当前位置:文档之家› 材料力学教案 第5章 弯曲内力

材料力学教案 第5章 弯曲内力

材料力学教案 第5章 弯曲内力
材料力学教案 第5章 弯曲内力

第5章弯曲内力

教学目的:在本章的学习中要求熟练掌握建立剪力、弯矩方程和绘制剪力、弯矩图的方法。理解弯矩、剪力与载荷集度间的微分关系,以及掌握用该

关系绘制或检验梁的剪力、弯矩图的方法。

教学重点:剪力与弯矩;剪力方程和弯矩方程;剪力图与弯矩图;指定截面的内力计算。

教学难点:剪力和弯矩,剪力和弯矩的正负符号规则;剪力图和弯矩图;剪力、弯矩和载荷集度的微分、积分关系;利用微分关系作梁的内力图。

教具:多媒体。

教学方法:采用启发式教学,通过提问,引导学生思考,让学生回答问题。

教学内容:平面弯曲等基本概念;截面法求梁弯曲内力;剪力方程和弯矩方程、绘制剪力图和弯矩图;用载荷集度、剪力和弯矩间的微分关系绘制剪

力图和弯矩图。

教学学时:6学时。

教学提纲:

5.1 弯曲的概念和实例

5.1.1简单回顾杆件的变形特征

杆件的整体变形有以下几种基本形式:拉伸或压缩、剪切、扭转、弯曲以及它们的组合。

1、轴向拉伸或压缩

受力:作用于杆件两端的外力大小相等,方向

相反,且作用线与杆件轴线重合。

变形:杆件变形是沿轴线的方向伸长或缩短。

2、剪切

受力:杆件两侧作用大小相等,方向相反,作用线相距很近的外力。

变形:杆件的两部分沿外力作用方向发生相对错动。

3、扭转

受力:在垂直于杆件轴的横截面内,分别作用两个绝对值相等,转向相反的两个力偶。变形:任意两个横截面发生绕轴线的相对转动。

4、弯曲

受力:在包含杆轴的纵向平面内作用一对大小相等、方向相反的力偶,或在垂直于杆件轴线方向上作用横向力。

变形:杆件轴线由直线变为曲线。

组合变形:当杆件同时发生两种或两种以上基本变形时称为组合变形。

5.1.2 弯曲的概念

1、弯曲的概念

受力特征:外力是作用线垂直于杆轴线的平衡力系(有时还包括力偶)。 变形特征:杆的轴线在变形后成为曲线。 以弯曲变形为主的杆件称为——梁。 2、实例

()()()()?????

?

?轧板机的轧辊镗刀刀杆

火车轮轴桥式起重机大梁

4321

3、平面弯曲:讨论杆的弯曲时,我们暂时限制在如下的范围; ①杆的横截面至少有一根对称轴(一个对称面)

②载荷作用在对称平面内 在此前提下,可讨论杆件弯曲的

受力特点:所有外力都作用在通过杆件轴线的纵向对称平面内:

变形特点:杆件轴线在载荷作用平面内弯成一条曲线。 受力、变形具有上述特点的弯曲称为平面弯曲。

对称弯曲(平面弯曲):当梁上荷载位于纵向对称面内,通过且垂直于梁轴线,则变形后的梁轴线仍在此平面内,这种弯曲变形称为平面弯曲。

非对称弯曲:若梁不具有纵向对称面,或者虽有纵向对称面,但外力并不作用在此平面内,这种弯曲变形称为非对称弯曲。

5.2 梁的支座和载荷的简化

5.2.1支座的几种基本形式

支座的作用:产生反力以平衡荷载,同时阻止梁对基础的相对运动。 (1)活动铰支座

只限制A 沿铅垂方向(AB 方向)的运动,故,只有反力Y 。

(2)固定铰支座

限制A 在纵向对称面内产生线位移,此时的反力可用X 和Y 来表示。 (3)固定支座

限制A 的线位移及角位移,故有反力X 、Y 及反力矩m 。

Y

A

Y

X

A

Y

X

m

A

活动铰支座 固定铰支座 固定支座

5.2.2 荷载的简化

(1)集中荷载 若作用面积远小于物体整体尺寸或线性分布长度远小于轴线长度。常用单位:N 、kN ;

(2)集中力偶 常用单位:Nm 、kNm ;

(3)分布荷载 常用单位:N /m 、kN /m 。其合力的大小等于荷载图的面积,合力作用点为荷载图面积的形心。

5.2.3 静定梁

梁的未知力的数目恰好等于独立的静力平衡方程式的数目,此时,所有的未知力都可由平衡方程完全确定,这样的梁称为静定梁。它又可分为单跨梁和多跨度梁,其中,常见的单跨梁有:

1、简支梁

2、悬臂梁

3、外伸梁

4、多跨静定梁

5、超静定梁

超静定梁:梁的未知力的数目大于独立的静力平衡方程式的数目,此时,仅由平衡方程不能完全确定所有的未知力,这样的梁称为超静定梁。

根据支座及载荷简化,最后可以得出梁的计算简图。计算简图以梁的轴线和

12

F

1

2F

?

?

?

??

?

?

=

=

=

=

n

i

i

n

i

i

S

M

M

F

F

1

1

支承来表示梁。

梁在两支座间的部分称为跨。其长度称为跨长。

5.3 剪力和弯矩

5.3.1 梁的内力-剪力与弯矩。

1、确定约束反力

(1)求反力:

B

A

A

B

F

F

=

∑M

=

∑M

2、求内力(截面法)

一般来说截面上有剪力F S和弯矩

M (为平衡)

1

=

-

-

=

s

A

y

F

F

F

F

1

F

F

F

A

S

-

=(a)

()0

1

=

?

-

-

+

=

∑x

F

a

x

F

M

M

A

()a

x

F

x

F

M

A

-

-

=

1(b)

3、讨论

一般说,在梁的截面上都有剪力F S和弯矩M,从式(a)式(b)可以看出,在数值上,剪力F S等于截面以左所有外力在梁轴线的垂线(y轴)上投影的代数和;弯矩M等于截面以左所有外力对截面形心取力矩的代数和,即:

同理,取截面右侧部分为研究对象:

??

?????==∑∑==右右n

i i n

i i

S M M F F 11 5.3.2 剪力S F 和弯矩M 符号规定

无论取左侧,或者取右侧,所得同一截面上的剪力F S 和弯矩M ,不但数值相同,而且符号也一致,符号规定如左图示。

剪力:当截面上的F s 使该截面邻近微段有做顺时针转动趋势时为正,反之为负。

图5-13

弯矩:当截面上的弯矩使该截面的邻近微段下部受拉,上部受压为正(即凹向上时为正),反之为负。

图5-14

简单记忆:左上右下,剪力为正。左顺右逆,弯矩为正。

例5-1:求指定截面上的剪力和弯矩,求图示梁截面 A 、C 的内力:

图5-15

解:①求反力:

kN 5=A F ,kN 4=B F

校核:0=∑y F 06=--?+B A p F F q F

045613=--?+(无误)

②求指定截面上的内力: 截面A 左(不截到A F ):

0=∑y F 0=+左QA p F F

kN 左3-=-=P QA F F (使该段有逆时针转动的趋势)

0=∑O M

02=+?左A p M F

m kN 左?-=?-=623A M (上拉下压)

截面A 右(截到A F ):

0=∑y

0=+--A QA p F F F 左 N 左k F QA 235=-=

0=∑O M

02=+?右A p M F

m kN 右?-=?-=623A M

截面C 左(不截到M 1):

0=∑

y F

02=-?--左QC P A F q F F

0235=--=左QC F

0=∑O M

01224=+??+?-?左C A p M q F F

1212543??-?+?-=左C M

m N ?-=k 4

截面C 右(截到M1):

0=∑

y F

02=-?--右QC P A F q F F

0235=--=右QC F

0=∑O M

012241=++??+?-?右C A p M M q F F

21212543-??-?+?-=右C M

图5-19 m kN ?-=6 ⑷小结 基本规律

①求指定截面上的内力时,既可取梁的左段为脱离体,也可取右段为脱离体,两者计算结果一致(方向、转向相反)。一般取外力比较简单的一段进行分析。

②在解题时,一般在需要内力的截面上把内力(Fs 、M )假设为正号。最后计算结果是正,则表示假设的内力方向(转向)是正确的,解得的Fs 、M 即为正的剪力和弯矩。若计算结果为负,则表示该截面上的剪力和弯矩均是负的,其方向(转向)应与所假设的相反(但不必再把脱离体图上假设的内力方向改过来)。

③梁内任一截面上的剪力F s 的大小,等于这截面左边(或右边)所有与截面平行的各外力的代数和。若考虑左段为脱离体时,在此段梁上所有向上的外力会使该截面上产生正号的剪力,而所有向下的外力会使该截面上产生负号的剪力。

④梁内任一截面上的弯矩的大小,等于这截面左边(或右边)所有外力(包括力偶)对于这个截面形心的力矩的代数和。若考虑左段为脱离体时,在此段梁上所有向上的力使该截面上产生正号的弯矩,而所有向下的力会使该截面上产生负号的弯矩。

另外,若考虑左段梁为脱离体时,在此段梁上所有顺时针转向的外力偶会使该截面上产生正号的弯矩,而所有逆时针转向的外力偶会使该截面上产生负号的弯矩。

5.4 剪力方程和弯矩方程 剪力图与弯矩图

通过弯曲内力的分析可以看出,在一般情况下,梁的横截面上的剪力和弯矩是随横截面的位置变化而变化的。为了知道F S 、M 沿梁轴线的变化规律,只知道指定截面上的F S 、M 是不够的。为了能找到max S F 、max M 的值及其所在截面,以便对梁进行强度、刚度计算,我们必须作梁的剪力图和弯矩图。 5.4.1 剪力方程和弯矩方程

梁内各截面上的F S 、M 一般随横截面的位置不同而变化,设横截面的位置用其沿梁轴线x 上的坐标表示,则梁的各个横截面上的剪力和弯矩可以表示为坐标

x 的函数,即

)(x F F s s = 及 )(x M M =

它们分别称为剪力方程和弯矩方程(亦称为剪力函数和弯矩函数)。在建立剪力方程和弯矩方程时,一般是以梁的左端为坐标x 的原点。有时,为了方便计算,也可将x 坐标的原点取在梁的右端或梁的其他位置。

5.4.2 剪力图与弯矩图

在工程实际中,为了简明而直观地表明梁的各截面上剪力F S 和M 弯矩的大小变化情况,需要绘制剪力图和弯矩图。

可仿照轴力图或扭矩图的作法,以截面沿梁轴线的位置为横坐标x ,以截面上的剪力F S 或弯矩M 数值为对应的纵坐标,选定比例尺绘制剪力图和弯矩图。

对水平梁,绘图时将正值的剪力画在x 轴的上方;至于弯矩,则画在梁的受压一侧,也就是正值的弯矩画在x 轴的上方。

由剪力方程和弯矩方程,特别是根据剪力图和弯矩图,可以确定梁的剪力和弯矩的最大值,以及剪力和弯矩为最大值的截面,这些截面称为危险截面。剪力方程和弯矩方程,以及剪力图和弯矩图是梁的强度计算和刚度计算的重要依据。

绘制梁的剪力图和弯矩图的基本方法: (1)首先分别写出梁的剪力方程和弯矩方程;

(2)根据它们来作图。这也就是数学中作函数)(x f y =的图形所用的方法。 横坐标x---横截面位置

纵坐标S F 或M ---按比例表示梁的内力

S F +、M +画在横坐标的上边 S F -、M -画在横坐标的下边

5.4.3 剪力图、弯矩图的特点

下面用例题来说明剪力图与弯矩图的绘制及其特点。

例题5-2:如下图所示简支梁的计算简图,试列出梁的剪力方程和弯矩方程,并作剪力图与弯矩图。

解:⑴ 求约束反力

整体平衡,求出约束反力:

l b F F P A =

;l

a

F F P B = 注意;约束反力的校核 ⑵ 分段列)(x F S 、)(x M 注意:三定 ①定坐标原点及正向

原点:一般设在梁的左端;正向:自左向右为正向。 ② 定方程区间 即找出分段点;

分段的原则:载荷有突变之处即为分段点。 ③定内力正负号

截面上总设正号的剪力、弯矩。 三定后即可建立)(x F S 、)(x M 列)(1x F S 、)(1x M :

AC 段:(根据 图b 列方程)

l

b

F F x F P A S =

=)(1 (0

b

F x F x M P A ?=?= (0≤x 1≤a ) ⑵ CB 段:(图c )

l

a

F F l b F F F x F P P P P A S -=-=

-=)(2 (a

()()

()(222222x l l

a

F a x F x l b

F a x F x F x M P P P P A -?=--?=

--?= (a ≤x 2≤L ) ⑷

⑶ 绘FQ 、M 图

据式⑴、⑶作FQ 图,如图(d )所示。 据式⑵、⑷作M 图,如图(e )所示。

⑷确定max S F 、max M 据F S 图可见,当a>b 时,l a

F F P S

=

max

据M 图可见,c 截面处有,l ab

F M

P =max

若a=b=l/2,则4

max l

F M P =

在集中力作用处,F S 图有突变(不连续),突变的绝对值等于该集中力的大小;

P P

P P F b a l

F l a F l b F =+=-+)(;图有一转折点,形成尖角。(M 图的切线斜率有突然变化)

例题5-3,均布载荷作用下的悬臂梁如下图所示,作梁的剪力图与弯矩图。

根据剪力与弯矩的计算方法及正负号规定,

qx x F S -=)( (0≤x <l ) ⑴

2

)(2

qx x M -= (0≤x ≤l ) ⑵

在固定端处:ql F S

=max

2

2

m ax ql M =

在梁的外伸自由端点处,如果没有集中力偶的作用,则端点处的弯矩等于零;如果没有集中力的作用,则剪力等于零。

例题5-4 当齿轮上有斜齿轮时,齿轮啮合力中的轴向推力向轴线简化后,得矩为M 0的弯曲力偶,试作M 0作用下梁的剪力图与弯矩图。 解:

(1)求支反力,结果如图上所示。 (2)求剪力方程与弯矩方程 AC 段:

l

M F x F O

A Q =

=)(1 (0

M x F x M O

A ?=?= (0≤x 1

B 段:

l

M F x F O

A S =

=)(2 (a ≤x 2

O O

O

A M x l

M M x F x M -?=

-?=222)( (a

若a>b,则集中力偶左侧截面上有最大弯矩

l

a

M M

O =max

特点之三:

在集中力偶作用下,弯矩图发生突变(不连续),突变的绝对值等于该集中力偶矩的大小;O O O M l

b

M l a M =-+;但剪力图没有突变。

(F S 图连续,并不改变斜率)。 例题5-5

qx ql

qx F x F A S -=

-=2

)( (0

22)(2

2qx qlx qx x F x M A -

=-?= (0≤x ≤l ) ⑵ 由FQ 、M 图可见: 支座处:2

max

ql

F Q

=

F S =0处:8

2

m ax ql M =

特点之四:

在梁端的铰支座上,剪力等于该支座的约束反力。如果在端点铰支座上没有集中力偶的作用,则铰支座处的弯矩等于零。 特点之五:

在固定端处,剪力和弯矩分别等于该支座处的支座反力和约束力偶矩。

特点之六:

最大剪力、最大弯矩及其位置。

最大剪力发生位置:梁的支座处及集中力作用处有max Q F 最大弯矩一般发生在下列部位; ①集中力作用的截面处 ②集中力偶作用的截面处 ③F S =0处,M 有极值

④悬臂梁的固定端处(外伸梁的支座处往往也有max M ) 例题5-6

图6-24

特点之七:

在梁的中间铰上如果没有集中力偶作用,则中间铰处弯矩必等于零,而剪力图在此截面处不发生突变。

例题5-7 再分析,集中作用在l/2处

再分析例题:简支梁承受均布载荷

特点之八:

对称结构、对称载荷,F S图反对称,M图对称,据此特点,下面这道题即可方便作出 F S、M图(只要列出一半的剪力、弯矩方程即可作图)

210

)(=x x q x x q 5)(=

AC 段:25.210521)(x x x F x F A S -=??-=

(0

5

103)5(21)(x x x x x x F x M A -=??-?= (0≤x ≤2) ⑵

根据特点之八,可画出整个梁的F S 、M 图 例题5-8

特点之九:

对称结构,反对称载荷,F S 图对称,M 图反对称。 特点之十:

梁中正、负弯矩的分界点称为反弯点,反弯点处 M=0,构件设计中确定反弯点的位置具有实际意义。

5.5 载荷集度、剪力和弯矩间的关系

5.5.1 载荷集度、剪力与弯矩间的微分关系

轴线为直线的梁如下图所示,推导

取 dx 一段讨论,任设)(S x F 、)(x M 均为正值。

0=∑y F 0)]()([)()(=+-+x dF x F dx x q x F Q Q Q

)()(x q dx

x dF Q = ⑴

式⑴的物理意义:梁上任一横截面上的剪力)(x F s 对x 的一阶导数

dx

x dF s )

(,

材料力学专项习题练习 6弯曲内力

精选文档 弯曲内力 1. 长l 的梁用绳向上吊起,如图所示。 离为x 。梁内由自重引起的最大弯矩|M |max 为最小时的x (A) /2l ; (B) /6l ; (C) 1)/2l ; (D) 1)/2l 。 2. 多跨静定梁的两种受载情况如图(a)、(b)所示。下列结论中哪个是正确的? (A) 两者的剪力图相同,弯矩图也相同; (B) 两者的剪力图相同,弯矩图不同; (C) 两者的剪力图不同,弯矩图相同; (D) 两者的剪力图不同,弯矩图也不同。 3. 图示(a)、 (b)两根梁,它们的 (A) 剪力图、弯矩图都相同; (B) 剪力图相同,弯矩图不同; (C) 剪力图不同,弯矩图相同; (D) 剪力图、弯矩图都不同。 4. 图示梁,当力偶M e 的位置改变时,有下列结论: (A) 剪力图、弯矩图都改变; (B) 剪力图不变,只弯矩图改变; (C) 弯矩图不变,只剪力图改变; (D) 剪力图、弯矩图都不变。 5. 图示梁C 截面弯矩M C = ;为使M C =0,则M e = ;为使全梁不出现正弯矩,则M e ≥ 。 6. 图示梁,已知F 、l 、a 。使梁的最大弯矩为最小时,梁端重量P = 。

7. 图示梁受分布力偶作用,其值沿轴线按线性规律分布,则B 端支反力为 ,弯矩图为 次曲线,|M |max 发生在 处。 8. 图示梁,m (x )为沿梁长每单位长度上的力偶矩值, m (x )、q (x )、F S (x )和M (x )之间的微分关系为: S d () ; d F x x = d () d M x x = 。 9. 外伸梁受载如图,欲使AB 中点的弯矩等于零时,需在B 端加多大的集中力偶矩(将大小和方向标在图上)。 10. 简支梁受载如图,欲使A 截面弯矩等于零时,则 =e21e /M M 。 1-10题答案:1. C 2. D 3. B 4. B 5. 28e 2M ql -;42ql ;22ql 6. ?? ? ??-a l a F 24 7. m 0/2; 二;l /2 8. q (x );F S (x )+ m (x ) 9. 10. 1/2 11-60题. 作图示梁的剪力图和弯矩图。 解: 2 2 F qa 2 2 qa

材料力学弯曲应力原创教案

弯曲应力 我们开始弯曲这一章,我们讲了拉压、扭转、剪切,现在我们要讲弯曲。弯曲的情况要比拉压和扭转更加复杂一些,它所涉及的问题更多一些,它和工程实际联系的更加紧密一些。因此,这一章和下一章都是特别重要的章节。在这一章中,我们首先要讨论弯曲正应力,横截面上有弯矩,那它就有了正应力,同时还要考虑弯曲切应力的问题,横截面上有剪力,说明它有切应力存在。了解了正应力和切应力的情况,我们要讨论梁的强度和破坏,这个思路和前面几章是一样的。特别的,要强调薄壁杆件中弯曲切应力的处理,最后呢,我们要讲组合变形的应用。不仅仅是弯曲,而是弯曲和拉压,弯曲和扭转组合在一起的时候,如何来处理它的应力问题。因此,这章的内容是比较多的。 工程实际例子 我们来看看弯曲在工程中的应用。这是一个厂房,这是一个大梁,这个吊车可以在这个大梁上运动。对于这样一个问题,我们可以把它简化成一个简支梁,这个吊车的移动呢可以处理成一个移动荷载。那么对于这个移动荷载而言,它所导致的应力如何计算?行车移动时,它的应力如何变化?这就是本章的内容之一。 我们再看看这个图片,这是我们拍摄的汽车的下部分,大家注意一些这个部分,这是就是汽车的板簧,它的模型就是这个样子,可以看成好几个钢板的组合,那么,为什么要设计成这个样子呢?它有什么优点呢?这也是本章要解决的问题。 这是一个运动员,撑杆跳,对吧。大家常常见到,利用这个杆的助力,人可以跳的更高。我们可以处理成这样一个模型。她在跳高的过程中,杆就发生了弯曲。那么,这个时候,跳杆横截面上的应力和杆曲率半径有什么关系?这个杆在什么情况下才满足强度要求? 大家看看这个场面,对于这个场面,我们截面几何性质那章提到过,都是薄壁杆件,那么薄壁杆件有弯曲正应力和弯曲切应力,专门有一小节来讲解它的弯曲切应力,看看这些切应力有什么特点?如何避免薄壁杆件的强度失效?这也是本章的问题 这个大家都熟悉,著名的比萨斜塔。对于这个结构,初步计算,我们可以简化成这样一个均质圆筒,那么它有哪些变形效应?它的危险截面、危险点在哪儿?如何计算其应力?这也是本章可以解决的问题。因此,本章所涉及的问题是比较广的。 基本内容 那么本章到底需要同学们掌握哪些内容呢? 1、熟练张博横截面上弯曲正应力和弯曲切应力的分布规律,并能正确熟练 的进行梁的强度分析。 2、熟悉提高梁强度的主要措施。 3、正确理解薄壁杆件横截面上弯曲切应力的分布规律,了解弯曲中心的概 念。 4、熟悉掌握梁在组合变形中的应力的计算方法。 第一、第四条是很重要的。这是以后大家经常需要处理的问题。

材料力学基本公式

材料力学基本公式 (1)外力偶矩计算公式(P功率,n转速) (2)弯矩、剪力和荷载集度之间的关系式 (3)轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力,横截面面积A,拉应力为正) (4)轴向拉压杆斜截面上的正应力与切应力计算公式(夹角α从x轴正方向逆时针转至外法线的方位角为正) (5)纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1) (6)纵向线应变和横向线应变,

(7)泊松比 (8)胡克定律 (9)受多个力作用的杆件纵向变形计算公式 (10)承受轴向分布力或变截面的杆件,纵向变形计算公式 (11)轴向拉压杆的强度计算公式 (12)延伸率 (13)截面收缩率 (14)剪切胡克定律(切变模量G,切应变g )

(15)拉压弹性模量E、泊松比和切变模量G之间关系式 (16)圆截面对圆心的极惯性矩() (17)圆轴扭转时横截面上任一点切应力计算公式(扭矩,所求点到圆心距离) (18)圆截面周边各点处最大切应力计算公式 (19)扭转截面系数,(a)实心圆(b)空心圆 (20)圆轴扭转角与扭矩、杆长l、扭转刚度的关系式 (21)等直圆轴强度条件 (22)扭转圆轴的刚度条件:或

(23)平面应力状态下斜截面应力的一般公式 (24)平面应力状态的三个主应力 (25)主平面方位的计算公式 (26)平面内剪应力最大值和最小值 (27)三向应力状态最大与最小正应力, (28)三向应力状态最大切应力 (29)广义胡克定律

(30)四种强度理论的相当应力 (31)一种常见的应力状态的强度条件, (32)组合图形的形心坐标计算公式 , , (33)平面图形对x轴,y轴,z轴的静矩 , , (34)任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩 之和的关系式 (35)截面图形对z轴和y轴的惯性半径, (36)矩形、圆形、空心圆形对中性轴的惯性矩 , , (37)平行移轴公式(形心轴zc与平行轴z1的距离为a,图形面积为A) (38)纯弯曲梁的正应力计算公式

材料力学专项习题练习6弯曲内力

弯曲内力 1. 长l 的梁用绳向上吊起,如图所示。距离为x 。梁内由自重引起的最大弯矩|M |max 为最小时的x 为: (A) /2l ; (B) /6l ; (C) 1)/2l ; (D) 1)/2l 。 2. 多跨静定梁的两种受载情况如图(a)、(b)所示。下列结论中哪个是正确的? (A) 两者的剪力图相同,弯矩图也相同; (B) 两者的剪力图相同,弯矩图不同; (C) 两者的剪力图不同,弯矩图相同; (D) 两者的剪力图不同,弯矩图也不同 3. 图示(a)、(b)两根梁,它们的 (A) 剪力图、弯矩图都相同; (B) 剪力图相同,弯矩图不同;(C) 剪力图不同,弯矩图相同;(D) 剪力图、弯矩图都不同。 4. 图示梁,当力偶M e 的位置改变时,有下列结论: (A) 剪力图、弯矩图都改变; (B) 剪力图不变,只弯矩图改变; (C) 弯矩图不变,只剪力图改变; (D) 剪力图、弯矩图都不变。 5. 图示梁C 截面弯矩M C = ;为使M C =0,则M e = ;为使全梁不出现正弯矩,则M e ≥ 。 6. 图示梁,已知F 、l 、a 。使梁的最大弯矩为最小时,

梁端重量P = 。 7. 图示梁受分布力偶作用,其值沿轴线按线性规律分布,则B 端支反力为 ,弯矩图为 次曲线,|M |max 发生在 处。 8. 图示梁,m (x )为沿梁长每单位长度上的力偶矩值, m (x )、q (x )、F S (x )和M (x )之间的微分关系为: S d () ;d F x x = d () d M x x = 。 9. 外伸梁受载如图,欲使AB 中点的弯矩等于零时,需在B 端加多大的集中力偶矩(将大小和方向标在图上)。 10. 简支梁受载如图,欲使A 截面弯矩等于零时,则 =e21e /M M 。 1-10题答案:1. C 2. D 3. B 4. B 5. 28e 2M ql -;42ql ;22ql 6. ?? ? ??-a l a F 24 7. m 0/2;二;l /2 8. q (x ); F S (x )+ m (x 9. 10. 1/2 222

材料力学常用公式

材料力学常用公式 1.外力偶矩计算公式(P功 率,n转速) 2.弯矩、剪力和荷载集度之间的关系式 3.轴向拉压杆横截面上正应力的计算公式(杆件 横截面轴力F N,横截面面积A,拉应力为正) 4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x 轴正方向逆时针转至外法线的方位角为正) 5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标 距l1;拉伸前试样直径d,拉伸后试样直径d1) 6.纵向线应变和横向线应变 7.泊松比 8.胡克定律 9.受多个力作用的杆件纵向变形计算公式 ? 10.承受轴向分布力或变截面的杆件,纵向变形计算公式 11.轴向拉压杆的强度计算公式 12.许用应力 ,脆性材料 ,塑 性材料 13.延伸率 14.截面收缩率 15.剪切胡克定律(切变模量G,切应变g ) 16.拉压弹性模量E、泊松比和切变模量G之间关系式 17.圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所 求点到圆心距离r) 19.圆截面周边各点处最大切应力计算公式

20.扭转截面系数,(a)实心圆 (b)空心圆 21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径) 扭转切应力计算公式 22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式 23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不 同(如阶梯轴)时 或 24.等直圆轴强度条件 25.塑性材料 ;脆性材料 26.扭转圆轴的刚度条件? 或 27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公 式, 28. 平面应力状态下斜截面应力的一般公式 , 29.平面应力状态的三个主应力 , , 30.主平面方位的计算公式 31.面内最大切应力 32.受扭圆轴表面某点的三个主应力, ,33.三向应力状态最大与最小正应力 , 34.三向应力状态最大切应力 35.广义胡克定律

材料力学习题册答案-第4章 弯曲内力

第四章梁的弯曲内力 一、判断题 1.若两梁的跨度、承受载荷及支承相同,但材料和横截面面积不同,则两梁的剪力图和弯矩图不一定相同。(×) 2.最大弯矩必然发生在剪力为零的横截面上。(×) 3.若在结构对称的梁上作用有反对称载荷,则该梁具有对称的剪力图和反对称的弯矩图。 图4-1 二、填空题 1.图4-2 所示为水平梁左段的受力图,则截面C 上的剪力 SC F=F ,弯矩C M=2Fa。2.图4-3 所示外伸梁ABC ,承受一可移动载荷F ,若F 、l均为已知,为减小梁的最大弯矩值,则外伸段的合理长度a= l/3 。 图4-2 图4-3 3.梁段上作用有均布载荷时,剪力图是一条斜直线,而弯矩图是一条抛物线。 4.当简支梁只受集中力和集中力偶作用时,则最大剪力必发生在集中力作用处。 三、选择题 1.梁在集中力偶作用的截面处,它的内力图为(C )。 A Fs 图有突变,M 图无变化; B Fs图有突变,M图有转折; C M 图有突变,Fs图无变化; D M 图有突变,Fs 图有转折。 2.梁在集中力作用的截面处,它的内力图为(B )。 A Fs 有突变,M 图光滑连续; B Fs 有突变,M 图有转折; C M 图有突变,凡图光滑连续; D M 图有突变,Fs 图有转折。 3.在图4-4 所示四种情况中,截面上弯矩M 为正,剪力Fs 为负的是(B )。 4.简支梁及其承载如图 4-1 所示,假 想沿截面m-m将梁截分为二。若取梁左 段为研究对象,则该截面上的剪力和弯 矩与q、M 无关;若以梁右段为研究对象, 则该截面上的剪力和弯矩与 F 无关。 (× )

图4-4 4.梁在某一段内作用有向下的分布力时,则在该段内,M 图是一条(A )。 A 上凸曲线;B下凸曲线; C 带有拐点的曲线; D 斜直线。 5.多跨静定梁的两种受载情况分别如图4-5 ( a )、(b )所示,以下结论中(A )是正确的。力F 靠近铰链。 图4-5 A 两者的Fs 图和M 图完全相同; B 两者的Fs 相同对图不同; C 两者的Fs 图不同,M 图相同; D 两者的Fs图和M 图均不相同。 6.若梁的剪力图和弯矩图分别如图4-6 ( a )和(b )所示,则该图表明( C ) A AB段有均布载荷BC 段无载荷; B AB 段无载荷,B截面处有向上的集中力,B C 段有向下的均布载荷; C AB 段无载荷,B 截面处有向下的集中力,BC 段有向下的均布载荷; D AB 段无载荷,B 截面处有顺时针的集中力偶,BC 段有向下的均布载荷。 图4-6

材料力学教案第5章 弯曲应力

第五章 弯曲应力 §5.1 纯弯曲 §5.2 纯弯曲时的正应力 §5-3 横力弯曲(剪切弯曲)时的正应力 §5.4 弯曲切应力 §5.6 提高弯曲强度的措施 §5.1 纯弯曲 1.?? ?===----σ τ,0,,0,const M F M F S S 纯弯曲横力弯曲弯曲 2.观察变形 以矩形截面梁为例 (1)变形前的直线aa 、bb 变形后 成为曲线a a ''、b b '',变形前的mm ,nn 变形后仍为直线m m ''、n m '',然而却相对转过了一个角度,且仍与a a ''、b b ''曲线相垂直。 (2)平面假设 根据实验结果,可以假设变形前原为平面的梁的横截面变形后仍为平面,且仍垂直于变形后的梁轴线,这就是弯曲变形的平面假设。 (3)设想 设想梁是由平行于轴线的众多纤维组成。在纯弯曲过程中各纤维之间互不挤压, 只发生伸长和缩短变形。显然,凸边一侧的纤维发生伸长,凹边一侧的纤维缩短。由平面假设纤维由伸长变为缩短,连续变化,中间一定有一层纤维称既不伸长,也不缩短,这一层纤维为中性层。

(4)中性轴 中性层与横截面的交线称为中性轴,由于整体变形的对称性,中性轴由与纵向对称面垂直。P139 note :可以证明,中性轴为形心主轴。 §5.2 纯弯曲时的正应力 1.正应力分布规律: ①变形几何关系 ②物理关系 ③静力关系 (1)变形几何关系 取d x 微段来研究,竖直对称轴为y 轴,中性轴为z 轴,距中性层为y 的任一纤维b b ''的线应变。 ()ρ θ ρθρθρεy y = -+= d d d (a ) (2)物理关系 因为纵向纤维之间无正应和,每一纤维都是单向拉伸或者单向压缩,当应力小于比例极限时,由胡克定律 ε=σE ρ =σy E (b ) 此式表明:任意纵向纤维的正应力与它到中性层的距离成正比。在横截面上,任意点的正应力与该点到中性轴的距离成正比。亦即沿截面高度,正应力按直线规律变化。 (3)静力关系 横截面上的微内力σd A 组成垂直于横截面的空间平行力学。这一力 e

材料力学基本公式

材料力学重点及其公式 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类:表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力: dA dF A F p A = ??=→?lim 正应力σ、切应力τ。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲; 静载荷:载荷从零开始平缓地增加到最终值,然后不再变化的载荷。 动载荷:载荷和速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限b σ破坏,塑性材料在其屈服极限s σ时失效。二者统 称为极限应力理想情形。塑性材料、脆性材料的许用应力分别为: []s s n σσ=,[]b b n σσ= ,强度条件:[]σσ≤??? ??=max max A F N ,等截面杆 []σ≤A F max 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变和横截面上的应力分别为: l l ?= ε, A F N =σ。横向应变为: b b b b b -=?= 1'ε,横向应变与轴

向应变的关系为:μεε-=',μ为横向变形系数或泊松比。 胡克定律:当应力低于材料的比例极限P σ时,应力与应变成正比,即 εσE =,这就是胡克定律。E 为弹性模量(GPa 1= pa MPa 931010=)。将应力与应变的表达式带入得:EA Fl l = ?EA 为抗拉或抗压刚度。 静不定(超静定):对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。需要由几何关系构造变形协调方程。 扭转变形时的应力,薄壁圆筒扭转 δ πτ202R M e = 其中 )min () (9549 )(r n kw p m N M e =? 420d D r R R +=+=为圆筒的平均半径。剪切胡克定律:当剪切应力不超过材料的剪切比例极限时,切应力 τ 与切应变γ成正比。γ τ G =. 变形几何关系—圆轴扭转的平面假设 dx d φ ρ γρ=。物理关系——剪切胡克定律 dx d G G φρ γτρρ==。力学关系P A A A I dx d G dA dx d G dx d G dA T ?ρ?φρρτρ====???2 2 圆轴扭转时的应力 : t p W T I TR == max τ, t W = R I p 称为抗弯截面系数;强度条件: ][max ττ≤= t W T ,可以进行强度 校核、截面设计和确定许可载荷。 圆截面对圆心的极惯性矩(a )实心圆 32 4 D I P π= ; 16 3 D W t π= (b )空心圆,() 4 4 44132 32 ) (αππ-= -= D d D I P ; () 43 116 απ-= D W t (D,d 分别是外,内径; D d = α) 圆轴扭转时的变形: ?? ==l p l p dx GI T dx GI T ?;等直杆: p GI Tl = ?其中为圆轴的抗弯刚度P GI

材料力学公式汇总

材料力学重点及其公式 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类: 表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力: dA dP A P p A = ??=→?lim 0正应力、切应力。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。 静载荷:载荷从零开始平缓地增加到最终值,然后不在变化的载荷动载荷:载荷和速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限 b σ破坏,塑性材料在其屈服极限s σ时失效。二者统称为极限应 力理想情形。塑性材料、脆性材料的许用应力分别为: []3 n s σσ=, []b b n σσ=,强度条件: []σσ≤??? ??=max max A N ,等截面杆 []σ≤A N m a x 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变和横截面上的应力分别为:l l ?= ε,A P A N ==σ。横向应变为:b b b b b -=?=1'ε,横向应变与轴向应变的关系为:μεε-=' 。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就是胡克定律。E 为弹性模量。将应力与应变的表达式带入得:EA Nl l = ? 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。 圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设dx d φ ρ γρ=。物理关系——胡克定律dx d G G φρ γτρρ==。力学关系dA dx d G dx d G dA T A A A ???===2 2ρφφρρτρ 圆轴扭转时的应力:t p W T R I T == max τ;圆轴扭转的强度条件: ][max ττ≤=t W T ,可以进行强度校核、截面设计和确

材料力学教案第5章弯曲应力

§ 5.1纯弯曲 § 5.2纯弯曲时的正应力 § 5-3横力弯曲(剪切弯曲)时的正应力 § 5.4弯曲切应力 § 5.6提高弯曲强度的措施 成为曲线a a 、b b ,变形前的mm , nn 变形后仍为直线mm 、m n ,然 而却相对转过了一个角度,且仍与 aa 、bb 曲线相垂直 (2) 平面假设 根据实验结果,可以假设变形前原为平 面的梁的横截面变形后仍为平面,且仍垂直 于变形后的梁轴线,这就是弯曲变形的平面 假设。 (3) 设想 设想梁是由平行于轴线的众多纤维组 成。在纯弯曲过程中各纤维之间互不挤压, 只发生伸长和缩短变形。显然,凸边一侧的纤维发生伸长,凹边一侧的 纤维缩短。由平面假设纤维由伸长变为缩短,连续变化,中间一定有一 层纤维称既不伸长,也不缩 第五章弯曲应力 § 5.1纯弯曲 1.弯曲 横力弯曲 纯弯曲 F s ,M F s 0,M const. 0, 2.观察变形 以矩形截面梁为例 (1)变形前的直线aa 、bb 变形后 1 a a 丿b b m AX n 1 m n △ m M a a M b'

短,这一层纤维为中性层。

(4)中性轴 中性层与横截面的交线称为中性轴,由于整体 变形的对称性,中性轴由与纵向对称面垂直。P139 note:可以证明,中性轴为形心主轴。 § 5.2纯弯曲时的正应力 1.正应力分布规律: r①变形几何关系 Y②物理关系 ?③静力关系 (1)变形几何关系 取dx微段来研究,竖直对称轴为为z 轴,距中性层为y的任一纤维b b y d d y d (2)物理关系 因为纵向纤维之间无正应和,每一纤维都是单 向拉伸或者单向压缩, 当应力小于比例极限时,由胡克定律 (b) 此式表明:任意纵向纤维的正应力与它到中性 层的距离成正比。在横截面上,任意点的正应力与该 点到中性轴的距离成正比。亦即沿截面高度,正应力 按直线规律变化。 (3)静力关系 横截面上的微内力。dA 组成垂直于横截面的空

材料力学的基本计算公式-材料力学弯曲公式

1.弯矩、剪力和荷载集度之间的关系式 2?轴向拉压杆横截面上正应力的计算公式Cr=杆件横截面轴力刊,横截面面积仏拉应力为正) 3. 轴向拉压杆斜截面上的正应力与切应力计算公式(夹 角a从X轴正方向逆时针转至外法线的方位角为正) 4. 纵向变形和横向变形(拉伸前试样标距1,拉伸后试样 标距11;拉伸前试样直径d,拉伸后试样直径dl) M = I l-I M = d l-d 5. 纵向线应变和横向线应变 6.泊松比 外力偶 KI N 血矩计箕公式(P功率,n转 速) T a = P a Sinaf= CrCDSafailIa= —siπ2α 2 Cr= EE 7.胡克定律

17? &受多个力作用的杆件纵向变形计算公式? 9?承受轴向分布力或变截面的杆件,纵向变形计算公式 14.剪切胡克定律(切变模量G 9切应变g ) T =G ^ 15. 拉压弹性模量E 泊松比"和切变模量G 之间关系 T 9所求点到 11. 许用应力 H=? 脆性材料血=还,塑性材 料氐=还 12.延伸率 L -I 5- 1 X100% 1 10. 轴向拉压杆的强度计算公式 13. 截面收缩率 A A-A I Ψ= X100% 圆截面对 心的极惯性矩(a )实心圆 (b )空心 轴扭转时横截面上任一点切应力计算公式(扭矩 32 T

18.圆截面周边各点处最大切应力计算公式 19? 扭转截面系数 Wrr= ≠, (a )实心圆 Wl= ^ (b )空心圆I 鲁(I F 20. 薄壁圆管(壁厚δ ≤ R o /10 , R o 为圆管的平均半 21.圆轴扭转角炉与扭矩7;杆长人 扭转刚度GHP 的关 径不同(如阶梯轴)时 23.等直圆轴强度条件 24.塑性材料E = (WA)I 叫脆性材料I T l = (°?8 ~ Io )I er l Gi I TT 26. 受压圆筒形薄壁容器横截面和纵截面上的应力计 径)扭转切应力计算公式 T ~2τ^δ TL 系式"瓯 22 同一材料制成的圆轴各段的扭矩不同或各段的直 扭转圆轴的刚度条件?乳 ≤l^l Z 或

材料力学公式汇总

材料力学常用公式 1.外力偶 矩计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的 关系式 3.轴向拉压杆横截面上正应力的 计算公式(杆件横截面轴力F N,横截面面积A,拉应 力为正) 4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线 的方位角为正) 5. 6.纵向变形和横向变形(拉伸前 试样标距l,拉伸后试样标距l1; 拉伸前试样直径d,拉伸后试样 直径d1)7. 8.纵向线应变和横向线应变 9. 10.泊松比 11.胡克定律 12.受多个力作用的杆件纵向变形 计算公式? 13.承受轴向分布力或变截面的杆 件,纵向变形计算公式 14.轴向拉压杆的强度计算公式 15.许用应力,脆性 材料,塑性材料 16.延伸率 17.截面收缩率

18.剪切胡克定律(切变模量G,切应变g ) 19.拉压弹性模量E 、泊松比和切变模量G之间关系式 20.圆截面对圆心的极惯性矩(a) 实心圆 21.(b)空 心圆 22.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点 到圆心距离r) 23.圆截面周边各点处最大切应力 计算公式 24.扭转截面系数,(a) 实心圆 25.(b)空心圆26.薄壁圆管(壁厚δ≤ R0 /10 , R0为圆管的平均半径)扭转切 应力计算公式 27.圆轴扭转角与扭矩T、杆长l、 扭转刚度GH p的关系式 28.同一材料制成的圆轴各段内的 扭矩不同或各段的直径不同(如 阶梯轴)时或 29.等直圆轴强度条件 30.塑性材料;脆 性材料 31.扭转圆轴的刚度条件? 或

32.受内压圆筒形薄壁容器横截面 和纵截面上的应力计算公式 , 33.平面应力状态下斜截面应力的 一般公式 , 34.平面应力状态的三个主应力 , , 35.主平面方位的计算公式 36.面内最大切应力 37.受扭圆轴表面某点的三个主应 力,,38.三向应力状态最大与最小正应 力, 39.三向应力状态最大切应力 40.广义胡克定律 41. 42. 43.四种强度理论的相当应力 44.一种常见的应力状态的强度条 件,45.组合图形的形心坐标计算公式 , 46.任意截面图形对一点的极惯性 矩与以该点为原点的任意两正

材料力学的基本计算公式-材料力学弯曲公式

材料力学得基本计算公式外力偶矩计算公式(P功率,n转速) 1.弯矩、剪力与荷载集度之间得关系式 2.轴向拉压杆横截面上正应力得计算公式 (杆件横截面 轴力F N,横截面面积A,拉应力为正) 3.轴向拉压杆斜截面上得正应力与切应力计算公式(夹角 a 从x轴正方向逆时针转至外法线得方位角为正) 4.纵向变形与横向变形(拉伸前试样标距l,拉伸后试样 标距l1;拉伸前试样直径d,拉伸后试样直径d1) 5.纵向线应变与横向线应变 6.泊松比 7.胡克定律 8.受多个力作用得杆件纵向变形计算公式? 9.承受轴向分布力或变截面得杆件,纵向变形计算公式 10.轴向拉压杆得强度计算公式 11.许用应力, 脆性材料,塑性材料 12.延伸率 13.截面收缩率 14.剪切胡克定律(切变模量G,切应变g )

15.拉压弹性模量E、泊松比与切变模量G之间关系式 16.圆截面对圆心得极惯性矩(a)实心圆 (b)空心圆 17.圆轴扭转时横截面上任一点切应力计算公式(扭矩 T,所求点到圆心距离r ) 18.圆截面周边各点处最大切应力计算公式 19.扭转截面系数 ,(a)实心圆? (b)空心圆 20.薄壁圆管(壁厚δ≤R0/10 ,R0为圆管得平 均半径)扭转切应力计算公式 21.圆轴扭转角与扭矩T、杆长l、扭转刚度GHp得 关系式 22.同一材料制成得圆轴各段内得扭矩不同或各段得 直径不同(如阶梯轴)时或 23.等直圆轴强度条件 24.塑性材料;脆性材料 25.扭转圆轴得刚度条件? 或 26.受内压圆筒形薄壁容器横截面与纵截面上得应力 计算公式, 27.平面应力状态下斜截面应力得一般公式 , 28.平面应力状态得三个主应力 , , 29.主平面方位得计算公式

材料力学常用基本公式

材料力学常用基本公式 Prepared on 24 November 2020

1.外力偶矩计算公式(P功率,n转速) 2.弯矩、剪力和荷载集度之间的关系式 3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积 A,拉应力为正) 4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至 外法线的方位角为正) 5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径 d,拉伸后试样直径d1) 6. 7.纵向线应变和横向线应变 8. 9.泊松比 10.胡克定律

11.受多个力作用的杆件纵向变形计算公式 12.承受轴向分布力或变截面的杆件,纵向变形计算公式 13.轴向拉压杆的强度计算公式 14.许用应力,脆性材料,塑性材料 15.延伸率 16.截面收缩率 17.剪切胡克定律(切变模量G,切应变g ) 18.拉压弹性模量E、泊松比和切变模量G之间关系式 19.圆截面对圆心的极惯性矩(a)实心圆 20.(b)空心圆 21.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)

22.圆截面周边各点处最大切应力计算公式 23.扭转截面系数,(a)实心圆 (b)空心圆 24.薄壁圆管(壁厚δ≤ R /10 ,R 为圆管的平均半径)扭转切应力计算公式 25.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式 26.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时 或 27.等直圆轴强度条件 28.塑性材料;脆性材料

29.扭转圆轴的刚度条件或 30.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式, 31.平面应力状态下斜截面应力的一般公式 , 32.平面应力状态的三个主应力, , 33.主平面方位的计算公式 34.面内最大切应力 35.受扭圆轴表面某点的三个主应力,, 36.三向应力状态最大与最小正应力 , 37.三向应力状态最大切应力

材料力学弯曲内力习题

第四章 弯 曲 内 力 一 是非题 4.1 按静力学等效原则,将梁上的集中力平移不会改变梁的内力分布。 ( ) 4.2 当计算梁的某截面上的剪力时,截面保留一侧的横向外力向上时为正,向下时为负。 ( ) 4.3 当计算梁的某截面上的弯矩时,截面保留一侧向上的横向外力对截面形心取的矩一 定为正。 ( ) 4.4 梁端铰支座处无集中力偶作用,该端的铰支座处的弯矩必为零。 ( ) 4.5 若连续梁的联接铰处无载荷作用,则该铰的剪力和弯矩为零。 ( ) 4.6 分布载荷q (x )向上为负,向下为正。 ( ) 4.7 最大弯矩或最小弯矩必定发生在集中力偶处。 ( ) 4.8 简支梁的支座上作用集中力偶M ,当跨长L 改变时,梁内最大剪力发生改变,而最大弯矩不改变。 ( ) 4.9 剪力图上斜直线部分可以肯定有分布载荷作用。 ( ) 4.10 若集中力作用处,剪力有突变,则说明该处的弯矩值也有突变。 ( ) 二.选择题 4.11 用内力方程计算剪力和弯矩时,横向外力与外力矩的正负判别正确的是( ) A. 截面左边梁内向上的横向外力计算的剪力及其对截面形心计算的弯矩都为正 B. 截面右边梁内向上的横向外力计算的剪力及其对截面形心计算的弯矩都为正 C. 截面左边梁内向上的横向外力计算的剪力为正,向下的横向外力对截面形心计算的弯矩为正 D. 截面右边梁内向下的横向外力计算的剪力为正,该力对截面形心计算的弯矩也为正 4.12 对剪力和弯矩的关系,下列说法正确的是( ) A. 同一段梁上,剪力为正,弯矩也必为正 B. 同一段梁上,剪力为正,弯矩必为负 C. 同一段梁上,弯矩的正负不能由剪力唯一确定 D. 剪力为零处,弯矩也必为零 题4.14图 4.13 以下说法正确的是( ) A. 集中力作用处,剪力和弯矩值都有突变 B. 集中力作用处,剪力有突变,弯矩图不光滑 C. 集中力偶作用处,剪力和弯矩值都有突变 D. 集中力偶作用处,剪力图不光滑,弯矩值有突变 4.14 简支梁受集中力偶Mo 作用,如图所示。 题4.15图 以下结论错误的是( ) A. b =0时, 弯矩图为三角形 B. a =0时,弯矩图为三角形 C. 无论C 在何处,最大弯矩必为Mo D. 无论C 在何处,最大弯矩总在C 处 4.15 图示二连续梁的支座,长度都相同,集中力P 分别位于C 处右侧和左侧但无限接近联接铰C 。 以下结论正确的是( ) A. 两根梁的Q 和M 图都相同 B. 两根梁的Q 图相同,M 图不相同

材料力学公式最全总汇

外力偶矩计算公式(P功率,n转速) 弯矩、剪力和荷载集度之间的关系式 轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力FN,横 截面面积A,拉应力为正) 轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正) 纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1) 纵向线应变和横向线应变 泊松比 胡克定律 受多个力作用的杆件纵向变形计算公式? 承受轴向分布力或变截面的杆件,纵向变形计算公式

轴向拉压杆的强度计算公式 许用应力,脆性材料,塑性材料 延伸率 截面收缩率 剪切胡克定律(切变模量G,切应变g ) 拉压弹性模量E、泊松比和切变模量G之间关系式 圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r ) 圆截面周边各点处最大切应力计算公式 扭转截面系数,(a)实心圆 (b)空心圆 薄壁圆管(壁厚δ≤ R0 /10 ,R0 为圆管的平均半径)扭转切应力计算公式

圆轴扭转角与扭矩T、杆长l、扭转刚度GHp的关系式 同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时 或 等直圆轴强度条件 塑性材料;脆性材料 扭转圆轴的刚度条件? 或 受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式, 平面应力状态下斜截面应力的一般公式 , 平面应力状态的三个主应力, ,

主平面方位的计算公式 面内最大切应力 受扭圆轴表面某点的三个主应力,, 三向应力状态最大与最小正应力, 三向应力状态最大切应力 广义胡克定律 四种强度理论的相当应力 一种常见的应力状态的强度条件, 组合图形的形心坐标计算公式, 任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯

材料力学习题解答(弯曲应力)全新

6.1. 矩形截面悬臂梁如图所示,已知l =4 m , b / h =2/3,q =10 kN/m ,[σ]=10 MPa ,试确 定此梁横截面的尺寸。 解:(1) 画梁的弯矩图 由弯矩图知: 2max 2 ql M = (2) 计算抗弯截面系数 32 323669 h bh h W === (3) 强度计算 2 2max max 33912[]29 416 277ql M ql h W h h mm b mm σσ= ==?≤∴≥==≥ 6.2. 20a 工字钢梁的支承和受力情况如图所示,若[σ]=160 MPa ,试求许可载荷。 解:(1) 画梁的弯矩图 由弯矩图知: No20a x ql 2x

max 23 P M = (2) 查表得抗弯截面系数 6323710W m -=? (3) 强度计算 max max 66 22 3[] 33[]3237101601056.8822 P M P W W W W P kN σσσ-===?≤????∴≤== 取许可载荷 []57P kN = 6.3. 图示圆轴的外伸部分系空心轴。试作轴弯矩图,并求轴内最大正应力。 解:(1) 画梁的弯矩图 由弯矩图知:可能危险截面是C 和B 截面 (2) 计算危险截面上的最大正应力值 C 截面: 3max 33 32 1.341063.20.0632 C C C C C M M MPa d W σππ??====? B 截面: 3max 34 3444 0.91062.10.060.045(1)(1)32320.06B B B B B B B M M MPa D d W D σππ?====?-- (3) 轴内的最大正应力值 MPa C 2.63max max ==σσ x

材料力学专项习题练习6弯曲内力

弯曲内力 1. 长l的梁用绳向上吊起,如图所示。钢绳绑扎处离梁端部的 距离为x。梁内由自重引起的最大弯矩|M|max为最小时的x值为: (A) /2 l; (B) /6 l; (C) 1)/2 l。 l; (D) 1)/2 2. 多跨静定梁的两种受载情况如图(a)、(b)所示。下列结论中哪个是正确的? (A) 两者的剪力图相同,弯矩图也相同; (B) 两者的剪力图相同,弯矩图不同; (C) 两者的剪力图不同,弯矩图相同; (D) 两者的剪力图不同,弯矩图也不同。 3. 图示(a)、(b)两根梁,它们的 (A) 剪力图、弯矩图都相同; (B) 剪力图相同,弯矩图不同; (C) 剪力图不同,弯矩图相同; (D) 剪力图、弯矩图都不同。 4. 图示梁,当力偶M e的位置改变时,有下列结论: (A) 剪力图、弯矩图都改变; (B) 剪力图不变,只弯矩图改变; (C) 弯矩图不变,只剪力图改变; (D) 剪力图、弯矩图都不变。 5. 图示梁C截面弯矩M C = ;为使M C =0,则M e= ;为使全梁不出现正弯矩,则M e≥。 6. 图示梁,已知F、l、a。使梁的最大弯矩为最小时,梁端重量P= 。 7. 图示梁受分布力偶作用,其值沿轴线按线性规律分布,则B端支反力为,弯矩

图为 次曲线,|M |max 发生在 处。 8. 图示梁,m (x )为沿梁长每单位长度上的力偶矩值, m (x )、q (x )、F S (x )和M (x )之间的微分关系为: S d ();d F x x = d () d M x x = 。 9. 外伸梁受载如图,欲使AB 中点的弯矩等于零时, 需在B 端加多大的集中力偶矩(将大小和方向标在 图上)。 10. 简支梁受载如图,欲使A 截面弯矩等于零时,则 =e21e /M M 。 1-10题答案:1. C 2. D 3. B 4. B 5. 28e 2 M ql -;42 ql ;22 ql 6. ??? ??-a l a F 24 7. m 0/2;二;l /2 8. q (x );F S (x )+ m (x ) 9. 10. 1/2 11-60题. 作图示梁的剪力图和弯矩图。 解:

材料力学重点及公式(期末复习)

1、材料力学的任务: 强度、刚度和稳定性; 应力单位面积上的内力。 平均应力(1.1) 全应力(1.2) 正应力垂直于截面的应力分量,用符号表示。 切应力相切于截面的应力分量,用符号表示。 应力的量纲: 线应变单位长度上的变形量,无量纲,其物理意义是构件上一点沿某一方向变形量的大小。 外力偶矩 传动轴所受的外力偶矩通常不是直接给出,而是根据轴的转速n与传递的功率P 来计算。 当功率P单位为千瓦(kW),转速为n(r/min)时,外力偶矩为 当功率P单位为马力(PS),转速为n(r/min)时,外力偶矩为 拉(压)杆横截面上的正应力

拉压杆件横截面上只有正应力,且为平均分布,其计算公式为 (3 -1) 式中为该横截面的轴力,A为横截面面积。 正负号规定拉应力为正,压应力为负。 公式(3-1)的适用条件: (1)杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件; (2)适用于离杆件受力区域稍远处的横截面; (3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀; (4)截面连续变化的直杆,杆件两侧棱边的夹角时 拉压杆件任意斜截面(a图)上的应力为平均分布,其计算公式为 全应力 (3-2) 正应力(3-3) 切应力(3-4) 式中为横截面上的应力。 正负号规定: 由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。 拉应力为正,压应力为负。 对脱离体内一点产生顺时针力矩的为正,反之为负。 两点结论: (1)当时,即横截面上,达到最大值,即。当=时,即纵截面上,==0。 (2)当时,即与杆轴成的斜截面上,达到最大值,即 1.2 拉(压)杆的应变和胡克定律 (1)变形及应变 杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。如图3-2。

材料力学专项习题练习 弯曲应力讲课教案

材料力学专项习题练习弯曲应力

收集于网络,如有侵权请联系管理员删除 弯曲应力 1. 圆形截面简支梁A 、B 套成,A 、B 层间不计摩擦,材料的弹性模量2B A E E =。求在外力偶矩e M 作用下,A 、B 中最大 正应力的比值max min A B σσ有4个答案: (A)16 ; (B)14 ; (C)18; (D)110 。 答:B 2. 矩形截面纯弯梁,材料的抗拉弹性模量t E 大于材料的抗压弹性模量c E ,则正应力在截面上的分布图有以下4种答案: 答:C 3. 将厚度为2 mm 的钢板尺与一曲面密实接触,已知测得钢尺点A 处的应变为1 1000 - ,则该曲面在点A 处的曲率半径为 mm 。 答:999 mm 4. 边长为a 的正方形截面梁,按图示两种不同形式放置,在相同弯矩作用下,两者最大 正应力之比 max a max b ()()σσ= 。 (a)

答:2/1 5. 一工字截面梁,截面尺寸如图,, 10h b b t ==。试证明,此梁上,下翼缘承担的弯矩约为截面上总弯矩的88%。 证:4 12, (d ) 1 8203B A z z z My M Mt M y yb y I I I σ==?=? ? 4 690z I t =, 4 141 1 82088%3690M t M t =??≈ 其中:积分限1 , 22 h h B t A M =+=为翼缘弯矩 6. 直径20 mm d =的圆截面钢梁受力如图,已知弹性模量200 GPa E =, 200 mm a =,欲将其中段AB 弯成 m ρ=12的圆弧,试求所需载荷,并计算最大 弯曲正应力。 解: 1 M EI ρ = 而M Fa = 4 840.78510 m , 0.654 kN 64 d EI I F a πρ-= =?= = 33max 8 0.654100.22010167 MPa 2220.78510M d Fad I I σ--?????====?? 7. 钢筋横截面积为A ,密度为ρ,放在刚性平面上,一端加力F ,提起钢筋离开地面长度/3l 。试问F 应多大? 解:截面C 曲率为零 2 (/3)0, 326 C Fl gA l gAl M F ρρ= -== 8. 矩形截面钢条长l ,总重为F ,放在刚性水平面上,在钢条A 端作用/3F 向上的拉力时,试求钢条内最大正应力。 解:在截面C 处, 有 1 0C M EI ρ== 2 ()2 0, 323 AC C AC AC l F F l M l l l = ?-?==即

相关主题
文本预览
相关文档 最新文档