下列结论: ①CP 与QD 可能相等; ②△AQD 与△BCP 可能相似; ③四边形PCDQ 面积的最大值为31316; ④四边形PCDQ 周长的最小值为3+37 2. 其中,正确结论的序号为( ) A .①④ B .②④ C .①③ D .②③ {答案} D {解析}设AQ =x ,则BP =5 2 —x ①如图1,当点P 与B 重合时,此时QD 为最大,过点Q 作QE ⊥AC ,∵AQ =52,∴AE =54,QE =53 4,∴DE = 34,∴此时QD =212,即0≤QD ≤212;而33 2≤CP ≤3,两个范围没有交集,即不可能相等;①错误 ②若△AQD ∽△BCP ,则AD BP =AQ BC ,代入得2x 2—5x +3=0,解得x 1=1,x 2=3 2,∴都存在,∴②正确; ③如图2,过点D 作DE ⊥AB ,过点P 作PF ⊥BC ,S 四边形PCDQ =S △ABC —S △AQD —S △BPC = 34×32-12?x ?34-1 2 ×3 × D Q P C B A

2017-中考数学-压轴专题-最值问题系列(一)

专题最值问题—— 1(几何模型) 一、归于几何模型,这类模型又分为以下情况: 1. 归于“两点之间的连线中,线段最短”。 凡属于求“变动的两线段之和的最小值”时,大都应用这一模型。 2.归于“三角形两边之差小于第三边”。 凡属于求“变动的两线段之差的最大值”时,大都应用这一模型。 3.利用轴对称知识(结合平移)。 4. 应用“点到直线的距离,垂线段最短。”性质。 5. 定圆中的所有弦中,直径最长;以及直线与圆相切的临界位置等等。 二、基础知识模型 (一)“将军饮马”问题 1.如图1,将军骑马从A出发,先到河边a喝水,再回驻地B,问将军怎样走路程最短? 2.如图,一位将军骑马从驻地M出发,先牵马去草地OA吃草,再牵马去河边OB喝水,最后回到驻地M,问:这位将军怎样走路程最短? 图1 图2 3. 如图,A为马厩,B为帐篷,将军某一天要从马厩牵马,先到草地一处牧马,再到河边饮马,然后回到帐篷,请你帮助确定这一天的最短路线。

(二)“造桥选址”问题(选自人教版七年级下册) 1. 如图1,A和B两地在一条河的两岸,现要在河上造一座桥MN,桥造在何处才能使从A到B的路径AMNB最短?(假设河两岸1l、l2平行,桥MN 与河岸垂直) 练习: 1. 如图,在边长为2㎝的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点, 连接PB、PQ,则△PBQ周长的最小值为____________㎝(结果不取近似值). 1题图2题图 2.已知点A是半圆上的一个三等分点,点B是弧AN的中点,点P是半径ON上的动点, 若⊙O的半径长为1,则AP+BP的最小值为__________. 3.如图3,已知点A的坐标为(-4,8),点B的坐标为(2,2),请在x轴上找到一点P,使PA+PB最小,并求出此时P点的坐标和PA+PB的最小值。

中考数学压轴题突破:几何最值问题大全

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡 不归、阿波罗尼斯圆等) 一、基本图形 所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。 余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。 上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。 二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形 例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。 (二)动点路径待确定 例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。 简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。 例3.在△ABC中,AB=AC=5,cos∠ABC=3/5,将△ABC绕点C顺时针旋转,得到△A'B'C,点E是BC上的中点,点F为线段AB上

中考数学专题复习及练习:最值(二)

2020中考数学复习微专题:最值(“胡不归”问题) 突破与提升策略 【故事介绍】 从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A 到家B 之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?…”(“胡”同“何”) 而如果先沿着驿道AC 先走一段,再走砂石地,会不会更早些到家? 【模型建立】 如图,一动点P 在直线MN 外的运动速度为V 1,在直线MN 上运动的速度为V 2,且V 1

即求BC +kAC 的最小值. 【问题解决】 构造射线AD 使得sin ∠DAN =k ,CH /AC =k ,CH =kAC . 将问题转化为求BC +CH 最小值,过B 点作BH ⊥AD 交MN 于点C ,交AD 于H 点,此时BC +CH 取到最小值,即BC +kAC 最小. 【模型总结】 在求形如“P A +kPB ”的式子的最值问题中,关键是构造与kPB 相等的线段,将“P A +kPB ”型问题转化为“P A +PC ”型. 而这里的PB 必须是一条方向不变的线段,方能构造定角利用三角函数得到kPB 的等线段. M M

1.如图,△ABC 中,AB =AC =10,tan A =2,BE ⊥AC 于点E ,D 是线段BE 上的一 个动点,则CD + 的最小值是_______. 【分析】本题关键在于处理 ”,考虑tan A =2,△ABE 三边之比为1:2 sin ∠,故作DH ⊥AB 交AB 于H 点,则DH =. 问题转化为CD +DH 最小值,故C 、D 、H 共线时值最小,此 时 CD DH CH BE +===. 【小结】本题简单在于题目已经将BA 线作出来,只需分析角度的三角函数值,作出垂线DH ,即可解决问题,若稍作改变,将图形改造如下: 则需自行构造α,如下图,这一步正是解决“胡不归”问题关键所在. A B C D E H E D C B A A B C D E H E D C B

第11讲阿氏圆最值模型(解析版) 2020年中考数学几何模型能力提升篇(全国通用)

中考数学几何模型11:阿氏圆最值模型 名师点睛拨开云雾开门见山在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题. 【模型来源】 “阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”. B P O

【模型建立】 如图1 所示,⊙O 的半径为R,点A、B 都在⊙O 外,P为⊙O上一动点,已知R=2 5 OB, 连接PA、PB,则当“PA+2 5 PB”的值最小时,P 点的位置如何确定? 解决办法:如图2,在线段OB 上截取OC使OC=2 5 R,则可说明△BPO与△PCO相似,则有 2 5 PB=PC。 故本题求“PA+2 5 PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、 P、C 三点共线时,“PA+PC”值最小。 【技巧总结】 计算PA k PB +g的最小值时,利用两边成比例且夹角相等构造母子型相似三角形 问题:在圆上找一点P使得PA k PB +g的值最小,解决步骤具体如下: 1.如图,将系数不为1的线段两端点与圆心相连即OP,OB

2. 计算出这两条线段的长度比 OP k OB = 3. 在OB 上取一点C ,使得OC k OP =,即构造△POM ∽△BOP ,则PC k PB =,PC k PB =g 4. 则=PA k PB PA PC AC ++≥g ,当A 、P 、C 三点共线时可得最小值 典题探究 启迪思维 探究重点 例题1. 如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC 于D 、E 两点,点P 是圆C 上一个动点,则12 PA PB +的最小值为__________. E A B C D P 【分析】这个问题最大的难点在于转化12 PA ,此处P 点轨迹是圆,注意到圆C 半径为2,CA=4,

四川省木里县中学中考数学专题讲座抛物线及几何问题复习

抛物线与几何问题 【知识纵横】 抛物线的解析式有下列三种形式:1、一般式:2y ax bx c =++(a ≠0);2、顶点式:y =a(x —h) 2-+k ;3、交点式:y=a(x —x 1)(x —x 2 ) ,这里x 1、x 2 是方程ax 2 +bx+c=0 的两个实根。 解函数与几何的综合题,善于求点的坐标,进而求出函数解析式是解题的基础;而充分发挥形的因素,数形互动,把证明与计算相结合是解题的关键。 【典型例题】 【例1】 (浙江杭州) 在直角坐标系xOy 中,设点A (0,t ),点Q (t ,b )。平移二 次函数2 tx y -=的图象,得到的抛物线F 满足两个条件:①顶点为Q ;②与x 轴相交于B ,C 两点(∣OB∣<∣OC∣),连结A ,B 。 (1)是否存在这样的抛物线F , OC OB OA ?=2 ?请你作出判断,并说明理由; (2)如果AQ∥BC,且tan∠ABO=2 3 ,求抛物线F 对应的二次函数的解析式。 【思路点拨】(1)由关系式OC OB OA ?=2 来构建关于t 、b 的方程;(2)讨论 t 的取值范围,来求抛物线F 对应的二次函数的解析式。 【例2】(江苏常州)如图,抛物线2 4y x x =+与x 轴分别相交于点B 、O,它的顶点为A,连接AB,把AB 所的直线沿y 轴向上平移,使它经过原点O,得到直线l,设P 是直线l 上一动点.

(1)求点A 的坐标; (2)以点A 、B 、O 、P 为顶点的四边形中,有菱形、等 腰梯形、直角梯形,请分别直接写出这些特殊四边形的顶点P 的坐标; (3)设以点A 、B 、O 、P 为顶点的四边形的面积为S, 点P 的横坐标为x,当462682S +≤≤+时,求x 的取值范围. 【思路点拨】(3)可求得直线l 的函数关系式是y=-2x ,所以应讨论①当点P 在第二象限时,x<0、 ②当点P 在第四象限是,x>0这二种情况。 【例3】(浙江丽水)如图,在平面直角坐标系中,已知点A 坐标为(2,4),直线2=x 与x 轴相交于点B ,连结OA ,抛物线2 x y =从点O 沿OA 方向平移,与直线2=x 交于点 P ,顶点M 到A 点时停止移动. (1)求线段OA 所在直线的函数解析式; (2)设抛物线顶点M 的横坐标为m , ①用m 的代数式表示点P 的坐标; ②当m 为何值时,线段PB 最短; (3)当线段PB 最短时,相应的抛物线上是否存在点Q ,使△QMA 的面积与△PMA 的面积相等,若存在,请求出点Q 的 坐标;若不存在,请说明理由. 【思路点拨】(2)构建关于PB 的二次函数,求此函数的最小值;(3)分当点Q 落在直线OA 的下方时、当点Q 落在直线OA 的上方时讨论。 【例4】(广东省深圳市)如图1,在平面直角坐标系中,二次函数 )0(2>++=a c bx ax y 的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),OB =OC ,tan∠ACO=3 1 . (1)求这个二次函数的表达式. (2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F , 使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在, y B O A P M x 2x =

专题讲座 ——初中数学复习策略

专题讲座——初中数学复习策略 近几中考试题都体现了“立足基础、考查能力、加强应用”的中考指导思想,大致有以下特点:一是知识考查基础化;二是题材选择生活化;三是能力要求层次化;四是思维模式开放化;五是试卷结构格式化。这就要求我们必须扎实有序的开展复习工作,提高数学总复习的质量和效益。下面就初三数学总复习的有关问题谈一点个人的看法和体会: 第一轮复习全面复习基础知识,加强基本技能训练。 这个阶段的复习目的是让学生全面掌握初中数学基础知识,提高基本技能,掌握基本方法,做到全面、扎实、系统,形成知识网络,是总复习的重点。 在这一阶段复习中要充分体现“习、练、透”。 1.习,即温习。在每单元的复习之前,让学生事先依据要求进行温习,例如:要求他们根据考试大纲,温习所学过的知识,整理复习提纲,编写复习资料,各自编写单元或综合试题,互相考查,互相研究解题答卷的技巧,互评试卷的优劣性等等。同时,运用“讲演法”,让学生对现阶段复习进行回顾、思考及提高,以便指导下阶段的复习。所谓的“讲演法”不只是用语言表述,更主要是对复习的总结。 2.练,就是在复习的基础上,通过教师的归纳总结、讲解,在每一个单元设计一些针对性强,有典型性和代表性的练习,进行数学思维的训练,形成严格又精确的思维习惯。运用数字化的处理方

式,进行建模训练,学会用数学知识方法解决实际问题;培养学生学会抓住事物表象之下的数量关系,提出带普遍意义的数学问题,达到强化、巩固复习效果。 3.透,就是注重知识的内在联系,培养思维的深刻性,并贯穿复习的始终。在全面复习的基础上对各知识点之间的联系区别进行归纳总结。引导学生将繁杂的知识简约化,零散的知识系统化,交叉的知识立体化,横纵的知识网络化。这样才能循序渐进,逐步提高。学生按这个层次结构,挖掘知识的内涵和外延,能有效地提高学生复习质量和效 第二轮复习:综合运用知识,加强能力培养。 这个阶段的复习目的是构建初中数学知识结构,从整体上把握数学内容,侧重提高学生分析能力、解决问题的能力,是第一轮复习的延伸和提高。这一轮采取专题讲座、综合训练等形式。 分类复习,一一击破 分类复习的依据为内容分类和题型分类两种形式。根据不同要求,对相关内容分门别类的进行综合比较讲解等。下面谈谈题型分类复习中应注意的几点问题。 1.注重数学思想方法的概括,提高思维的灵活性。在复习课中,特别是在解题教学中,很多内容含有丰富的数学思想和方法,教师有意识地加以概括,对培养学生的思维能力会起到重要的作用。例如在分析一道综合题推理运算论证时,有意识展示数学思想方法的优越性,在哪里体现了数形结合,使问题得到转化,哪里体现方

2020年中考数学专题最值例练题目(有答案)

关于圆的最值问题练习以及解答 1.如图,⊙O 的直径为4,C 为⊙O 上一个定点,∠ABC=30°,动点P 从A 点出发沿半圆弧AB 向B 点运动(点P 与点C 在直径AB 的异侧),当P 点到达B 点时运动停止,在运动过程中,过点C 作CP 的垂线CD 交PB 的延长线于D 点. (1)在点P 的运动过程中,线段CD 长度的取值范围为 ; (2)在点P 的运动过程中,线段AD 长度的最大值为 . 解答: (1)是AB ⊙O 的直径, 90 ACB 60309090 ABC A P A , 都是弧BC 所对的圆周角 60 A P 在Rt 中,PCD CD=CP 3 42 CP 3432 CP (2) 中,PCD 30,90CPD PCD 点D 在已CB 为弦的圆⊙O ′(红弧线上)运动 当A,O ′,D 三点共线时AD 最长 连接CO ′,BO ′ CO ′B 是等边三角形 在直角ABC 中, 90 ACB AB=4, ∠ABC=30° 3230 ? COS AB BC BO ′=DO ′=BC=32 D O C B A

∠ABC=30°,∠CBO ′=60° ∠ABO ′=90°′ 72)32(42222 BO AB AO A,O ′,D 三点共线时AD 最长 AD 最长为3272 2.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 是平面内的一个动点,且AD=2,M 为BD 的中点,在D 点运动过程中,线段CM 长度的取值范围是 . 解答:作AB 的中点E ,连接CE,EM,AD 在直角ABC 中, 90 ACB AC=4,BC=3 522 BC AC AB E 是AB 的中点 5.221 AB CE M 是DB 的中点 EM 是ADM 的中位线 12 1 AD EM EM CE CM CEM EM -CE 中, 在点D 运动过程中,点A,D,B 三点共线时,CM 取得最小或最大值 EM CE CM EM -CE 15.215.2 CM J 即5.35.1 CM A M D

2020年中考数学总复习满分方法技巧解读专题讲座(共十三个专题)

2020年中考数学总复习满分方法技巧解读专题讲座(共十三个专题) 2020年中考数学专题讲座一:选择题解题方法 一、中考专题诠释 选择题是各地中考必考题型之一,2019年各地命题设置上,选择题的数目稳定在8~14题,这说明选择题有它不可替代的重要性. 选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养. 二、解题策略与解法精讲 选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做. 解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略. 具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效. 三、中考典例剖析 考点一:直接法 从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础. 例1 (2019?白银)方程的解是() A.x=±1 B.x=1 C.x=﹣1 D.x=0 思路分析:观察可得最简公分母是(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解:方程的两边同乘(x+1),得 x2﹣1=0, 即(x+1)(x﹣1)=0, 解得:x1=﹣1,x2=1. 检验:把x=﹣1代入(x+1)=0,即x=﹣1不是原分式方程的解; 把x=1代入(x+1)=2≠0,即x=1是原分式方程的解. 则原方程的解为:x=1. 故选B. 点评:此题考查了分式方程的求解方法.此题难度不大,注意掌握转化思想的应用,注意解分式方程一定要验根.

中考数学专题讲座 解选择题的策略

2009中考数学专题讲座解选择题的策略 概述: 1.选择题在中考中占的比例较大,题比较基础,做题时要细心认真,?失分很不合算,因为它只要一个答案,并不看你的解答过程,若在某个细节上出问题,全题就一分不得. 2.解选择题的方法大致有以下几种:综合法、分析法、验算法、?排除法(筛选法)等.典型例题精析 例1.在下列计算中,正确的是() (A)(ab2)3=ab6(B)(3xy)3=9x3y3 (C)(-2a2)2=-4a4(D)(-2)-2=1 4 解:宜用排除法.(A)中,没有3次方,(B)中32≠9,(C)中(-2)2≠4. ∴应选D. 例2.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为() (A)6 (B)4 (C)3 (D)1 解:宜用综合法,令x2-4x+3=0,得x1=1,x2=3, ∴│AB│=│3-1│=2,令x=0得y=3.? ∴C(0,3),即△CAB中,AB边上的高为3, ∴S△ABC=1 2 ×2×3=3 故选(C). 例3.若m0 (B)m n >1 (C)m-5>n-5 (D)-3m>-3n 解:可用验值法,取m=-10,n=-2进行验算.(A)n-m=-2-(-10)=-2+8>0正确. (B)m n = 10 2 - - =5>1正确. (C)-10-5=-15,n-5=-2-5=-7 m-5>n-5错误.(D)-3m=-3·(-10)=30,-3n=-3×(-2)=5 ∴-3m>-3n正确.∴选(C) 例4.有如下四个结论: ①有两边及一角对应相等的两个三角形全等. ②菱形既是轴对称图形,又是中心对称图形.

中考数学复习方法技巧九大专题:中考数学复习方法技巧专题九:最值法解析

方法技巧专题九 最值法解析 探究平面内最短路径的原理主要有以下两种:一是“垂线段最短”,二是“两点之间,线段最短”.立体图形上的最短路径问题需借助平面展开图转化为平面问题.求平面内折线的最短路径通常用轴对称变换、平移变换或旋转变换等转化为两点之间的线段. 一、立体图形最值问题: 【例题】我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是 25 尺. 【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出. 【解答】解:如图,一条直角边(即枯木的高)长20尺, 另一条直角边长5×3=15(尺), 因此葛藤长为=25(尺). 故答案为:25. 【点评】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解. 【同步训练】

如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是 25 . 考点:平面展开-最短路径问题. 分析:先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答. 解答:解:如图所示, ∵三级台阶平面展开图为长方形,长为20,宽为(2+3)×3, ∴蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长. 设蚂蚁沿台阶面爬行到B点最短路程为x, 由勾股定理得:x2=202+[(2+3)×3]2=252, 解得:x=25. 故答案为25. 点评:本题考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答. 二、三角形内最值问题: 【例题】(2016·广西百色·3分)如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是( )

相关主题
文本预览
相关文档 最新文档