当前位置:文档之家› 国产全光谱水质在线监测仪的应用原理及研发步骤分析

国产全光谱水质在线监测仪的应用原理及研发步骤分析

国产全光谱水质在线监测仪的应用原理及研发步骤分析
国产全光谱水质在线监测仪的应用原理及研发步骤分析

国产全光谱水质在线监测仪的应用原理及研发步骤分析

一、全光谱在线分析仪器市场现状

我国环境水质监测仪器以往主要依赖进口,从2000年开始,成熟的国产化设备才开始在全国范围内大规模推广。我国的环境水质在线监测仪器厂家主要以民营为主,在成长初期,普遍存在规模偏小、技术不够成熟、仪器的可靠稳定性不足等问题,难以满足我国复杂的水体环境和日益多样化的污染物监测需求。另外,仪器市场整体存在集中度不高、区域分割严重、单一企业所占市场份额小等问题。后期随着国家对环保产业的重视和水质自动监测网络体系的建立,环境水质在线监测仪器厂家数量迅速增长,部分具备自主研发实力的企业发展壮大起来,成为与国外品牌如美国哈希、日本岛津等相抗衡的仪器生产企业。

具体到光谱在线监测领域,国内目前主要以单光谱UV254为主,较为先进也只有COD等少数数值可进行在线测量,且测量参数及精度较国外设备均有一定差距,如S::CAN公司的高端产品spectro就可以同时测量COD,BOD,BTX,NO3-N,TSS,温度,AOC等参数,并保证测量精度。

外国设备价钱高企业和政府采购难以负担高额成本,而国内仪器设备技术落后等缺陷却无法满足精准监测的要求,此外国外仪器在国内也存在“水土不服”的情况,针对这一矛盾现状,陕西正大环保科技与浙江大学强强合作,发挥自身优势推进全光谱在线设备国产化进程,正大环保以多年的设备设计与运维经验选择相应的原材料进行整合,提供基础设备;浙江大学提供设备内部计算模型及先进完善机制,共同致力于为客户提供运行稳定,数据可靠,价格合理的全光谱在线监测设备。

二、全光谱分析法原理

朗伯-比尔定律光度分析中定量分析是最基础、最根本的依据, 如图所示, 可以用如下公式描述:式中: A 为吸光度值; I0为空白溶液(即不存在吸收物质)时的光强度;I为吸收后的光强度; b为光程, 单位为 cm; c 为溶液的摩尔浓度;为摩尔吸光系数, 单位为I/(mol.cm)

图 1 朗伯比尔定律示意

当一束平行的单色光通过某一均匀溶液时, 溶液的吸光度与溶液的浓度和

光程的乘积成正比, 样品中待测物质的浓度越大、或通光样品液层越厚, 由于

增加了物质分子的总数, 故对光的吸收愈多、透过的光就愈弱。检测时, 配

制浓度各异的量程标准溶液 ( H J /T 191 2005) , 测定各标准溶液的吸光度, 得到标准样品的检测数据, 做出浓度对吸光度的标准曲线。

不同的化学物质对不同波长的光吸收强度不同,每一种物质都对应有确

定的紫外可见吸收光谱,吸收光谱体现了物质的特性,是进行定性、

定量分析的基础。不同溶液对不同波长的光吸收程度各不相同,几乎所有的有

机化合物在紫外可见光区都有特定的吸收。特定化学物质对特定波长的光吸

收性较强,特别是硝酸盐、亚硝酸盐、芳香烃类物质、浑浊度、色度、有机碳

含量等对不同波长的吸收不同,其敏感波长在 200-700nm之间。如果只用254

的波长照射,只能获得比较少的化学物质作用。而用多波长扫描,则可以得到

不同波长的吸收谱,该谱能清晰地反映出水体中多种物质的分布。用相应的标

准物校准,取得相应的特征吸收光波波长以及吸收率与该指标的对应关系,就

可以从仪器的检测结果来推断需要的参数指标。

三、自主研发关键步骤

1)原型机材料选择及整合

光源主要采用卤素钨灯、氘灯或氙灯。氙灯发光效率高,强度大,光谱范

围覆盖紫外、可见和近红外区,优势突出。传统检测器采用光电倍增管,一次

只能测量个波长点的数据,完成整个光谱区域测量的时间较长,不能适应瞬

态过程全分析的要求,而且需要精密的光谱扫描机械装置(正弦机构)与分光

系统配合使用,因此整个仪器结构复杂,体积庞大,容易损坏。随着技术和制

造工艺的发展,目前检测器可以采用电荷注入器件(CID )、电荷耦合器件(CCD )、线阵图像传感器(MOS )等新器件。这类检测器具有多个光敏单

元和自扫描功能,因此在作光谱测量时可同时采集多个波长点的数据,将这些

数据输入计算机或微处理器进行分析与处理。采用多通道检测器,结合计算机

技术,不仅可以提高光谱分析的速度,还可以简化仪器的光学系统结构,缩小

仪器的体积,使仪器小型化。

仪器主要技术参数要求:波长范围200-700nm;使用环境温度0-45℃;

光波路径宽度2-100mm;压力为标准0.1MPa-1MPa ;电源为外接电压12V;标

准界面为 RS232/485/CAN总线其他标准总线;远程通讯为调制解调器。

2)标液测量最小二乘法获得基础模型

根据国标 GB 1191489 的相关技术要求, 浓度为2. 082 1mol/L的邻苯二

甲酸氢钾溶液的理论 COD 值为500mg/L, 依法配制邻苯溶液 15种, 称为量程

校正液,通过分别配置不同的量程校正液测量数值,通过参量反演数学模型

将长段的吸收光谱分成个若干区间,建立吸光度系数与浓度的方程取若干个

区间的中心波长作为特征波长即为特征波长的个数将特征光谱映射为COD 值

的特征向量,通过最小二乘法做出基本方程。

3)水样比对

在计算获得基础方程后选取具有代表性的水样进行实地水样检验,以去离

子水为参比溶液, 得到该水样的吸光度谱图。由于地表水中其它物质引入干扰, 需要进行修正。使用可见光处的吸光度值作为修正因子,同时通过实验室检测

或现场化学在线分析法进行监测,运用统计学方法 ( T检验)对比 UV 法与化

学法所测量得到的两组 COD值。

4)网络神经元算法模型建立

机器识别人和我们人类识别人的机理大体相似,看到一个人也就是识别对

象以后,我们首先提取其关键的外部特征比如身高,体形,面部特征,声音等等。根据这些信息大脑迅速在内部寻找相关的记忆区间,有这个人的信息的话,这个人就是熟人,否则就是陌生人。

人工神经网络就是这种机理。假设X(1)代表我们为电脑输入的光谱特征,X(2)代表人的吸光特征X(3)代表水的浊度特征X(4)代表水的其它特征

W(1)W(2)W(3)W(4)分别代表四种特征的链接权重,这个权重非常重要,也是人

工神经网络起作用的核心变量。

现在我们随便寻找待测水质进行测量,设备根据预设变量提取这水质的基

础信息进行判断,链接权重初始值是随机的,假设每一个W均是0.25,这时候

电脑按这个公式自动计算,Y=X(1)*W(1)+X(2)*W(2)+X(3)*W(3)+X(4)*W(4)得出

一个结果Y,这个Y要和一个区域值(设为Q)进行比较,根据Y在区域Q的位置,设备就根据预设模型判定水质的COD数值.

由于前期设备计算积累经验较少,所以结果是随机的.一般我们设定是正确的,但是由于水中物质吸光度变化,也就是X(3)变了,那么最后计算的Y值也就

变了,它和Q比较的结果随即发生变,这时候设备的判断失误,COD设备数值出现

偏差.

但是我们通过实验室或是自动设备告诉它正确数值,设备就会追溯自己的

判断过程,到底是哪一步出错了,结果发现原来吸光度(3)这个体征的变化导致

了其判断失误,设备会自动修改其权重W(3),修改了这个权重就意味着设备通过

学习认为吸光度在判断地表水水质权重不同.这就是机器学习的一个循环,而

通过大量的数据实验与积累,通过网络神经元算法的持续修正和特征水样的增多,设备对水体水质的适应性及测量精度也会快速提升。

四、数据修正与模型完善

5)全程修正

针对硝酸盐、BTX、浊度等参数,对于适用于如污水处理厂的入流、出流

和曝气池、河流、地下水、造纸厂、啤酒厂等场合的在线测量分别给出修正值,通过这种方法保障基础测量精度。

6)局部修正

在使用全程校准不能达到精确度要求时,经过采样、贮存和实验室分析的

高质量的标准测定过程,用两点法进行校准。

7)高级修正

得到类似非常精确分析的测量,可以采用主成分分析、偏最小二乘拟合等

方法。

8)数据计算模型持续完善

通过水样收集通过网络神经元算法持续完善与改进计算模型。

拉曼光谱的原理及应用.doc

拉曼光谱的原理及应用 拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:CCD检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。 (一)含义 光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征 (二)拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。 c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 (三)拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。 2 拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器 3 拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。 4 因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势。而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。 5 共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。(四)几种重要的拉曼光谱分析技术 1、单道检测的拉曼光谱分析技术 2、以CCD为代表的多通道探测器用于拉曼光谱的检测仪的分析技术 3、采用傅立叶变换技术的FT-Raman光谱分析技术 4、共振拉曼光谱分析技术 5、表面增强拉曼效应分析技术 (五) 拉曼频移,拉曼光谱与分子极化率的关系 1、拉曼频移:散射光频与激发光频之差,取决于分子振动能级的改变,所以它是特征的,与入射光的波长无关,适应于分子结构的分析 2、拉曼光谱与分子极化率的关系 分子在静电场E中,极化感应偶极矩P为静电场E与极化率的乘积 诱导偶极矩与外电场的强度之比为分子的极化率 分子中两原子距离最大时,极化率也最大 拉曼散射强度与极化率成正比例 (六)应用激光光源的拉曼光谱法 应用激光具有单色性好、方向性强、亮度高、相干性好等特性,与表面增强拉曼效应相结合,便产生了表面增强拉曼光谱。其灵敏度比常规拉曼光谱可提高104~107倍,加之活性载体表面选择吸附分子对荧光发射的抑制,使分析的信噪比大大提高。已应用于生物、药物及环境分析中痕量物质的检测。共振拉曼光谱是建立在共振拉曼效应基础上的另一种激光拉曼光谱法。共振拉曼效应产生于激发光频率与待测分子的某个电子吸收峰接近或重合时,这一分子的某个或几个特征拉曼谱带强度可达到正常拉曼谱带的104~106倍,有利于低浓度和微量样品的检测。已用于无机、有

红外吸收光谱(IR)的基本原理及应用

红外吸收光谱(IR)的基本原理及应用 基本原理 当红外光照射物质分子时,其具有的能量引起振动能级和转动能级的跃迁,不同的分子和基团具有不同的振动,根据分子的特征吸收可以鉴定化合物和分子的结构。 利用红外光谱对物质分子进行的分析和鉴定。将一束不同波长的红外射线照射到物质的分子上,某些特定波长的红外射线被吸收,形成这一分子的红外吸收光谱。每种分子都有由其组成和结构决定的独有的红外吸收光谱,据此可以对分子进行结构分析和鉴定。 红外吸收光谱是由分子不停地作振动和转动运动而产生的,分子振动是指分子中各原子在平衡位置附近作相对运动,多原子分子可组成多种振动图形。当分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动(例如伸缩振动和变角振动)。 分子振动的能量与红外射线的光量子能量正好对应,因此当分子的振动状态改变时,就可以发射红外光谱,也可以因红外辐射激发分子而振动而产生红外吸收光谱。 分子的振动和转动的能量不是连续而是量子化的。但由于在分子的振动跃迁过程中也常常伴随转动跃迁,使振动光谱呈带状。所以分子的红外光谱属带状光谱。分子越大,红外谱带也越多。 红外光谱的应用 (一)化合物的鉴定 用红外光谱鉴定化合物,其优点是简便、迅速和可靠;同时样品用量少、可回收;对样品也无特殊要求,无论气体、固体和液体均可以进行检测。有关化合物的鉴定包括下列几种: 1、鉴别化合物的异同 某个化合物的红外光谱图同熔点、沸点、折射率和比旋度等物理常数一样是该化合物的一种特征。尤其是有机化合物的红外光谱吸收峰多达20个以上,如同人的指纹一样彼此各不相同,因此用它鉴别化合物的异同,可靠性比其它物理手段强。如果二个样品在相同的条件下测得的光谱完全一致,就可以确认它们是

高光谱遥感技术的介绍及应用

高光谱遥感技术的介绍及应用在20世纪,人类的一大进步是实现了太空对地观测,即可以从空中和太空对人类赖以生存的地球通过非接触传感器的遥感进行观测。最近几十年,随着空间技术、计算机技术、传感器技术等与遥感密切相关学科技术的飞速发展,遥感正在进入一个以高光谱遥感技术、微波遥感技术为主要标志的时代。本文简要介绍了高光谱遥感技术的特点、发展状况及其在一些领域的应用。 1 高光谱遥感简介 1.1高光谱遥感概念 所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段(通常<10nm)从感兴趣的物体获取有关数据;与之相对的则是传统的宽光谱遥感,通常>100nm,且波段并不连续。高光谱图像是由成像光谱仪获取的,成像光谱仪为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。它使本来在宽波段遥感中不可探测的物质,在高光谱中能被探测。 高光谱遥感技术是近些年来迅速发展起来的一种全新遥感技术,它是集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体的综合性技术。在成像过程中,它利用成像光谱仪以纳米级的光谱分辨率,以几十或几百个波段同时对地表地物像,能够获得地物的连续光谱信息,实现了地物空间信息、辐射信息、光谱信息的同步获取,因而在相关领域具有巨大的应用价值和广阔的发展前景。 1.2高光谱遥感数据的特点 同其他常用的遥感手段相比,成像光谱仪获得的数据具有以下特点: 1)、多波段、波段宽度窄、光谱分辨率高。波段宽度< 10 nm ,波段数较多光谱遥感(由几个离散的波段组成)大大增多,在可见光和近红外波段可达几十到几百个。如A VIRIS在0. 4~214 波段范围内提供了224 个波段。研究表明许多地物的吸收特征在吸收峰深度一半处的宽度为20~40 nm。这是传统的多光谱等

红外光谱的原理及应用

红外光谱的原理及应用 (一)红外吸收光谱的定义及产生 分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到分子的振动-转动光谱,这种光谱称为红外吸收光谱 红外吸收光谱也是一种分子吸收光谱。当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱 (二)基本原理 1产生红外吸收的条件 (1)分子振动时,必须伴随有瞬时偶极矩的变化。对称分子:没有偶极矩,辐射不能引起共振,无红外活性。如:N2、O2、Cl2 等。非对称分子:有偶极矩,红外活性。 (2)只有当照射分子的红外辐射的频率与分子某种振动方式的频率相同时,分子吸收能量后,从基态振动能级跃迁到较高能量的振动能级,从而在图谱上出现相应的吸收带。 2分子的振动类型 伸缩振动:键长变动,包括对称与非对称伸缩振动 弯曲振动:键角变动,包括剪式振动、平面摇摆、非平面摇摆、扭曲振动 3几个术语 基频峰:由基态跃迁到第一激发态,产生一个强的吸收峰,基频峰; 倍频峰:由基态直接跃迁到第二激发态,产生一个弱的吸收峰,倍频峰; 组频:如果分子吸收一个红外光子,同时激发了基频分别为v1和v2的两种跃迁,此时所产生的吸收频率应该等于上述两种跃迁的吸收频率之和,故称组频。 特征峰:凡是能用于鉴定官能团存在的吸收峰,相应频率成为特征频率。 相关峰:相互可以依存而又相互可以佐证的吸收峰称为相关峰 4影响基团吸收频率的因素 (1 外部条件对吸收峰位置的影响:物态效应、溶剂效应 (2分子结构对基团吸收谱带的影响: 诱导效应:通常吸电子基团使邻近基团吸收波数升高,给电子基团使波数降低。 共轭效应:基团与吸电子基团共轭,使基团键力常数增加,因此基团吸收频率升高,基团与给电子基团共轭,使基团键力常数减小,因此基团吸收频率降低。 当同时存在诱导效应和共轭效应,若两者作用一致,则两个作用互相加强,不一致,取决于作用强的作用。 (3)偶极场效应:互相靠近的基团之间通过空间起作用。 (4)张力效应:环外双键的伸缩振动波数随环减小其波数越高。 (5)氢键效应:氢键的形成使伸缩振动波数移向低波数,吸收强度增强 (6)位阻效应:共轭因位阻效应受限,基团吸收接近正常值。 (7)振动耦合,(8)互变异构的影响 (三)红外吸收光谱法的解析 红外光谱一般解析步骤 1. 检查光谱图是否符合要求; 2. 了解样品来源、样品的理化性质、其他分析的数据、样品重结晶溶剂及纯度; 3. 排除可能的―假谱带‖; 4. 若可以根据其他分析数据写出分子式,则应先算出分子的不饱和度U

拉曼光谱原理及应用简介

拉曼光谱原理及应用简介 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的发现透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究。 应用激光光源的拉曼光谱法。应用激光具有单色性好、方向性强、亮度高、相干性好等特性,与表面增强拉曼效应相结合,便产生了表面增强拉曼光谱。其灵敏度比常规拉曼光谱可提高104~107倍,加之活性载体表面选择吸附分子对荧光发射的抑制,使分析的信噪比大大提高。已应用于生物、药物及环境分析中痕量物质的检测。共振拉曼光谱是建立在共振拉曼效应基础上的另一种激光拉曼光谱法。共振拉曼效应产生于激发光频率与待测分子的某个电子吸收峰接近或重合时,这一分子的某个或几个特征拉曼谱带强度可达到正常拉曼谱带的104~106倍,有利于低浓度和微量样品的检测。已用于无机、有机、生物大分子、离子乃至活体组成的测定和研究。激光拉曼光谱与傅里叶变换红外光谱相配合,已成为分子结构研究的主要手段。

1. 激光拉曼光谱法的原理是拉曼散射效应 拉曼散射:当激发光的光子与作为散射中心的分子相互作用时,大部分光子只是发生改变方向的散射,而光的频率并没有改变,大约有占总散射光的10-10-10-6的散射,不光改变了传播方向,也改变了频率。这种频率变化了的散射就称为拉曼散射。对于拉曼散射来说,分子由基态E0被激发至振动激发态E1,光子失去的能量与分子得到的能量相等为△E反映了指定能级的变化。因此,与之相对应的光子频率也是具有特征性的,根据光子频率变化就可以判断出分子中所含有的化学键或基团。这就是拉曼光谱可以作为分子结构的分析工具的理论工具。 2. 拉曼光谱仪的主要部件有: 激光光源、样品室、分光系统、光电检测器、记录仪和计算机。 3. 应用 激光拉曼光谱法的应用有以下几种:在有机化学上的应用,在高聚物上的应用,在生物方面上的应用,在表面和薄膜方面的应用。 有机化学:拉曼光谱在有机化学方面主要是用作结构鉴定的手段,拉曼位移的大小、强度及拉曼峰形状是判断化学键、官能团的重要依据。利用偏振特性,拉曼光谱还可以作为顺反式结构判断的依据。 高聚物:拉曼光谱可以提供关于碳链或环的结构信息。在确定异构体(单休异构、位置异构、几何异构和空间立现异构等)的研究中

光谱分析原理

拉曼光谱、红外光谱、XPS的原理及应用 作者: 3040821025(站内联系TA)发布: 2007-10-26 拉曼光谱的原理及应用 拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:CCD 检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。 (一)含义 光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征 (二)拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。 c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 (三)拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。 2 拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若

红外光谱的原理及应用综述

红外光谱分析基本原理及应用 摘要红外光谱分析技术具有很快速,非破坏性,低成本及同时测定多种成分等特点, 在很多领域得到了广泛应用。本文介绍了红外光谱技术的检测原理,红外光谱仪的构造,指出了其检测的优点与不足。综述了红外光谱法的发展、应用以及对红外光谱研究前景的展望。 关键词:红外光谱原理构造发展1.引言 红外光谱法(infrared spectrometry,IR)是根据物质对红外辐射的选择性吸收特性而建立起来的一种光谱分析方法。分子吸收红外辐射后发生振动和转动能级跃迁。所以,红外光谱法实质是根据分子内部振动原子间的相对振动和分子转动等信息来鉴别化合物和确定物质分子结构的分析方法。 2.红外光谱分析的基本原理 2.1 红外光谱产生的条件 物质分子吸收红外辐射发生振动和转动能级跃迁,必须满足以下两个条件:一是辐射光子的能量与发生转动和转动能级跃迁所需的能量相等;二是分子转动必须伴随有偶极距的变化,辐射与物质间必须有相互作用。 2.2 红外吸收光谱的表示方法 红外吸收光谱一般用T_σ曲线或T_λ曲线来表示,λ与σ的关系式为: σ(cm-1)=1/λ(cm)=10^4/λ(μm)

2.3 分子的振动与红外吸收 2.3.1 双原子分子的振动 若把双原子分子(A-B)的两个原子看成质量分别为M1,M2的两个小球,中间的化学键看做不计质量的弹簧,那么原子在平衡位置附近的伸缩振动可以近似地看成沿键轴方向的简谐振动。量子力学证明,分子振动的总能量为: E=(u+1/2)hv 当分子发生△v=1 的振动能级跃迁时(由基态跃迁到第一激发态)根据胡克(Hooke)定律它所吸收的红外光波数σ为: σ=(1/2пc)√(k/μ) 其中:c—光速,3×10^8cm/s;k—化学键力常数N/cm;μ—两个原子的折合质量,g,μ=(m1.m2)/(m1+m2) 显然,振动频率σ与化学键力常数k成正比,与两个原子的折合质量成反比。不同化合物k和μ不同,所以不同化合物有自己的特征红外光谱。 2.3.2 多原子分子的振动 可分为伸缩振动和弯曲振动两类。伸缩振动是指原子沿着键轴方向伸缩,使键长发生周期性变化的振动。弯曲振动是指基团键角发生周期性变化的振动或分子中原子团对其余部分所做的相对运动。弯曲振动键力常数比伸缩振动的小。因此,同一基团的弯曲振动在其伸缩振动的低频区出现,所以,一般不把他做基团频率。多原子的复杂振动数又叫分子的振动自由度。每一种振动形式都有他特定的振动频

Raman 拉曼光谱原理及应用

拉曼光谱学 ——原理及应用HORIBA Jobin Yvon北京办事处

报告内容 ?1-什么是拉曼光谱? –简单介绍 ?2-拉曼光谱仪工作原理介绍 ?3-拉曼光谱在材料研究中的应用介绍?4-HORIBA Jobin Yvon拉曼光谱仪简介

1928年,印度科学家C.V Raman in首先在CCL 4光谱 中发现了当光与分子相互作用后,一部分光的波长 会发生改变(颜色发生变化),通过对于这些颜色 发生变化的散射光的研究,可以得到分子结构的信 息,因此这种效应命名为Raman效应。 时间 和发现人? Provided by Prof. D. Mukherjee, Director of Indian Association for the Cultivation of Science

λlaser λscatter >λlaser 瑞利散射λscatter = λlaser 拉曼散射 光散射的过程:激光入射到样品,产生散射光。 散射光弹性散射(频率不发生改变-瑞利散射) 非弹性散射(频率发生改变-拉曼散射)

2 0004 000 6 0008 00010 000I n t e n s i t y (c n t )400600Raman Shift (cm -1) 520不同材料的拉曼光 谱有各自的不同于其它材料的特征的光谱-特征谱 z 为表征和鉴别材料提 供了指纹谱 z 深入开展光谱学和材 料物性研究打下基础 1332 1580 20000 15000 10000 5000 100012001400160018002000 Wavenumber (cm-1)?组分信息?结构信息

高光谱应用研究综述

浙江师范大学 研究生课程论文封面 课程名称:遥感理论与技术 开课时间: 2014-2015年第一学期 学院地理与环境科学学院学科专业自然地理学 学号2014210580 姓名张勇 学位类别全日制硕士 任课教师陈梅花 交稿日期2015年1月21日 成绩 评阅日期 评阅教师 签名 浙江师范大学研究生学院制

高光谱遥感应用研究综述 张勇 (浙江师范大学地理环境与科学学院,浙江金华321004) 摘要:高光谱遥感是近二十年发展起来的谱像和一的遥感前沿技术。虽然发展时间不长,但由于其本身的特点,使其获得了广泛的重视和应用。本文阐述了高光谱遥感的特点、优势,以及在航空及航天领域的发展情况,列举了几种典型高光谱成像仪的光学系统原理和主要技术指标。在此基础上,概述了高光谱遥感在植被生态、大气环境、地质矿产、海洋、军事等领域的应用情况。最后对高光谱遥感发展趋势提出了几点建议,包括低反射率目标遥感、高信噪比、高空间分辨率及宽覆盖范围等方面。 关键字:高光谱遥感;应用;成像光谱以;研究综述 Conclusion application of hyperspectral remote sensing Zhang Yong (Geography and environmental sciences, Zhejiang Normal University, Jinhua 321004) Abstract:Hyperspectral remote sensing, developed in the late twenty years, is the advanced technology of remote sensing. Because of its characters, Hyperspectral Remote Sensing has been attached importance to and used widly. The characteristics and advantages of hyperspectral remote sensing, and development situation are presented in the fields of aviation and aerospace. Several typical hyperspectral imager optical system principle and the main technical indicators are particularized. At the same time, the applications with hyperspectral remote sensing in vegetation ecology, atmospheric science ,geology and mineral resources, marine and military fields are summarized. The suggestions for the future development trend of hyperspectral remote sensing are given in the end,including the remote sensing of low reflectivity target, high signal-to-noise ratio, high spatial resolution and wide coverages. Keywords: hyperspectral remote sensing;application;imaging spectrometer 1 引言 遥感是20世纪60年代发展起来的对地观测综合性技术,是指应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术[1]。经过几十年的发展,无论在遥感平台、遥感传感器、还是遥感信息处理、遥感应用等方面,都获得了飞速的发展,目前遥感正进入一个以高光谱遥感技术、微波遥感技术为主的时代。本文系统地阐述了高光谱遥感技术在分析技术及应用方面的发展概况,并简要介绍了高光谱遥感技术主要航空/卫星数据的参数及特点。 1.1高光谱遥感简介 高光谱遥感技术又称为成像光谱技术,是指利用很多很窄的电磁波波段从感兴趣的物体

傅立叶变换红外光谱仪的基本原理及其应用

J I A N G X I N O R M A L U N I V E R S I T Y 2009届本科生毕业论文 课题名称:傅立叶变换红外光谱仪的基本原 理及其应用 Basic principles and application of Fourier transform infrared spectrometer 姓名高立峰 学院理电学院 专业物理学(师范) 学号 06 完成时间 声明

本人郑重声明: 所呈交的毕业设计(论文)是本人在指导教师指导下进行的研究工作及取得的研究成果。其中除加以标注和致谢的地方外,不包含其他人已经发表或撰写并以某种方式公开过的研究成果,也不包含为获得其他教育机构的学位或证书而作的材料。其他同志对本研究所做的任何贡献均已在文中作了明确的说明并表示谢意。 本毕业设计(论文)成果是本人在江西师范大学读书期间在指导教师指导下取得的,成果归江西师范大学所有。 特此声明。 声明人(毕业设计(论文)作者)学号:06 声明人(毕业设计(论文)作者)签名:

摘要 红外光谱仪是鉴别物质和分析物质结构的有效手段,其中傅立叶变换红外光谱仪(FT-IR)是七十年代发展起来的第三代红外光谱仪的典型代表。它是根据光的相干性原理设计的,是一种干涉型光谱仪,具有优良的特性,完善的功能,并且应用范围极其广泛,同样也有着广泛的发展前景。本文就傅立叶变换红外光谱仪的基本原理作扼要的介绍,总结了傅立叶变换红外光谱法的主要特点,综述了其在各个方面的应用,并对傅立叶变换红外光谱仪的发展方向提出了一些基本观点。 关键词:傅立叶变换红外光谱仪;基本原理;应用;发展

拉曼光谱的原理及应用

拉曼光谱的原理及应用 文章来源:本站发布者:admin 发布时间:2009-12-14 19:28:44 阅读:744次 -------------------------------------------------------------------------------- 拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:CCD 检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。 (一)含义 光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征 (二)拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。 c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 (三)拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。 2 拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器 3 拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。 4 因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势。而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。 5 共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。 (四)几种重要的拉曼光谱分析技术 1、单道检测的拉曼光谱分析技术 2、以CCD为代表的多通道探测器用于拉曼光谱的检测仪的分析技术 3、采用傅立叶变换技术的FT-Raman光谱分析技术

傅立叶变换红外光谱仪的基本原理

傅立叶变换红外光谱仪的 基本原理及其应用 红外光谱仪是鉴别物质和分析物质结构的有效手段,其中傅立叶变换红外光谱仪(FT-IR)是七十年代发展起来的第三代红外光谱仪的典型代表。它是根据光的相干性原理设计的,是一种干涉型光谱仪,具有优良的特性,完善的功能,并且应用范围极其广泛,同样也有着广泛的发展前景。本文就傅立叶变换红外光谱仪的基本原理作扼要的介绍,总结了傅立叶变换红外光谱法的主要特点,综述了其在各个方面的应用,并对傅立叶变换红外光谱仪的发展方向提出了一些基本观点。 关键词:傅立叶变换红外光谱仪;基本原理;应用;发展

目录 摘要........................................................................ 错误!未定义书签。ABSTRACT............................................................. 错误!未定义书签。 1 傅里叶红外光谱仪的发展历史 (1) 2 基本原理 (3) 2.1光学系统及工作原理 (4) 2.2傅立叶变换红外光谱测定 (5) 2.3傅立叶变换红外光谱仪的主要特点 (6) 3 样品处理 (6) 3.1气体样品 (6) 3.2液体和溶液样品 (6) 3.3固体样品 (7) 4 傅立叶变换红外光谱仪的应用 (7) 4.1在临床医学和药学方面的应用⑷ (7) 4.2在化学、化工方面的应用 (8) 4.3在环境分析中的应用 (9) 4.4在半导体和超导材料等方面的应用⑼ (10) 5 全文总结 (10) 参考文献 (10)

高光谱遥感的发展与应用_张达

第11卷 第3期2 013年6月光学与光电技术 OPTICS &OPTOELECTRONIC  TECHNOLOGYVol.11,No.3  June,2013收稿日期 2012-09-29; 收到修改稿日期 2012-12- 13作者简介 张达(1981-) ,男,博士,副研究员,硕士生导师,主要从事空间光学遥感仪器的研制、空间光学成像,以及光谱探测技术方面的研究。E-mail:zhangda@ciomp .ac.cn基金项目 国防预研基金(SA050),国家863高技术研究发展计划(2010AA1221091001) ,吉林省科技发展计划(201101079 )资助项目文章编号:1672-3392(2013)03-0067- 07高光谱遥感的发展与应用 张 达 郑玉权 (中国科学院长春光学精密机械与物理研究所,吉林长春130033) 摘要 阐述了高光谱遥感的特点、优势,以及在航空及航天领域的发展情况,列举了几种典型高光谱成像仪的光学系统原理和主要技术指标。在此基础上, 概述了高光谱遥感在植被生态、大气环境、地质矿产、海洋、军事等领域的应用情况。最后对高光谱遥感发展趋势提出了几点建议,包括低反射率目标遥感、高信噪比、高空间分辨率及宽覆盖范围等方面。关键词 高光谱遥感;发展;应用;成像光谱仪中图分类号 TP70 文献标识码 A 1 引 言 遥感技术是20世纪60年代发展起来的对地 观测综合性技术[1] ,随着20世纪80年代成像光谱 技术的出现, 光学遥感进入了高光谱遥感阶段。从20世纪90年代开始, 高光谱遥感已成为国际遥感技术研究的热门课题和光电遥感的最主要手段。 高光谱遥感技术作为对地观测技术的重大突破[ 2] ,其发展潜力巨大。 高光谱遥感实现了遥感数据图像维与光谱维信息的有机融合,在光谱分辨率上有巨大优势,是遥感发展的里程碑。随着高光谱遥感技术的日趋成熟,其应用领域也日益广泛,已渗透到国民经济的各个领域,如环境监测、资源调查、工程建设等,对于推动经济建设、社会进步、环境的改善和国防建设起到了重大的作用。本文主要阐述高光谱遥感的特点、优势以及在航空及航天领域的发展情况,概括了高光谱遥感在植被生态、大气环境、地质矿产, 海洋军事等领域的应用情况。2 高光谱遥感特点与优势 高光谱遥感是高光谱分辨率遥感(Hypersp ec-tral Remote Sensing) 的简称[3] ,它是在电磁波谱的紫外、可见光、近红外、中红外和热红外波段范围 内,获取许多非常窄且光谱连续的影像数据的技 术,是在传统的二维遥感的基础上增加了光谱维,形成的一种独特的三维遥感。对大量的地球表面物质的光谱测量表明, 不同的物体会表现出不同的光谱反射和辐射特征,这种特征引起吸收峰和反射峰的波长宽度在5~50nm左右,其物理内涵是不同的分子、 原子和离子的晶格振动,引起不同波长的光谱发射和吸收,从而产生了不同的光谱特征。运用具有高光谱分辨率的仪器,通过获取图像上任何一个像元或像元组合所反映的地球表面物质的光谱特性, 经过后续数据处理,就能达到快速区分和识别地球表面物质的目的[ 4] 。高光谱遥感的成像光谱仪具有光谱分辨率高(5~10nm),光谱范围宽(0.4μm~2.5μm) 的显著特点,可以分离成几十甚至数百个很窄的波段来接收信息, 所有波段排列在一起能形成一条连续的完整的光谱曲线,光谱的覆盖范围从可见光、近红外到短波红外的全部电磁辐射波谱范围。高光谱数据是一个光谱图像的立方体,其空间图像维描述地表二维空间特征,其光谱维揭示图像每一像元的光谱曲线特征,由此实现了遥感数据图像维与光谱 维信息的有机融合[ 5] 。高光谱遥感在光谱分辨率方面的巨大优势,使得空间对地观测时可获取众多连续波段的地物光谱图像, 从而达到直接识别地球表面物质的目的。地物光谱维信息量的增加为遥感对地观测、地物识别及地理环境变化监测提供了

光谱仪(spectrometer)种类原理及应用.

光谱仪(spectrometer)种类原理及应用 时新建 化学与化工学院20061101092 光谱仪是一种将复色光分离成光谱的光学仪器。光谱仪有多种类型,除在可见光波段使用的光谱仪外,还有红外光谱仪和紫外光谱仪。 按色散元件的不同可分为棱镜光谱仪、光栅光谱仪和干涉 光谱仪等。按探测方法分,有直接用眼观察的分光镜,用 感光片记录的摄谱仪,以及用光电或热电元件探测光谱的 分光光度计等。根据现代光谱仪器的工作原理,光谱仪可以 分为两大类:经典光谱仪和新型光谱仪.经典光谱仪器是建立在空间色散原理上的仪器;新型光谱仪器是建立在调制原理上的仪器.经典光谱仪器都是狭缝光谱仪器.调制光谱仪是非空间分光的,它采用圆孔进光. 图中所示是三棱镜摄谱仪的基本结构。狭缝S与棱镜的主截面垂直,放置在透镜L的物方焦面内,感光片放置在透镜L的像方焦面内。用光源照明狭缝S,S的像成在感光片上成为光谱线,由于棱镜的色散作用,不同波长的谱线彼此分开,就得入射光的光谱。棱镜

摄谱仪能观察的光谱范围决定于棱镜等光学元件对光谱的吸收。普通光学玻璃只适用于可见光波段,用石英可扩展到紫外区,在红外区一般使用氯化钠、溴化钾和氟化钙等晶体。目前普遍使用的反射式光栅光谱仪有较宽的光谱范围。光栅光谱仪是多种多样的,其主要是由光栅、狭缝、成象系统和感光板(或出射狭缝)等部件组成.多色光通过入射狭缝照射到镀铝凹面全反射镜上,凹面全反射镜反射的光充满色散平面光栅,光栅平面与电机轴同心,由于采用了爪极永磁同步交流电机(或带稳流的直流电机),光栅的旋转匀速,转动稳定,同心连接克服传动机械带来的误差.光栅转动时,经光栅色散的光谱通过同一块凹面全反射镜反射到出射狭缝,出射狭缝后放置一光电倍增管,轴上装有可调节的定位转盘,由光电开关输出同步采集信号,控制数据采集系统,将光电倍增管输出的信号进行处理.将各个波长的光转换为相应的电信号.光栅的匀速旋转可以得到宽带连续光谱,从真空紫外到远红外.配合信号采集与数据处理系统,可以实现对光谱快速连续测量. 一些光谱仪有以下各种各样的作用:各种化工产品的化学成分剖析和配方研制;各种原料的化学成分与结构鉴定,如无机化合物、有机化合物、塑料、纤维、橡胶、粘合剂、表面活性剂、食品添加剂、水处理剂、润滑剂、药物、染料、涂料、宝石等。不同的光谱仪可能有不同的原理和用途,但基本上都基于类似的原理起点,作用和功能也是大同小异。 表征光谱仪基本特性的参量有光谱范围、色散率和分辨本领等。

激光拉曼光谱的工作原理及应用

论文题目:激光拉曼光谱的工作原理及应用 论文要求: 激光拉曼光谱技术拥有广泛的应用及广阔的前景。简要概述激光拉曼的工作原理及其应用,要求内容充实,论述详细透彻,不少于1000字。 教师评语: 教师签字: 年月日 论文题目:激光拉曼光谱的工作原理及应用 一、激光拉曼光谱的工作原理 拉曼光谱通常采用的单色光源是激光,将分子激发到一种虚态,之后受激分子跃迁到与基态不相同的振动能量级,这时,散射辐射的频率对比入射频率将发生改变。这种频率的改变和基态与终态的振动能量级差相同。这样的非弹性散射光就叫做拉

曼散射频率不发生变的散射称之为弹性散射,即瑞利散射。如果拉曼散射频率一但低于入射频率时,称为斯托克散射。相反,称为反斯托克散。 1. 瑞利散射和拉曼散射的介绍 当激发光的光子和散射中心的分子相互作用时,绝大部分的光子只是改变了传播方向,即发生了散射,而光的频率仍然和激发的光源相同,那么这种散射叫做瑞利散射。但是同样也有很微量的光子改变光的传播方向,还改变了光波频率,这叫做拉曼散射。它的散射光的强度大约占有总数的10-6~l0-10。产生拉曼散射的原因是光子和分子发生了能量的交换从而使光子的能量发生了改变。 2. 拉曼散射的产生过程 通过分析能级之间的跃迁可以知道光子和样品分子之间的相互作用。将样品分子处于电子能量级与振动能量级的基态时,此时入射光子的能量数远远大干振动能量级跃迁时需要的能量数,但这些能量不能够将分子激发到电子能量级的激发状态。样品分子吸收了这些光子后便到达了准激发状态,这叫做虚能态。样品分子在这种准激发状态时非常不稳定,它将恢复到电子能量级的基态。当分子恢复到这种状态时,光子的能量却没有发生改变,此时,发生瑞利散射。如果样品分子恢复到能级基态中比较高的振动能级时,则入射光子的能量大于散射光子能量,它的波长将比入射光大。这时在散射光谱的频率低的一侧瑞利散射谱线处将出现一根散射光的谱线,叫做Stokes线。假如样品分子与入射光子发生反应前的一瞬间不处于最低振动能级的能级基态,而是处于电子能级基态的振动能级激发态时,则在入射光光子作用后它跃迁到准激发态,该分子退回到了电子振动能级基态,这样散射光的能量比入射光子能量大,这时谱线位于瑞利谱线的高频率一侧,称为anti-Stokes线。Stokes线和anti—Stokes线位于瑞利谱线的两侧并且间距相等。我们统称Stokes线和anti-Stokes线为拉曼谱线。 3. 拉曼位移的相关介绍及重要意义 拉曼位移就是斯托克斯与反斯托克斯散射光频率与激发光源频率之差△v。反斯托克斯散射强度要弱于斯托克斯散射强度,拉曼光谱分析中,通常只需要测定斯托克斯散射。拉曼位移是由分子振动能级的变化产生的,它的能级之间的能量变化由化学键的不同或者基态的振动方式的不同决定。这就是作为拉曼光谱进行分子结构定性的理论依据。

高光谱图像简介

高光谱遥感是指利用很多很窄的电磁波波段从感兴趣的物体中获取有关数据,高光谱遥感技术作为20世纪80年代兴起的对地观测技术,始于成像光谱仪的研究计划。 目前,我国研制的224波段的推扫高光谱成像仪(PHI)与128波段的实用型模块化机载成像光谱仪(OMIS)已经进行了多次成功的航空遥感实验。另外,中国科学院上海技术物理研究所研制的中分辨率成像光谱仪于2002年随“神州”三号飞船发射升空,这是继美国1999年发射的EOS平台之后第二次将中分辨率成像光谱仪发送上太空,从而使中国成为世界上第二个拥有航天成像光谱仪的国家。 高光谱遥感图像和常见的二维图像不同之处在于,它在二维图像信息的基础上添加光谱维,进而形成三维的坐标空间。如果把成像光谱图像的每个波段数据都看成是一个层面,将成像光谱数据整体表达到该坐标空间,就会形成一个拥有多个层面、按波段顺序叠合构成的三维数据立方体。 高光谱遥感具有不同于传统遥感的新特点: (1)波段多——可以为每个像元提供几十、数百甚至上千个波段 (2)光谱范围窄——波段范围一般小于10nm (3)波段连续——有些传感器可以再350~2500nm的太阳光谱范围内提供几乎连续的地物光谱 (4)数据量大——随着波段数的增加,数据量呈指数增加 (5)相邻谱带间相关——由于相邻谱带间高度相关,冗余信息也相对增加,这一特点也为其降维处理(包括波段选择、特征提取等)和谱间压缩提供可能 (6)随着维数的增加,超立方体的体积集中于角端,超球体和椭球体的体积集中在外壳,该特点进一步为高光谱图像的降维和压缩处理提供了理论依据。 根据高光谱图像的特点及其相关技术处理的需要,高光谱数据与其所携带的信息一般采用如下的三种空间表达方式:图像空间、光谱空间和特征空间。 1、图像空间(有空间几何位置关系) 2、光谱空间,光谱信息 3、特征空间(在光谱空间进行取样,将得到的n个数据用一个n维向量来表示,它是表示光谱响应的另一种方式。N维向量包含了对应像素的全部光谱信息。在三种表示方法中,特征空间表示法适合于模式识别中的应用。) 高光谱遥感技术将确定物质或地物性质的光谱与揭示其空间和几何关系的图像结合在一起。 支持向量机是1992~1995年由Vapnik等人在统计学习理论的基础上提出来的一种新的模式识别方法。SVM在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势。目前SVM已经被广泛应用于解决高维数据的监督分类中。支持向量机的核心思想是以构造风险最小化思想为归纳原则,通过非线性映射把样本投影到高维特征空间,在高维空间中构造VC维尽可能低的最优分类面,使分类风险上界最小化,从而使分类器对未知样本具有最优的推广能力。 我国尚未解决的SVM问题:目前支持向量机应用中,判别阈值都是以理论值0作为阈值,这在线性支持向量机情况下不会产生偏差,但是在非线性情况下,由于核函数的引进,SVM 的分类判别阈值会发生偏移而不再保持为0.这样仍然采用0作为阈值,势必会影响分类效

相关主题
文本预览
相关文档 最新文档