当前位置:文档之家› 给水厂设计书

给水厂设计书

给水厂设计书
给水厂设计书

《水质工程学I》课程设计说明书

设计名称:某给水厂课程设计

院系:土木工程学院

专业:给水排水工程

学号: 086648

姓名:高亦周

指导老师:李静

设计时间: 2011.10.8

目录

第一章总论 (3)

一设计任务及要求 (3)

1、设计任务 (3)

2、设计要求 (3)

二设计原始资料 (4)

1、概述 (4)

2、水源资料 (4)

第二章水厂规模 (5)

城市用水量计算 (5)

第三章总体设计 (7)

一给水处理构筑物 (7)

二设备型式选择 (7)

第四章各构筑物的选择及设计计算 (13)

一加药间设计计算 (13)

二混合设备设计计算 (15)

三往复式隔板絮凝池 (16)

四斜管沉淀池 (19)

五 V型滤池 (23)

六消毒和清水池 (27)

第五章水厂高程布置计算

一管渠的水力计算 (32)

第五章主要参考文献资料-34-

第一章总论

1.1设计任务及要求

1.1.1设计任务

给水工程课程设计题目是“某给水厂课程设计”,其内容包括以下部分:

1、根据水质、水量、地区条件、施工条件和一些给水处理厂运转情况选定处理方案和确定处理工艺流程。

2、拟定各种构筑物的设计流量及工艺参数。

3、选择各种构筑物的类型和数目,初步进行给水处理厂的平面布置和高程布置。在此基础上确定的构筑物的形式、有关尺寸安装位置等。

4、进行各种构筑物的设计和计算,定出各种构筑物和主要构件的尺寸,设计时要考虑到构筑物及其构造、施工上的可能性。

5、根据各构筑物的确切尺寸,确定个构筑物在平面布置上的确切位置,并最后完成平面布置。

6、给水处理厂厂区主体构筑物(生产工艺)和附属构筑物的布置,厂区道路、绿化等总体布置。

7、绘制本设计任务书中指定的水厂平面,工艺高程图纸两张(3#图)。

8、写出设计说明书及计算说明书。

1.1.2、设计要求

1.根据所给水质情况,确定处理工艺流程,并用方框图表示。

2.根据混凝实验结果选用混凝剂并决定其投量(也可参考设计手册比照相似情况选用),设计计算溶药池、溶液池的溶积、设计投药系统及药库并进行相应的平面布置。

3.设计计算混合池、絮凝池、沉淀池(或澄清池),并在设计说明书中绘出它们的工艺流程图(单线图)。

4.设计计算滤池(包括根据筛分资料,将滤料改组成所需d10=0.5mm, K80=1.8),并绘出工艺图。

5.设计计算加氯间、氯库。

6.设计计算清水池容积。

7.设计计算各构筑物之间的联接管道(它括水头损失值)。

8.设计全厂总平面布置和高程布置,并绘出其平面布置和高程布置图,以及水厂中滤池(学号为单数)、混凝池或澄清池或沉淀池(学号为双数)的平剖面图。

1.2 设计原始资料

1.2.1概述

(一)设计题目:某给水厂课程设计

(二)相关设计资料

1.基本资料

⑴地理条件:地形平坦,厂区平均海拔高程20m。

⑵厂位置占地面积:水厂位置距离河岸200m,占地面积充分。

⑶水文资料:扬子洲地处赣江水域。

水文站:

历史实测最高洪水位:24.8m (1982.6.20) 历史实测最低水位:14.66m (2004.1.9)

百年一遇洪水位26.52m ,五十年一遇洪水位26.08m ,二十年一遇洪水位25.52m 。

实测最大流量20900s m /3

实测最大流速2.53s m /(1964年),实测河面宽1400m

历史最枯流量172s m /3,多年平均流量为2080s m /3

⑷气象资料:属亚热带湿润性气候,温暖湿润,温差较大,历史最高气温达40.8C

,最低气温为-15.2C

。多年平均降雪日6.9天,最大积雪厚度160mm ;多年平均结冰日21天。无冻土,全年无霜期平均277天。

(三)设计水量:Q=6.1×104m 3/d

1.2.2水源资料 (一)水源概况

原水取自赣江水域。所取河段水质检测情况如下:

表1 水源水质

项目

CODMn (mg/L )

浊度 (NTU )

色度 (度)

氨氮 (mg/L )

臭味 (mg/L )

最大 最小 平均值

12.6 5.9 8.49

380 41 163

泛黑 32 40

6.45 0.20 2.0

异味 Ⅴ

(二)处理要求

执行《生活饮用水卫生标准》GB5749-2006.

第二章 设计水质水量与工艺流程的确定

2.1 设计水质水量

2.1.1 设计水质及水质分析 2.1.1.1 设计水质

本设计给水处理工程设计水质满足国家生活饮用水卫生标准(GB5749-2006),处理的目的是去除原水中悬浮物质,胶体物质、细菌、病毒以及其他有害万分,使净化后水质满足生活饮用水的要求。

生活饮用水水质应符合下列基本要求:

(1) 水中不得含有病原微生物。

(2) 水中所含化学物质及放射性物质不得危害人体健康。 (3) 水的感官性状良好。

2.1.1.2 水质分析

本设计中,COD Mn ,浊度,色度,氨氮,均不达标,需要处理。同时,水中有臭味异味,也需要处理。

2.1.2 设计水量

水处理构筑物的生产能力,应以最高日供水量加水厂自用水量进行设计,并以水质最不利情况进行校核。水厂自用水量主要用于滤池冲洗和澄清池排泥等方面。城镇水厂只用水量一般采用供水量的5%—10%,本设计取10%,则设计处理量为: 6710061000*10.1)1(==+=b Q a Q a

——水厂自用水量系数,一般采用供水量的5%—10%,本设计取10%; Q d ——设计供水量(m 3

/d ),为6.1万m 3

/d.

2. 2 给水处理流程确定

2.2.1 给水处理工艺流程的选择

给水处理工艺流程的选择与原水水质和处理后的水质要求有关。地表水为水源时,生活饮用水通常采用混合、絮凝、沉淀、过滤、消毒的处理工艺。如果是微污染原水,则需要进行特殊处理。

综合分析后得出最终的工艺流程为:

原水→活性炭(粉末)预吸附→混凝沉淀或澄清→过滤→活性炭(颗粒)吸附→消毒 框图表示为:

布置草图如下:

原水 混合池 沉淀池

市政管网

絮凝池 颗粒活性炭滤池

二级泵房 清水池

混凝剂及粉末活性炭 消毒剂

第三章给水处理构筑物与设备型式选择

3.1 加药间

3.1.1药剂溶解池

设计药剂溶解池时,为便于投置药剂,溶解池的设计高度一般以在地平面以下或半地下为宜,池顶宜高出地面0.20m左右,以减轻劳动强度,改善操作条件。

溶解池的底坡不小于0.02,池底应有直径不小于100mm的排渣管,池壁需设超高,防止搅拌溶液时溢出。由于药液一般都具有腐蚀性,所以盛放药液的池子和管道及配件都应采取防腐措施。溶解池一般采用钢筋混凝土池体,若其容量较小,可用耐酸陶土缸作溶解池。

3.1.2 混凝剂药剂的选用与投加

3.1.2.1. 混凝剂药剂的选用

混凝剂选用:碱式氯化铝[Al n(OH)m CL3n-m]简写PAC. 碱式氯化铝在我国从七十年代初开始研制应用,因效果显著,发展较快,目前应用较普遍,具用使胶粒吸附电性中和和吸附架桥的作用。本设计水厂混凝剂最大投药量为30mg/l。其特点为:

1)净化效率高,耗药量少除水浊度低,色度小、过滤性能好,原水高浊度时尤为显著。

2)温度适应性高:PH值适用范围宽(可在PH=5~9的范围内,而不投加碱剂)

3)使用时操作方便,腐蚀性小,劳动条件好。

4)设备简单、操作方便、成本较三氯化铁低。

5)无机高分子化合物。

3.1.2.2. 混凝剂的投加

混凝剂的湿投方式分为重力投加和压力投加两种类型,重力投加方式有泵前投加和高

位溶液池重力投加;压力投加方式有水射投加和计量泵投加。计量设备有孔口计量,浮杯计量,定量投药箱和转子流量计。本设计采用耐酸泵和转子流量计配合投加。

3.1.3 加氯间

1、靠近加氯点,以缩短加氯管线的长度。水和氯应充分混合,接触时间不少于30min。为管理方便,和氯库合建。加氯间和氯库应布置在水厂的下风向。

2、加氯间的氯水管线应敷设在地沟内,直通加氯点,地沟应有排水设施以防积水。氯气管用紫铜管或无缝钢管,氯水管用橡胶管或塑料管,给水管用镀锌钢管,加氨管不能用铜管。

3、加氯间和其他工作间隔开,加氯间应有直接通向外部、且向外开的门,加氯间和值班室之间应有观察窗,以便在加氯间外观察工作情况。

4、加氯机的间距约0.7m,一般高于地面1.5m左右,以便于操作,加氯机(包括管道)不少于两套,以保证连续工作。称量氯瓶重量的地磅秤,放在磅秤坑内,磅秤面和地面齐平,使氯瓶上下搬运方便。有每小时换气8-12次的通风设备。加氯间的给水管应保证不断水,并且保持水压稳定。加氯间外应有防毒面具、抢救材料和工具箱。防毒面具应防止失效,照明和通风设备应有室外开关。

设计加氯间时,均按以上要求进行设计。

3.2混合设备

在给排水处理过程中原水与混凝剂,助凝剂等药剂的充分混合是使反应完善,从而使得后处理流程取得良好效果的最基本条件。混合是取得良好絮凝效果的重要前提,影响混合效果的因素很多,如药剂的品种、浓度、原水温度、水中颗粒的性质、大小等。混合设备的基本要求是药剂与水的混合快速均匀。同时只有原水与药剂的充分混合,才能有效提高药剂使用率,从而节约用药量,降低运行成本。混合的方式主要有管式混合、水力混合、水泵混合以及机械混合等。由于水力混合难以适应水量和水温等条件变化,且占地大,基建投资高;水泵混合设备复杂,管理麻烦;机械混合耗能大,维护管理复杂;相比之下,管式静态混合器是处理水与混凝剂、助凝剂、消毒剂实行瞬间混合的理想设备,管式混合具有占地极小、投资省、

设备简单、混合效果好和管理方便等优点而具有较大的优越性。它是有二个一组的混合单元件组成,在不需外动力情况下,水流通过混合器产生对分流、交叉混合和反向旋流三个作用,混合效益达90-95%,本设计采用管式静态混合器对药剂与水进行混合。

3.3、絮凝池

絮凝过程就是在外力作用下,使具有絮凝性能的微絮粒相互接触碰撞,而形成更大具有良好沉淀性能的大的絮凝体。目前国内使用较多的是各种形式的水力絮凝及其各种组合形式,主要有隔板絮凝、折板絮凝、栅条(网格)絮凝、和穿孔旋流絮凝。

表3-1 絮凝池的类型及特点表

根据以上各种絮凝池的特点以及实际情况并进行比较,本设计选用往复式隔板絮凝池。

类 型

特点

适用条件

隔板式絮凝池

往复式

优点:絮凝效果好,构造简单,施

工方便;

缺点:容积较大,水头损失较大,

转折处钒花易破碎 水量大于30000m 3

/d 的水厂;水量变动小者

回转式 优点:絮凝效果好,水头损失小,

构造简单,管理方便; 缺点:出水流量不宜分配均匀,出

口处宜积泥

水量大于30000m 3

/d 的水厂;水量变动小者;改建和扩建旧池时更适用

旋流式絮凝

优点:容积小,水头损失较小; 缺点:池子较深,地下水位高处施

工较难,絮凝效果较差 一般用于中小型水厂

折板式絮凝

优点:絮凝效果好,絮凝时间短,

容积较小;

缺点:构造较隔板絮凝池复杂,造

价高

流量变化较小的中小型水厂

网格絮凝池

优点:絮凝效果好,水头损失小,

絮凝时间短; 缺点:末端池底易积泥

3.4 沉淀池

常见各种形式沉淀池的性能特点及适用条件见如下的各种形式沉淀池性能特点和适用条件。

表3-2 各种形式沉淀池性能特点和适用条件表

型式性能特点适用条件

平流式优点: 1、可就地取材,造价低;

2、操作管理方便,施工较简单;

3、适应性强,潜力大,处理效果稳定;

4、带有机械排泥设备时,排泥效果好

缺点: 1、不采用机械排泥装置,排泥较困难

2、机械排泥设备,维护复杂;

3、占地面积较大

1、一般用于大中

型净水厂;

2、原水含砂量大时

作预沉池

竖流式优点: 1、排泥较方便

2、一般与絮凝池合建,不需建絮凝池;

3、占地面积较小

缺点: 1、上升流速受颗粒下沉速度所限,出水流量小,

一般沉淀效果较差;

2、施工较平流式困难

1、一般用于小型净

水厂;

2、常用于地下水位

较低时

辐流式优点: 1、沉淀效果好;

2、有机械排泥装置时,排泥效果好;

缺点: 1、基建投资及费用大;

2、刮泥机维护管理复杂,金属耗量大;

3、施工较平流式困难

1、一般用于大中

型净水厂;

2、在高浊度水地区

作预沉淀池

斜管(板)式优点:1、沉淀效果高;2、池体小,占地少

缺点:1、斜管(板)耗用材料多,且价格较高;

2、排泥较困难

1、宜用于大中型

2、宜用于旧沉淀池

的扩建、改建和

挖槽

原水经投药、混合与絮凝后,水中悬浮杂质已形成粗大的絮凝体,要在沉淀池中分离出来以完成澄清的作用。

设计采用斜管沉淀池。相比之下,平流式沉淀池虽然具有适应性强、处理效果稳定和排泥效果好等特点,但是,平流式占地面积大。而且斜管沉淀池因采用斜管组件,使沉淀效率大大提高,处理效果比平流沉淀池要好。斜管式沉淀池有上向流斜板和下向流斜板。因为原水浊度比较大,且不稳定,所以采用上向流斜板,它可以处理浊度很大的水,甚至于高浊度水。

3.5滤池

(1)、多层滤料滤池:优点是含污能力大,可采用较大的流速,能节约反冲洗用水,降速过滤水质较好,但只有三层滤料、双层滤料适用大中型水厂;缺点是滤料不易获得且昂贵管理麻烦,滤料易流逝且冲洗困难易积泥球,需采用助冲设备;

(2)、虹吸滤池:适用于中型水厂(水量2—10万吨/日),土建结构较复杂,池深大,反洗时要浪费一部分水量,变水头等速过滤水质也不如降速过滤:

(3)、无阀滤池、压力滤罐、微滤机等日处理小,适用于小型水厂;

(4)、移动罩滤池:需设移动洗砂设备机械加工量较大,起始滤速较高,因而滤池平均设计滤速不宜过高,罩体合隔墙间的密封要求较高,单格面积不宜过大(小于10m2 );

(5)、普通快滤池:是向下流、砂滤料的回阀式滤池,适用大中型水厂,单池面积一般不宜大于100m2 。优点有成熟的运行经验运行可靠,采用的砂滤料,材料易得价格便宜,采用大阻力配水系统,单池面积可做得较大,池深适中,采用降速过滤,水质较好;

(6)、双阀滤池:是下向流、砂滤料得双阀式滤池,优缺点与普通快滤池基本相同且减少了2只阀门,相应得降低了造价和检修工作量,但必须增加形成虹吸得抽气设备。

(7)、V型滤池:从实际运行状况,V型滤池来看采用气水反冲洗技术与单纯水反冲洗方式相比,主要有以下优点:

1)、较好地消除了滤料表层、内层泥球,具有截污能力强,滤池过滤周期长,反冲

洗水量小特点。可节省反冲洗水量40~60%,降低水厂自用水量,降低生产运行成本。

2)、不易产生滤料流失现象,滤层仅为微膨胀,提高了滤料使用寿命,减少了滤池补砂、换砂费用。

3)、采用粗粒、均质单层石英砂滤料,保证滤池冲洗效果和充分利用滤料排污容量,使滤后水水质好。

根据设计资料,综合比较选用目前较广泛使用的V型滤池。

3.6 消毒方法

水的消毒处理是生活饮用水处理工艺中的最后一道工序,其目的在于杀灭水中的有害病原微生物(病原菌、病毒等),防止水致传染病的危害。其方法分化学法与物理法两大类,前者系水中投家药剂,如氯、臭氧、重金属、其他氧化剂等;后者在水中不加药剂,而进行加热消毒、紫外线消毒等。

经比较,采用液氯消毒。氯是目前国内外应用最广的消毒剂,除消毒外还起氧化作用。加氯操作简单,价格较低,且在管网中有持续消毒杀菌作用。原水水质较好时,一般为滤后消毒,虽然二氧化氯,消毒能力较氯强而且能在管网中保持很长时间,但是由于二氧化氯价格昂贵,且其主要原料亚氯酸钠易爆炸,国内目前在净水处理方面应用尚不多。

第四章 各构筑物的选择及设计计算

4.1 加药间设计计算

4.1.1. 设计参数

据试验:

图4.1不同混凝剂处理效果对比

已知计算水量Q=67100m 3

/d=2800m 3

/h 。根据原水水质,参考上图,选碱式氯化铝(PAC )为混凝剂,据原水水质浊度判断,混凝剂的最大投药量a=20mg/L ,药容积的浓度b=15%,混凝剂每日配制次数n=2次。

表4.1 原水浊度与最佳投药量

4.1.2. 设计计算

4.1.2.1 溶液池容积1W 77.415

24172800204171

=×××==bn aQ W ,取5m 3 式中:a —混凝剂(碱式氯化铝)的最大投加量(mg/L ),本设计取20mg/L; Q —设计处理的水量,2800m 3

/h;

B —溶液浓度(按商品固体重量计),一般采用5%-20%,本设计取15%;

n —每日调制次数,一般不超过3次,本设计取2次。

溶液池采用矩形钢筋混凝土结构,设置2个,每个容积为W 1(一备一用),以便交替使用,保证连续投药。单池尺寸为m m m H B L 0.20.25.2××=××,高度中包括超高0.3m ,置于室内地面上.

溶液池实际有效容积:3

5.85.10.25.2m W z =×

×=满足要求。 池旁设工作台,宽1.0-1.5m ,池底坡度为0.02。底部设置DN100mm 放空管,采用硬聚氯乙烯塑料管。池内壁用环氧树脂进行防腐处理。沿池面接入药剂稀释采用给水管DN60mm ,按1h 放满考虑。 4.1.2.2 溶解池容积2W

3125.10.53.03.0m W W =×==

式中: 2W ——溶解池容积(m 3

),一般采用(0.2-0.3)1W ;本设计取0.31W

溶解池也设置为2池,单池尺寸:m m m H B L 8.10.10.2××=××,高度中包括超高0.2m ,底部沉渣高度0.2m ,池底坡度采用0.02。

溶解池实际有效容积:3

8.24.10.10.2m W z =××

= 溶解池的放水时间采用t =10min ,则放水流量:

s L t W q 5.260

101000

5.16020=××==

查水力计算表得放水管管径0d =75mm ,相应流速0 1.04/d m s =,100016.63/i m s =管材采用硬聚氯乙烯管。溶解池底部设管径d =100mm 的排渣管一根,采用硬聚氯乙烯管。

溶解池的形状采用矩形钢筋混凝土结构,内壁用环氧树脂进行防腐处理。 4.1.2.3 投药管

投药管流量 s L W q 2.060

60241000

25.8606024100021=××××=××××=

查水力计算表得投药管管径d =15mm ,相应流速为0.99m/s 。 4 溶解池搅拌设备

溶解池搅拌设备采用中心固定式平桨板式搅拌机。 5 计量投加设备

混凝剂的湿投方式分为重力投加和压力投加两种类型,重力投加方式有泵前投加和高位溶液池重力投加;压力投加方式有水射投加和计量泵投加。计量设备有孔口计量,浮杯计量,

定量投药箱和转子流量计。本设计采用耐酸泵和转子流量计配合投加。

计量泵每小时投加药量:

h m W q 3142.012

5

12===

式中:1W ——溶液池容积(m 3)

耐酸泵型号25FYS-20选用2台,一备一用. 6 药剂仓库

估算面积为150m 2

,仓库与混凝剂室之间采用人力手推车投药,药剂仓库平面设计尺寸为10.0m315.0m 。

4.2混合设备设计计算

4.2.1设计参数

设计总进水量为Q=67100m 3

/d ,水厂进水管投药口靠近水流方向的第一个混合单元,投药管插入管径的1/3处,且投药管上多处开孔,使药液均匀分布,进水管采用两条,流速v=1.5m/s 。计算草图如图4-2。

图4.2 管式静态混合器计算草图

4.2.2 设计计算

4.2.2.1设计管径

s m

d m n Q q 33388.0335502

67100

====

; 则静态混合器管径为:

m

v q D 574.05

.114.3388

.044=××==

π ,本设计采用D=800mm ; 4.2.2.2混合单元数 按下式计算

44.2574.00.136.236.23.05.03.05.0=××==D v N ,本设计取N=3;

则混合器的混合长度为:

m DN L 64.238.01.11.1=××==

4.2.2.3混合时间

T=

s v L 64.20

.164

.2== 4.2.2.4水头损失

m n d q h 143.038

.0388.01184.01184.04.42

4.42=××==<0.5m,符合设计要求。

4.2.2.5校核GT 值

1

3

06.69564

.2101.1143.09800=×××=??=s T v h g G ,在500-10001

s 之间,符合设计要

求。

95.183464.206.695=×=GT

4.3 往复式隔板絮凝池设计计算

4.3.1 设计参数

絮凝池设计n=2组,每组设1池,每池设计流量为

s m h m n Q Q 331388.013982

246710024==×==

,絮凝时间T=20min 。

4.3.2设计计算

4.3.2.1 絮凝池有效容积 314662060

1398

m T Q V =×=

= 考虑与斜管沉淀池合建,絮凝池平均水深取2.0m ,池宽取B=15.0m 。 4.3.2.2絮凝池有效长度

m HB V L 1615

2466=×==

式中: H ——平均水深(m);本设计取超高0.5m ,H=2.0m ; 4.3.2.3 隔板间距

絮凝池起端流速取s m v 5.0=,末端流速取s

m v 2.0=。首先根据起,末端流速和平均

水深算出起末端廊道宽度,然后按流速递减原则,决定廊道分段数和各段廊道宽度。

起端廊道宽度: m vH Q a 388.025.0388.01=×==

末端廊道宽度: m vH Q a 97.02

2.0388

.01=×==

廊道宽度分成4段。各段廊道宽度和流速见表2-1。应注意,表中所求廊道内流速均按平均水深计算,故只是廊道真实流速的近似值,因为,廊道水深是递减的。

四段廊道宽度之和m b 174.1882.598.427.41.3=+++= 取隔板厚度δ=0.20m ,共27块隔板,则絮凝池总长度L 为:

m L L z 57.232.02717.182.027=×+=×+=

4.3.2.4 水头损失计算

i i

i i it i i l R C v g v m h 2

222= 式中: v i ——第i 段廊道内水流速度(m/s ); it v ——第i 段廊道内转弯处水流速度(m/s ); m i ——第i 段廊道内水流转弯次数;

ξ——隔板转弯处局部阻力系数。往复式隔板(1800转弯)ξ=3;

i l ——第i 段廊道总长度(m);

i R ----第i 段廊道过水断面水力半径(m );

i C ——流速系数,随水力半径Ri 和池底及池壁粗糙系数n 而定,通常按曼宁公式

1

61i i C R n

=计算。

H a H

a R 2111=

=0

.22388.00.2388.0××× =0.27 m 表4.2 廊道宽度和流速计算表

廊道分段号1234各段廊道宽度(m )0.39 0.61 0.83 0.97 各段廊道流速(m/s )

0.50.42 0.30 0.26 各段廊道数8766各段廊道总净宽(m )

3.10

4.27

4.98

5.82

11

6611110.2761.9230.013

C R n ==?=,213834.51C =

絮凝池采用钢筋混凝土及砖组合结构,外用水泥砂浆抹面,粗糙系数为n=0.013。其他段计算结果得:

表4.3 C 值计算表

a

R C C20.6300.27261.9233834.5090.7500.31663.4784029.4510.9000.36765.0984237.7841.560

0.561

69.861

4880.600

C值计算表

2340.320.370.56

R R R === 23463.4865.1069.86C C C === 2

2232

44029.45

4237.78

4880.60

C C C === 廊道转弯处的过水断面面积为廊道断面积的1.2-1.5倍,本设计取1.4倍,则第一段转弯处流速:

s m aH Q v 357.03600

2388.04.11398

36004.11=×××==

m/s

式中:it v ——第i 段转弯处的流速(m/s ); 1Q ——单池处理水量(m 3/h );

i a ——第i 段转弯处断面间距,一般采用廊道的1.2-1.5倍;

H ——池内水深(m )。

其他3段转弯处的流速为:

表4-4 拐弯流速计算表

a

V(m/s)拐弯宽度0.6250.3570.8750.7500.298 1.0500.9000.248 1.2601.560

0.143

2.184

拐弯数据计算

s

m

v s

m v s

m

v t t t 143.0248.0298.0432===

各廊道长度为:

各段转弯处的宽度分别为0.875m ;1.05m ;1.26m ;2.18m ;

m

B n l m B n l m B n l m B n l 92.76).18215(8).182(44.82).26115(8).261(65.97).05115(8).051(113)875.015(8)875.0(4321=×===×===×===×==

第1段水头损失为:

m l R C v g v m h t 183.011327

.092.61388.08.92357.08322

2

21121212111=××××××==m 4.3.2.5 GT 值计算(t=200C 时) 14

96.5420

10029.160373

.0100060=××××==

s T gh G ,符合设计要求; 65952602096.54=××=GT (在4

10-105

范围之内) 絮凝池与沉淀池合建,中间过渡段宽度为1.5m 。

4.4 斜管沉淀池设计计算

斜管沉淀池是浅池理论在实际中的具体应用,按照斜管中的水流方向,分为异向流、同向流、和侧向流三种形式。斜管沉淀池具有停留时间短、沉淀效率高、节省占地等优点。本设计沉淀池采用异向斜管沉淀池,设计2组。 4.4.1设计参数

设计流量为Q=1398m 3/h ,斜管沉淀池与絮凝池合建,池宽为15m ,表面负荷q=10 m 3/ m 2·h ,斜管材料采用厚0.4mm 塑料板热压成成六角形蜂窝管,内切圆直径d=25mm ,长1000mm ,水平倾角θ=60°,斜管沉淀池计算草图见图4-2.

段数m i l i R i

v it

v i

C i

C i 2

h i 181130.270.3570.5061.923834.090.1832797.650.320.2980.4263.484029.710.1093682.440.370.2480.2865.1

4238.01

0.06146

76.92

0.560.1430.16

69.864880.42

0.020

合计

h=∑h i =0.373m

表4.5 各段水头损失表

图4.3 斜管沉淀池计算草图

穿孔排泥管

配水区

斜管区清水区积泥区

排泥集水管

4.4.2 设计计 4.4.2.1平面尺寸计算 1.沉淀池清水区面积

2

140101398m q Q A ===

,近似取1502

m 。

式中 q ——表面负荷)(2

3

h

m m

?,一般采用9.0-11.032/()m m h ?,本设计取10 32/()m m h ?

2. 沉淀池的长度及宽度

m B A L 1015

150===

则沉淀尺寸为L B ?=10315=150 m 2

,进水区布置在一个15m 的一侧。在15m 的长度中扣除无效长度0.5m ,因此进出口面积(考虑斜管结构系数1.03)

2178.14003

.110

)5.015()5.0(m k L B A =×==

式中: k 1——斜管结构系数,取1.03 3 沉淀池总高度

m h h h h h H 67.48.05.187.02.13.054321=+++==++++=

式中 h 1——保护高度(m ),一般采用0.3-0.5m ,本设计取0.3m ; h 2——清水区高度(m ),一般采用1.0-1.5m ,本设计取1.2m ;

h 3——斜管区高度(m ),斜管长度为1.0m ,安装倾角600

,则m h 87.060sin 3==。

给水厂课程设计说明书

设计总说明 该课程设计针对某城市给水处理厂处理工艺进行设计,通过了解基本资料,确定处理工艺和处理构筑物,然后对给水处理构筑物的工艺尺寸进行了计算,最后综合各方面因素确定了给水厂的平面布置和高程布置,并绘制平面布置图、高程布置图、混凝沉淀池单体图。 关键词:给水处理厂;给水处理构筑物;隔板絮凝池;平流沉淀池;V型滤池

目录 一、设计概要 (5) 1.1设计题目 (5) 1.2设计任务 (5) 1.3原始资料 (5) 1.3.1 工程设计背景 (5) 1.3.2 设计规模 (6) 1.3.3基础资料及处理要求 (6) 二、总体设计 (8) 2.1设计原则 (8) 2.2 厂址选择 (8) 2.3 水厂工艺流程选择 (9) 2.4 水处理工艺的选择 (10) 2.4.1 混凝 (10) 2.4.2 沉淀 (14) 2.4.3 过滤 (16) 2.4.4 消毒 (17) 三、净水构筑物的设计计算 (19) 3.1设计规模 (19) 3.2 配水井设计计算 (19) 3.2.1 配水井设置 (19) 3.2.2 配水井有效体积 (19) 3.2.3 配水井尺寸确定 (19) 3.3 加药间设计计算 (20) 3.3.1混凝剂剂量 (20) 3.3.2混凝剂的投加 (20) 3.3.3 加药间及药库的设计 (22)

3.4混合设备设计 (24) 3.5 反应池设计 (28) 3.5.1 设计水量 (28) 3.5.2 反应池形式及设计参数的确定 (28) 3.5.3 池体的设计 (29) 3.5.4水头损失的计算 (31) 3.5.5 GT值的确定 (32) 3.6沉淀池设计 (33) 3.6.1设计参数的选择 (33) 3.6.2池体尺寸计算 (33) 3.6.3进水穿孔墙 (34) 3.6.4沉淀池出口布置 (35) 3.6.5 沉淀池放空管 (37) 3.6.6 排泥系统设计 (37) 3.7滤池设计 (39) 3.7.1 设计参数 (39) 3.7.2池体设计 (40) 3.7.3反冲洗管渠系统 (43) 3.7.4 滤池管渠设计 (45) 3.8消毒设施的设计与计算 (54) 3.8.1加氯量与储氯量 (54) 3.8.2加氯设备选取与设计 (54) 3.8.3加氯间尺寸计算与确定 (54) 3.9清水池的设计与计算 (56) 3.9.1清水池的有效容积 (56) 3.9.2平面尺寸的确定 (56) 3.9.3清水池的管道系统 (56) 3.9.4清水池其余设施计算 (58)

给水厂设计说明书

1总论 (3) 1.1设计任务及要求 (3) 1.2基本资料 (3) 1.2.1水厂规模 (3) 1.2.3厂区地形 (3) 1.2.4工程地质资料 (3) 1.2.5水文及水文地质资料 (4) 1.2.6气象资料 (4) 2总体设计 (4) 2.1净水工艺流程的确定 (4) 2.2处理构筑物及设备型式选择 (4) 2.2.1药剂溶解池 (4) 2.2.2混合设备 (5) 2.2.3反应池 (5) 2.2.4沉淀池 (5) 2.2.5滤池 (5) 2.2.6消毒方法 (5) 3混凝沉淀 (5) 3.1 混凝剂投配设备的设计 (5) 3.1.1溶液池 (6) 3.1.2溶解池 (7) 3.1.3投药管 (7) 3.2 混合设备的设计 (7) 3.2.1设计流量 (7) 3.2.2设计流速 (8) 3.2.3混合单元数 (8) 3.2.4混合时间 (8) 3.2.5水头损失 (8) 3.2.6校核GT值 (8) 3.3 反应设备的设计 (8) 3.3.1平面布置 (8) 3.3.2平面尺寸计算 (9) 3.3.3栅条设计 (9) 3.3.4竖井隔墙孔洞尺寸 (10) 3.3.5各段水头损失 (11) 3.3.6各段停留时间 (12) 3.4 沉淀澄清设备的设计 (13) 3.4.1设计水量 (13) 3.4.2沉淀池面积 (14) 3.4.4复核管内雷诺数及沉淀时间 (14) 3.4.5配水槽 (15) 3.4.6集水系统 (15) 3.4.7排泥 (16) 4过滤 (16)

4.1滤池的布置 (16) 4.2滤池的设计计算 (16) 4.2.1设计水量 (16) 4.2.2冲洗强度 (16) 4.2.3滤池面积 (16) 4.2.4单池冲洗流量 (17) 4.2.5冲洗排水槽 (17) 4.2.6集水渠 (17) 4.2.7配水系统 (17) 4.2.8冲洗水箱 (18) 5消毒 (19) 5.1加药量的确定 (19) 5.1加氯间的布置 (19) 6其他设计 (20) 6.1清水池的设计 (20) 6.1吸水井的设计 (20) 6.2二泵房的设计 (20) 6.3辅助建筑物面积设计 (20) 7水厂总体布置 (21) 7.1水厂的平面布置 (21) 7.2水厂的高程布置 (21) 8设计体会 (21) 参考文献 (21)

给水厂设计说明书-计算书要点

设 计 说 明 与 计 算 书 一、设计项目 某城市给水厂给水处理工艺初步设计 二、给水处理工艺流程 混凝剂 消毒剂 原水 混凝池 沉淀池 滤池 清水池 二级泵房 用 户 脱水机房 污泥处理 三、设计水量 水处理构筑物的生产能力,应以最高日供水量加水厂自用水量进行设计,并以水质最不 利情况进行校核。水厂自用水量主要用于滤池冲洗和澄清池排泥等方面。城镇水厂只用水量 一般采用供水量的5%—10%,本设计取8%,则设计处理量为; d m Q /12247211340008.1a)Q 1(3d =?=+= d m Q /1134006300183d =?= 式中 Q ——水厂日处理量; a ——水厂自用水量系数,一 般采用供水量的5%—10%,本设计取8%; Q d ——设计供水量(m 3/d ),为115668m 3/d. 四、给水处理厂工艺计算 1、加药间设计计算 已知计算水量Q=122472m 3/d=5103m 3 /h 。根据原水水质及水温,参考有关净水厂的运行 经验,选碱式氯化铝为混凝剂,混凝剂的最大投药量a=51.4mg/L ,药容积的浓度b=15%,混 凝剂每日配制次数n=2次。 4.1.2. 设计计算

1 溶液池容积1W m 9.2015 24175103x 4.51417b 1=??==n aQ V ,取21m 3 式中:a —混凝剂(碱式氯化铝)的最大投加量(mg/L ),本设计取30mg/L; Q —设计处理的水量,3600m 3/h; B —溶液浓度(按商品固体重量计),一般采用5%-20%,本设计取15%; n —每日调制次数,一般不超过3次,本设计取2次。 溶液池采用矩形钢筋混凝土结构,设置2个,每个容积为W 1(一备一用),以便交替使 用,保证连续投药。单池尺寸为1m .35m .20m .3??=??H B L 高度中包括超高0.3m , 置于室内地面上. 溶液池实际有效容积: m 1.28.25.20.3=??=W 满足要求。 池旁设工作台,宽1.0-1.5m ,池底坡度为0.02。底部设置DN100mm 放空管,采用硬聚 氯乙烯塑料管。池内壁用环氧树脂进行防腐处理。沿池面接入药剂稀释采用给水管DN60mm , 按1h 放满考虑。 2 溶解池容积2W 312m 3.6213.03.0=?==W W 式中: 2W ——溶解池容积(m 3 ),一般采用(0.2-0.3)1W ;本设计取0.31W 溶解池也设置为2池,单池尺寸:m m m H B L 1.25.15.2??=??,高度中包括超高 0.2m ,底部沉渣高度0.2m ,池底坡度采用0.02。 溶解池实际有效容积: 3 '4.67.15.15.2m W =??= 溶解池的放水时间采用t =10min ,则放水流量: S L t /5.1010 6010003.660w q 20=??== 查水力计算表得放水管管径0d =100mm ,相应流速d=1.16m/s ,管材采用硬聚氯乙烯管。 溶解池底部设管径d =100mm 的排渣管一根,采用硬聚氯乙烯管。 溶解池的形状采用矩形钢筋混凝土结构,内壁用环氧树脂进行防腐处理 3 投药管 投药管流量

给水处理厂设计课程设计

给水处理厂设计课程设计

四川理工学院课程设计 C市给水处理厂设计 学生: 学号: 专业:给水排水工程 班级: 指导教师: 四川理工学院建筑工程学院二○年月

四川理工学院 课程设计任务书 设计题目:《C市给水处理厂设计》 学院:建工学院专业:给排水班级: 2011 学号: 学生:指导教师: 接受任务时间 2014 年 6 月 30 日 教研室主任(签名)学院院长(盖章) 1.课程设计的主要内容及基本要求 需完成课程设计提供的《C市给水处理厂设计》中涉及全部内容。可徒手绘图或者采用计算机出图,并将结果编写完整的计算书。计算书的内容及要求详见课程设计任务书与指导书。 2.指定查阅的主要参考文献及说明 (1)《给水排水设计手册》(第1册)常用资料. (2)《给水排水设计手册》(第3册)城镇给水. (3)《给水排水工程快速设计手册》(第1册)给水工程. (4)《建筑给水排水制图标准》GB/T50106—2010. (5)《给水排水国家标准图集》(S1、S2等). (6)《室外给水设计规范》GB50013-2006. 3.进度安排

各一份。 2、附图纸的电子文件。 摘要 作为给水系统中相当重要的一个组成部分,给水处理决定了供给用户的水是否符合水质要求,给水处理厂需要根据用户对水质水量的要求进行相应的处理。本次给水工程课程设计旨在对C市给水处理厂进行一个初步设计,根据已给的C市地形图、江流以及设计水量,确定给水处理厂的位置以及占地面积;根据江流水的水质情况,通过各絮凝池、沉淀池以及滤池的比较,最终确定采用折板絮凝池、异向流斜管沉淀池、重力式无阀滤池、液氯消毒组成的常规工艺处理,从而使供水水质达到国家生活饮用水水质标准(GB5749-2006)。对各净水构筑物、给水处理厂高程进行计算,画出给水处理厂管线平面布置图和构筑物平面布置图、净水流程高程布置图以及主要净水构筑物工艺图。 关键词:给水处理厂;折板絮凝池;异向流斜管沉淀池;重力式无阀滤池

给水厂设计说明书

目录 第一章原始资料 (3) 第二章工艺流程确定和选择 (5) 2.1原水水质情况 (5) 2.2出厂水水质要求 (5) 2.3工艺流程确定设计水量 (4) 第三章设计水量 (6) 第四章混合设备计算 (6) 4.1混凝剂配制和投加 (6) 4.2投药系统 (7) 4.3加药间及储液池 (8) 4.4混合设备 (9) 第五章絮凝池的设计计算 (11) 5.1絮凝池的选择 (11) 5.2设计水量计算 (11) 5.3平面布置 (11) 5.4过水孔洞和网格设置 (12) 5.5水头损失计算 (13) 5.6校核 (15) 第六章沉淀池的设计计算 (17) 6.1沉淀池的选择 (17) 6.2沉淀池的设计计算 (18) 6.3水力条件校核 (19) 6.4进水系统 (19) 6.5出水系统 (20) 6.6排泥设备的选择与计算 (20) 第七章过滤设计计算 (22) 7.1平面布置 (22) 7.2设计水量 (22) 7.3设计参数 (22) 7.4滤池高度 (23) 7.5配水系统 (24) 7.6排水系统 (26) 7.7滤池各种灌渠计算 (27) 7.8冲洗水箱 (28)

第八章清水池设计 (30) 8.1容积计算 (30) 8.2清水池平面尺寸 (30) 8.3管道系统 (30) 8.4清水池布置 (30) 第九章消毒 (32) 9.1消毒剂和加氯点选择 (32) 9.2加氯量的计算 (32) 9.3加氯设备的选择 (32) 9.4加氯间与滤库的布置 (33) 第十章净水厂平面布置与工艺 (35) 10.1净水厂的平面布置 (35) 10.2净水厂的高程布置 (36) 参考文献 (39) 设计心得 (39)

某城市给水厂设计说明与计算书图集

设计说明与计算书 第一章设计总论 1.1项目背景 本设计项目为某城市给水厂初步设计 (1)设计规模 表 1 项目近期远期 设计人口60000 80000 人均用水量标准(最高日) 220 220 [L/cap·d] 最大日时变化系数 1.38 1.38 工厂A(m3/d)3480 5220 工厂B(万m3/d)0.6 0.8 工厂C(万m3/d)8 8 一般工业用水 160 180 占生活用水% 第三产业用水 90 90 占生活用水% 供水普及率(%) 95 100 注:水厂设计水量应按城市最高日用水量加上水厂的自用水量计算,自用水量按最高日用水量的5%算。 (2)地形地貌及河流特征: 地形地貌:城区地形较平坦,其黄海高程标高为30.00m。 水文特征 流量:最大流量:76100 m3/s (1954.8.14) 最小流量:2930 m3/s (1865.2.4) 水位(黄海高程系): 最高水位:27.65 m(1954.8.18) 最低水位:8.00 m(1965.2.4)

多年平均水位:19.16 m 河床断面图(见下图) 27.65 m (3)河流水质 表 2 项 目 单 位 数 据 项 目 单 位 数 据 色度 度 10 CO 2 Mg/L 14.26 嗅味 / 无 Na ++K + Mg/L 8.46 浑浊度 度 100~1000 SO 42 Mg/L 17.2 pH / 7.2 溶解固体 Mg/L 139.0 总硬度 Mg /L 2.29 挥发酚 Mg/L 0.002 Fe +2+Fe +3 Mg/L 0.3 有机磷 Mg/L 0.09 Cl — Mg/L 15.51 砷 Mg/L 0.01 HCO 3— Mg/L 119.6 耗氧量 Mg/L 3.78 Ca 2+ Mg/L 32.46 氮氨 Mg/L 0.5 Mg 2+ Mg/L 3.05 细菌总数 个/mL 38000 NO 2— Mg/L 2.75 大肠杆菌 个/L 1300 1.2设计水量 近期 城市最高日生活用水量: Q 1=qNf(m 3/d)=12540m 3/d 一般工业生活和淋浴用水: Q 2=1.6Q 1=20064m 3/d 第三产业用水: Q 3=0.9Q 1=11286m 3/d 工业生产用水 Q 4=Q A +Q B +Q C =89480m 3 /d 设计年限内最高日的用水量:Qd=1.2(Q 1+Q 2+Q 3+Q 4)=160044m 3/d 最高时的用水量:Qh=4 .86Qd Kh =2556.26L/S 式中 q —最高日生活用水的量定额,m 3/(d 人); N —设计年限内计划人口数; F —自来水普及率,%; QA QB QC —A B C 三厂的工业生产用水量; Kh —时变化系数(1.38)。 8.00 m 地面高程30.00 m

给水厂课程设计模板

给水厂课程设计 1 2020年4月19日

2020年4月19日 课 程 设 计 题 目: 某市净水厂工艺设计 学 院: 市政与环境工程学院 专 业: 给水排水工程 姓 名: 学 号: 指导老师: 完成时间: 6月16日

前言 在水的社会循环中,人们对饮用水、生活用水、工业用水和农业用水的水质都有相应的要求,当天然水源的水质不满足用水要求时,就要对水进行处理,使之符合用水的要求。 天然水源作为水的自然循环的一部分,其水质在不同水源的不同地段时不同的,在一年四季的自然循环中也是不断变化的,因此有必要研究作为水源的天然水的水质特点及变化规律,以便能正确地选择水处理方法和水处理工艺。 习惯以为,上述水处理只在给水处理厂进行。但从水的社会循环的角度看,给水处理的概念应涵盖从水源到输配水的全过程。例如,对水源的保护;从水处理角度进行取水构筑物的设置;为减少水中所含的泥砂量,宜从河流的表层取水;在湖泊和水库中选择适宜的取水深度,以减少水中的藻类含量;又例如,为防止给水处理厂出厂水的水质在配水过程中恶化,应进行水的化学稳定性和生物稳定性的处理。 从天然水体取水,而不对水体生态环境产生不良影响;对城市污水和工业废水进行处理,使其排入水体不会造成污染,从而实现水资源的可持续利用,称为水的良性社会循环。 水对于人类社会,虽然是不可替代的,却是能够再生的。水在城市用水过程中,不是被消耗了,即水量上不发生变化(理论上),而只是水质发生了变化,失去了部分使用功能。采用水处理的办法改变水质,使之无害化、资源化,特别是再生回用,就 1 2020年4月19日

能实现水的良性循环,既减少了对水资源的需求,又减少对水环境的污染,一举两得,这对人类社会发展是有重大意义的。 2 2020年4月19日

给水厂设计计算说明书

设计说明与计算书 第1章设计水质水量与工艺流程的确定 1.1 设计水质水量 1.1.1原水水质及水文地质资料 ss最高/(mg/L) 700 最大时变化系数1.25 1原水水质情况 序号名称最高数平均数备注 1 色度40 15 2 pH值7.8 7.2 3 DO溶解氧11.2 6.38 4 BOD 5 2.5 1.1 5 COD 4.2 2.4 6 其余均符合国家地面水水源Ⅰ级标准 2 河流水文特征 最高水位----------m,最低水位----------m,常年水位-----------m 气象资料 历年平均气温-----------,年最高平均气温--------,年最低平均气温-----------。 年平均降水量:-----------,年最高降水量----------,年最低降水量-----------。 常年风向-----------,频率--------。历年最大冰冻深度20cm 3 地质资料 第一层:回填、松土层,承载力8 kg/cm2,深1~1.5m;第二层:粘土层,承载力10kg/cm2,深3~4m;第三层:粉土层,承载力8kg/cm2,深3~4m;地下水位平均在粘土层下0.5m。 1.1.2、设计水量 设计人口6.1万 人均用水量标准(最高日)200L/d 工厂A(万立方米/d)0.4 工厂B(万立方米/d)0.7 工厂C(万立方米/d)0.9 工厂D(万立方米/d)1.4 一般工业用水占生活用水% 195 第三产业用水占生活用水%90 Qd=1.067×﹝(200×6.1×(1+1.95+0.9)/1000+0.4+0.7+0.9+1.4﹞=86400立方米/d

建筑给排水课程设计说明书最终版

北京交通大学 《建筑给排水》大作业设计 专业:环境工程 班级:环境1101 学生姓名:沈悦 学生学号:11233017 指导教师:王锦 土建学院建筑市政环境工程系 二○一四年四月

目录 第1篇设计说明书 第1章设计基本内容和要求 1.1设计资料 (3) 1.2设计主要内容 (3) 1.3课程设计基本要求 (3) 1.4设计重点研究问题 (3) 1.5评分标准 (3) 第2章室内给水工程 2.1 给水方式的选择 (4) 2.2 给水管道的布置与敷设 (4) 2.3 管材和管件 (5) 第3章建筑消防给水系统 3.1 消火栓给水系统的布置 (5) 3.2 消火栓布置 (6) 3.3 消防管道布置 (7) 3.5 具体设计图样 (7) 第4章建筑排水系统 4.1 排水系统分类 (7) 4.2 排水系统组成 (7) 4.3 排水方式的选择 (8) 4.4 排水管道的布置与敷设 (8) 4.5 排水管网设计图样 (10) 第5章建筑雨水系统 (11) 第2篇设计计算书 第1章室内生活给水系统 (11) 第2章建筑消火栓给水系统设计 (13) 第3章建筑排水系统设计 (15) 第4章建筑雨水排水系统设计 (18) 第5章参考文献 (18) 第3篇课程设计总结 第1章心得及致谢 (19)

第1篇设计说明书 第一章设计基本内容和要求: 1.1设计资料 1. 工程概况:该建筑为一幢7层高的多层建筑,该建筑为一类、耐火等级一级。该幢楼包括四个单元,各单元各层的建筑结构基本相同(见建筑平面图)。在该幢建筑物的北侧共建四个出口:分别对应于每个单元,每个单元的每层有两个住户,每个住户为三室两厅的一套,每套间均设有厨房与两个卫生间。 该幢建筑物总建筑面积为8733.16m2,总高度为20.9m,标准层高为2.9m,一层地评标高位±0.000m,冻土深度为0.7m。 2. 背景资料 本建筑水源为小区自备井,经给水泵站加压后供给小区各用水点,一层引入管压力不低于0.35MPa。 本建筑±0.00以上排水采用重力排水,±0.00以下采用压力提升排水。污废水经污水管道收集后排入室外化粪池,经化粪池处理后,排入市政污水管网。 3. 建筑图纸:首层及标准层。 4. 气候暴雨强度等条件按各位同学家乡考虑。 1.2设计主要内容 1. 多层建筑给水系统方式选择与设计计算,完成该建筑的给水系统平面图和系统图草图; 2. 多层建筑消防系统方式选择与设计计算,完成该建筑的消防系统平面图和系统图草图; 3. 多层建筑排水系统方式选择与设计计算,完成该建筑的排水平面图和系统图草图; 4. 多层建筑雨水系统方式选择与设计计算,完成该建筑的排水平面图和系统图草图; 1.3基本要求 1. 建筑给水、排水、消防、雨水各系统的体制应当合理选择,注意技术先进性和经济合理性。 2. 根据选定的系统体制,按照相关设计手册,确定有关的设计参数、尺寸和所需的材料、规格等。 3.平面图管线布置合理,并注意各管线交叉连接,注意立管编号。 1.4设计重点研究的问题: 建筑给水、排水、雨水、消防系统的体制选择,尤其是消火栓系统的设计计算。 参考资料推荐: [1]王增长,《建筑给水排水工程》第六版,中国建筑工业出版社1998 [2]高明远,《建筑给水排水工程学》中国建筑工业出版社2002 [3]1998 [4]中国建筑工业出版社编,《建筑给水排水工程规范》,中国建筑工业出版社 [5]陈耀宗,《建筑给水排水设计手册》,中国建筑工业出版社1992

给水厂清水池设计计算

9 清水池 清水池的平面尺寸 清水池有效容积为: 4321W W W W W +++= 式中,1W —调节容积,m 3,取最高用水量的10%,1W =Q 1.0; 2W —净水厂自用水量的5%-10%,取10%,2W =11.0Q ; 3W —消防贮水量,m 3; 4W —安全用水,m 3,取200m 3; 1W =Q 10.0=1728017280010.0=?m 3 2W =11.0Q =1280128001.0=?m 3 3W =65373672001000036004103=-+???-m 3 最高时供水量31000024/1600005.124/m Q K Q h g =?== 水厂设计水量7200 24/16000008.1=?==aQ Q c 4W =1000m 3 4321W W W W W +++==17280+1280+3736+1000=23296m 3 滤后水经过消毒后进入清水池,两组滤池的滤后水分别进入两个清水池,则每个清水池的容积是11648m 3,取清水池有效水深,则其面积为,平面尺寸为65×,清水池采用地下式钢筋混凝土立方体水池,水池顶部高出地面,清水池超高。 管道布置 ⑴清水池的进水管 进水管流量为s ,选用铸铁管,查水力计算表表的管径 mm DN 1100,流速s ,1000i=; ⑵清水池的出水管 由于用户的用水量时时变化,清水池的出水管应按照出水最大流量计: 24 1KQ Q =

式中 K —时变化系数,一般采用5.2~3.1,设计中取5.1 Q —设计水量d m 3 s m h m KQ Q 3315.1540024 2/1728005.124==?== 选用铸铁管,查水力计算表表的管径 mm DN 1200,流速s ,1000i= ⑶清水池的溢流管 溢流管的直径与进水管直径相同,取为mm DN 1100。在溢流管管端设置喇叭口,管上不设置阀门。出口设置网罩,防止虫类进入池内。 ⑷清水池的排水管 清水池内的水在检修时需要放空,因此应设排水管。排水管的管径按照2h 内将池水放空计算。排水管内的流速按照s m 2.1左右估计,则排水管的管径 m v t V D 31.12 .114.33600241164814.33600423=????=???= 设计中取为mm DN 1300。 清水池的附属设施 (1)集水坑 每个清水池设有一个集水坑,集水坑采用圆形,集水坑比池底低1m ,清水池的出水管和排水管都在此接出。 (2)导流墙 导流墙能促进新旧水量交替,清除死角,加强氯与水体混合,提高消毒效率及保证出水的必要措施。导流墙顶板砌筑到清水池最高水位,使顶部空间维持畅通,有助于空气流通,导流墙底部每隔设一个,共19个,在导流墙底部每隔m 0.2设置流水孔,尺寸120×120mm 。 (3)通风管 为便于清水使进出水管交替和适应水位高低的变化的需要,清水池顶应设置通风管,通风管直径为200mm ,每池设8个。 (4)人孔 人孔是人和池内设备等进出水池的通道,每个清水池设两个圆形人口,直径为1m ,设置在靠近溢流管和出水管处,以便于管道的安装和维修。

净水厂设计计算说明书

市西区水厂一期扩建工程设计说明书 1自然条件 1.1地形、地质 市地处闽江下游盆地,盆地总面积约200Km2,四周有鼓山、旗山、五虎山莲花峰等群山环抱。地貌类型以平原为主,地势由西北向东南倾斜,市中心散落有乌山、于山和屏山等小山,南台岛上有仓山、盖山和城门山。市区高程一般为5~15m(黄海高程系),闽江横贯市区,由于地势较低,易受洪涝灾害,需沿江、河筑堤。市区主要有两类地质:一是靠山的丘陵地区,主要在于于山、乌山、屏山一带以及市区四周群山余脉高地和仓山区丘陵地带,容许承载力约0.25Mpa;二是淤积、冲积地区为高压缩性土,围较广,淤泥埋藏浅,容积承载力为0.05~ 0.08MPa,地下水位高,一般在地面下0.5~2.0m。 1.2气象条件 市属于亚热带海洋性季风气候,夏季炎热多雨,冬季温暖少雨。 (1)气温 年平均:19.6摄氏度 极端最高:41.1摄氏度(1950年7月19日) 极端最低:-2.5摄氏度(1940年1月25日) (2)水量 年平均:1355.8mm 年平均降水天数:151.2天 24小时最大降水量:167.4mm 暴雨主要出现月份:5~9月 (3)霜冻 年无霜期326天 (4)风 常年主导风向为西北风和东南风,冬季多西北风,夏季盛行东南风。 平均风速:2.8m/s 极大风速:40.7m/s

基本风压:0.6KN/m2 台风影响本市始于5月,结束于11月中旬,以7月中旬至9月中旬次数最多。 (5)湿度 年平均相对湿度77% 最大相对湿度84% 最小相对湿度5% (6)蒸发量 年平均蒸发量 1451.1mm 1.3水文条件 闽江是省最大河流,水量充沛。闽江在以下分为两支,北支为北港,穿越市区至马尾,将中心城区分为江北平原和南台岛两部分,长为30.5km,平均水面坡降0.15‰,枯水季水面宽150~200m。南支为南港,又名乌龙江,经洪塘、湾边、纳入大漳溪河以后,出峡兜于马尾、长乐营前与北港又合二为一,南港长34.4km,进入河口段经亭江、倌口、琅歧流入东海。闽江流域面积60992Km2,水系全长2959Km,流经36个县、市。根据竹歧水文站1936年至1980年统计资料:闽江下游年平均径流总量为552.7亿m3,1992年7月7日最大洪峰流量30300m3/s,1971年8月30日最枯流量196m3/s,水口电站建成后,水库对洪峰调节作用不显著,最大下泄流量(坝下保证流量)为308m3/s。市区西端洪山桥最高水位8.441m、最低水位1.181m。 1.4地震发生情况 市区位于沿海长乐——诏安深大断裂带北段,为中等地震潜在震源区(M=6级),在未来100年具有发生大于M=5.5级以上地震的危险性。在活动断裂带附近地段可能会局部放震效应,故在断裂带附近的建筑物除7度地震烈度抗震设防外,还应因地制宜采用有效的构造加强措施。

给水厂计算说明书要点

1.给水处理厂课程设计任务书 一、目的和内容 净水厂课程设计的目的在于加深理解所学专业理论,培养运用所学知识综合分析和解决实际工程设计问题的初步能力,在设计、运算、绘图、查阅资料和设计手册以及使用设计规范等基本技能上得到初步训练和提高。 课程设计的内容是根据所给资料,设计一座城市净水厂,要求对主要处理构筑物的工艺尺寸进行计算,确定水厂平面布置和高程布置,最后绘出水厂平面布置图、高程布置图和某个单项处理构筑物(絮凝沉淀池、澄清池或滤池)的工艺设计图(应达到初步设计的深度),并简要写出一份设计计算说明书。 设计题目: 某市自来水厂工艺设计 二、原始资料 (1)水厂规模:11.6万m3/d (2)水源为河流地面水,原水水质分析资料如下: 序号项目单位数量备注 1 PH值/ ~7.6 2 色度度~20 3 浊度NTU 65~2000 4 肉眼可见物/ 较浑 5 总硬度mg/L,CaC117

O3 6 氯化物mg/L 5.0 7 氟化物mg/L <1.0 8 硝酸盐mg/L <1.0 9 总溶固物mg/L 147 10 铁mg/L 0.23 11 锰mg/L <0.1 12 铜mg/L <0.5 13 砷mg/L <0.05 14 锌mg/L <0.5 15 铅mg/L <0.05 18 菌落总数个/mL 1.3×104 (3)厂区地形:(比例1:500, 按平坦地形和平整后的设计地面高程32.00m设计), 水源取水口位于水厂东北方向150m,水厂位于城市北面1 km。 (4)工程地质资料 1)地质钻探资料 表土砂质 粘土细砂中砂粗砂粗砂 砾石 粘土砂岩 石层

1m 1.5m 1 m 2 m 0.8m 1 m 2 m 土壤承载力:20 t/m2. 2)地震计算强度为186.2kPa。 3)地震烈度为9度以下。 4)地下水质对各类水泥均无侵蚀作用。 (5)水文及水文地质资料 序号项目单位数量备注 1 历年最高水位m 34.3 8 黄海高程系统, 下同 2 历年最低水位m 21.4 7 频率1% 3 历年平均水位m 24.6 4 4 历年最大流量m3/s 1460 5 历年最小流量m3/s 180 6 历年平均流量m3/s 1340 7 历年最大含砂量kg/m3 4.82 8 历年最大流速m/s 4 9 历年每日最大水位 涨落 m/d 5.69

给水厂课程设计计算书

目录 1 设计水质要求及水量计算 (1) 1.1 城市用水要求 (1) 1.2 设计水量的确定 (1) 2 给水工艺流程的选择 (1) 2.1 原水水质分析 (1) 2.2 给水处理工艺的确定 (2) 3 药剂的选择及其投加方式 (2) 3.1 混凝剂的选择 (2) 3.1.1 固体硫酸铝 (2) 3.1.2 液体硫酸铝 (2) 3.1.3 硫酸亚铁 (2) 3.1.4 三氯化铁 (3) 3.1.5 聚合氯化铝 (3) 3.1.6 聚丙烯酰胺 (3) 3.2 混凝剂的投加方式 (3) 3.2.1 重力投加 (3) 3.2.2 水射器 (4) 3.2.3 计量泵 (4) 3.3 消毒剂的选择 (4) 3.3.1 漂白粉 (4) 3.3.2 液氯 (4) 3.3.3 二氧化氯 (4) 3.3.4 臭氧 (4) 3.3.5 紫外线 (5) 3.4 消毒剂的投加方式 (5) 4 混合形式的确定 (5) 4.1 水泵混合 (5) 4.2 管式静态混合器 (5)

4.3 跌水混合 (5) 4.4 机械混合 (5) 5 水工构筑物的确定 (6) 5.1配水井 (6) 5.2絮凝池 (6) 5.2.1 隔板絮凝池 (6) 5.2.2 折板絮凝池 (6) 5.2.3 网格(栅条)絮凝池 (6) 5.2.4 机械絮凝池 (6) 5.3 沉淀池 (6) 5.3.1 平流式沉淀池 (6) 5.3.2 斜管(板)沉淀池 (7) 5.4 过滤设备 (7) 5.4.1 普通快滤池 (7) 5.4.2 双阀滤池 (7) 5.4.3 V型滤池 (7) 5.4.4 虹吸滤池 (7) 5.4.5 无阀滤池 (8) 5.4.6 移动罩滤池 (8) 6 水工构筑物参数设计 (8) 6.1 加药间的计算 (8) 6.1.1 溶液池容积W1 (8) 6.1.2 溶解池容积W2 (9) 6.1.3 投药管 (9) 6.1.4 搅拌设备 (9) 6.1.5 计量泵 (9) 6.1.6 药剂仓库 (9) 6.2 混合设备的计算 (10) 6.2.1 设计管径 (10) 6.2.2 混合单元数 (10)

城市给水管网设计计算说明书要点

华侨大学化工学院 课程论文 某城市给水管网的设计 课程名称给水排水 姓名 学号 专业2007级环境工程 成绩 指导教师 华侨大学化工学院印制 2010 年06 月25 日

目录 第一章设计用水量 (3) 1.1用水量的计算 (3) 1.2管网布置图 (4) 1.3 节点流量计算 (4) 第二章管网水力计算 (5) 1.1 初始流量分配 (6) 1.3事故流量校正 (9) 1.2消防流量校正 (12) 第三章水泵的选取 (15) 第四章设计总结 (15) 4.1 设计补充 (16) 4.2 设计总结 (16)

第一章设计用水量 一、用水量的计算 : 1、最高日居民生活用水量Q 1 城区规划人口近期为9.7万,按居民生活用水定额属于中小城二区来计算,最高日用水量定额在100~160L/cap.d,选用Q=130L/cap.d,自来水普及率为1。 故一天的用水量为Q1=qNf=130×9.7×104×1=12610m3/d 。 : 2、企业用水量Q 2 企业内人员生活用水量和淋浴用水量可按:生活用水,冷车间采用每人每班25L,热车间采用每人每班35L;淋浴用水,冷车间采用每人每班40L,热车间采用每人每班60L。 企业甲: 冷车间生活用水量为:3000×25=75000L=75m3/d 冷车间淋浴用水量为:700×40×3=84000L=84m3/d 热车间生活用水量为:2700×35=94500L=94.5m3/d 热车间生活用水量为:900×60×3=162000L=162m3/d 则企业甲用水量为75+84+94.5+162=415.5m3/d 企业乙: 冷车间生活用水量为:1800×25=45000L=45m3/d 冷车间淋浴用水量为:800×40×2=64000L=64m3/d 热车间生活用水量为:1400×35=49000L=49m3/d 热车间生活用水量为:700×60×2=84000L=84m3/d 则乙车间用水量为:45+64+49+84=242m3/d 则企业用水量Q =415.5+242=657.5m3/d 2 : 3、道路浇洒和绿化用水量Q 3 ⑴、道路浇洒用水量: 道路面积为678050m2 道路浇洒用水量定额为1~1.5L/(m2·次),取1.2L/(m2·次)。每天浇洒2~3次,取3次 则道路浇洒用水量为687075×1.2×3=2473470L=2473.47m3/d ⑵绿化用数量 绿化面积为城市规划总面积的1.3%,城市规划区域总面积为3598300m2,

万吨日某给水厂设计说明376894

万吨日某给水厂设计说明376894

4万吨日给水处理厂设计 1.1.1.设计原始资料 1.1.1.设计水量 设计水厂总供水量:近期4万吨/天,远期6万吨/天。本设计中按近期设计。 1.1. 2.给水水源 县城现状取水点为取水站 1.1.3.水源水质资料 水资源:水资源总量不富,开发利用率低。全县多年平均水资源总量为6.514亿立方米,人均占有水量836立方米,其中地表水5.081亿m3,地下水0.387亿m3,过境水1.046亿m3。 涪江从城区中心穿过,将县城分割为江北片区和江南的老城片区、凉风垭-哨楼片区。涪江多年来水量572 m3/s,枯水流量(1979年测值)为185 m3/s,河水最大流速为4.75m/s。 水质资料

1.1.4.净化水质要求 生活用水:达到国家生活饮用水水质标准(GB5749-2006) 生产用水:无特殊要求 1.1.5.混凝剂 最大投加量50mg/L(以商品纯重量计),平均投加量25mg/L。液体聚合氯化铝Al2O3含量10%,液体密度10% 1.1.6.消毒剂 采用液氯,最大加氯量0.5~2.0 mg/L。 1.1.7.气象资料 潼南县地处北纬30度附近,为亚热带季风性湿润气候,具有冬温夏热、热量丰富、降水充沛、季节变化大、多云雾、少日照等特点。多年平均气温为17.9℃,最高年份为18.4℃,最低年份为17.1℃,气温变化较为稳定,潼南最热

月为8月,平均气温达28℃,极端最高温度40.8℃;最冷月为1月,平均气温为 6.9℃,极端最低气温为-3.8℃。潼南县地处四川盆地底部,冬季温暖、很少霜冻,多年平均无霜期为335天,最长则长年无霜,无霜年率为14%。多年平均日照时数1218.8小时。 全县多年平均降雨量974.8毫米,最高年份达1413.9毫米,最少仅650.8毫米,年际变化显著。降水量的季节分配也不均匀,夏半年(5-10月)降水量偏多,达781.40毫米,占全年总降水量的80%,冬半年(11-4月)降水量仅195.4mm ,占年总降水量的20%。 1.1.8.常规工艺流程 水厂是给水处理中的主要部分,其任务是通过必要的处理方法,去除水中的悬浮物质,胶体物质,细菌及其它有害成分及杂质,使之符合生活饮用或工业使用所要求的水质。常规水处理工艺采用的净水流程一般为: 取水—配水井—混合设备—絮凝池—沉淀池—滤池—清水池—二泵站—用户 1.2.工艺流程 水厂以地表水作为水源,常见工艺流程如下图所示。 原水 混 合 絮凝沉淀池 滤 池 混凝剂消毒剂清水池 二级泵房 用户 水处理工艺流程 1.3.设计水量及主要处理构筑物的选择 1.3.1.总设计水量 水处理构筑物的生产能力应以最高日供水量加水厂自用水量进行计算,城镇自用水量一般采用供水量的5%~10%。分两组。 Q d =40000*1.05=42000m 3/d=486.11L/s ,则每组的设计水量为243.05L/s 1.3.2.配水井 配水井设在处理构筑物之前,起缓冲水量,均匀配水的作用,同时可设置固液分离机拦截较大悬浮物。配水井出水设超越管,当原水浊度较低时,

给水厂设计总说明书

目录 第一章前言 (4) 1.1设计的目的和意义 (4) 1.1.1 总体目标 (4) 1.1.2 具体目标 (4) 1.2主要设计指导思想、设计内容和需要解决的问题 (4) 1.2.1 本设计的指导思想 (4) 1.2.2 本设计应解决的主要问题 (5) 1.3 设计参考资料 (5) 1.4 设计成果 (5) 第二章给水厂处理工艺的选择 (6) 2.1 设计资料 (6) 2.1.1城市现状 (6) 2.1.2水文及水文地质资料 (6) 2.1.3水源水质资料 (6) 2.2给水处理流程的选择 (7) 2.2.1 一般净水工艺流程 (7) 2.2.2 本设计净水处理工艺流程 (7) 2.3 给水处理构筑物与设备型式选择 (8) 2.3.3絮凝池 (9) 2.3.4 沉淀池 (10)

2.3.5 滤池 (11) 第三章主要单体构筑物的设计计算 (13) 3.1 加药间设计计算 (13) 3.1.1. 设计参数 (13) 3.1.2. 设计计算 (13) 3.2 混合设备设计计算 (15) 3.2.1设计参数 (15) 3.2.2 设计计算 (15) 1.设计管径 (15) 2.混合单元数 (15) 3.混合时间 (15) 4.水头损失 (15) 5.校核GT值 (16) 3.3 机械絮凝池设计计算 (16) 3.3.1 主要设计参数 (16) 3.3.2 计算 (16) 3.4沉淀设备的设计 (20) 3.5 滤池设计计算 (25) 3.5.1 计算依据 (26) 3.5.2 设计计算 (26) 3.5.3 校核强制滤速v′ (27) 4.5.4 滤池高度 (27)

给水厂毕业设计计算书

摘要 E市给水工程,是为了满足该区近期和远期用水量增长的需要而新建的。该工程分为两组,最终的供水设计规模为3.1万m3/d, 整个工程包括取水工程,净水工程和输配水工程三部分。其工艺流程如下: 水源取水头自流管一级泵房自动加药设备 机械搅拌澄清池普通快滤池清水池配水池 二级泵房配水管网用户 同时,本设计课题还包括:水厂占地面积,人员配备,厂内建筑物布置和管线定位等。 整个工艺流程中主要构筑物的设计时间为 机械搅拌澄清池池:1.28h 普通快滤池冲洗时间:6min 普通快滤池的滤速为:13.3m/h

第一章设计水量计算 第一节最高日用水量计算 第二节设计流量确定 第二章取水工艺计算 第一节取水头部设计计算 第二节集水间设计计算 第三章泵站计算 第一节取水水泵选配及一级泵站工艺布置 第二节送水泵选配及二级泵站工艺布置 第四章净水厂工艺计算 第一节机械搅拌澄清池计算 第二节普通快滤池计算 第三节清水池计算 第四节配水池计算 第五节投药工艺及加药间计算 第六节加氯工艺及加氯间计算 第七节净水厂人员编制及辅助建筑物使用面积计算第八节检测仪表

第一章 设计水量计算 第一节 最高日用水量计算 一、各项用水量计算 1、 综合生活用水量1Q 1Q d m d l N q f 33411108.81.1.200104?=???=??=人 m d l N q f Q 344111/10408.11.1.200104.6?=???=??=人 2、 工业企业生产用水量2Q ()()d m m d n N q Q d m m d n N q Q 3 4 3 222 /3432221076.11.180********.11.11001201?=??=-??=?=??=-??=万元万元万元 3、 未预见水量和管网漏失水量3Q ()d m Q Q Q 34213104.02.0?=+= 4、 消防用水量x Q d m s l N q Q x x X 3410432.0252?=?=?= 二、最高日用水量d Q m Q Q Q Q d 34321106.2?=++= 由于总用水量较小和消防水量相差不大则d m d m Q d 3434101.310072.3?≈?= d m Q d 34/104?= 第二节 设计流量确定 一、确定设计流量 1、 取水构筑物、一级泵站、原水输水管、水处理构筑物设计流量 s l d m T Q a Q s l d m T Q a Q d I d I 11.4863600 2410405.173.3763600 24101.305.134/ /34=???=?==???=?= 2、二级泵站设计流量

给水处理厂课程设计说明书培训课件

1.1 总体设计 1.1.1 工程规模 (1)设计规模 水厂建设总规模为9.2万m3/d,水厂自用水量按7%考虑,并考虑远期发展的需要,预留远期生产用地。净水厂出水水压为40~55m。 给水处理厂的主要构筑物拟分为2组,每组5万3 m/d。 (2)原始资料 1、自然条件 1.1 地理位置: 位于中国西南地区,规划厂区为一平地,黄海高程79.7m。 1.2 气象资料 ①风向:绘出风玫瑰图 ②气温:最冷月平均为:-4.8℃;最热月平均为:32.1℃ 极端温度:最高40.5℃,最低-5.5℃ ③土壤冰冻深度:1.2m 1.3 工程地质与地震资料: ①地质钻探资料 ②地震计算强度为:158.6KP a ③地震烈度为:8 度以下。 ④地下水质对各类水泥均无侵蚀作用。

1.4 河流水质资料 1.1.2 设计出水水质 水厂设计出水水质达到国家现行《生活饮用水卫生标准》(5749 GH-85)。 1.1.3 水处理工艺流程方案拟定 1.水处理工艺流程的拟定 为使出厂水符合《国家生活饮用水卫生标准》,按照技术合理、经济合算、运行可靠的指导思想,设计水处理工艺流程。 水厂采用的处理工艺流程为:

↓ ↑ 水厂处理工艺流程 2. 主要处理构筑物的选择 (1)混合工艺 混合是原水与混凝剂或助凝剂进行充分混合的工艺过程,是进行絮凝和沉淀的重要前提。混合是将药剂充分、均匀地扩散于水体的工艺过程,对于取得良好的混凝效果具有重要作用。混合问题的实质就是药剂水解产物在水中的扩散问题。 混合的方式有很多种,常用的有水泵混合、管式混合、机械混合。 ①水泵混合 水泵混合是将药剂投加在取水泵吸水管或吸水喇叭口处,利用水泵叶轮高速旋转以达到快速混合的目的。它适用于一级泵站距处理构筑物较近(120m以内),优点是设备简单;混合充分,效果较好;不另消耗动能。缺点是安装管理较复杂;配合加药自动控制较难。 ②管式混合 目前广泛采用的管式混合器是静态管式混合器,是利用水厂进水管的水流,通过管道或管道零件产生局部阻力,使水流发生涡旋,从而使水体和药剂混合。管式混合的优点是设备简单;不占地;在设计流量范围,混合效果好。缺点是当流量过小时效果下降。但从总体经济效果而言还是具有优势的。 ③机械混合 机械混合是依靠外部机械供给能量,使水流产生紊流。它的优点是水头损失较小,适应各种流量变化,能使药剂迅速而均匀的分布在原水胶体颗粒上,同时使胶体颗粒脱稳,具有节约投药量等特点。缺点是增加相应的机械设备,需消耗

相关主题
文本预览
相关文档 最新文档