当前位置:文档之家› 强度方法-载荷谱

强度方法-载荷谱

强度方法-载荷谱
强度方法-载荷谱

载荷谱

强度方法库

通过性指拖拉机在各种田间和道路情况下的通行能力﹐如在松软﹑潮湿地面﹐山地﹑坡道和作物行间的通行能力﹐以及在田间转移和越障的能力等。拖拉机在田间作业时﹐除通行能力外﹐还要考虑它对土壤的破坏程度﹐即拖拉机行走装置对水田犁底层的破坏程度和对旱田土壤的压实程度。

操纵性指拖拉机在驾驶员操纵下﹐按期望的路线行驶的性能﹐包括行驶直线性和最小转弯半径等。

劳动保护性能和工作条件指保护驾驶员身体不受损害的性能以及操作方便和舒适的程度。包括对驾驶员的安全防护﹐驾驶室的防尘﹐隔声和温度控制﹐座位的减振﹑舒适程度和对不同人体体形的适应性﹐驾驶员的视野﹐各种操纵机构的合理布置和操纵力﹐工作监视装置的完善程度等。

发展趋势现代拖拉机已成为具有各种现代化设施可以牵引和驱动各种复杂农业机具的

自走式动力站﹐其发展动向表现在﹕平均功率不断增大﹐大型拖拉机在数量上占的比重明显上升。1984年美国拖拉机销售量中﹐75千瓦以上的拖拉机占总台数的24%。小型拖拉机(包括手扶拖拉机和小型四轮拖拉机)在经济发达国家中﹐主要用于家庭园艺和公用事业﹔在农业机械化尚处初级阶段的发展中国家﹐则因农业经营规模较小﹐仍然是一种重要动力。在农用拖拉机中﹐轮式拖拉机占绝对优势。履带拖拉机在许多国家的农业生产中已基本不使用﹔在苏联﹑意大利和中国的使用比重也在下降。60年代以后﹐随着拖拉机功率的不断增大﹐四轮驱动拖拉机有很大发展。液压转向的应用解决了原来四轮驱动拖拉机转向困难的问题﹐铰接式转向大大减小了转弯半径﹐促使四轮驱动拖拉机在75千瓦以上的拖拉机中占有很大比例。为了提高在水田中的牵引特性﹐日本发展了中﹑小功率的四轮驱动拖拉机。但制造成本高是其制约因素。人机工程学﹑安全防护和改进操纵﹑监视条件的研究将日益受到重视。现代化的密封驾驶室还带有各种形像化﹑标准化的工作监视装置和报警系统。液压技术在拖拉机上的应用日益广泛﹐并已开始出现电子-液压系统。新型拖拉机上的液压不仅用于农具的升降﹑控制和离合器﹑变速箱﹑差速器﹑制动器﹑转向机构等主要部件的操纵﹐甚至如坐位的调整﹑驾驶室窗的开关等也都采用液压装置。利用载荷谱作为应力分析﹑仿真试验和有限元计算的基本数据﹐大大提高了拖拉机产品的研制水平﹐缩短了研制周期。零部件的可靠性﹑耐久性也有了显著提高。拖拉机零部件的标准化﹑系列化和通用化﹐有利于充分利用工厂生产能力﹐降低产品成本﹐并便于维修和配件供应。

疲劳载荷谱

[1]. 李振兴, 5T悬挂吊车作用下焊接球网架结构的理论疲劳栽荷谱编制. 2014, 太原理工大学. 疲劳寿命计是结构承载过程中理想的疲劳状态监测元件,其电阻产生的不可逆变化反映了结构的疲劳加载历程。首先比较分析了普通应变片和疲劳寿命计在实际应用中的优劣,然后在采用恒幅加载实验研究其基本测试性能的基础上,通过多级加载实验进一步证实了疲劳寿命计电阻响应规律的正确性,由此研究 分析了桥梁等大型结构在实际的瑞利分布载荷作用下的疲劳加载历程,并对其 使用寿命和剩余寿命进行预测。 [1]. 罗艳利, 胡明敏, and 方义庆, 基于疲劳寿命计的桥梁载荷谱识别研究. 理化检验(物理分册), 2005(08): p. 387-390. 疲劳寿命计是结构承载过程中理想的疲劳状态监测元件,其电阻产生的不 可逆变化反映了结构的疲劳加载历程。首先比较分析了普通应变片和疲劳寿命计在实际应用中的优劣,然后在采用恒幅加载实验研究其基本测试性能的基础上,通过多级加载实验进一步证实了疲劳寿命计电阻响应规律的正确性,由此研究分析了桥梁等大型结构在实际的瑞利分布载荷作用下的疲劳加载历程,并对 其使用寿命和剩余寿命进行预测。 [1]. 罗艳利, 胡明敏, and 方义庆, 基于疲劳寿命计的桥梁载荷谱识别研究. 理化检验(物理分册), 2005(08): p. 387-390. 疲劳寿命计是结构承载过程中理想的疲劳状态监测元件,其电阻产生的不可逆变化反映了结构的疲劳加载历程。首先比较分析了普通应变片和疲劳寿命计在实际应用中的优劣,然后在采用恒幅加载实验研究其基本测试性能的基础上,通过多级加载实验进一步证实了疲劳寿命计电阻响应规律的正确性,由此研究分析了桥梁等大型结构在实际的瑞利分布载荷作用下的疲劳加载历程,并对其使用寿命和剩余寿命进行预测。 [1]. 孙乐and 胡明敏, 基于数字疲劳传感器的桥梁载荷谱研究. 江苏航空, 2008(S1): p. 91-93. 数字疲劳传感器是一种电阻响应传感器,其核心元件疲劳计是由特殊退火处理康铜材料制成的,具有不逆电阻疲劳载荷响应的特性,在交变载荷作用下该传感器产生不可逆电阻改变,而且电阻的变化可以反映结构疲劳加载历程,是一种理想的结构状态监测装置。本文首先阐述了其基本特性和工作原理,然后根据桥梁载荷谱的瑞利分布特点,设计了双疲劳计响应载荷谱测定方法,得到疲劳传感器电阻变化与桥梁瑞利载荷谱的对应关系。最后介绍了基于该传感器的疲劳载荷监测系统和在东海大桥监测应用情况。 [1]. 陈景杰, 黄一, and 李玉刚, 考虑疲劳载荷相互影响的修正的Miner准则研究. 中国造船, 2014(03): p. 36-42.

matlab程序中功率谱分析的经典常用方法

一、直接法 clear;clc;close all; %清除变量;清屏;关闭当前图形窗口 Fs=1000; t=0:1/Fs:1; nfft=2048; %改变nfft的值可对比不同采样值时的谱估计效果 %****************生成信号、噪声**************% x1=cos(2*pi*40*t)+3*cos(2*pi*45*t);%信号 x2=randn(size(t)); %噪声 x3=x1+x2; %信号+噪声 [Pxx,f]=periodogram(x3,window,nfft,Fs); %直接法 plot(f,10*log10(Pxx)); title('直接法 nfft=2048'); set(gca,'xlim',[1 120]); ylabel('Am/dB'); xlabel('Frequency/Hz'); 二、间接法 Fs=1000;% 采样频率 n=0:1/Fs:1;% 产生含有噪声的序列 x1=cos(2*pi*40*n)+3*cos(2*pi*45*n);%信号x2=randn(size(n)); %噪声x3=x1+x2; %信号+噪声 nfft=1024; cxn=xcorr(x3);% 计算序列的自相关函数 CXk=fft(cxn); Pxx=abs(CXk); index=0:round(nfft/2-1); f=index*Fs/nfft; plot_Pxx=10*log10(Pxx(index+1)); figure (1) plot(f,plot_Pxx); title('间接法 nfft=1024');ylabel('Am/dB'); set(gca,'xlim',[1 120]); xlabel('Frequency/Hz'); 三、Bartlett法 clear;clc;close all; %清除变量;清屏;关闭当前图形窗口 Fs=1000; t=0:1/Fs:1; nfft=1024; %****************生成信号、噪声**************% x1=cos(2*pi*40*t)+3*cos(2*pi*45*t);%信号 x2=randn(size(t)); %噪声 x3=x1+x2; %信号+噪声 window=hamming(512); %海明窗 noverlap=0; %数据无重叠 p=0.9; %置信概率 [Pxx,Pxxc]=psd(x3,nfft,Fs,window,noverlap,p); index=0:round(nfft/2-1); k=index*Fs/nfft; plot_Pxx=10*log10(Pxx(index+1)); plot_Pxxc=10*log10(Pxxc(index+1)); figure(1) plot(k,plot_Pxx);title('Bartlett法海明窗');; set(gca,'xlim',[1120]);ylabel('Am/dB'); xlabel('Frequency/Hz'); 四、Welch法

载荷谱

载荷谱 载荷谱是整机结构或零部件所承受的典型载荷时间历程,经数理统计处理后所得到的表示载荷大小与出现频次之间关系的图形、表格、矩阵和其他概率特征值的统称。机械结构部件多是在交变载荷作用下服役,因为载荷的变化,结构材料内部的应力应变也在发生变化,从而导致裂纹的产生、扩张,发生断裂,这个过程就是疲劳失效,大多数机械部件的失效都是疲劳失效。载荷谱的研究对疲劳失效有很大作用。载荷谱是进行可靠性设计的依据,是零部件结构定寿、延寿和动力学仿真、有限元分析等计算机辅助设计的先决条件,也是作为结构疲劳试验、强化试验、加速寿命试验和可靠性试验的基础。 一般机械产品,其载荷谱的编制流程如下: (1) 载荷样本数据的获取 载荷数据一般通过产品现场工作时实测的途径来获取。 (2) 平稳性检验 通过实测方法获得的载荷数据往往是一种随机过程,而在随机过程分析中,一组数据是否为平稳和历态的,对其进行统计处理所采用的方法是不相同的,因此需对试验获得的载荷数据进行平稳性分析。 (3) 无效幅值的去除 测试获得的载荷数据中有许多载荷值小的循环,将不能构成疲劳损伤的小量载荷循环去除即为无效幅值的去除。通过对无效幅值进行压缩和去除可以缩短试验时间,同时降低试验费用。 (4) 载荷循环的统计计数 将载荷- 时间历程转化为系列载荷循环的过程叫做“计数法”。在进行疲劳寿命分析时, 常常以载荷- 时间历程的损伤量为依据,对统计计数结果进行加速编辑。

(5)总体分布的估计 通过雨流计数法对随机载荷进行计数得到的是载荷均值和载荷幅值,之后进行统计处理得到二元(均值和幅值)随机变量的联合分布矩阵,采用二维(幅值和均值)函数进行分布参数的估计。分布函数获得后,利用假设检验对幅值和均值分布函数进行检验,最后分析二者的相关性,确定最优分布模型。 不同的机械产品,其载荷谱的采集及编制方法均有所不同。在对汽车零部件疲劳失效研究中,通常采集关键部位(如稳定连接杆、横拉杆等)的应变载荷和加速度信号作为载荷数据。对采集的加速度信号,常用于统计分析(如最大值、最小值、平均值、均方根和方差等的统计对比)及功率谱密度函数来描述其频率特性。对采集的应力-应变时间载荷数据,经 过雨流计数法得到各应力大小与循环次数的统计结果,最后应用累积损伤理论分析方法计算 疲劳寿命与安全使用寿命。汽车载荷谱多是基于损伤量进行的室内试验载荷谱编制。在进行汽车零部件设计时,要进行零部件室内疲劳寿命试验,而由于零部件使用寿命很长,在室内试验时,需要采用加速试验的方法。 对汽车载荷谱的加速编辑,计算原始信号的时间- 损伤分布图,对应变-时间信号用雨流 计数法计算损伤,然后对照时间- 损伤分布图,移去原始应变信号中无损伤或小于某一门槛值的信号片段,再插入一个递减或连接信号(常用半余弦曲线代替),避免在连接处有一个突然 的信号跳跃。在完成载荷谱加速编辑后,对加速信号应用到室内疲劳试验,在保证一定损伤量时,试验时间将大大缩短。汽车载荷谱对汽车设计、疲劳寿命研究有着重要的意义,对汽 车产品的改进、新产品的开发与产品质量检查等有极大的作用。 在对机床载荷分析时,通常采集机床的主轴转速、切削力、扭矩、主轴电机额定功率、最大进给速度、快速移动加速度等信号采集,其中以主轴转速谱、切削力谱和扭矩谱为主要采集分析对象。实际运行过程中数控机床的受载情况与一般机械产品不同,数控机床切削工况种类繁多,机床载荷是一个连续的随机过程,可利用统计方法对载荷数据加以整理,并对其进行某种分布拟合,通过分布假设检验,用频率图、累

强度方法-载荷谱

载荷谱 强度方法库 通过性指拖拉机在各种田间和道路情况下的通行能力﹐如在松软﹑潮湿地面﹐山地﹑坡道和作物行间的通行能力﹐以及在田间转移和越障的能力等。拖拉机在田间作业时﹐除通行能力外﹐还要考虑它对土壤的破坏程度﹐即拖拉机行走装置对水田犁底层的破坏程度和对旱田土壤的压实程度。 操纵性指拖拉机在驾驶员操纵下﹐按期望的路线行驶的性能﹐包括行驶直线性和最小转弯半径等。 劳动保护性能和工作条件指保护驾驶员身体不受损害的性能以及操作方便和舒适的程度。包括对驾驶员的安全防护﹐驾驶室的防尘﹐隔声和温度控制﹐座位的减振﹑舒适程度和对不同人体体形的适应性﹐驾驶员的视野﹐各种操纵机构的合理布置和操纵力﹐工作监视装置的完善程度等。 发展趋势现代拖拉机已成为具有各种现代化设施可以牵引和驱动各种复杂农业机具的

自走式动力站﹐其发展动向表现在﹕平均功率不断增大﹐大型拖拉机在数量上占的比重明显上升。1984年美国拖拉机销售量中﹐75千瓦以上的拖拉机占总台数的24%。小型拖拉机(包括手扶拖拉机和小型四轮拖拉机)在经济发达国家中﹐主要用于家庭园艺和公用事业﹔在农业机械化尚处初级阶段的发展中国家﹐则因农业经营规模较小﹐仍然是一种重要动力。在农用拖拉机中﹐轮式拖拉机占绝对优势。履带拖拉机在许多国家的农业生产中已基本不使用﹔在苏联﹑意大利和中国的使用比重也在下降。60年代以后﹐随着拖拉机功率的不断增大﹐四轮驱动拖拉机有很大发展。液压转向的应用解决了原来四轮驱动拖拉机转向困难的问题﹐铰接式转向大大减小了转弯半径﹐促使四轮驱动拖拉机在75千瓦以上的拖拉机中占有很大比例。为了提高在水田中的牵引特性﹐日本发展了中﹑小功率的四轮驱动拖拉机。但制造成本高是其制约因素。人机工程学﹑安全防护和改进操纵﹑监视条件的研究将日益受到重视。现代化的密封驾驶室还带有各种形像化﹑标准化的工作监视装置和报警系统。液压技术在拖拉机上的应用日益广泛﹐并已开始出现电子-液压系统。新型拖拉机上的液压不仅用于农具的升降﹑控制和离合器﹑变速箱﹑差速器﹑制动器﹑转向机构等主要部件的操纵﹐甚至如坐位的调整﹑驾驶室窗的开关等也都采用液压装置。利用载荷谱作为应力分析﹑仿真试验和有限元计算的基本数据﹐大大提高了拖拉机产品的研制水平﹐缩短了研制周期。零部件的可靠性﹑耐久性也有了显著提高。拖拉机零部件的标准化﹑系列化和通用化﹐有利于充分利用工厂生产能力﹐降低产品成本﹐并便于维修和配件供应。

功率谱估计方法的比较

功率谱估计方法的比较 摘要: 本文归纳了信号处理中关键的一种分析方法, 即谱估计方法。概述了频谱估计中的周期图法、修正的协方差法和伯格递推法的原理,并且对此三种方法通过仿真做出了对比。 关键词:功率谱估计;AR 模型;参数 引言: 谱估计是指用已观测到的一定数量的样本数据估计一个平稳随机信号的谱。由于谱中包含了信号的很多频率信息,所以分析谱、对谱进行估计是信号处理的重要容。谱估计技术发展 渊源很长,它的应用领域十分广泛,遍及雷达、声纳、通信、地质勘探、天文、生物医学工程等众多领域,其容、方法都在不断更新,是一个具有强大生命力的研究领域。谱估计的理论和方法是伴随着随机信号统计量及其谱的发展而发展起来的,最早的谱估计方法是建 立在基于二阶统计量, 即自相关函数的功率谱估计的方法上。功率谱估计的方法经历了经典谱估计法和现代谱估计法两个研究历程,在过去及现在相当长一段时间里,功率谱估计一直占据着谱估计理论里的核心位置。经典谱估计也成为线性谱估计,包括BT 法、周期图法。现代谱估计法也称为非线性普估计,包括自相关法、修正的协方差法、伯格(Burg )递推法、特征分解法等等。 原理: 经典谱估计方法计算简单,其主要特点是谱估计与任何模型参数无关,是一类非参数化的方法。它的主要问题是:由于假定信号的自相关函数在数据的观测区间以外等于零,因此估计出来的功率谱很难与信号的真实功率谱相匹配。在一般情况下,经典法的渐进性能无法给出实际功率谱的一个满意的近似,因而是一种低分辨率的谱估计方法。现代谱估计方法使用参数化的模型,他们统称为参数化功率谱估计,由于这类方法能够给出比经典法高得多的频率分辨率,故又称为高分辨率方法。下面分别介绍周期图法、修正的协方差法和伯格递推法。修正的协方差法和伯格递推法采用的模型均为AR 模型。 (1)周期图法 周期图法是先估计自相关函数, 然后进行傅里叶变换得到功率谱。假设随机信号x(n)只观测到一段样本数据,n=0, 1, 2, …, N-1。根据这一段样本数据估计自相关函数,如公式(1) 对(1)式进行傅里叶变换得到(2)式。 ∑--=+=1||0 *) ()(1 )(?m N n xx m n x n x N m r

功率谱密度

t=0:0.0001:0.1; %时间间隔为0.0001,说明采样频率为10000Hz x=square(2*pi*1000*t); %产生基频为1000Hz的方波信号 n=randn(size(t)); %白噪声 f=x+n; %在信号中加入白噪声 figure(1); subplot(2,1,1); plot(f); %画出原始信号的波形图 ylabel('幅值(V)'); xlabel('时间(s)'); title('原始信号'); y=fft(f,1000); %对原始信号进行离散傅里叶变换,参加DFT采样点的个数为1000 subplot(2,1,2); m=abs(y); f1=(0:length(y)/2-1)'*10000/length(y);%计算变换后不同点对应的幅值plot(f1,m(1:length(y)/2)); ylabel('幅值的模'); xlabel('时间(s)'); title('原始信号傅里叶变换'); %用周期图法估计功率谱密度 p=y.*conj(y)/1000; %计算功率谱密度 ff=10000*(0:499)/1000; %计算变换后不同点对应的频率值 figure(2); plot(ff,p(1:500)); ylabel('幅值'); xlabel('频率(Hz)'); title('功率谱密度(周期图法)'); 功率谱估计在现代信号处理中是一个很重要的课题,涉及的问题很多。在这里,结合matlab,我做一个粗略介绍。功率谱估计可以分为经典谱估计方法与现代谱估计方法。经典谱估计中最简单的就是周期图法,又分为直接法与间接法。直接法先取N点数据的傅里叶变换(即频谱),然后取频谱与其共轭的乘积,就得到功率谱的估计;间接法先计

经典功率谱估计方法实现问题的研究

1 随机信号的经典谱估计方法 估计功率谱密度的平滑周期图是一种计算简单的经典方法。它的主要特点是与任 何模型参数无关,是一类非参数化方法[4]。它的主要问题是:由于假定信号的自相关函数在数据观测区以外等于零,因此估计出来的功率谱很难与信号的真实功率谱相匹配。在一般情况下,周期图的渐进性能无法给出实际功率谱的一个满意的近似,因而是一种低分辨率的谱估计方法。本章主要介绍了周期图法、相关法谱估计(BT )、巴特利特(Bartlett)平均周期图的方法和Welch 法这四种方法。 2.1 周期图法 周期图法又称直接法。它是从随机信号x(n)中截取N 长的一段,把它视为能量有限x(n)真实功率谱)(jw x e S 的估计)(jw x e S 的抽样. 周期图这一概念早在1899年就提出了,但由于点数N一般比较大,该方法的计算量过大而在当时无法使用。只是1965年FFT 出现后,此法才变成谱估计的一个常用方法。周期图法[5]包含了下列两条假设: 1.认为随机序列是广义平稳且各态遍历的,可以用其一个样本x(n)中的一段 )(n x N 来估计该随机序列的功率谱。这当然必然带来误差。 2.由于对)(n x N 采用DFT ,就默认)(n x N 在时域是周期的,以及)(k x N 在频域是周期的。这种方法把随机序列样本x(n)看成是截得一段)(n x N 的周期延拓,这也就是周期图法这个名字的来历。与相关法相比,相关法在求相关函数)(m R x 时将 )(n x N 以外是数据全都看成零,因此相关法认为除)(n x N 外 x(n)是全零序列,这种处 理方法显然与周期图法不一样。 但是,当相关法被引入基于FFT 的快速相关后,相关法和周期图法开始融合。通过比较我们发现:如果相关法中M=N ,不加延迟窗,那么就和补充(N-1)个零的周期图法一样了。简单地可以这样说:周期图法是M=N 时相关法的特例。因此相关法和周期图法可结合使用。 2.2 相关法谱估计(BT )法

动力电池包载荷谱虚拟迭代分析

10.16638/https://www.doczj.com/doc/3a14734080.html,ki.1671-7988.2019.14.001 动力电池包载荷谱虚拟迭代分析 陈玉祥,熊飞,朱林培,刘雄 (广州汽车集团股份有限公司汽车工程研究院,广东广州511434) 摘要:采用ADAMS建立车身-电池包刚柔耦合多体动力学模型以及电池包系统的六通道虚拟试验台。基于电池包实测载荷谱,通过虚拟迭代分析,各通道的相对损伤值接近1,验证了迭代计算的收敛性。研究方法对电池包的结构疲劳分析和振动响应特性研究具有重要的参考价值。 关键词:电池包;载荷谱;虚拟迭代 中图分类号:U469.72 文献标识码:A 文章编号:1671-7988(2019)14-03-04 Virtual iterative analysisof load spectrum for traction battery pack Chen Yuxiang, Xiong Fei, Zhu Linpei, Liu Xiong ( Guangzhou Automobile Group Co., Ltd. Automotive Engineering Institute, Guangdong Guangzhou 511434 ) Abstract: The rigid-flexible coupled multi-body dynamic model of the body-battery pack system used for virtual test bench was established by using ADAMS.Based on the measured load spectrum of the battery pack, the relative damage value of each channel was close to 1 through virtual iterative analysis, which verified the convergence of iterative calculation.The research method has important reference value for the structural fatigue analysis and vibration response research of battery pack. Keywords: Battery pack; Load spectrum; Virtual iterative CLC NO.: U469.72 Document Code: A Article ID: 1671-7988(2019)14-03-04 前言 电池包系统是电动汽车核心系统之一,电池包良好的结构力学性能是电动汽车具备安全性和可靠性的基础。由于电池包的电化学特性具有危险性,同时载荷条件非常复杂,对电池包的结构可靠性提出了更高的要求。电池包安全性问题也制约了新能源汽车产业的发展。电池包常规分析,比如频谱分析、振动分析,往往与实际工况存在一定的出入,并不能真实反映电池包的真实受力和振动情况。而电池包的测试周期长,成本高。因此,开展电池包虚拟试验技术,进行载荷迭代分析是非常重要的。 本文以某电动汽车电池包为研究对象,通过结合实测道路谱的虚拟迭代技术对电池包的载荷谱进行准确预测,为开展电池包的结构疲劳分析和振动响应分析提供载荷输入。 首先,利用实际采集的电动汽车路谱,通过二十四通道加速度振动试验台,获得实车在综合循环路况下使用的动力电池包的道路谱。其次,对电池包数模进行适当简化,建立包含壳体和模组的电池包有限元模型,通过模态分析,得到电池包柔性体模型。采用车身等效质量块和柔性电池包连接,建立车身-电池包刚柔耦合动力学模型。然后,在ADAMS软件中建立电池包六通道试验台,与车身-电池包刚柔耦合多体动力学模型组建迭代计算的虚拟振动试验台,通过迭代软件进行虚拟迭代计算,并通过信号比较验证迭代计算的收敛性[1]。 1 电池包道路载荷谱台架测试 电动汽车包含众多的系统及部件,对每个部件都进行实 作者简介:陈玉祥,就职于广州汽车集团股份有限公司汽车工程研 究院,从事新能源汽车热管理分析。 3

功率谱图应用

1.基本方法 周期图法是直接将信号的采样数据x(n)进行Fourier变换求取功率谱密度估计的方法。假定有限长随机信号序列为x(n)。它的Fourier变换和功率谱密度估计存在下面的关系: 式中,N为随机信号序列x(n)的长度。在离散的频率点f=kΔf,有: 其中,FFT[x(n)]为对序列x(n)的Fourier变换,由于FFT[x(n)]的周期为N,求得的功率谱估计以N为周期,因此这种方法称为周期图法。下面用例子说明如何采用这种方法进行功率谱 用有限长样本序列的Fourier变换来表示随机序列的功率谱,只是一种估计或近似,不可避免存在误差。为了减少误差,使功率谱估计更加平滑,可采用分段平均周期图法(Bartlett法)、加窗平均周期图法(Welch 法)等方法加以改进。 2. 分段平均周期图法(Bartlett法) 将信号序列x(n),n=0,1,…,N-1,分成互不重叠的P个小段,每小段由m个采样值,则P*m=N。对每个小段信号序列进行功率谱估计,然后再取平均作为整个序列x(n)的功率谱估计。 平均周期图法还可以对信号x(n)进行重叠分段,如按2:1重叠分段,即前一段信号和后一段信号有一半是重叠的。对每一小段信号序列进行功率谱估计,然后再取平均值作为整个序列x(n)的功率谱估计。这两种方法都称为平均周期图法,一般后者比前者好。程序运行结果为图9-5,上图采用不重叠分段法的功率谱估计,下图为2:1重叠分段的功率谱估计,可见后者估计曲线较为平滑。与上例比较,平均周期图法功率谱估计具有明显效果(涨落曲线靠近0dB)。 3.加窗平均周期图法 加窗平均周期图法是对分段平均周期图法的改进。在信号序列x(n)分段后,用非矩形窗口对每一小段信号序列进行预处理,再采用前述分段平均周期图法进行整个信号序列x(n)的功率谱估计。由窗函数的基本知识(第7章)可知,采用合适的非矩形窗口对信号进行处理可减小“频谱泄露”,同时可增加频峰的宽度,从而提高频谱分辨率。 其中上图采用无重叠数据分段的加窗平均周期图法进行功率谱估计,而下图采用重叠数据分段的加窗平均周期图法进行功率谱估计,显然后者是更佳的,信号谱峰加宽,而噪声谱均在0dB附近,更为平坦(注意采用无重叠数据分段噪声的最大的下降分贝数大于5dB,而重叠数据分段周期图法噪声的最大下降分贝数小于5dB)。 4. Welch法估计及其MATLAB函数 Welch功率谱密度就是用改进的平均周期图法来求取随机信号的功率谱密度估计的。Welch 法采用信号重叠分段、加窗函数和FFT算法等计算一个信号序列的自功率谱估计(PSD如上例中的下半部分的求法)和两个信号序列的互功率谱估计(CSD)。 MATLAB信号处理工具箱函数提供了专门的函数PSD和CSD自动实现Welch法估计,而不需要自己编程。 (1)函数psd利用Welch法估计一个信号自功率谱密度,函数调用格式为: [Pxx[,f]]=psd(x[,Nfft,Fs,window,Noverlap,’dflag’]) 式中,x为信号序列;Nfft为采用的FFT长度。这一值决定了功率谱估计速度,当Nfft采用2的幂时,程序采用快速算法;Fs为采样频率;Window定义窗函数和x分段序列的长度。窗函数长度必须小于或等于Nfft,否则会给出错误信息;Noverlap为分段序列重叠的采样

操作相关的发动机载荷谱模型与仿真研究_宋迎东

收稿日期:2003-01-26;修订日期:2003-05-14 作者简介:宋迎东(1969-),男,安徽太湖人,南京航空航天大学能源与动力学院教授,主要从事航空发动机结构强度与振动研 究。本文系第十一届中国航空学会航空发动机结构强度与振动学术会议优秀论文. 第18卷 第6期2003年12月 航空动力学报 Journal of Aerospace Power Vol.18No.6 Dec. 2003 文章编号:1000-8055(2003)06-0727-05 操作相关的发动机载荷谱模型 与仿真研究 宋迎东,孙志刚 (南京航空航天大学能源与动力学院,江苏南京210016) 摘要:以某型歼击机发动机重心法向过载谱为例,进行统计分析,建立了与操作相关的航空发动机载荷谱的数学模型,并验证了模型的合理性。研究表明:一个操作相关的发动机载荷谱可以用泊松随机过程描述,由持续时间分布和到达时间间隔分布以及载荷持续时间累积频次曲线和载荷穿级计数次数累积频次曲线等四个因素完全确定,其中持续时间和到达时间间隔均服从指数分布。在保证上述四个方面等效的基础上,提出了操作相关的载荷谱仿真方法,并对该发动机的重心法向过载谱进行了仿真,结果表明与实测载荷谱吻合较好,仿真方法可行。 关 键 词:航空、航天推进系统;航空发动机;载荷谱;操作;模型;仿真中图分类号:V 231.91 文献标识码:A Model and Simulation of Aeroengine Load S pectrum Related to Operation SONG Ying-dong,SUN Zhi-gang (Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China) Abstract :The paper presents a model of aero -engine load spectrum related to operation ,and makes a statistic analysis for vertical overload factor spectrum of a fighter engine center of gravi-ty.The model is proved reasonable.T he results show that load spectrum related to operation can be described by Poisson stochastic processes,w hich are completely determined by four factors such as distribution of loading duration ,distribution of loading arrival interval ,frequency accumu-lation curv e of loading duration and frequency accum ulation curve of loading level crossing by Level Crossing Counting.T he loading duration and the loading arrival interval yield exponent dis-tribution.Based on the equivalent of the four factors,a simulation m ethod for load spectrum relat-ed to operation is provided .As an example ,the vertical overload factor spectrum of the engine is sim ulated.The results are satisfactory and show that this simulation m ethod is correct. Key words :aerospace propulsion system;aero-engine;load spectrum;operation;m odel; simulation

(完整word版)自己编写算法的功率谱密度的三种matlab实现方法

功率谱密度的三种matlab 实现方法 一:实验目的: (1)掌握三种算法的概念、应用及特点; (2)了解谱估计在信号分析中的作用; (3) 能够利用burg 法对信号作谱估计,对信号的特点加以分析。 二;实验内容: (1)简单说明三种方法的原理。 (2)用三种方法编写程序,在matlab 中实现。 (3)将计算结果表示成图形的形式,给出三种情况的功率谱图。 (4)比较三种方法的特性。 (5)写出自己的心得体会。 三:实验原理: 1.周期图法: 周期图法又称直接法。它是从随机信号x(n)中截取N 长的一段,把它视为能量有限x(n)真实功率谱)(jw x e S 的估计)(jw x e S 的抽样. 认为随机序列是广义平稳且各态遍历的,可以用其一个样本x(n)中的一段)(n x N 来估计该随机序列的功率谱。这当然必然带来误差。由于对)(n x N 采用DFT ,就默认)(n x N 在时域是周期的,以及)(k x N 在频域是周期的。这种方法把随机序列样本x(n)看成是截得一段)(n x N 的周期延拓,这也就是周期图法这个名字的来历。

2.相关法(间接法): 这种方法以相关函数为媒介来计算功率谱,所以又叫间接法。这种方法的具体步骤是: 第一步:从无限长随机序列x(n)中截取长度N 的有限长序列列 )(n x N 第二步:由N 长序列)(n x N 求(2M-1)点的自相关函数)(m R x ∧ 序列。 )()(1)(1 m n x n x N m R N n N N x += ∑-=∧ (2-1) 这里,m=-(M-1)…,-1,0,1…,M-1,M N ,)(m R x 是双边序列,但是由自相关函数的偶对称性式,只要求出m=0,。。。,M-1的傅里叶变换,另一半也就知道了。 第三步:由相关函数的傅式变换求功率谱。即 jwm M M m X jw x e m R e S ----=∧∧ ∑= )()(1) 1( 以上过程中经历了两次截断,一次是将x(n)截成N 长,称为加数据窗,一次是将x(n)截成(2M-1)长,称为加延迟窗。因此所得的功率谱仅是近似值,也叫谱估计,式中的)(jw x e S 代表估值。一般取M<

功率谱

A.信号与谱的分类 注:功率谱计算的方法之一是由FFT后的谱线平方来得到。 由于时域信号有不同的分类, 变换后对应的频域也有不同的谱 信号可分为模拟(连续)信号和数字(离散)信号, 连续信号变换后称为谱密度, 离散信号变换 后称为谱. 连续信号又可分为绝对可积,平方可积(能量有限),均方可积(功率有限) 绝对可积信号有傅里叶谱(线性谱)和傅里叶谱密度(线性谱密度),如时域信号单位为电压V, 则前者单位为V,后者单位为V/Hz. 均方可积信号有功率谱PS(单位为V2)和功率谱密度PSD(单位为V2/ Hz.). 平方可积信号有能量谱密度ESD(单位为V2 s / Hz.). 注1平方量称为功率,平方量乘秒称为能量,谱分量除以频率称为谱密度. 注2功率谱密度另一定义(离散信号的功率谱密度)见下述, 连续信号的功率谱密度. 为连续(光滑)曲线, 离散信号的功率谱密度为不连续的阶梯形.. 注3随机信号求功率谱密度时为减少方差,可采用平均,重叠和加窗处理(Welch法). 数字信号又可分为绝对可和,平方可和,均方可和.

B.各种谱计算 1. 线性谱Linear Spectrum:对时域离散信号作DFT(离散傅里叶变换)得到, 采用方法为FFT(快速傅里叶变换)法.X(f)=FFT(x(t)) 2. 自功率谱APS=Auto Power Spectrum:离散信号的线性谱乘其共轭线性谱APS(f)=X(f)*conj(X(f)), conj=conjugate共轭(实部不变,虚部变符号). 3. 互功率谱CPS=Cross Power Spectrum::x(t)的线性谱乘y(t)的共轭线性谱互功率谱是复数,可表示为幅值和相位或实部和虚部等. CPS(f)=X(f) *conj(Y(f)) Y(f)=FFT(y(t)) 4. (自)功率谱密度PSD(=Power Spectrum Density):

随机信号的功率谱估计方法

数字信号处理II ——随机信号的功率谱估计方法

一、实验目的 1.利用自相关函数法和周期图法实现对随机信号的功率谱估计。 2.观察数据长度、自相关序列长度、信噪比、窗函数、平均次数等对谱估计的分辨率、稳 定性、主瓣宽度和旁瓣效应的影响。 3.学习使用FFT 提高谱估计的运算速度。 4.体会非参数化功率谱估计方法的优缺点。 二、实验原理与方法 假设信号()x n 为平稳随机过程,其自相关序列定义为: {}*()()()m E x n x n m φ+ (0.1) 其中{}E ?表示取数学期望,{}* ?表示取共轭。根据定义,()x n 的功率谱密度()P w 与自相关序列()m φ存在如下关系: ()()j m m P m e ωωφ+∞ -=-∞ = ∑ (0.2) 1 ()()2j m m P e d π ωπφωωπ - = ? (0.3) 然而,实际中我们很难得到准确的自相关序列()m φ,只能通过随机信号的一段样本序列来估计信号的自相关序列,进而得到信号的功率谱估计。目前常用的线性谱估计方法有两种:自相关函数法和周期图方法,本实验将对这两种方法分别予以讨论。 1.自相关函数法 假设已知随机信号()x n 的N 个观测样本,则其自相关序列可以用下式进行估计: ||1 *0 1 ?()()()||1||N m n m x n x n m m N N m φ --==+≤--∑ (0.4) 当仅使用长度为2M-1的自相关序列时,对其进行傅立叶变换即可得到功率谱估计如下:

11 ??()()M j m m M P m e ωωφ --=-+=∑ (0.5) 其中M 为加窗长度,Re ()c M W m 为矩形窗函数,定义如下: Re 1,||()0,||c M m M W m m M

(完整word版)功率谱密度估计方法的MATLAB实现

功率谱密度估计方法的MATLAB实现 在应用数学和物理学中,谱密度、功率谱密度和能量谱密度是一个用于信号的通用概念,它表示每赫兹的功率、每赫兹的能量这样的物理量纲。在物理学中,信号通常是波的形式,例如电磁波、随机振动或者声波。当波的频谱密度乘以一个适当的系数后将得到每单位频率波携带的功率,这被称为信号的功率谱密度(power spectral density, PSD)或者谱功率分布(spectral power distribution, SPD)。功率谱密度的单位通常用每赫兹的瓦特数(W/Hz)表示,或者使用波长而不是频率,即每纳米的瓦特数(W/nm)来表示。信号的功率谱密度当且仅当信号是广义的平稳过程的时候才存在。如果信号不是平稳过程,那么自相关函数一定是两个变量的函数,这样就不存在功率谱密度,但是可以使用类似的技术估计时变谱密度。信号功率谱的概念和应用是电子工程的基础,尤其是在电子通信系统中,例如无线电和微波通信、雷达以及相关系统。因此学习如何进行功率谱密度估计十分重要,借助于Matlab工具可以实现各种谱估计方法的模拟仿真并输出结果。下面对周期图法、修正周期图法、最大熵法、Levinson递推法和Burg法的功率谱密度估计方法进行程序设计及仿真并给出仿真结果。 以下程序运行平台:Matlab R2015a(8.5.0.197613) 一、周期图法谱估计程序 1、源程序 Fs=100000; %采样频率100kHz N=1024; %数据长度N=1024 n=0:N-1; t=n/Fs; xn=sin(2000*2*pi*t); %正弦波,f=2000Hz Y=awgn(xn,10); %加入信噪比为10db的高斯白噪声 subplot(2,1,1); plot(n,Y) title('信号') xlabel('时间');ylabel('幅度');

功率谱与功率谱密度

功率谱密度谱是一种概率统计方法,是对随机变量均方值的量度。一般用于随机振动分析,连续瞬态响应只能通过概率分布函数进行描述,即出现某水平响应所对应的概率。 功率谱密度是结构在随机动态载荷激励下响应的统计结果,是一条功率谱密度值—频率值的关系曲线,其中功率谱密度可以是位移功率谱密度、速度功率谱密度、加速度功率谱密度、力功率谱密度等形式。数学上,功率谱密度值—频率值的关系曲线下的面积就是方差,即响应标准偏差的平方值。 谱是个很不严格的东西,常常指信号的Fourier变换,是一个时间平均(time average)概念功率谱的概念是针对功率有限信号的(能量有限信号可用能量谱分析),所表现的是单位频带内信号功率随频率的变换情况。保留频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。有两个重要区别:1。功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier变换,对于一个随机过程而言,频谱也是一个“随机过程”。(随机的频域序列)2。功率概念和幅度概念的差别。此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶局是否存在并且二阶矩的Fourier变换收敛;而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。热心网友回答提问者对于答案的评价:谢谢解答。 频谱分析(也称频率分析),是对动态信号在频率域内进行分析,分析的 结果是以频率为坐标的各种物理量的谱线和曲线,可得到各种幅值以频率为变 量的频谱函数F(ω)。频谱分析中可求得幅值谱、相位谱、功率谱和各种谱密 度等等。频谱分析过程较为复杂,它是以傅里叶级数和傅里叶积分为基础的。 功率谱是个什么概念?它有单位吗? 随机信号是时域无限信号,不具备可积分条件,因此不能直接进行傅氏变换。一般用具有统计特性的功率谱来作为谱分析的依据。功率谱与自相关函数是一个傅氏变换对。功率谱具有单位频率的平均功率量纲。所以标准叫法是功率谱密度。通过功率谱密度函数,可以看出随机信号的能量随着频率的分布情况。像白噪声就是平行于w轴,在w轴上方的一条直线。

自功率谱估计的经典方法

5.自功率谱估计的经典方法 1) 周期图法(直接法) 对于时间序列)(n x N ,其傅里叶变换(DTFT ——离散时间信号的傅里叶变换)为 ∑-=-=1 )()(N n n j N j N e n x e X ωω ,?- = π π ωωωπ d e e X n x n j j N N )(21)( 记为 )()(ωj N D TFT N e X n x ??→← )(n x N 的离散傅里叶变换(DFT )为 ∑-=-=1 02)()(N n kn N j N N e n x k X π ,∑-==1 2)(1)(N k kn N j N N e k X N n x π 记为 )()(k X n x N D FT N ??→← 若)(n x N 是信号)(n x 在时间域截断的结果,即 )()()(n d n x n x N N ?= (5-58) 其中,)(n d N 是单边矩形窗,其表达式为 ?? ?-≤≤=其它 ,01 0,1)(N n n d N 而)(n x 是确定性功率信号(或随机信号的一个样本序列),则根据第三章的讨论结果知, =)(ωj x e S 2,)(1 )(lim lim ωωj N N j x N N e X N e P ∞ →∞ →= (5-59) 反映了信号)(n x 的平均功率在频域的分布情况,称为平均功率谱密度。因此,估计量 2,,)(1)()(?ωωωj N j x N j PER x e X N e P e S == (5-60) 为信号)(n x 的功率谱的一个估计。此估计方法称为直接法或周期图法。 在)(?,ωj PER x e S 的实际运算中采用DFT ,ω在单位园上均匀取值。当取N π ω2=?时,(5-60)改写为 2,,)(1)()(?k X N k P k S N x N N PER x ==,1,,1,0-=N k (5-61) 其中, ∑-=-=1 2)()(N n nk N j N N e n x k X π,1,,1,0-=N k 当取N 22π ω= ?时,需对)(n x N 补N 个零后再作DFT ,此时(5-60)改写为 22,22,)(1)()(?k X N k P k S N x N N PER x ==,12,,1,0-=N k (5-62) 其中,)(2k X N 参见(5-42)、(5-33)式。 ∑-=-= 1 20 2222)()(N n nk N j N N e n x k X π,12,,1,0-=N k 在)(2k X N 的自变量取偶数的点,有 ∑-=-= 1 20 22222)()2(N n nk N j N N e n x k X π∑-=-=1 2)(N n nk N j N e n x π, 因此,有

相关主题
文本预览
相关文档 最新文档