当前位置:文档之家› 插值法

插值法

5、埃尔米特插值

插值定义要求在插值节点上多项式值与节点函数值相等。

如果添加其他条件,如导数值也相等,甚至要求高阶导

数也相等.满足这种要求的插值多项式就是埃尔米特插值多项式.

1

],..,[10n x x x f 则设为[a,b]上的相异节点,

n n

x x x b a C f ,...,],,[10∈是其变量的连续函数,

如果满足

),

()(j j n x f x P =)

P ),()(0)

(0)(x f

x k k n =则Pn(x)为埃尔米特插值插值多项式,

2

6分段低次插值6 分段低次插值

高次插值的病态性质

根据区间上给出的节点做出的插值多项式),(x L n ],[b a 对任意的插值节点,当次数n 增加时逼近的精度增加?)(x f 时,一定收敛到?

→n )(x L n )(x f 3

表2-5列出了的计算结果及

时的

根据计算画出取及,10=n )1/(12x y +=)

(10x L y =在上的图形,见下图.

]5,5[?从图上看到,在附近, 与=x L 2=5±x )(10)

1/(1)(x x f +偏离很远,这说明用高次插值多

项式近似效果并不好.

)(x L n )(x f

7

图2-5

这些函数的插值怎么办?

?特殊的插值方法:

Chebyshev方法(选取适当的插值节点)

CORDIC方法(基于复运算的迭代方法)

?分段低次插值

8

分段线性插值

分段插值的基本思想是将插值区间划分为若干个小

区间, 然后在每个小区间上做满足一定条件的低阶插值.

分段线性插值就是通过插值点用折线段连接起来

)

逼近).(x f 9

分段线性插值函数

设已知节点上的函数值

b x x x a n =<<<=L 10,,,,10n f f f L 记,

max ,1k k

k k k h h x x h =?=+)(x I h 求一折线函数,

满足:

],

,[)(.1b a C x I h ∈k

k h f x I =)(.2),

,,1,0(n k L =在每个小区间上是线性函数.

)(.3x I h ],[1+k k x x 则称为分段线性插值函数.

)(x I h 10

7、三次样条函数

三次样条函数

?用低次多项式插值有很好地收敛性,

插值函数光滑性差

?插值函数光滑性差,

14

若函数且在每个小区间],,[)(2b a C x S ∈],[1+j j x x 定义4

上是三次多项式,其中是给定节点,b x x x a n =<<<=L 10则称是节点上的三次样条函数.)(x S n x x x ,,,10L

若在节点上给定函数值j x ),

,,1,0)((n j x f y j j L ==x S =),

,,1,0(n j L =(7.1)

并成立

j

j y )(则称为三次样条插值函数.

)(x S 15

插值条件

由于在每个小区间上有4个待定系数,)(x S ],[1+j j x x 共有个小区间,所以共有个待定参数. n n 4 由于在上二阶导数连续,所以在节点

)(x S ],[b a 121?=n x L 处应满足连续性条件),0()0(+=?j j x S x S ),,,(j j 处应满足连续性条件),

0()0(+′=?′j j x S x S ).

0()0(+′′=?′′j j x S x S (7.2)

这些共有个条件,再加上本身还要满足的个插值条件,共有个条件,还需要2个才能确定.

)(x S x S 33?n 24?n 1+n 16

)(

通常可在区间端点上各加一个条件b a x b x a ==边界条件

],[n ,0常见的边界条件有以下3种:

(称为边界条件),1. 已知两端的一阶导数值,即

.

f x S f x S ′=′′=′)(,

)(00n n (7.3)

2. 已知两端的二阶导数,即

,

)(,

)(00n n f x S f x S ′′=′′′′=′′(7.4)

其特殊情况

.

0)()(0=′′=′′n x S x S 17

称为自然边界条件.

3.当?3. 当

是以为周期的周期函数时,则要求)(x f 0x x n )(x S 也是周期函数.

)?这时边界条件应满足

)

?′′S ),0()0(0=+n x S x S ),0()0(0=+n x S x (7.5)

).

0()0(0?′′=+′′n x S x S 此时插值条件(7.1)中.

n y y =0这样确定的样条函数称为周期样条函数.

)(x S 18

样条插值函数的建立

样条插值函数与应用

样条插值函数及应用

摘要 样条函数具有广泛的应用,是现代函数论的一个十分活跃的分支,是计算方法的主要基础和工具之一,由于生产和科学技术向前发展的推动以及电子计算机广泛应用的需要,人们便更多地应用这个工具,也更深刻的认识了它的本质。 在实际问题中所遇到许多函数往往很复杂,有些甚至是很难找到解析表达式的。根据函数已有的数据来计算函数在一些新的点处的函数值,就是插值法所需要解决的问题。 插值法是数值逼近的重要方法之一,它是根据给定的自变量值和函数值,求取未知函数的近似值。早在一千多年前,我国科学家就在研究历法时就用到了线性插值和二次插值。而在实际问题中,有许多插值函数的曲线要求具有较高的光滑性,在整个曲线中,曲线不但不能有拐点,而且曲率也不能有突变。因此,对于插值函数必须二次连续可微且不变号 ,这就需要用到三次样条插值。 关键词三次样条函数;插值法

目录 引言 0 第一章三次样条插值 (1) 1.1 样条插值函数简介 (1) 1.2 三次样条函数应用 (2) 第二章AMCM91A 估计水塔水流量 (4) 2.1 理论分析及计算 (5) 2.2运用MATLAB软件计算 (8) 参考文献 (13)

引言 样条函数具有广泛的应用,是现代函数论的一个十分活跃的分支,是计算方法的主要基础和工具之一,由于生产和科学技术向前发展的推动以及电子计算机广泛应用的需要,人们便更多地应用这个工具,也更深刻的认识了它的本质。上世纪四十年代,在研究数据处理的问题中引出了样条函数,例如,在1946年Schoenberg将样条引入数学,即所谓的样条函数,直到五十年代,还多应用于统计数据的处理方面,从六十年代起,在航空、造船、汽车等行业中,开始大量采用样条函数。 在我国,从六十年代末开始,从船体数学放样到飞机外形设计,逐渐出现了一个使用样,逐渐出现了一个使用样条函数的热潮,并推广到数据处理的许多问题中。 在实际生活中有许多计算问题对插值函数的光滑性有较高的要求,例如飞机机翼外形、发动机进、排气口都要求有连续的二阶导数,用三次样条绘制的曲线不仅有很好的光滑度,而且当节点逐渐加密时其函数值整体上能很好地逼近被插函数,相应的导数值也收敛于被插函数的导数值,不会发生“龙格现象”。 现在国内外学者对这方面的研究也越来越重视,根据我们的需要来解决不同的问题,而且函数的形式也在不断地改进,长期以来很多学者致力于样条插值的研究,对三次样条的研究已相当成熟。

对样条函数及其插值问题的一点认识

对样条函数及其插值问题的一点认识 样条函数是计算数学以及计算机辅助设计几何设计的重要工具。1946年,I. J. Schoenberg 著名的关于一元样条函数的奠定性论文“Contribution to the problem of application of equidistant data by analytic functions ”发表,建立了一元样条函数的理论基础。自此以后,关于样条函数的研究工作逐渐深入。随着电子计算机技术的不断进步,样条函数的理论以及应用研究得到迅速的发展和广泛的应用。经过数学工作者的努力,已经形成了较为系统的理论体系。 所谓(多项式)样条函数,乃指具有一定光滑性的分段(分片)多项式。一元n 次且n -1阶连续可微的样条函数具有如下的表示式: 1()()()()N n n j j j s x p x c x x x +==+--∞<<+∞∑[] 011,00,01,,...,,(1),...,(),,...,,n n n n N n N N u un u u u u x x x x x S x x x x ++++ +≥??=??

插值法综述《计算方法》学习报告

插值法综述 一、插值法及其国内外研究进展 1.插值法简介 插值法是一种古老的数学方法,它来自生产实践,早在一千多年前,我国科学家在研究历法上就应用了线性插值与二次插值,但它的基本理论却是在微积分产生之后才逐渐完善的,其应用也日益增多,特别是在计算机广泛使用之后,由于航空、机械加工、自动控制等实际问题的需要,使插值法在实践和理论上都显得更为重要,并得到了空前的发展。 2.国内外研究进展 ●插值法在预测地基沉降的应用 ●插值法在不排水不可压缩条件下两相介质的两重网格算法的应用 ●拉格朗日插值法在地震动的模拟研究中的应用 ●插值法在结构抗震可靠性分析中的应用 ●插值法在应力集中应变分布规律实验分析中的应用 3.代表性文献 ●不等时距GM(1%2c1)模型预测地基沉降研究秦亚琼武汉理工大学学报 (交通科学与工程版) 2008.2 ●不排水不可压缩条件下两相介质的两重网格算法牛志伟岩土力学2008.3 ●基于拉格朗日插值法的地震动的模拟白可山西建筑2010.10 ●响应表面法用于结构抗震可靠性分析张文元世界地震工程1997 ●小议应力集中应变分布规律的实验方法查珑珑淮海工学院学报(自

然科学版)2004.6 二、插值法的原理 【原理】 设有n+1个互不相同的节点(i x ,i y ) (i=0,1,2,...n )则存在唯一的多项式: 2012()...(1)n n n L x a a x a x a x =++++ 使得()(0,1,2,...)(2) n j j L x y j n == 证明:构造方程组 201020002011211120 12......(3)...n n n n n n n n n n a a x a x a x y a a x a x a x y a a x a x a x y ?++++=?++++=?? ??++++=? 令:0011111 n n n n n x x x x A x x ?????? =?? ?????? 01n a a X a ??????=?????? 01n y y Y y ?? ????=?????? 方程组的矩阵形式如下:(4)AX Y = 由于1 1 ()0n n i j i j A x x -===-≠∏∏所以方程组(4)有唯一解。 从而2012()...n n n L x a a x a x a x =++++唯一存在。 三、常用插值法 3.1 Lagrange 插值法 3.1.1 Lagrange 插值法的一般提法 给定))(,(i i x f x ),,1,0(n i =,多项式

线性插值法计算公式解析

线性插值法计算公式解析 2011年招标师考试实务真题第16题:某机电产品国际招标项目采用综合评价法评标。评标办法规定,产能指标评标总分值为10分,产能在100吨/日以上的为10分,80吨/日的为5分,60吨/日以下的为0分,中间产能按插值法计算分值。某投标人产能为95吨/日,应得()分。A.8.65 B.8.75 C.8.85 D.8.95 分析:该题的考点属线性插值法又称为直线内插法,是评标办法的一种,很多学员无法理解公式含义,只能靠死记硬背,造成的结果是很快会遗忘,无法应对考试和工作中遇到的问题,对此本人从理论上进行推导,希望对学员有所帮助。 一、线性插值法两种图形及适用情形 F F F2

图一:适用于某项指标越低得分越高的项目评 分计算,如投标报价得分的计算 图二:适用于某项投标因素指标越高,得分越高的情 形,如生产效率等 二、公式推导 对于这个插值法,如何计算和运用呢,我个人认为考生在考试时先试着画一下上面的图,只有图出来了,根据三角函数定义,tana=角的对边比上邻边,从图上可以看出,∠A是始终保持不变的,因此,根据三角函数tana,我们可以得出这样的公式 图一:tana=(F1-F2)/(D2-D1)=(F-F2)/(D2-D)=(F1-F)/(D-D1),

通过这个公式,我们可以进行多种推算,得出最终公式如下F=F2+(F1-F2)*(D2-D)/ (D2-D1) 或者F= F1-(F1-F2)*(D-D1)/(D2-D1) 图二:tana=(F1-F2)/(D2-D1)=(F-F2)/ (D-D1)=(F1-F)/(D2-D)通过这个公式我们不难得出公式: F= F2+(F1-F2)*(D-D1)/(D2-D1) 或者F=F1-(F1-F2)*(D2-D)/(D2-D1) 三:例题解析 例题一:某招标文件规定有效投标报价最高的得30分,有效投标报价最低的得60分,投标人的报价得分用线性插值法计算,在评审中,评委发现有效的最高报价为300万元,有效最低的报价为240万元,某A企业的有效投标报价为280万元,问他的价格得分为多少 分析,该题属于图一的适用情形,套用公式 计算步骤:F=60+(30-60)/(300-240)*(280-240)=40 例题二:某招标文件规定,水泵工作效率85%的3分,95%的8分,某投标人的水泵工作效率为92%,问工作效率指标得多少分? 分析:此题属于图二的适用情形,套用公式 F=3+(92%-85%)*(8-3)/(95%-85%)=3+7/2=6.5 (此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容, 供参考,感谢您的配合和支持)

《财务管理》教学中插值法的快速理解和掌握

摘要在时间价值及内部报酬率计算时常用到插入法,但初学者对该方法并 不是很容易理解和掌握。本文根据不同情况分门别类。利用相似三角形原理推 导出插入法计算用公式。并将其归纳为两类:加法公式和减法公式,简单易懂、理解准确、便于记忆、推导快捷。 关键词插入法;近似直边三角形;相似三角形 时间价值原理正确地揭示了不同时点上资金之间的换算。是财务决策的基 本依据。为此,财务人员必须了解时间价值的概念和计算方法。但在教学过程中。笔者发现大多数教材插值法(也叫插入法)是用下述方法来进行的。如高等 教育出版社2000年出版的《财务管理学》P62对贴现期的。 事实上,这样计算的结果是错误的。最直观的判断是:系数与期数成正向 关系。而4.000更接近于3.791。那么最后的期数n应该更接近于5,而不是6。正确结果是:n=6-0.6=5.4(年)。由此可见,这种插入法比较麻烦,不小心时还容易出现上述错误。 笔者在教学实践中用公式法来进行插值法演算,效果很好,现分以下几种 情况介绍其原理。 一、已知系数F和计息期n。求利息率i 这里的系数F不外乎是现值系数(如:复利现值系数PVIF年金现值系数PVIFA)和终值系数(如:复利终值系数FVIF、年金终值系数FVIFA)。 (一)已知的是现值系数 那么系数与利息率(也即贴现率)之间是反向关系:贴现率越大系数反而越小,可用图1表示。 图1中。F表示根据题意计算出来的年金现值系数(复利现值系数的图示略 有不同,在于i可以等于0,此时纵轴上的系数F等于1),F为在相应系数表 中查到的略大于F的那个系数,F对应的利息率即为i。查表所得的另一个比F 略小的系数记作F,其对应的利息率为i。

三次样条插值作业题

例1 设)(x f 为定义在[0,3]上的函数,有下列函数值表: 且2.0)('0=x f ,1)('3-=x f ,试求区间[0,3]上满足上述条件的三次样条插值函数)(x s 本算法求解出的三次样条插值函数将写成三弯矩方程的形式: ) ()6()() 6()(6)(6)(211123 13 1j j j j j j j j j j j j j j j j x x h h M y x x h h M y x x h M x x h M x s -- + -- + -+ -= +++++其中,方程中的系数 j j h M 6, j j h M 61+,j j j j h h M y )6(2- , j j j j h h M y ) 6(211++- 将由Matlab 代码中的变量Coefs_1、Coefs_2、Coefs_3以及Coefs_4的值求出。 以下为Matlab 代码: %============================= % 本段代码解决作业题的例1 %============================= clear all clc % 自变量x 与因变量y ,两个边界条件的取值 IndVar = [0, 1, 2, 3]; DepVar = [0, 0.5, 2, 1.5]; LeftBoun = 0.2; RightBoun = -1; % 区间长度向量,其各元素为自变量各段的长度 h = zeros(1, length(IndVar) - 1); for i = 1 : length(IndVar) - 1 h(i) = IndVar(i + 1) - IndVar(i); end % 为向量μ赋值

三次样条插值方法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

三次样条插值方法的应用 一、问题背景 分段低次插值函数往往具有很好的收敛性,计算过程简单,稳定性好,并且易于在在电子计算机上实现,但其光滑性较差,对于像高速飞机的机翼形线船体放样等型值线往往要求具有二阶光滑度,即有二阶连续导数,早期工程师制图时,把富有弹性的细长木条(即所谓的样条)用压铁固定在样点上,在其他地方让他自由弯曲,然后沿木条画下曲线,称为样条曲线。样条曲线实际上是由分段三次曲线并接而成,在连接点即样点上要求二阶导数连续,从数学上加以概括就得到数学样条这一概念。下面我们讨论最常用的三次样条函数及其应用。 二、数学模型 样条函数可以给出光滑的插值曲线(面),因此在数值逼近、常微分方程和偏微分方程的数值解及科学和工程的计算中起着重要的作用。 设区间[]b ,a 上给定有关划分b x x n =<<<=Λ10x a ,S 为[]b ,a 上满足下面条件的函数。 ● )(b a C S ,2∈; ● S 在每个子区间[]1,+i i x x 上是三次多项式。 则称S 为关于划分的三次样条函数。常用的三次样条函数的边界条件有三种类型: ● Ⅰ型 ()()n n n f x S f x S ''0'',==。 ● Ⅱ型 ()()n n n f x S f x S ''''0'''',==,其特殊情况为()()0''''==n n x S x S 。 ● Ⅲ型 ()()Λ3,2,1,0,0==j x S x S n j j ,此条件称为周期样条函数。

鉴于Ⅱ型三次样条插值函数在实际应用中的重要地位,在此主要对它进行详细介绍。 三、算法及流程 按照传统的编程方法,可将公式直接转换为MATLAB可是别的语言即可;另一种是运用矩阵运算,发挥MATLAB在矩阵运算上的优势。两种方法都可以方便地得到结果。方法二更直观,但计算系数时要特别注意。这里计算的是方法一的程序,采用的是Ⅱ型边界条件,取名为spline2.m。 Matlab代码如下: function s=spline2(x0,y0,y21,y2n,x) %s=spline2(x0,y0,y21,y2n,x) %x0,y0 are existed points,x are insert points,y21,y2n are the second %dirivitive numbers given. n=length(x0); km=length(x); a(1)=-0.5; b(1)=3*(y0(2)-y0(1))/(2*(x0(2)-x0(1))); for j=1:(n-1) h(j)=x0(j+1)-x0(j); end for j=2:(n-1) alpha(j)=h(j-1)/(h(j-1)+h(j)); beta(j)=3*((1-alpha(j))*(y0(j)-y0(j-1))/h(j-1)+alpha(j)*(y0(j+1)-y0(j))/h(j));

计算方法实验报告 插值

实验名称:插值计算 1引言 在生产和科研中出现的函数是多种多样的。常常会遇到这样的情况:在某个实际问题中,虽然可以断定所考虑的函数f(x)在区间[a,b]上存在且连续,但却难以找到它的解析表达式,只能通过实验和观测得到在有限个点上的函数值。用这张函数表来直接求出其他点的函数值是非常困难的,在有些情况下,虽然可以写出f(x)的解析表达式,但由于结构十分复杂,使用起来很不方便。面对这些情况,构造函数P(x)作为f(x)的近似,插值法是解决此类问题比较古老却目前常用的方法,不仅直接广泛地应用与生产实际和科学研究中,而且是进一步学习数值计算方法的基础。 设函数y=f(x)在区间[a,b]上连续,且在n+1个不同的点a≤x0,x1……,xn≤b上分别取值y0,y1……,yn. 插值的目的就是要在一个性质优良、便于计算的函数φ中,求一简单函数P(x),使P(xi)=yi(i=0,1…,n)而在其他点x≠xi上,作为f(x)的近似。 通常,称区间[a,b]为插值区间,称点x0,x1,…,xn为插值节点,上式为插值条件,称函数类φ为插值函数类,称P(x)为函数f(x)在节点x0,x1,…,xn处的插值函数,求插值函数P(x)的方法称为插值法。 2实验目的和要求 用matlab定义分段线性插值函数、分段二次插值函数、拉格朗日插值函数,输入所给函 数表,并利用计算机选择在插值计算中所需的节点,计算f(0.15),f(0.31),f(0.47)的近似值。

3算法描述 1.分段线性插值流程图

2.分段二次插值流程图

3.拉格朗日插值流程图

4程序代码及注释 1.分段线性插值

关于三次样条插值函数的学习报告(研究生)资料

学习报告—— 三次样条函数插值问题的讨论 班级:数学二班 学号:152111033 姓名:刘楠楠

样条函数: 由一些按照某种光滑条件分段拼接起来的多项式组成的函数;最常用的样条函数为三次样条函数,即由三次多项式组成,满足处处有二阶连续导数。 一、三次样条函数的定义: 对插值区间[,]a b 进行划分,设节点011n n a x x x x b -=<< <<=,若 函数2()[,]s x c a b ∈在每个小区间1[,]i i x x +上是三次多项式,则称其为三次样条函数。如果同时满足()()i i s x f x = (0,1,2)i n =,则称()s x 为()f x 在 [,]a b 上的三次样条函数。 二、三次样条函数的确定: 由定义可设:101212 1(),[,] (),[,]()(),[,] n n n s x x x x s x x x x s x s x x x x -∈??∈?=???∈?其中()k s x 为1[,]k k x x -上的三次 多项式,且满足11(),()k k k k k k s x y s x y --== (1,2,,k n = 由2()[,]s x C a b ∈可得:''''''()(),()(),k k k k s x s x s x s x -+-+== 有''1()(),k k k k s x s x -++= ''''1()(),(1 ,2,,1)k k k k s x s x k n -+ +==-, 已知每个()k s x 均为三次多项式,有四个待定系数,所以共有4n 个待定系数,需要4n 个方程才能求解。前面已经得到22(1)42n n n +-=-个方程,因此要唯一确定三次插值函数,还要附加2个条件,一般上,实际问题通常对样条函数在端点处的状态有要求,即所谓的边界条件。 1、第一类边界条件:给定函数在端点处的一阶导数,即 ''''00(),()n n s x f s x f == 2、第二类边界条件:给定函数在端点处的二阶导数,即

内插法计算公式

内插法计算公式 内插法计算公式 1、X1、Y1为《建设工程监理与相关服务收费标准》附表二中计费额的区段值;Y1、Y2为对应于X1、X2的收费基价;X为某区段间的插入值道;Y为对应于X由插入法计算而得的收费基价。 2、计费额小于500万元的,以计费额乘以3.3%的收费专率计算收费基价; 3、计费额大于1,000,000万元的,以计费额乘以1.039%的收费率计算收费基价。 【例】若计算得计费额为600万元,计算其收费基价属。 根据《建设工程监理与相关服务收费标准》附表二:施工监理服务收费基价表,计费额处于区段值500万元(收费基价为16.5万元)与1000万元(收费基价为30.1万元)之间,则对应于600万元计费额的收费基价: 内插法(Interpolation Method) 什么是内插法 在通过找到满足租赁交易各个期间所支付的最低租金支付额及租赁期满时租赁资产估计残值的折现值等于租赁资产的公平价值的

折现率,即租赁利率的方法中,内插法是在逐步法的基础上,找到两个接近准确答案的利率值,利用函数的连续性原理,通过假设关于租赁利率的租赁交易各个期间所支付的最低租金支付额及租赁期满时租赁资产估计残值的折现值与租赁资产的公平价值之差的函数为线性函数,求得在函数值为零时的折现率,就是租赁利率。 内插法原理 数学内插法即“直线插入法”。其原理是,若A(i1,b1),B(i2,b2)为两点,则点P(i,b)在上述两点确定的直线上。而工程上常用的为i在i1,i2之间,从而P在点A、B之间,故称“直线内插法”。 数学内插法说明点P反映的变量遵循直线AB反映的线性关系。 上述公式易得。A、B、P三点共线,则 (b-b1)/(i-i1)=(b2-b1)/(i2-i1)=直线斜率,变换即得所求。 内插法的具体方法 求得满足以下函数的两个点,假设函数为线性函数,通过简单的比例式求出租赁利率。 以每期租金先付为例,函数如下: A表示租赁开始日租赁资产的公平价值; R表示每期租金数额; S表示租赁资产估计残值; n表示租期; r表示折现率。 通过简单的试错,找出二个满足上函数的点(a1,b1)(a2,b2),

数值分析作业-三次样条插值

数值计算方法作业 实验 三次样条差值函数 实验目的: 掌握三次样条插值函数的三弯矩方法。 实验函数: dt e x f x t ? ∞ -- = 2 221)(π 实验内容: (1) 编程实现求三次样条插值函数的算法,分别考虑不同的边界条件; (2) 计算各插值节点的弯矩值; (3) 在同一坐标系中绘制函数f(x),插值多项式,三次样条插值多项式的曲线 比较插值结果。 实验 三次样条差值函数的收敛性 实验目的: 多项式插值不一定是收敛的,即插值的节点多,效果不一定好。对三次样条插值函数如何呢理论上证明三次样条插值函数的收敛性是比较困难的,通过本实验可以证明这一理论结果。 实验内容: 按照一定的规则分别选择等距或非等距的插值节点,并不断增加插值节点的个数。 实验要求: (1) 随着节点个数的增加,比较被逼近函数和三样条插值函数的误差变化情 况,分析所得结果并与拉格朗日插值多项式比较; (2) 三次样条插值函数的思想最早产生于工业部门。作为工业应用的例子,考 虑如下例子:某汽车制造商根据三次样条插值函数设计车门曲线,其中一

k x 012345678910 k y k y' 算法描述: 拉格朗日插值: 其中是拉格朗日基函数,其表达式为: () ∏ ≠ = - - = n i j j j i j i x x x x x l ) ( ) ( 牛顿插值: ) )...( )( ]( ,... , , [ .... ) )( ]( , , [ )0 ]( , [ ) ( ) ( 1 1 2 1 1 2 1 1 - - - - + + - - + - + = n n n x x x x x x x x x x f x x x x x x x f x x x x f x f x N 其中 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - = - - = - - = - ) /( ]) ,... , [ ] ,... , [ ( ] ... , [ . . ] , [ ] , [ ] , , [ ) ( ) ( ] , [ 1 1 2 1 1 x x x x x f x x x f x x x f x x x x f x x f x x x f x x x f x f x x f n n n n i k j i k j k j i j i j i j i 三样条插值: 所谓三次样条插值多项式Sn(x)是一种分段函数,它在节点Xi(a

matlab-牛顿插值法-三次样条插值法

(){}2 1 ()(11),5,10,20: 1252 1()1,(0,1,2,,)()2,(0,1,2,,)()()2 35,20:1100 (i i i i n n k k k Newton f x x n x f x x i i n f x n x y i n Newton N x S x n x k y f x =-≤≤=+=-+====-+ =L L 题目:插值多项式和三次样条插值多项式。 已知对作、计算函数在点处的值; 、求插值数据点的插值多项式和三次样条插值多项式;、对计算和相应的函数值),()() (1,2,,99)4:()max ()()max ()n k n k n k n k n k n k k k N x S x k E N y N x E S y S x ==-=-L 和; 、计算,; 解释你所得到的结果。 算法组织: 本题在算法上需要解决的问题主要是:求出第二问中的Newton 插值多项式 )(x N n 和三次样条插值多项式()n S x 。如此,则第三、四问则迎刃而解。计算两 种插值多项式的算法如下: 一、求Newton 插值多项式)(x N n ,算法组织如下: Newton 插值多项式的表达式如下: )())(()()(110010--???--+???+-+=n n n x x x x x x c x x c c x N 其中每一项的系数c i 的表达式如下: 1102110) ,,,(),,,(),,,(x x x x x f x x x f x x x f c i i i i i -???-???= ???=- 根据i c 以上公式,计算的步骤如下: ?? ??? ?? ?????+??????? ???????????----) ,,,,(1) ,,,(),,,,(),(,),,(2)(,),(),(11101111011010n n n n n n n n x x x x f n x x x f x x x f n x x f x x f x f x f x f 、计算、计算、计算、计算 二、求三次样条插值多项式)(x S n ,算法组织如下:

计算方法简明教程插值法习题解析

第二章 插值法 1.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20 ()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23 537623 l x l x x x x x x x =-+=---+ -+= +- 2.给出()ln f x x =的数值表 用线性插值及二次插值计算的近似值。 解:由表格知, 01234012340.4,0.5,0.6,0.7,0.8;()0.916291,()0.693147()0.510826,()0.356675()0.223144 x x x x x f x f x f x f x f x ======-=-=-=-=- 若采用线性插值法计算ln 0.54即(0.54)f , 则0.50.540.6<<

2 112 1 221 11122()10(0.6)()10(0.5)()()()()() x x l x x x x x x l x x x x L x f x l x f x l x -==----= =---=+ 6.9314 7(0.6) 5.10826( x x =--- 1(0.54)0.62021860.620219L ∴=-≈- 若采用二次插值法计算ln 0.54时, 1200102021101201220212001122()() ()50(0.5)(0.6) ()() ()() ()100(0.4)(0.6) ()()()() ()50(0.4)(0.5) ()() ()()()()()()() x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x L x f x l x f x l x f x l x --==------==-------= =----=++ 500.916291(0.5)(0.6)69.3147(0.4)(0.6)0.51082650(0.4)(0.5 x x x x x x =-?--+---?--2(0.54)0.61531984 0. 615320L ∴=-≈- 3.给全cos ,090x x ≤≤ 的函数表,步长1(1/60),h '== 若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界。 解:求解cos x 近似值时,误差可以分为两个部分,一方面,x 是近似值,具有5位有效数字,在此后的计算过程中产生一定的误差传播;另一方面,利用插值法求函数cos x 的近似值时,采用的线性插值法插值余项不为0,也会有一定的误差。因此,总误差界的计算应综合以上两方面的因素。 当090x ≤≤ 时, 令()cos f x x = 取0110,( )606018010800 x h ππ===?= 令0,0,1,...,5400i x x ih i =+= 则5400902 x π = = 当[]1,k k x x x -∈时,线性插值多项式为

插值法计算实际利率

插值法计算实际利率 20×0年1月1日,XYZ公司支付价款l 000元(含交易费用)从活跃市场上购入某公司5 年期债券,面值1 250元,票面利率4.72%,按年支付利息(即每年59元),本金最后一次支付。合同约定,该债券的发行方在遇到特定情况时可以将债券赎回,且不需要为提前赎回支付额外款项。XYZ公司在购买该债券时,预计发行方不会提前赎回。XYZ公司将购入的该公司债券划分为持有至到期投资,且不考虑所得税、减值损失等因素。 XYZ公司在初始确认时首先应计算确定该债券的实际利率,设该债券的实际利率为r,则可列出如下等式: 59×(1+r)-1+59×(1+r)-2+59×(1+r)-3+59×(1+r)-4+(59+1250)×(1+r)-5=1000(元)(1) 上式变形为: 59×(1+r)-1+59×(1+r)-2+59×(1+r)-3+59×(1+r)-4+59×(1+r)-5+1250×(1+r)-5=1000(元)(2) 2式写作:59×(P/A,r,5)+1250×(P/F,r,5)=1000 (3) (P/A,r,5)是利率为r,期限为5的年金现值系数;(P/F,r,5)是利率为r,期限为5的复利现值系数。现值系数可通过查表求得。 当r=9%时,(P/A,9%,5)=3.8897,(P/F,9%,5)=0.6499 代入3式得到59×3.8897+1250×0.6499=229.4923+812.375=1041.8673>1 000 当r=12%时,(P/A,12%,5)=3.6048,(P/F,12%,5)=0.5674 代入3式得到59×3.6048+1250×0.5674=212.6832+709.25=921.9332<1000 采用插值法,计算r 按比例法原理: 1041.8673 9% 1000.0000 r 921.9332 12% (1041.8673-1000)/(1041.8673-921.9332)=(9%-r)/(9%-12%) 解之得,r=10% 备注: 此处要用到两个表:《年金现值系数表》、《复利现值系数表》 题中的3.8897和3.6048是查《年金现值系数表》得来的,i=9%和12%,n=5;0.6499和0.5674是查《复利现值系数表》得来的,i=9%和12%,n=5 假设两个实际利率的目的在于,确定现值1000在两个利率对应现值的范围内。开始会疑惑如何确定这两个假设的利率,后来发现这是一个估值,在确定9%和12%之前可能会有很多次的预估。另外,现值的范围越小,计算出来的实际利率越精确。 对于这个值的预估,某网友给出这样的方法(还不是特别能理解那个原理,但是自己列了一个表,当然考试的时候是不可能这样列表的):一般考试会给出你大致的范围,比如注会考试就不会让你去慢慢试!一般情况下运用大升小降的原理去应付它就行,就是代入的利率求出的值大于需计算的利率的值,比如带入9%计算大于给定值,你就升高利率,升高到带入

计算方法——插值法综述

计算方法——插值法 11223510 李晓东 在许多实际问题及科学研究中,因素之间往往存在着函数关系,然而,这种关系经常很难有明显的解析表达,通常只是一些离散数值。有时即使给出了解析表达式,却由于表达式过于复杂,使用不便,且不易于计算与分析。解决这类问题我们往往使用插值法:用一个“简单函数”)(x ?逼近被计算函数)(x f ,然后用)(x ?的函数值近似替代)(x f 的函数值。插值法要求给出)(x f 的一个函数表,然后选定一种简单的函数形式,比如多项式、分段线性函数及三角多项式等,通过已知的函数表来确定)(x ?作为)(x f 的近似,概括地说,就是用简单函数为离散数组建立连续模型。 一、 理论与算法 (一)拉格朗日插值法 在求满足插值条件n 次插值多项式)(x P n 之前,先考虑一个简单的插值问题:对节点),,1,0(n i x i =中任一点)0(n k x k ≤≤,作一n 次多项式)(x l k ,使它在该点上取值为1,而在其余点),,1,1,1,0(n k k i x i +-=上取值为零,即 ? ? ?≠==k i k i x l i k 01)( (1.1) 上式表明n 个点n k k x x x x x ,,,,,,1110 +-都是n 次多项式)(x l k 的零点,故可设 )())(())(()(1110n k k k k x x x x x x x x x x A x l -----=+- 其中,k A 为待定系数。由条件1)(=k k x l 立即可得 )())(()(1 110n k k k k k k k x x x x x x x x A ----= +- (1.2) 故 ) ())(()() ())(()()(110110n k k k k k k n k k k x x x x x x x x x x x x x x x x x l --------= +-+- (1.3) 由上式可以写出1+n 个n 次插值多项式)(,),(),(10x l x l x l n 。我们称它们为在1+n 个节点n x x x ,,,10 上的n 次基本插值多项式或n 次插值基函数。 利用插值基函数立即可以写出满足插值条件的n 次插值多项式 )()()(1100x l y x l y x l y n n +++ (1.4)

常见的插值方法及其基础原理

常见的插值方法及其原理 这一节无可避免要接触一些数学知识,为了让本文通俗易懂,我们尽量绕开讨厌的公式等。为了进一步的简化难度,我们把讨论从二维图像降到一维上。 首先来看看最简单的‘最临近像素插值’。 A,B是原图上已经有的点,现在我们要知道其中间X位置处的像素值。我们找出X位置和A,B位置之间的距离d1,d2,如图,d2要小于d1,所以我们就认为X处像素值的大小就等于B处像素值的大小。 显然,这种方法是非常苯的,同时会带来明显的失真。在A,B中点处的像素值会突然出现一个跳跃,这就是为什么会出现马赛克和锯齿等明显走样的原因。最临近插值法唯一的优点就是速度快。 图10,最临近法插值原理 接下来是稍微复杂点的‘线性插值’(Linear) 线性插值也很好理解,AB两点的像素值之间,我们认为是直线变化的,要求X点处的值,只需要找到对应位置直线上的一点即可。换句话说,A,B间任意一点的值只跟A,B有关。由于插值的结果是连续的,所以视觉上会比最小临近法要好一些。线性插值速度稍微要慢一点,但是效果要好不少。如果讲究速度,这是个不错的折衷。 图11,线性插值原理

其他插值方法 立方插值,样条插值等等,他们的目的是试图让插值的曲线显得更平滑,为了达到这个目的,他们不得不利用到周围若干范围内的点,这里的数学原理就不再详述了。 图12,高级的插值原理 如图,要求B,C之间X的值,需要利用B,C周围A,B,C,D四个点的像素值,通过某种计算,得到光滑的曲线,从而算出X的值来。计算量显然要比前两种大许多。 好了,以上就是基本知识。所谓两次线性和两次立方实际上就是把刚才的分析拓展到二维空间上,在宽和高方向上作两次插值的意思。在以上的基础上,有的软件还发展了更复杂的改进的插值方式譬如S-SPline, Turbo Photo等。他们的目的是使边缘的表现更完美。

几种常用的插值方法

几种常用的插值方法 数学系信息与计算科学1班平 指导老师:唐振先 摘要:插值在诸如机械加工等工程技术和数据处理等科学研究中有许多直接的应用,在很多领域都要用插值的办法找出表格和中间值,插值还是数值积分微分方程数值解等数值计算的基础。本文归纳了几种常用的插值方法,并简单分析了其各自的优缺点。 关键词:任意阶多项式插值,分段多项式插值。 引言:所谓插值,通俗地说就是在若干以知的函数值之间插入一些未知函数值,而插值函数的类型最简单的选取是代数多项式。用多项式建立插值函数的方法主要用两种:一种是任意阶的插值多项式,它主要有三种基本的插值公式:单项式,拉格朗日和牛顿插值;另一种是分段多项式插值,它有Hermite和spine插值和分段线性插值。 一.任意阶多项式插值: 1.用单项式基本插值公式进行多项式插值: 多项式插值是求通过几个已知数据点的那个n-1阶多项式,即P n-1(X)=A1+A2X+…A n X n-1,它是一个单项式基本函数X0,X1…X n-1的集合来定义多项式,由已知n个点(X,Y)构成的集合,可以使多项式通过没数据点,并为n个未知系数Ai写出n个方程,这n个方程组成的方程组的系数矩阵为Vandermonde 矩阵。 虽然这个过程直观易懂,但它都不是建立插值多项式最好的办法,因为Vandermonde方程组有可能是病态的,这样会导致单项式系数不确定。另外,单项式中的各项可能在大小上有很大的差异,这就导致了多项式计算中的舍入误差。 2.拉格朗日基本插值公式进行插值:

先构造一组插值函数L i (x ) =011011()()()() ()()()() i i n i i i i i i n x x x x x x x x x x x x x x x x -+-+--------,其中i=0,… n.容易看出n 次多项式L i (x )满足L i (x )=1,(i=j );L i (x )=0,(i ≠j ),其中i=0,1…n ,令L i (x )=0()n i i i y l x =∑这就是拉格朗日插值多项式。与单项式基本函 数插值多项式相比,拉格朗日插值有2个重要优点:首先,建立插值多项式不需要求解方程组;其次,它的估计值受舍入误差要小得多。拉格朗日插值公式结构紧凑,在理论分析中很方便,但是,当插值节点增加、减少或其位置变化时全部插值函数均要随之变化,从而整个插值公式的结构也将发生变化,这在实际计算是非常不利的。 3.使用牛顿均差插值公式进行多项式进行插值: 首先,定义均差,f 在xi,xj 上的一阶均差()()[,]j i i j j i f x f x f x x x x -=-,其中(i ≠j)。f 在 x i ,x j ,x k 的二阶均差f[x i ,x j ,x k ]= [,][,] i j j k j k f x x f x x x x --,k 阶均 f[x i …x k ]= 10[][] k i k k f x x f x x x x ---。 由此得出牛顿均值插值多项式的公式为Pn(x)=f[x 0]+f[x 0-x 1](x-x 0)+…+f[x 0,x n ](x-x 0)…(x-x n-1)。实际计算中经常利用下表给出的均差表直接构造牛顿插值公式 , , … …

相关主题
文本预览
相关文档 最新文档