当前位置:文档之家› murata filters (村田制作所滤波器)RF相关

murata filters (村田制作所滤波器)RF相关

murata filters (村田制作所滤波器)RF相关
murata filters (村田制作所滤波器)RF相关

7

F i l t e r s f o r C o m m u n i c a t i o n E q u i p m e n t

o LFB18/21/2H/31_SG Series

LFB18_SG Series

A : Directional Input Mark

All the technical data and information contained herein are subject to change without prior notice.

(in mm)

Frequency Characteristics

010203040

5060

70

010

2030405060

70

A t t e n u a t i o n (d

B )

R e t u r n L o s s (d B )0.8

4.8

8.8

Frequency Range (GHz)

LFB21_SG Series

A : Directional Input Mark

All the technical data and information contained herein are subject to change without prior notice.

(in mm)

Frequency Characteristics

1020304050607080

90

01020304050607080

90

A t t e n u a t i o n (d

B )

R e t u r n L o s s (d B )0.5

2.5

3.0

Frequency Range (GHz)

LFB2H_SG6 Series

7

F i l t e r s f o r C o m m u n i c a t i o n E q u i p m e n t

Continued from the preceding page.

LFB31_SG1 Series

(in mm)

* All the technical data and information contained herein are subject to change without prior notice.

A : Directional Input Mark 0.3(1) (3) : GND (2) : OUT (4) : IN

Frequency Characteristics

Frequency Range (MHz)

1600

1100

2100

A t t e n u a t i o n (d

B )

R e t u r n L o s s (d B )

01020

3040

506070

102030405060

70LFB31_SG2 Series

(in mm)

All the technical and Information contained herein are

subject to change without prior notice.

(1)(3) : GND (2) : OUT (4) : IN

Frequency Characteristics

1.0

607050403020100

6070504030201002.0

3.0

Frequency Range (GHz)

A t t e n u a t i o n (d

B )

R e t u r n L o s s (d B )

LFB31_SG7 Series

All the technical data and information contained herein are subject to change without prior notice.

(in mm)

(1)(3)(2)(4) : GND : OUT : IN

Frequency Characteristics

0102030405060

700

102030405060

701.95

2.45

3.95

Frequency Range (GHz)

A t t e n u a t i o n (d

B )

R e t u r n L o s s (d B )

7

F i l t e r s f o r C o m m u n i c a t i o n E q u i p m e n t

o LFB31_SL Series (1206)

(in mm)

NC IN

GND * All the technical data and information contained herein are subject to change without prior notice.

OUT (1)(3)(5)(7) :

(2)(6) :(4) :(8) :-0.15Frequency Characteristics

Frequency Range (GHz)

A t t e n u a t i o n (d

B )

R e t u r n L o s s (d B )

7

F i l t e r s f o r C o m m u n i c a t i o n E q u i p m e n t

o

LFB31_SN Series (1206)

(in mm)

All the technical data and information contained herein are subject to change without prior notice.

(1)(3) : GND (2) : OUT (4) : IN

Frequency Characteristics

0102030405060

700

102030405060

703.0

8.0

13.0

Frequency Range (GHz)

A t t e n u a t i o n (d

B )

R e t u

r n L o s s (d B )o

LFB31_SP Series (1206)

(in mm)

* All the technical data and Information contained herein are subject to change without prior notice.

Frequency Characteristics

Frequency Range (GHz)

A t t e n u a t i o n (d

B )

R e t u r n L o s s (d B )

o

LFB32_SB Series (1210)

(1) : IN (2) : GND (3) : OUT (4) : GND

(in mm)

Frequency Characteristics

Frequency (MHz)

A t t e n u a t i o n (d

B )

7

F i l t e r s f o r C o m m u n i c a t i o n E q u i p m e n t

o LFB32_SC Series (1210)

(1) : NC (2) : GND (3) : NC (4) : OUT

(5) : NC (6) : GND (7) : NC

(8) : IN

0.55±0.15

* Terminal of "NC" should not be connected to any pattern.

(in mm)

Frequency Characteristics

Frequency (MHz)

A t t e n u a t i o n (d

B )

o LFB32_SJ Series (1210)

(in mm)

IN GND OUT

* All the technical data and information contained herein are subject to change without prior notice.

(2)(4) :(1) :(3):Frequency Characteristics

Frequency Range (GHz)

A t t e n u a t i o n (d

B )

R e t u r n L o s s (d B )

7

F i l t e r s f o r C o m m u n i c a t i o n E q u i p m e n t

o

LFB32_SK Series (1210)

NC GND OUT IN

(in mm)

* All the technical data and information contained herein are subject to change without prior notice.

(4) :(8) :

Frequency Characteristics

Frequency Range (MHz)

A t t e n u a t i o n

(d B )

R e

t u r n L o s s (d B

)o LFB32_SN Series (1210)

(1) : GND (2) : OUT (3) : GND (4) : IN

0.3±0.15

(in mm)

Frequency Characteristics

Frequency Range (GHz)

A t t e n u a t i o n (d

B )

R e t u r n

L o s s (d B )

7

F i l t e r s f o r C o m m u n i c a t i o n E q u i p m e n t

o LFL15_TC (0402) /LFL18_TC (0603) /LFL21_TC (0805) Series

LFL15_TC Series

A : Directional Input Mark

All the technical data and information contained

herein are subject to change without prior notice.

(1)(3) : GND (2) : OUT (4) : IN

(in mm)

Frequency Characteristics

010

20304050607080

90

0510152025303540

45

A t t e n u a t i o n (d

B )

R e t u r n L o s s (d B )

2.35

4.95

7.55

Frequency Range (GHz)

LFL18_TC Series

7

F i l t e r s f o r C o m m u n i c a t i o n E q u i p m e n t

o LFH32_RA Series (1210)

(8)

(1)(3)(5)(7) : NC (2)(6) : GND (4) : OUT (8) : IN

(in mm)

Terminal of "NC" should not be fixed to any pattern. All the technical data and Information contained herein are subject to change without prior notice.

Frequency Characteristics

Frequency Range (MHz)

700

1200

200

A t t e n u a t i o n (d

B )

R e t u r n L o s s (d B )

010203040506070010203040506070

LFD18_DP Series +0.10

+0.10

All the technical data and information contained herein are subject to change without prior notice.

(in mm)

GND P1 (*1)P3 (*2)P2 (*3)

(1) : (2) : (3) : (4) : A : Directional Input Mark (*1) Higher Frequency Port (*2) Common Port

(*3) Lower Frequency Port

LFD21_DP Series

0.2±All the technical data and information contained herein are subject to change without prior notice.

(1)(2)(3)(5)(7) : GND (4) : P1(6) : P3 (?)(8) : P2

(in mm)

+0.1

7

F i l t e r s f o r C o m m u n i c a t i o n E q u i p m e n t

(in mm)

IN

OUT

(1) :(2) :LFB21_BA Series

* All the technical data and information contained herein are

subject to change without prior notice.

(in mm)

+0.10

+0.10

NC

NC (DC feed Port)Unbalance Port GND

Balance Port

(1) : (2) : (3) : (4)(6)(8) : (5)(7) : A : Directional Input Mark

7

F i l t e r s f o r C o m m u n i c a t i o n E q u i p m e n t

o GPS

SAFEB1G57KB0F00

Laser Printing

EIAJ Code

?

: (1) : (3)(4) : Others : Input Output Ground

(in mm)

SAFSE1G57KC0T00

Pin

(1) : (3) : Others : Input Output Ground

(in mm)

Marking : ? : Laser Printing

EIAJ Code

o GSM850

SAFEB881MFL0F00

Laser Printing

EIAJ Code

? : (1) : (3)(4) : Others : Input Output Ground

(in mm)

SAFED881MFL0F05

Laser Printing

EIAJ Code ? :

(1) : (3)(4) : Others : Input Output Ground

(in mm)

7

F i l t e r s f o r C o m m u n i c a t i o n E q u i p m e n t

Continued from the preceding page.

o GSM850/GSM900 Dual Band

(in mm)

SAWES881MCQ0F00(942.5)

Input Input Output Output Ground

(1) : (4) : (8)(9) : (6)(7) : Others : (in mm)

Marking : ? : Laser Printing

EIAJ Code

Pin

o GSM850/GSM1900 Dual Band

SAWES881MCU2F00(881.5)

Input Input Output Output Ground

(1) : (4) : (8)(9) : (6)(7) : Others :

(in mm)

Marking : ? : Laser Printing

EIAJ Code Pin

SAWSP881MGA0T00(881.5)

7

F i l t e r s f o r C o m m u n i c a t i o n E q u i p m e n t

o GSM900

SAFEB942MFL0F00

Laser Printing

EIAJ Code

? : (1) : (3)(4) : Others : Input Output Ground

(in mm)

SAFED942MFM0F00

Laser Printing

EIAJ Code ? : (1) : (3)(4) : Others : Input Output Ground

(in mm)

7

F i l t e r s f o r C o m m u n i c a t i o n E q u i p m e n t

o GSM900/GSM1800 Dual Band

(in mm)

SAWES942MCQ0F00(942.5)

Input Input Output Output Ground

(1) : (4) : (8)(9) : (6)(7) : Others : (in mm)

Marking : ? : Laser Printing

EIAJ Code Pin

o GSM1800

SAFEB1G84FA0F00

Laser Printing

EIAJ Code ? : (1) : (3)(4) : Others : Input Output Ground

(in mm)

SAFED1G84FB0F00

Laser Printing

EIAJ Code ? : (1) : (3)(4) : Others : Input Output Ground

(in mm)

7

F i l t e r s f o r C o m m u n i c a t i o n E q u i p m e n t

o GSM1800/GSM1900 Dual Band

(in mm)

SAWES1G84CQ0F00(1960)

Input Input Output Output Ground

(1) : (4) : (8)(9) : (6)(7) : Others : (in mm)

Marking : ? : Laser Printing

EIAJ Code Pin

7

F i l t e r s f o r C o m m u n i c a t i o n E q u i p m e n t

o GSM1900

SAFEB1G96FA0F00

Laser Printing

EIAJ Code

? : (1) : (3)(4) : Others : Input Output Ground

(in mm)

SAFED1G96FA0F00

Laser Printing

EIAJ Code ? : (1) : (3)(4) : Others : Input Output Ground

(in mm)

o J-CDMA

SAFEB911MAL0F00

Laser Printing

EIAJ Code

? : (1) : (3)(4) : Others : Input Output Ground

(in mm)

SAFEF906MAM0F00

Input Output Ground (2) : (4)(6) : Others :

(in mm)

? : Laser Printing

EIAJ Code

7

F i l t e r s f o r C o m m u n i c a t i o n E q u i p m e n t

o PCS(CDMA)

SAFSE1G88KC0T00

Pin

(1) : (3) : Others : Input Output Ground

(in mm)

Marking : ? : Laser Printing

EIAJ Code

o W-CDMA

SAFEB2G14FA0F00

Laser Printing

EIAJ Code ? : (1) : (3)(4) : Others : Input Output Ground

(in mm)

SAFEH2G14FA0F00

Input Output Ground (2) : (4)(6) : Others :

(in mm)

? : Laser Printing

EIAJ Code

7

F i l t e r s f o r C o m m u n i c a t i o n E q u i p m e n t

o CDMA800/TDMA800/E-AMPS/GSM850

SAFEB881MFM0F00

Laser Printing

EIAJ Code

? : (1) : (3)(4) : Others : Input Output Ground

(in mm)

可重构或可调谐微波滤波器技术

可重构或可调谐微波滤波器技术 电子可重构,或者说电调微波滤波器由于其在改善现在及未来微波系统容量中不断提高的重要性而正吸引着人们越来越多的关注来对其进行研究和开发。例如,崭露头脚的超宽带(UWB)技术要求使用很宽的无线电频谱。然而,作为资源的频谱是宝贵而有限的,因此,频谱总是被用于多种用途,这意味着当诸如UWB 无线系统这种操作受到关注时,频谱上充满着不期望的信号。在这种情况下,现存的时时处处都在发生变化的不期望的窄带无线电信号有可能会干扰UWB 系统的波段。这种问题的解决方案是在UWB 带通滤波器的通带上引入了一个可进行电切换或电调谐的狭窄的抑制带(陷波)。这种电子可重构滤波器也是宽带雷达或电子军用系统所渴望得到的。我们可以来未雨绸缪地考虑未来的认知无线电和雷达应用,可以肯定的是,可进行电子重构的微波滤波器将会在无线系统中起到一个更重要的作用。 一般来说,为了开发电子可重构滤波器,有源切换元件或调谐元件,如半导体p-i-n 和变容器二极管,射频(RF)微机电系统(MEMS)或其它基于功能性材料的元件,包括铁电体变容器,需要被集成进入无源滤波器结构中。由于微带线滤波器[1]能够便于以很小的尺寸来完成这类集成,因此,人们对于在微带线的基础上开发可调谐或可重构滤波器的兴趣日益增加[2]-[36]。这些滤波器可以分类为可调谐梳状带通滤波器[2]-[9],射频微机电系统可调谐滤波器[10]-[15],压电传感器(PET)可调谐滤波器[17]-[19],可调谐高温超导(HTS)滤波器[21]-[23],可重构UWB 滤波器[24]-25],可调谐双频段滤波器[26],可调谐带阻滤波器[27]-[31],可重构/可调谐双模滤波器[32]-[36],以及基于可切换延迟线的可重构带通滤波器。下面,我们将要介绍若干新近开发出来的典型的电子可重构微带线滤波器。 可调谐梳状滤波器 微带线梳状滤波器是开发可调谐或者说可重构带通滤波器颇受欢迎的结构[2]-[9]。图1 是一个3-极点可调谐梳状滤波器的示意图,其中每一个长度小于工作频率的四分之一波长的微带线谐振器的一端是短路相接的,另一端则加载一只变容器。在这个例子中,变容器是基于铁电体钛酸锶钡(BST)薄膜的。每一个BST 变容器的偏置网络包含有一个与变容器相串联的隔直电容器。带通滤波器的中心频率可以通过改变施加到变容器的直流偏置来进行电子调谐。

电位器盒课程设计

电位器盒课程设计

课程设计说明书 设计课题:电位器盒 设计者:侯xx、黄海林、林凤垦 专业:模具设计与制造 班级: 141 设计时间: 05.22~05.31 教研室: 611 指导老师:郑森伟、林伟展 闽南理工学院光电与机电工程系

目录 第一章前言 1.1塑料模具发展现状 (5) 1.2塑料模具未来趋势 (6) 第二章成型工艺卡 2.1“塑料成型工艺与模具设计”课程设计任务书 (3) 2.2成型工艺卡 (4) 第三章塑件设计 3.1聚苯乙烯的特性 (7) 3.2塑件的成型特性 (9) 3.3塑件的机构和尺寸精度、表面质量分析 (10) 3.4确定分型面 (12) 3.5选择注塑机型号及其参数 (13) 3.6型腔的数量和布置 (15) 3.7浇注系统选择和设计 (16) 3.8模架的确定和标准件选择(示意图) (18) 3.9冷却机构设计 (19) 3.10推出机构(脱模) (21)

参考文献............................................................................. (22) 模具设计心得体会................................................................. (23) 模具总装图和零件图 (24) “塑料成型工艺与模具设计”课程设计任务书 课题设计名称:电位器盒的注射模设计 塑件图:(模具课程设计指导-塑件图汇编:页面 P61 图课题六)

1、编制模塑成型工艺规程(即填写“塑件成型工艺卡”) 2、完成模具装配图1张,按制图标准,计算机绘制成A1或A0 图幅,用A3图纸打印出来。 3、绘制该模具主要成型零件图5张(爆炸图可当两张零件图 的工作量)。。 4、编写模具设计说明书

选用射频滤波器(馈通滤波器、穿心电容)的方法

选用射频滤波器(馈通滤波器、穿心电容)的方法随着电子设备工作频率的迅速提高,电磁干扰的频率也越来越高,干扰频率通常会达到数百MHz,甚至GHz以上。由于电压或电流的频率越高,越容易产生辐射,因此,正是这些频率很高的干扰信号导致了辐射干扰的问题日益严重。因此,对用来解决辐射干扰的滤波器的一个基本要求就是要能对这些高频干扰信号有较大的衰减,这种滤波器就是射频干扰滤波器。普通干扰滤波器的有效滤波频率范围为数kHz 数十MHz,而射频干扰滤波器的有效滤波频率范围从数kHz到GHz以上。 按照传统方式构造的滤波器不能成为射频滤波器。这是由于两个原因:第一个原因是:图1中的旁路电容寄生电感较大(导致串联谐振,增加了旁路阻抗),导致电容器在较高的频率并不具有较低的阻抗,起不到旁路的作用。第二个原因是:滤波器的输入端和输出端之间的杂散电容导致高频干扰信号耦合,使滤波器对高频干扰失去作用。解决这个问题的方法是用穿心电容作为旁路电容。穿心电容具有非常小的寄生电感,旁路阻抗非常小,并且由于采用隔离安装方式,消除了输入输出端之间的高频耦合。 本样本中的各种射频滤波器都是基于穿心电容制造的,并且安装方式都是馈通形式的(输入与输出被金属板隔离)。 虽然本样本中的射频滤波器品种很多,但是每一种型号在设计时都考虑了具体使用场合的要求,使设计师能够在性能、体积、成本等方面获得满意的结果。选择射频滤波器需要考虑的因素有:

截止频率:滤波器的插入损耗大于3dB的频率点称为滤波器的截止频率,当频率超过截止频率时,滤波器就进入了阻带,在阻带,干扰信号会受到较大的衰减。根据使用滤波器的场合不同(信号电缆滤波还是电源线滤波),可以用两个方法来确定滤波器的截止频率。在对信号电缆进行滤波时,根据有效信号的带宽来确定,截止频率要大于信号的带宽,这样才能保证有用信号不被衰减。在对电源线或直流信号线,滤波时,由于有效信号的频率很低,信号失真的问题不是主要因素,因此主要根据干扰信号的频率来定,要使干扰频率全部落在滤波器的阻带内。滤波器的截止频率越低,滤波器的尺寸越大,价格越高,因此没有必要时(干扰的频率不是很低时),不要盲目选用截止频率过低的滤波器。 插入损耗:指滤波器在阻带的损耗数值(dB),每一种滤波器都有一张插入损耗与频率对应的表格,选用滤波器时,根据干扰信号的频率和需要衰减的程度确定对插入损耗的要求。需要注意的一点是,产品样本上给出的插入损耗是在50 系统中测量的,实际使用条件如果不是50 ,插入损耗会有差异。 额定电压:滤波器在正常工作时能够长时间承受的电压,要注意正确选用直流和交流品种,在交流应用场合绝对不能使用直流的品种,否则容易发生击穿。由于几乎所有的电磁兼容试验都有脉冲干扰的项目,因此在选用滤波器时要考虑这种高压脉冲干扰的作用,耐压值需要留有一定的富裕量。 额定电流:滤波器在正常工作时能够长时间流过的电流值,额定

微波滤波器的发展历史趋势及种类

微波滤波器是一类无耗的二端口网络,广泛应用于微波通信、雷达、电子对抗及微波测量仪器中,在系统中用来控制信号的频率响应,使有用的信号频率分量几乎无衰减地通过滤波器,而阻断无用信号频率分量的传输。滤波器的主要技术指标有:中心频率,通带带宽,带内插损,带外抑制,通带波纹等。 微波滤波器的分类方法很多,根据通频带的不同,微波滤波器可分为低通、带通、带阻、高通滤波器;按滤波器的插入衰减地频响特性可分为最平坦型和等波纹型;根据工作频带的宽窄可分为窄带和宽带滤波器;按滤波器的传输线分类可分为微带滤波器、交指型滤波器、同轴滤波器、波导滤波器、梳状线腔滤波器、螺旋腔滤波器、小型集总参数滤波器、陶瓷介质滤波器、SIR(阶跃阻抗谐振器)滤波器、高温超导材料等。 发展历史: 在1937年,由W.P Mason和R.A.Sykes发表的文章中首先研究了微波滤波器,他们是利用了ABCD参数推导出了大量有用滤波器相位和衰减函数。应用映像参数方法当时主要在美国各大实验室中,例如在Mn’实验室里,他们重点研究波导滤波器,而在Harvard实验室重点研究宽带低通、带通同轴及窄带可调谐滤波器。映像参数方法的工作大多在MIT实验室由Fano和Lawson完成,他们的著作对于微波滤波器有比较清晰的介绍,甚至在40年后还有应用价值。在随后的微波滤波器理论的研究和发展过程中,许多专家和学者作出了重大的贡献。Cohn在集总元件低通滤波器原型机的基础上第一个提出了方便实用的直接耦合空腔滤波器理论。上世纪60年代,G.L.Matthaei在其专著中对微波滤波器的经典设计方法作出了较全面、系统的介绍,但主要针对最平坦型和契比雪夫型,未涉及椭圆函数型和广义契比雪夫型。70年代初,A.E.Williams和Kurzrok提出用于分析交叉耦合的低阶滤波器。A.E.Atia,A.E.Williams和R.W.Newcomb对交叉耦合合展开研究,总结出传输零点对称分布时的偶模网络和相应的偶模矩阵的综合方法。Levy建立了集总和分布原型的元件公式间的联系,给出了推导原型元件的简单而准确的公式;Rhode建立起了线性相位滤波器理论。1999年Richard J.Cameron把广义契比雪夫滤波器的传输零点由实数扩展到复数,从而将传输零点和时延结合起来研究,提出用循环递归的方法构成广义契比雪夫的传输和反射函数多项式,根据导纳矩阵和部分分式展开求取留数,再利用施密特正交变换的方法综合耦合矩阵,其矩阵综合和消零计算量较大。如何将不可实现或不是最简的耦合元素消零成为研究热点,但目前国际上主要采用相似变换(矩阵旋转)尽可能多地消去非零元。这一系列贡献,都可以说是微波滤波器发展史上的重大突破。

电位器

!注
请阅读本产品目录中的产品规格,以及有关保管、使用环境、规格上的注意事项、装配时的注意事项、使用时的注意事项的!注意事项,以免发生冒烟和(或)燃烧等。 本目录因没有足够的空间说明详细规格,仅载明标准特性。因此,在订购产品之前,谨请核准其规格或者办理产品规格表。
R50C.pdf 04.11.08
微调电位器
Trimmer Potentiometers
Cat.No.R50C

!注
请阅读本产品目录中的产品规格,以及有关保管、使用环境、规格上的注意事项、装配时的注意事项、使用时的注意事项的!注意事项,以免发生冒烟和(或)燃烧等。 本目录因没有足够的空间说明详细规格,仅载明标准特性。因此,在订购产品之前,谨请核准其规格或者办理产品规格表。
R50C.pdf 04.11.08
目录
品名表示法 微调电位器选择指南 1 开放SMD型 2mm尺寸 PVZ2系列
PVZ2系列注意事项
1
2 4 5 7 9 16 19 20 22 25 27 30 32 38 40 51 53 70 72 74 76 77 80 81 86
2
2
开放SMD型 3mm尺寸 PVZ3/PVS3/PVA3系列
PVZ3/PVS3/PVA3系列注意事项
3
3
密封SMD型 2mm尺寸 PVF2系列
PVF2系列注意事项
4
密封SMD型 3mm尺寸 PVG3系列
PVG3系列注意事项
4
5
密封SMD型 4mm尺寸 PVM4系列
PVM4系列注意事项
5
6
密封SMD型 多旋转 PVG5/PV01系列
PVG5/PV01系列注意事项
7
密封引线型 1旋转 PVC6/PV32/PV34系列
PVC6/PV32/PV34系列注意事项
6
8
密封引线型 多旋转 PV12/PV37/PV23/PV22/PV36系列
PV12/PV37/PV23/PV22/PV36系列注意事项
9
角度探测电位器防尘SMD型 12mm尺寸 SV01系列
SV01系列注意事项
7
开放SMD型与密封SMD型 PVM4A_C01系列 规格与测试方法 密封SMD型/密封引线型 规格与测试方法 角度探测电位器 规格与测试方法 包装 推荐的调整工具/认证标准
8
9
? 本目录中所写的“对应RoHS指令”是指根据EU指令DIRECTIVE2002/95/EC而判断,不包含铅、镉、汞、六价铬、多溴联苯类、多溴二苯醚。 (指令范围以外和在自然界中存在的物质除外) ? 上述表示不能保证按照RoHS指令所制定的EU各国的相关法律法规的遵守。
Recycled Paper

微波滤波器的设计与仿真开题报告

毕业论文开题报告 题目微波滤波器的设计与仿真 学生姓名薛新月学号 1113024098 所在院(系) 物理与电信工程学院 专业班级通信 1103 班 指导教师薛转花 2015 年 3 月 7 日

题目微波滤波器的设计与仿真 一、选题的目的及研究意义 随着科技不断进步,无线通信前所未有的融入到生活中,尤其是贴近日常应用的短距离无线数据业务更是迅猛发展。例如WLAN、WIFI、蓝牙等短距离无线的广泛应用。极大的推动了滤波器技术的发展,也对滤波器的性能提出了更高的要求。微波滤波器是现代微波中继通信、微波卫星通信、电子对抗等系统中必不可少的组成部分。微波滤波技术广泛应用于卫星通信、移动通信、雷达系统、导航系统等,可谓无处不在。微波滤波技术的发展经历了半个多世纪,可谓品种繁多,性能各异。可按频率响应特性分为低通、高通、带通、带阻;也可按网络函数分为最大平坦型、切比雪夫型、线性相位型和椭圆函数型;还可按工作模式、频带、频段等进行划分。面对现代通信系统对滤波器性能要求日趋严格,微波滤波技术朝着体积小、重量轻、低损耗、高可靠性、高温补性能等的综合性滤波器发展。 随着无线通信的个人化、宽带化,越来越需要人性化和高性能的终端设备,促使了包括滤波器在内的射频元器件的微型化和可集成化,同时也产生了各种结构和性能的射频滤波器来满足体积小、重量轻的系统要求。 二、综述与本课题相关领域的研究现状、发展趋势、研究方法及应用领域等 研究现状:微带滤波器在通信、信号处理、雷达等各种电路系统中具有广泛用途。随着移动通信、电子对抗和导航技术的飞速发展,对新的微波元器件的需求和现有器件性能的改善提出了更高的要求。发达国家都在利用新材料和新技术来提高器件性能和集成度,同时,尽可能地降低成本,减小器件尺寸和降低功耗。与国外相比,我国的微带滤波器的发展还有一定的差距。 目前,国外已有相应公司在大量生产微滤波器器件,比较著名的公司有美国的DLI、TRANS-TECH、日本MURATA、英国的FILTRONIC公司等。他们生产的各种微波介质陶瓷滤波器、双工器、谐振器、介质天线等产品已用于微波基地站、手机及无绳电话等产品中,取得了显著的经济和社会效益。 发展趋势:随着现代材料科学与电子信息科学技术的交叉渗透,新材料和制造工艺技术的发展,如单片集成电路、MEMS、LTCC等工艺,极大地带动了微带和其他类型滤波器的飞速发展。全国固态化的各类片式高频、微带滤波器和中频滤波器,向着高性能、低成本、小型化、高频化等各方面飞快发展。 研究方法:微带滤波器当中最基本的滤波器是微带低通滤波器,而其它类型的滤波器可以通过低通滤波器的原型转化过来。最大平坦滤波器和切比雪夫滤波器是两种常用的低通滤波器的原型。微带滤波器中最简单的滤波器就是用开路并联短截线或是短路串联短截线来代替集总元器件的电容或是电感来实现滤波的功能。这类滤波器的带宽较窄,虽然不能满足所有的应用场合,但是由于它设计简单,因此在某些地方还是值得应用的。 工程应用中,一般要求我们重点考虑通带边界频率与通带衰减、阻带边界频率与阻带衰减、通

电位器的作用及电位器接法

电位器的作用及电位器接法 电位器实际上就是可变电阻器,由于它在电路中的作用是获得与输入电压(外加电压)成一定关系得输出电压,因此称之为电位器。 电路图形符号 电位器阻值的单位与电阻器相同,基本单位也是欧姆,用符号Ω表示。电位器在电路中用字母R或RP(旧标准用W)表示,图1是其电路图形符号。 图1电位器电路图形符号 常用电位器实物图、结构特点及应用 常用电位器如表1所示。

表1常用电位器实物图及应用 电位器的主要参数 电位器的主要参数有标称阻值、额定功率、分辨率、滑动噪声、阻值变化特性、耐磨性、零位电阻及温度系数等。 1、电位器的标称阻值和额定功率 2、电位器上标注的阻值叫标称阻值。 3、电位器的额定功率是指在直流或交流电路中,当大气压为87~107kPa,在规定的额定温度下长期连续负荷所允许消耗的最大功率。线绕和非线绕电位器的额定功率系列入表2所示。 表2电位器额定功率标称系列(单位:功率)

电位器的阻值变化特性 阻值变化特性是指电位器的阻值随活动触点移动的长度或转轴转动的角度变化的关系,即阻值输出函数特性。常用的阻值变化特性有3种,如图所示。 图电位器阻值变化曲线 直线式(X型):随着动角点位置的变化,其阻值的变化接近直线。 指数式(Z型):电位器阻值的变化与动角点位置的变化成指数关系。 ①直线式电位器的阻值变化与旋转角度成直线关系。当电阻体上的导电物质分布均匀时,单位长度的阻值大致相等。它适用于要求调节均匀的场合(如分压器)。 ②指数式电位器因电阻体上的导电物质分布不均匀,电位器开始转动时,阻值变化较慢,转动角度增大时,阻值变化较陡。指数式电位器单位面积允许承受的功率不等,阻值变化小的一端允许承受的功率较大。它普遍应用于音量调节电路里,因为人耳对声音响度的听觉最灵敏,当音量大到一定程度后,人耳的听觉逐渐变迟钝。所以音量调节一般采用指数式电位器,使声音的变化显得平稳、舒适。③对数式电位器因电阻体上导电物质的分布也不均匀,在电位器开始转动时,其阻值变化很快,当转动角度增大时,转动到接近阻值大的一端时,阻值变化比较缓慢。对数式电位器适用于与指数式电位器要求相反的电子电路中,如电视机的对比度控制电路、音调控制电路。 电位器的分辨率 电位器的分辨率也称为分辨力,对线绕电位器来讲,当动接点每移动一圈时,输出电压不连续的发生变化,这个变化量与输出电压的比值为分辨率。直线式线绕电位器的理论分辨率为绕线总匝数N的倒数,并以百分数表示。电位器的总匝数越多,分辨率越高。 电位器的最大工作电压 电位器的最大工作电压是指电位器在规定的条件下,长期可靠地工作而不损坏,所允许承受的最高点工作电压,也称为额定工作电压。 电位器的实际工作电压要小于额定工作电压。如果实际工作电压高于额定工作电压,则电位器所承受的功率要超过额定功率,则导致电位器过热损坏。 电位器的动噪声 当电位器在外加电压作用下,其动接触点在电阻体上滑动时,产生的电噪声称为电位器的动噪声。动噪声是滑动噪声的主要参数之一,动噪声值的大小与转轴速度、接触点和电阻体之间的接触电阻、电阻体的电阻率不均匀变化、动接触点的数目以及外加电压的大小有关。

微波射频滤波器归类

摘要:按微波滤波器的传输线的种类进行了分类,并按照这种分类方法对各种微波滤波器的性能指标、设计方法进行了详细的介绍。 关键词:微波滤波器;性能指标;设计方法 前言:随着现代微波通信,尤其是卫星通信和移动通信的发展,系统对通道的选择性越来越高,这对微波滤波器的设计提出了更高的要求,而微波滤波器作为通信系统中的重要部分,其性能的优劣往往决定了整个通信系统的质量。因此研究微波滤波器的性能指标和设计方法具有重要意义。 微波滤波器是一类无耗的二端口网络,广泛应用于微波通信、雷达、电子对抗及微波测量仪器中,在系统中用来控制信号的频率响应,使有用的信号频率分量几乎无衰减地通过滤波器,而阻断无用信号频率分量的传输。滤波器的主要技术指标有:中心频率,通带带宽,带内插损,带外抑制,通带波纹等。 微波滤波器的分类方法很多,根据通频带的不同,微波滤波器可分为低通、带通、带阻、高通滤波器;按滤波器的插入衰减地频响特性可分为最平坦型和等波纹型;根据工作频带的宽窄可分为窄带和宽带滤波器;按滤波器的传输线分类可分为微带滤波器、交指型滤波器、同轴滤波器、波导滤波器、梳状线腔滤波器、螺旋腔滤波器、小型集总参数滤波器、陶瓷介质滤波器、SIR(阶跃阻抗谐振器)滤波器、高温超导材料等。本文是按照传输线的分类来对各种微波滤波器的主要特性进行详尽的分析。 一、微带滤波器 主要性能指标: 频率范围:500MHz~6GHz 带宽:10%~30% 插入损耗:5dB(随带宽不同而不同) 输入输出形式:SMA、N、L16等 输入输出驻波:1.8:1 微带滤波器主要包括平行耦合微带线滤波器、发夹型滤波器、微带类椭圆函数滤波器。 半波长平行耦合微带线带通滤波器是微波集成电路中广为应用的带通滤波器形式。其结构紧凑、第二寄生通带的中心频率位于主通带中心频率的3倍处、适应频率范围较大、适用于宽带滤波器时相对带宽可达20%。其缺点为插损较大,同时,谐振器在一个方向依次摆开,

步进电位器设计制作复习课程

50k步进电位器设计制作(级进式电位器)

假如,音量电位器的作用仅仅为调节音量,问题就简单多了。但事实上,音量电位器是信号必经之路。它的重要性往往被低估。一直以来,音响科技都致力于创造零失真的元件,但在现实中这是个梦想。我们所追求的,其实是最低程度的妥协。 音量电位器可选择一般的电位器,如ALPS.Noble等等。或者买一个瑞士Elma架,加上0.1%Holco精密电阻组成级进式电位器(有钱人的选择,此电位器两千大洋一只),或者自己做一个级进式的音量开关.前者的优点是购买容易,但是一般数十元的市售产品, 音质都不是非常理想,两声道的误差通常也不小,似乎不合乎HI-FI的精神;若是购买高级品,价格则相当的高昂. 后者是以一个多段的波段开关(通常是25段以上),焊上不同阻值的电阻,摹拟电位器的动作,好处是两声道的误差非常小,且使用越高级的电阻时, 相对的,音质也就越好,缺点是多段的波段开关不容易买到,且品质好的,价格亦不便宜;用一段时间后,接点容易氧化,产生杂音。最好是全密封的波段开关。

图1 (单位是Ω,由上图可看出此电位器的电阻是串联的(简称为串阻级进式电位器),其噪声也是拥模以谛∫袅渴毙藕啪?5个电阻。)图1中是一個25段的波段开关,若是买不到(或嫌太贵),可以用六段的波段开关代替,衰减电阻的计算请参考下图2中公式.

图2 最好的音量电位器是如下图3的级进式电位器所示的一样各位可以看出音频信号只须经过两枚电阻就可完成音量的调节,使信号的影响减至最少,它的输入输出阻抗为恒定的,但其缺点从图可以看出它要求要一个四刀的24位的波段开关。 ..............共24个。 图3

射频滤波器如何正确选取,看完全懂了

射频滤波器如何正确选取,看完全懂了 随着移动设备功能越来越强大,支持的网络频段越来越多,射频前端模块成了移动设备中不可缺少的一部分。举例来说,一款较新的手机至少需要支持2G,3G,4G以及WiFi,GPS等网络制式,而每一个制式都需要自己的射频前端模块。射频前端模块一般包括天线开关,多路器,滤波器,功率放大器与低噪声放大器等等。这些器件目前仍无法用集成度最高的CMOS工艺制造,而必须使用特殊工艺以保证性能。 根据Mobile Expert LLC的研究报告,2016年在智能手机增长萎靡(9%)的情况下,射频前端模块的增长率仍达到了17%。而在射频前端模块中,未来发展最快的,也最关键的模块就是射频滤波器模块。 滤波器到底有多重要 随着无线通讯应用的发展,人们对于数据传输速度的要求也越来越高。在2G时代,只有一小部分人会使用手机上网下载铃声或浏览wap版网页,需要的数据率大约在1KB/s。在3G时代,随着智能手机的普及,使用运营商网络上网收发邮件,使用各种app等使得网络流量剧增,需要的数据率大约是50KB/s。到了4G时代的今天,直播等应用更是将手机通讯的带宽需求推向了一个新的高度,需要的数据率达到

了1MB/s。 与数据率上升相对应的是频谱资源的高利用率以及通讯协议的复杂化。这两个问题是相辅相成:由于频谱资源有限,为了满足人们对数据率的需求,必须充分利用频谱,因此一部手机必须能够覆盖很宽的频带范围,这样在人群拥挤的情况下不同人的设备才能够分配到足够的频谱带宽。同时,为了满足数据率的需求,从4G开始还使用了载波聚合技术,使得一台设备可以同时利用不同的载波频谱传输数据。 另一方面,为了在有限的带宽内支持足够的数据传输率,通信协议变得越来越复杂,因此对于射频系统的各种性能也提出了严格的需求。 在射频前端模块中,射频滤波器起着至关重要的作用。它可以将带外干扰和噪声滤除以以满足射频系统和通讯协议对于信噪比的需求。如前所述,随着通信协议越来越复杂,对于通讯协议对于频带内外的需求也越来越高,这也使得滤波器的设计越来愈有挑战性。另外,随着手机需要支持的频带数目不断上升,由于每一个频带有需要有自己的滤波器,因此一款手机中需要用到的滤波器数量也在不断上升。目前,一款4G手机中的需要用到的滤波器数量可达30余个。 随着射频滤波器变得越来越重要,各大射频前端厂商也在积极布局滤波器市场。各大行业研究结构也看好射频滤波器市场未来的发展。

高通滤波器原理及分类

高通滤波器:英文名称为high-pass filter,又称低截止滤波器、低阻滤波器,允许高于某一截频的频率通过,而大大衰减较低频率的一种滤波器。它去掉了信号中不必要的低频成分或者说去掉了低频干扰。其特性在时域及频域中可分别用冲激响应及频率响应描述。 高通滤波器是一种让某一频率以上的信号分量通过,而对该频率以下的信号分量大大抑制的电容、电感与电阻等器件的组合装置。其特性在时域及频域中可分别用冲激响应及频率响应描述。后者是用以频率为自变量的函数表示,一般情况下它是一个以复变量jω为自变量的的复变函数,以H(jω)表示。它的模H(ω)和幅角φ(ω)为角频率ω的函数,分别称为系统的“幅频响应”和“相频响应”,它分别代表激励源中不同频率的信号成分通过该系统时所遇到的幅度变化和相位变化。可以证明,系统的“频率响应”就是该系统“冲激响应”的傅里叶变换。当线性无源系统可以用一个N阶线性微分方程表示时,频率响应H(jω)为一个有理分式,它的分子和分母分别与微分方程的右边和左边相对应。 高通滤波器原理及分类 高通滤波器按照所采用的器件不同进行分类的话,会有源高通滤波器、无源高通滤波器两类。 无源高通滤波器:无源高通滤波器:仅由无源元件(R、L 和C)组成的滤波器,它是利用电容和电感元件的电抗随频率的变化而变化的原理构成的。这类滤波器的优点是:电路比较简单,不需要直流电源供电,可靠性高;缺点是:通带内的信号有能量损耗,负载效应比较明显,使用电感元件时容易引起电磁感应,当电感L较大时滤波器的体积和重量都比较大,在低频域不适用。 实际滤波器的基本参数:理想滤波器是不存在的,其特性只需截止频率描述,而实际滤波器的特性曲线无明显的转折点,故需用更多参数来描述。 高通滤波器技术指标有:

基于单片机的数字电位器设计

关键字:单片机数字电位器 人耳对声强的主观感受遵循韦伯定律(Webber's Law),在音量较小时人耳对声波振幅的改变感受灵敏,声音达到一定响度后,人耳的听觉特性开始变得迟钝。而指数型电位器的阻值变化规律为先慢后快,如果将这种衰减特性用在音量调节中,则恰好可以抵消人耳对音量感知的对数特性,保证主观听感的平滑。 与传统的机械式音量电位器相比,数字电位器(DCP)的阻值调节由内部CMOS开关控制,因而使用寿命长、可靠性高且不会产生机械噪声;如果将廉价的通用型线性数字电位器直接用于音量调节,在小音量状态下稍微调节电位器即会使输出声压陡然增加,无法保证大动态范围内音量的准确定位,因此目前将数字式电位器运用在成熟功放产品中的实例还不多。实际上,如果将低分辨率线性数字电位器与通用嵌入式系统结合起来,就能够得到运用于音量控制领域的低成本高分辨率指数式电位器。 总体设计方案 在数字电位器的扩展系统中,主控单元可选用常见的8位或16位成熟单片机。这里我们主要针对Intersil公司的低分辨率线性数字电位器X9313、X9312进行扩展,系统最终能够达到的实际分辨率为31×99=3069级;如果把32抽头的X9313全部更换为X9312,分辨率还可以进一步提高至9801级。 X9313与X9312这两种DCP均为三线制接口、带掉电自动保存功能的非易失性数字电位器,其内部分别包含31、99个电阻单元构成的电阻阵列,相邻两个电阻单元以及电阻阵列端点都设置有可以被滑动单元访问的抽头,如图1所示。滑动单元的位置由CS、U/D和INC 三个输入端控制,抽头位置值能够被存储在非易失性存储器中,供下次上电时调用置位。 图1 X931x系列DCP的内部结构 系统的每个声道的音量控制由两个X9313与一个X9312构成,图2为三个数字电位器的功能连接图。所有DCP的U/D、INC端分别连接在一起,而片选端CS各自占用一个MCU 端口。这种硬件连接方式能够很容易地实现四声道乃至更多声道的音量控制。为了与常见的数字式音量调整习惯一致,最好不要保留通用DCP的三键式控制方式,而只需设置UP/DOWN 两组按键直接控制音量的增减。UP/DOWN按键与MCU的连接应设置软件延时的去抖算法,以消除按键输入时的抖动,MCU与DCP之间则不再考虑按键抖动。

音响-电位器原理

沈摄影师: 我先简单的说下,其实本质上都是分一部分电压对地,习惯上,我们说分压,分流 沈摄影师: 常见的电位器分3个类,碳膜电位器,分压步进电位器,分流步进电位器 沈摄影师: 遥控电位器只能用在碳膜电位器上,无非是增加一个遥控马达而已,多一组直流驱动马达而已, 沈摄影师: 碳膜电位器本质上和分压步进电位器一样,只是平滑过渡,缺点是噪音大,频宽有限,时间长了,导电碳膜一旦受潮,受到油污后,受热老化,严重影响音质, 沈摄影师: 所以只用在普通音响产品当中 沈摄影师: 高级的音响产品用分压步进电位器,超高级产品(旗舰产品)用分流步进电位器 沈摄影师: 我们来看电路图,先看分压步进电位器:来自CD的信号进入上面的输入端,然后在旁边,有很多级的输出 沈摄影师: 不同的输出代表了不同的衰减量,从上到下,音量从响到轻,大家注意到,音量越轻的时候,他需要很多电阻串联累计后衰减一部分电压到信号地,所以电压的幅度就能变化,导致音量的响度变化 ls: @沈摄影师沈老师,你还是详细说一下分流的原理吧 沈摄影师: 那么问题来了:除非你永远开的最响,否则音频信号要经过多个电阻的后才能衰减,每2个电阻之间都有焊点和分布电容,导致信号的细节,频宽,受到严重的损失,音质大大受损,另外大家可以看到,由于他的串联的电阻数量在不同的音量下都是不一样的,导致功率放大器的输入阻抗不是恒定的,也就是说,他的输入灵敏度受到音量大小的变化,导致声音在不同的响度下,音色音质,并不一样 沈摄影师: @沙枣树老板,不要急,小姐是一个一个出来让你选的,先上难看的,再上好看的 沈摄影师: 分压步进电位器一般用在高级的电子管放大器中,有的高级晶体管也用,

选用射频滤波器(馈通滤波器、穿心电容)的方法

选用射频滤波器(馈通滤波器、穿心电容)的方法 随着电子设备工作频率的迅速提高,电磁干扰的频率也越来越高,干扰频率通常会达到数百MHz,甚至GHz以上。由于电压或电流的频率越高,越容易产生辐射,因此,正是这些频率很高的干扰信号导致了辐射干扰的问题日益严重。因此,对用来解决辐射干扰的滤波器的一个基本要求就是要能对这些高频干扰信号有较大的衰减,这种滤波器就是射频干扰滤波器。普通干扰滤波器的有效滤波频率范围为数kHz 数十MHz,而射频干扰滤波器的有效滤波频率范围从数kHz到GHz以上。 按照传统方式构造的滤波器不能成为射频滤波器。这是由于两个原因:第一个原因是:旁路电容寄生电感较大(导致串联谐振,增加了旁路阻抗),导致电容器在较高的频率并不具有较低的阻抗,起不到旁路的作用。第二个原因是:滤波器的输入端和输出端之间的杂散电容导致高频干扰信号耦合,使滤波器对高频干扰失去作用。解决这个问题的方法是用穿心电容作为旁路电容。穿心电容具有非常小的寄生电感,旁路阻抗非常小,并且由于采用隔离安装方式,消除了输入输出端之间的高频耦合。 选择射频滤波器需要考虑的因素有: 截止频率:滤波器的插入损耗大于3dB的频率点称为滤波器的截止频率,当频率超过截止频率时,滤波器就进入了阻带,在阻带,干扰信号会受到较大的衰减。根据使用滤波器的场合不同(信号电缆滤波还是电源线滤波),可以用两个方法来确定滤波器的截止频率。在对信号电缆进行滤波时,根据有效信号的带宽来确定,截止频率要大于信号的带宽,这样才能保证有用信号不被衰减。在对电源线或直流信号线,滤波时,由于有效信号的频率很低,信号失真的问题不是主要因素,因此主要根据干扰信号的频率来定,要使干扰频率全部落在滤波器的阻带内。滤波器的截止频率越低,滤波器的尺寸越大,价格越高,因此没有必要时(干扰的频率不是很低时),不要盲目选用截止频率过低的滤波器。 插入损耗:指滤波器在阻带的损耗数值(dB),每一种滤波器都有一张插入损耗与频率对应的表格,选用滤波器时,根据干扰信号的频率和需要衰减的程度确定对插入损耗的要求。需要注意的一点是,产品样本上给出的插入损耗是在50 系统中测量的,实际使用条件如果不是50 ,插入损耗会有差异。 额定电压:滤波器在正常工作时能够长时间承受的电压,要注意正确选用直流和交流品种,在交流应用场合绝对不能使用直流的品种,否则容易发生击穿。由于几乎所有的电磁兼容试验都有脉冲干扰的项目,因此在选用滤波器时要考虑这种高压脉冲干扰的作用,耐压值需要留有一定的富裕量。 额定电流:滤波器在正常工作时能够长时间流过的电流值,额定电流由滤波器的引线直径决定,线径越大,额定电流越大。对于滤波器组件,额定电流还与电感线圈的饱和特性有关,当电流超过额定电流时,滤波器的性能会下降。 工作温度范围:滤波器件能保证预定性能和正常工作时所处的环境温度,本样本中的滤波器件除了特别标出的以外,工作温度范围为有-55 - +125 C。 滤波器的体积:滤波器的体积与滤波器的额定工作电压、工作电流、截止频率、插入损耗以及制造工艺有关。电气性能基本相同的滤波器,由于不同的制造工艺而导致不同的体积,电气性能接近时,体积较大的滤波器价格较低(适合安装空间较大的场合)。 射频滤波器的安装方式对滤波器的性能有很大影响。首先射频干扰滤波器必须以金属板为隔离板,将滤波器的输入和输出隔离开。其次,滤波器要与金属板之间保持低阻抗的接触,以保证滤波电容的旁路效果。最好将滤波器安装在镀锡或锌的铝板或钢板上。为了保证可靠的连接,一般要在滤波器的安装法兰与隔离板之间安装内齿垫片,而不能使用导电胶之类的物质来达到可靠连接的目的。需要注意的问题是,不同金属的接触面之间会发生电化学腐蚀,

单片机步进电机设计说明书含电路原理图.

华北水利水电学院 单片机课程设计 步进电机设计说明书 2012——2013学年 第2学期 专业班级: 学号: 姓名: 指导教师:雷冀南 院、系:机械学院 教研室:机械制造教研室

注:指导教师在课程设计期间每天指导时间不少于2小时。 教学院长:教研室主任: 填表人:雷冀南填表时间:2013年04月13日

步进电机课程设计说明书 目录 第一章课程设计整体认识及规划 (5) 第二章电路所用主要元件认识 (6) 第三章画电路原理图 (11) 第四章编写程序 (12) 第五章调试模拟达到效果 (13) 第六章焊接电路板 (13) 第七章程序烧写 (14) 第八章总结 (14) 参考文献 (14) 附页附图 (15) 附录1 程序流程图 附录2 C51程序 附录3 电路原理图

[摘要]本课程设计的内容是利用51单片机,达到控制步进电机的启动、停止、正转、反转、速度和状态显示的目的,使步进电机控制更加灵活。步进电机驱动芯片采用ULN2003A,ULN2003A具有大电流、高电压,外电路简单等优点。利用数码管增设电机速度状态显示功能,各项数据更直观。实测结果表明,该控制系统达到了设计的要求。 关键字:步进电机、数码管、51单片机、ULN2003A、设计过程 第一章课程设计整体认识及规划 1.1课程设计目的 《单片机应用基础》课程设计是学好本门课程的又一重要实践性教学环节,课程设计的目的就是配合本课程的教学和平时实验,以达到巩固消化课程的内容,进一步加强综合应用科研的基本技能,是以培养学生综合运用所学知识的过程,是知识转化为能力和能力转化为工程素质的重要阶段。 1.2课程设计任务 根据给定的任务要求选择合适的单片机和其他电子元器件,进行系统硬件电路设计和软件编程,根据系统制作并调试系统电路板,使之实现任务要求。有关参数选择要求符合国家标准。具体设计内容如下: 1.能控制电机正反转,有正转和反转按钮。 2.在一定范围内可控制转速,有加速和加速按钮,用七段码显示。 3.可在不断电源的情况下暂停,有一个暂停按钮。 4.电动机处于哪个速度状态观察七段码数值,也可直观的观察电动机的旋转状态比较。

使用电位器应注意的事项

使用电位器应注意的事项 ①电位器批发和使用前应先对电位器的质量进行检查。电位器的轴柄应转动灵活、松紧适当,无机械杂声。用万用表检查标称电阻值,应符合要求。若用万用表测量电位器固定端与滑动端接线片间的电阻值,在缓慢旋转电位器旋柄轴时,表针应平稳转动、无跳跃现象。 ②由于电位器的一些零件是用聚碳酸酣等合成树脂制成的,所以不要在含有氨、胺、碱溶液和芳香族碳氢化合物、酮类、卤化碳氢化合物等化学物品浓度大的环境中使用,以延长电位器的使用寿命。 ③对于有接地焊片的电位器,其焊片必须接地,,以防外界干扰。 ④电位器不要超负载使用,要在额定值内使用。当电位器作变阻器调节电流使用时,允许功耗应与动触点接触电刷的行程成比例地减少,以保证流过的电流不超过电位器允许的额定值,防止电位器由于局部过载而失效。 为防止电位器阻值调整接近零时的电流超过允许的最大值,最好串接一限流电阻,以避免电位器过流而损坏。 ⑤电流流过高阻值电位器时产生的电压降,不得超过电位器所允许的最大工作电压。 ⑥为防止电位器的接点、导电层变质或烧毁,小阻值电位器的工作电流不得超过接点允许的最大电流。 ⑦电位器在安装时必须牢固可靠,应紧固的螺母应用足够的力矩拧紧到位,以防长朝使用过程中发生松动变位,与其他元件相碰而引生电路故障。 ⑧各种微调电位器可直接在印制电路板上安装,但应注意相邻元件的排列,以保证电位器调节方便而又不影响相邻元件。 ⑨非密封的电位器最容易出现噪声大的故障,这主要是由于油污及磨损造成的。此时千万不能用涂润滑油的方法来解决这一问题,涂润滑油反而会加重内部灰尘和导电微粒的聚集。正确的处理方法是,用蘸有无水酒精的棉球轻拭电阻片上的污垢,并清除接触电刷与引出簧片上的油溃。 ⑩电位器严重损坏时需要更换新电位器,这时最好选用型号和阻值与原电位器相同的电位器,还应注意电位器的轴长及轴端形状应与原旋钮相匹配。如果万一找不到原型号、原阻值的电位器,可用相似阻值和型号的电位器代换。代换的电位器阻值允许增值变化20%-30%,代换电位器的额定功率一般不得小于原电位器的额定功率。除此之外,代换的电位器还应满足电路及使用中的要求。 鼎好电子网https://www.doczj.com/doc/3a10274846.html,/

射频微波滤波器的设计仿真与测试

射频微波滤波器的设计仿真与测试

一、实验目的 1.掌握低通原型滤波器的结构 2.掌握最平坦和等波纹型低通滤波器原型频率响应特性 3.了解频率变换法设计滤波器的原理及设计步骤 4.了解利用微带线设计低通、带通滤波器的原理方法 5.掌握用ADS 进行微波滤波器优化仿真的方法与步骤。 二、实验原理 2.1.滤波器的技术指标 中心频率,通带最大衰减,阻带最小衰减,通带带宽,插入损耗,群时延,带内纹波,回波损耗,驻波比 2.2 插入衰减法设计滤波器 通常采用工作衰减来描述滤波器的衰减特性: 插损法是一种系统的综合方法,可高度地控制整个通带和阻带内的幅度和相位特性,可以计算出满足应用需求的最好响应。如要求插损小,可用二项式响应;而切比雪夫响应能满足锐截止的需要;若可牺牲衰减率的话,则能用线性相位滤波器设计法获得好的相位响应。插损法使滤波器性能提高的最为直接的方法便是增加滤波器的阶数,滤波器的阶数等于元件的个数。 2.3 集总元件低通滤波器原型 最平坦响应滤波器设计 dB P P L L in A lg 10

2.4 滤波器的实现--频率变换 变换后在对应频率点上衰减量不变,须对应的元件值在两种频率下的具有相同的阻抗 2.5 滤波器的设计步骤 (1)由衰减特性综合出低通原型 (2)再进行频率变换,变换成所设计的滤波器类型 (3)计算滤波器电路元件值(集总元件) (4)微波结构实现电路元件,并用微波微波仿真软件进行优化仿真 三.练习题 对下面结构的微带支节低通滤波器的两种设计进行原理图和版图仿真,并分析其特性。

原理图: 仿真结果:

版图 仿真结果: 实验结果分析:结果基本上达到要求。带宽2.35GHZ-2.55GHZ,袋内衰减在3dB以内,2.3GHZ一下以及在2.75GHZ以上衰减达到大于40dB,端口反射系数较小。 四.滤波器的测量--AV36580A矢量网络分析仪

射频微带滤波器基础理论

第2章射频微带滤波器基础理论 频率的提高意味着波长的减小,该结论应用于射频电路中,就是当波长与分立元件的集合尺寸相比拟时,电压和电流不再保持空间不变,以波的形式进行传播。经典的基尔霍夫电压和电流定律没有考虑电压和电流在空间的变化,则必须对普通的集总电路做重大的修改。 本章首先介绍了射频微带滤波器设计中所涉及的基本概念,然后介绍了二端口网络理论和谐振与耦合理论。 2.1 传输线理论 2.1.1 均匀传输线的概念和模型 频率提高后,导线中所流过的高频电流会产生趋肤效应,工程上常用趋肤深度δ来描述这种趋肤效应,δ为电磁波场强的振幅值衰减到表面值1/e所经过的距离,由于趋肤效应使得导线有效面积减小,高频电阻加大,而且沿线各处都存在损耗,这就是分布电阻效应;通高频电流的导线周围存在高频磁场,这就是分布电感效应;由于两导线之间有电压,故两线之间存在高频电场,这就是分布电容效应;由于两线间的介质并非理想介质而存在漏电流,这相当于双线间并联一个电导,这就是分布电导效应。基于上述的物理事实,便可得出双线传输线等效模型[18]如图2.1所示。 图2.1 双线传输线等效模型 图2.1中,R1为单位长度的分布电阻,L1为单位长度的分布电感,G1为单位长度的分布电导,C1为单位长度的分布电容。

2.1.2 均匀传输线相速与波长 相位速度是等相位面传播的速度,简称相速。在均匀传输线理论中等相位面是垂直于z 轴的平面,相速v p 为 β ω==dt dz v p (2-1) 在一个周期的时间内波所行进的距离称为波长,波长λp 为 βπ λ2===T v f v p p p (2-2) 其中f 为电磁波频率,T 为振荡周期。 2.1.3 均匀传输线特性阻抗 入射电压与入射电流之比或反射电压与反射电流之比称为特性阻抗(即波阻抗),特性阻抗Z 0为 1 1110C j G L j R Z ωω++= (2-3) 对于微波传输线由于频率很高,11R L j ω<<、11G C j ω<<,则 1 10Z C L = (2-4) 2.1.4 均匀传输线传播常数 传播常数γ表示行波经过单位长度后振幅和相位的变化,其表示式为 βαωωγj C j G L j R +=++=))((1111 (2-5) 由于实际微波传输线的损耗R 1、G 1比ωL 1、ωC 1小得多,式(2-5)经变换后可得 22220101111111Z G Z R C L G L C R +=+= α (2-6) 其中:0 12Z R c =α ——由导体电阻引起的损耗; 2 01Z G d = α ——由导体间介质引起的损耗。

相关主题
文本预览
相关文档 最新文档