当前位置:文档之家› MEMS加速度传感器

MEMS加速度传感器

MEMS加速度传感器
MEMS加速度传感器

MEMS加速度传感器

一.有关MEMS与MEMS传感器

MEMS是微机电系统的缩写。MEMS主要包括微型机构、微型传感器、微型执行器和相应的处理电路等几部分,它是在融合多种微细加工技术,并应用现代信息技术的最新成果的基础上发展起来的高科技前沿学科。

MEMS技术的发展开辟了一个全新的技术领域和产业,采用MEMS技术制作的微传感器、微执行器、微型构件、微机械光学器件、真空微电子器件、电力电子器件等在航空、航天、汽车、生物医学、环境监控、军事以及几乎人们所接触到的所有领域中都有着十分广阔的应用前景。

目前,全世界有大约600余家单位从事MEMS的研制和生产工作,已研制出包括微型压力传感器、加速度传感器、微喷墨打印头、数字微镜显示器在内的几百种产品,其中微传感器占相当大的比例。微传感器是采用微电子和微机械加工技术制造出来的新型传感器。与传统的传感器相比,它具有体积小、重量轻、成本低、功耗低、可靠性高、适于批量化生产、易于集成和实现智能化的特点。同时,在微米量级的特征尺寸使得它可以完成某些传统机械传感器所不能实现的功能。

本文概述MEMS为加速度传感器的类型、工作原理、性能、应用和发展方向。重点介绍一下电容式MEMS加速度传感器和MEMS传感器的应用

二.MEMS微加速度传感器的原理

MEMS技术所制造的加速度传感器根据原理分类有压阻式加速度传感器、压电式加速度传感器、电容式加速度传感器、热电偶式加速度传感器、谐振式加速度传感器、光波导加速度传感器,其中应用最广泛、受关注程度最高的是电容式加速度传感器。

传统加速度传感器就是利用了其内部的由于加速度造成的晶体变形这个特性。由于这个变形会产生电压,只要计算出产生电压和所施加的加速度之间的关系,就可以将加速度转化成电压输出。

2.1压阻式加速度传感器

压阻式加速度传感器是最早开发的一种。其原理为外力作用下,单晶硅材料发生微小形变,原子内部电子能级发生变化,从而产生剧烈电阻率的变化,从而改变输出电信号,也就是压阻效应。通过搭建惠更斯电桥调节输出电压结构达到易于处理的电压变化信号。

这种MEMS微加速度传感器与传统的加速度传感器有很大的相似之处。

2.2压电式传感器

压电式传感器与压阻式传感器结构类似,用压电材料替代压阻材料完成由加速度变化向电信号的转化。

2.3热电偶是加速度传感器

热电偶是加速度传感器基于热交换原理,热源位于硅片中央,硅片悬空四周分布均匀热电偶堆。当有加速度时,均匀分布的热梯度被打破,经由电路整理,输出电压改变来表达动态加速度及静态加速度。

2.4谐振式加速度传感器

谐振式加速度传感器其核心敏感元件谐振子拥有一定固有频率,在类似于压阻式传感器的结构下,加速度的变化改变了其谐振频率,从而得到电信号与加速度成正比的线性变化关系。而且灵敏度非常高,克服了高精度制造工艺及高精度电路复杂难制后谐振式传感器成为低成本高性能的代表。

2.6光波导加速度传感器

光波导加速度传感器是由高精度机械光学结构搭建,在加速度不为零时,光波经过反射和折射用微小形变来放大,形成可观变量,经由光电转化输出与加速度成正比的电信号。

2.7电容式微加速度传感器

最后要介绍应用最广泛的电容式微加速度度传感器。电容式微加速度传感器的基本结构是质量块与固定电极构成的电容。当加速度使质量块产生位移时改变电容的重叠面积或间距。检测到的电容信号经过前置放大、信号调理后,以直流电压方式输出,从而间接实现对加速度的检测。

如图1所示,电容式加速度传感器由两块固定电极夹着一块活动电极。在静止的情况下,活动电极与两块固定电极的距离均为d0形成两个大小为C0的串联的电容。

当加速度传感器检测加速度时,活动电极受加速度力产生位移,两个电容的d发生变化。根据平行板电容的计算公式:

可知两个电容的大小将发生变化。由于此时电容值和极板间隙不是线性关系,常常采用差动电容检测方式以解决线性问题:

上式在时成立。

三.MEMS加速度传感器的主要工艺和封装

MEMS前方并非一片光明。一项挑战是封装问题,因为MEMS器件的多样性以及每个要暴露的不同环境。封装加上测试,很容易就会将成本增加一倍。在不影响产品性能的情况下,研究出标准化和更廉价的封装已成为MEMS设计的主要关注目标。在今天的地球上,MEMS制造商投入了大量研发力量,试图加强自己在

封装制程中的地位,为各种新设备开发新的专用封装。

传统的MEMS封装主要有金属封装、陶瓷封装和塑料封装三种形式。随着MEMS 封装技术取得了很大进展,出现了众多的MEMS封装技术,大多数研究都集中在特殊应用的不同封装工艺,但又开发了一些较通用、较完善的封装设计,通常可将其分为3个封装层次:芯片级封装、圆片级封装、系统级封装。

电容式为加速度传感器是由双面单晶硅片进行制作,主要工艺包括光刻、硅玻璃键合技术和深度反应离子刻蚀技术等。

流程如下:

1、清洗硅片后交替运用干湿氧化制备牺牲层

2、用键合区掩膜版首次光刻,腐蚀未有光刻胶的二氧化硅

3、根据版型蚀刻

4、去除未被腐蚀二氧化硅

5、如一步制备新玻璃基片,溅射金属铝

6、对玻璃基片二次光刻,形成栅形电极图形

7、将硅片及玻璃基底键合

8、打磨厚度

9、三次蚀刻达到要求结构

传感器封装结构设计截面示意如图2所示.设计时考虑封装的密封性和坚固性以及传感器整体尺寸的指标,传感器芯片和带有孔径1. 8 mm的玻璃键合,形成流体通道和入口、出口两处压力检测腔.键合引线将芯片压阻连接到基底的PCB 板焊盘上.使用有机玻璃罩保护传感器芯片和键合引线.传感器信号校准和标定电路板通过接插件与基底上的PCB板相连.封装完成的实物见图3.封装后传感器的直径 26 mm,厚度11 mm,满足设计要求。

图2 封装结构截面示意图图3封装后的实物图

Fig.2 Cross section view of packaging structure Fig.3 Sensor photo

四.MEMS等传感器的特点:

1)微型化:MEMS器件体积小、重量轻、耗能低、惯性小、谐振频率高、响应时间短。

2)以硅为主要材料,机械电器性能优良:硅的强度、硬度和杨氏模量与铁相当,密度类似铝,热传导率接近钼和钨。

3)批量生产:用硅微加工工艺在一片硅片上可同时制造成百上千个微型机电装置或完整的MEMS。批量生产可大大降低生产成本。

4)集成化:可以把不同功能、不同敏感方向或致动方向的多个传感器或执行器集成于一体,或形成微传感器阵列、微执行器阵列,甚至把多种功能的器件集成在一起,形成复杂的微系统。微传感器、微执行器和微电子器件的集成可制造出可靠性、稳定性很高的MEMS。

5)多学科交叉:MEMS涉及电子、机械、材料、制造、信息与自动控制、物理、化学和生物等多种学科,并集约了当今科学技术发展的许多尖端成果

五.MEMS加速度传感器的应用

MEMS加速度传感器可用于倾斜度侦测、运动检测、定位侦测、震动侦测、振动侦测、自由落下侦测,在生产生活中所应用各种侦测时加速度传感器起着至

关重要的作用,从而广泛应用于自动化控制、检测、军工等方面。同时,加速度计是一种能测量加速度力的电子设备,通过加速度的测量, 可以了解运动物体的运动状态,因此加速度传感器广泛运用于航空航天、武器系统、汽车、消费电子等领域。

5.1国内外的优秀案例

其中最具有吸引力的是力平衡加速度计,其典型产品是Kuehnel等人在1994年报道的AGXL50型,其结构包括4个部分:质量块、检测电容、力平衡执行器和信号处理电路,集成制作在3mm×3mm的硅片上,其中机械部分采用表面微机械工艺制作,电路部分采用BiCMOSIC技术制作。随后Zimmermann等人报道了利用S

IMOXSOI芯片制作的类似结构,Chan等人报道了测量范围在5g和1g的改进型力平衡式加速度传感器。这种传感器在汽车的防撞气袋控制等领域有广泛的用途,成本在15美元以下。

国内在微加速度传感器的研制方面也作了大量的工作,如西安电子科技大学研制的压阻式微加速度传感器和清华大学微电子所开发的谐振式微加速度传感器。后者采用电阻热激励、压阻电桥检测的方式,其敏感结构为高度对称的4角支撑质量块形式,在质量块4边与支撑框架之间制作了4个谐振梁用于信号检测。

5.2 MEMS加速度计在汽车上的应用

随着社会的进步和经济的发展,汽车已经成为人们生活中的一个重要工具,随着技术的提高,我们的汽车越来越舒适,越来越安全。由于加速度传感器可以实时测量物体的加速度,并且MEMS加速度计体积很小,精度和灵敏度都很高,因此用在汽车的安全气囊系统中,通过MEMS加速度计测量加速度,并将加速度实时反馈给汽车的控制系统,当发生车祸碰撞的时候,由于加速度很大,控制系统受到信号后,就可以立即打开安全气囊,保护驾驶者的安全。

5.3 MEMS加速度计在消费电子领域的应用

消费电子有其自身的特点, 尤其是便携式设备, 总在要求其元器件体积小、功耗低,而功能却不能少。随着MEMS产业的发展,越来越多的MEMS产品被用到消费电子领域,MEMS 加速度计就是一个实例。例如IBM的某一系列笔记本电脑开发

出MEMS加速度传感器的新用途,将加速度计集成在电脑的电路中,当电脑急速下坠时, 硬盘会迅速停止读写,避免撞击引起的数据损失。还有将一个X,Y双轴加速度传感器被放置到普通的手机里以后, 就可以完全取代上下左右四个方向键,只要晃一晃,光标就会随心所欲的移动。如果带摄像头的手机应用这项技术, 可以自动监测重力方向,让横拍或是竖拍的照片在浏览时都能以正确的方向显示。MEMS加速度计在消费电子领域的应用可以说非常广泛,只是需要我们运用自己的创造力和想象力去实现。

MEMS加速度计还有很多应用,如测量倾角反馈调整方向等,可以说MEMS加速度计产业的的前景非常好。

5.4 iphone4中的MEMS加速度传感器

目前大多数手机都含有MEMS传感器实现重力加速计和陀螺仪的功能,例如被用在iPhone中。通过对旋转时运动的感知,iPhone可以自动地改变横竖屏显示,以便消费者能够以合适的水平和垂直视角看到完整的页面或者数字图片。

俗称加速规、G-Sensor,可以感应物体的加速度性。事实上加速度传感器的实现方式也是许多种,MEMS只是手法之一,用MEMS实现加速度传感器确实是目前的趋势。

加速度传感器一般有「X、Y两轴」与「X、Y、Z三轴」两种,两轴多用于车、船等平面移动为多,三轴多用于飞弹、飞机等飞行物。而不用多说,Wii遥控器也是用三轴,iPhone可以感应实体翻转而自动对应翻转画面,也是靠这个传感器。

五.有关MEMS陀螺仪

根据终端设备的指向,MEMS传感器可以把图像、视频和网页(无论是人物肖像还是风景画面)进行旋转。通过上下左右倾斜手机,还可以查看手机菜单;只要轻轻击打手机机身,就可以在屏幕上选中不同的图标,所有这些智能功能离不开新一代MEMS器件内嵌的先进数字技术。

有了MEMS加速计,只要把设备向某一方向倾斜,就能在小屏幕上详细查看地图,显示放大的图像。MEMS还能检测到用户抖动手机和MP3播放器的动作,

这个简单的手势可以让播放器跳到下一首歌或返回到上一首歌。

低功耗的MEMS运动传感器还可用作先进的节能技术,当手机没有关闭放在饭桌上时,MEMS传感器将会把耗电大的模块(如显示器背光板和GPS模块)全部关闭,以降低手机和便携导航仪的能耗。只要碰触一下机身,又可以打开全部功能。

同样地,无论何时,把手机正面向下反放在桌子上,手机设置就会切换到静音模式;只要碰触一下机身,就可以关闭静音功能。MEMS运动控制技术折射出了未来手机的样子:只有数量很少的按键,不再有普通的键盘。向手机输入信息时,用户在空中书写数字和字母,MEMS传感器识别这些动作,手机软件将这些动作还原成数字和字母;软件还可以把用户预定的动作变成特殊的自定义功能。

MEMS加速计与陀螺仪配合使用,可以把更先进的选择功能变为现实,例如:能够在空中操作的三维鼠标和遥控器。在这些设备中,传感器检测到用户的手势,将其转换成PC屏幕上的光标移动或机顶盒和电视机的频道和功能选择。图5是一个含有MEMS传感器的遥控器解决方案,MEMS传感器组、两个陀螺仪和一个加速计检测手腕或鼠标在空中的动作,同时微控制器执行动作跟踪和手势识别功能。然后,重组的运动曲线通过无线连接发送到机顶盒或PC机,无线链路可以采用红外或射频,具体视应用要求而定。

陀螺仪能够测量沿一个轴或几个轴运动的角速度,是补充MEMS加速计功能的理想技术。事实上,如果组合使用加速计和陀螺仪这两种传感器,系统设计人员就可以跟踪并捕捉三维空间的完整运动,为最终用户提供现场感更强的用户使用体验、精确的导航系统以及其它功能。

在系统方面,陀螺仪的信号调节电路可简化为电机驱动部分和加速传感器感应电路两部分:

(1)电机驱动部分通过静电驱动方法,使机械元件前后振荡,产生谐振;

(2)感应部分通过测量电容变化来测量科里奥利力在感应质点上产生的位移,这是一个稳健、可靠的技术,被成功地用于ST的MEMS产品线,能够提供强度与施加在传感器上的角速率成正比的模拟或数字信号。

七.结束语

当前,MEMS技术正处于高速发展前夕,21世纪会展现一个大发展的局面,

它的广泛应用和效益将强有力地显示出来,它对信息、航空、航天、自动控制、医学、生物学、力学、热学、光学、近代物理和工程学等诸领域发展的影响将是深远的,人类的生产和生活方式也会因此而发生重大改变。

参考文献

1.刘光玉微传感器设计、制造与应用. 北京航空航天大学出版社,2008

2.朱长纯MEMS传感器的现状西安交通大学出版社

3.黄道MEMS传感器及其应用

4.韩小林微机械电容式加速度计的设备及制备

5.郑志霞基于MEMS加速度微传感器制作工艺及测试

常用传感器的工作原理及应用

常用传感器的工作原理及应用

3.1.1电阻式传感器的工作原理 应变:物体在外部压力或拉力作用下发生形变的现象 弹性应变:当外力去除后,物体能够完全恢复其尺寸和形状的应变 弹性元件:具有弹性应变特性的物体 3.1.3电阻应变式传感器 电阻应变式传感器利用电阻应变片将应变转换为电阻值变化的传感器。 工作原理:当被测物理量作用于弹性元件上,弹性元件在力、力矩或压力等的作用下发生变形,产生相应的应变或位移,然后传递给与之相连的应变片,引起应变片的电阻值变化,通过测量电路变成电量输出。输出的电量大小反映被测量的大小。 结构:应变式传感器由弹性元件上粘贴电阻应变片构成。 应用:广泛用于力、力矩、压力、加速度、重量等参数的测量。 1.电阻应变效应 ○

电阻应变片的工作原理是基于应变效应,即导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应发生变化,这种现象称为“应变效应”。 2.电阻应变片的结构 基片 b l 电阻丝式敏感栅 金属电阻应变片的结构 4.电阻应变式传感器的应用 (1)应变式力传感器 被测物理量:荷重或力 一

二 主要用途:作为各种电子称与材料试验机的 测力元件、 发动机的推力测试、水坝坝体承载状况监测等。 力传感器的弹性元件:柱式、筒式、环式、悬臂式等 (2)应变式压力传感器 主要用来测量流动介质的动态或静态压力 应变片压力传感器大多采用膜片式或筒式 弹性元件。 (3)应变式容器内液体重量传感器 感压膜感受上面液体的压力。 (4)应变式加速度传感器 用于物体加速度的测量。 依据:a =F/m 。 3.2电容式传感器 3.2.1电容式传感器的工作原理 由绝缘介质分开的两个平行金属板组成的 平板电容器,如果不考虑边缘效应,其电容量为 当被测参数变化使得S 、d 或ε发生变化时, 电容量C 也随之变化。 d S C ε=

各种温度传感器分类及其原理.

各种温度传感器分类及其原理

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1.热电偶的工作原理 当有两种不同的导体和半导体A和B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端或冷端,则回路中就有电流产生,如图2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向, 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势:热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b 之间便有一电动势差△ V,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由A流向B时,称A为正极,B 为负极。实验表明,当△ V很小时,△ V与厶T成正比关系。定义△ V对厶T 的微分热电势为热电势率,又称塞贝克系数。

传感器分类及常见传感器的应用

机电一体化技术常用传感器及其原理 班级:机械设计制造及其自动化姓名: 学号:

一、传感器的分类 传感器有许多分类方法,但常用的分类方法有两种,一种是按被测物理量来分;另一种是按传感器的工作原理来分。按被测物理量划分的传感器,常见的有:温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、加速度传感器、转矩传感器等。 按工作原理可划分为: 1.电学式传感器 电学式传感器是非电量电测技术中应用范围较广的一种传感器,常用的有电阻式传感器、电容式传感器、电感式传感器、磁电式传感器及电涡流式传感器等。 电阻式传感器是利用变阻器将被测非电量转换为电阻信号的原理制成。电阻式传感器一般有电位器式、触点变阻式、电阻应变片式及压阻式传感器等。电阻式传感器主要用于位移、压力、力、应变、力矩、气流流速、液位和液体流量等参数的测量。 电容式传感器是利用改变电容的几何尺寸或改变介质的性质和含量,从而使电容量发生变化的原理制成。主要用于压力、位移、液位、厚度、水分含量等参数的测量。 电感式传感器是利用改变磁路几何尺寸、磁体位置来改变电感或互感的电感量或压磁效应原理制成的。主要用于位移、压力、力、振动、加速度等参数的测量。 磁电式传感器是利用电磁感应原理,把被测非电量转换成电量制成。主要用于流量、转速和位移等参数的测量。 电涡流式传感器是利用金屑在磁场中运动切割磁力线,在金属内形成涡流的原理制成。主要用于位移及厚度等参数的测量。 2.磁学式传感器 磁学式传感器是利用铁磁物质的一些物理效应而制成的,主要用于位移、转矩等参

数的测量。

3.光电式传感器 光电式传感器在非电量电测及自动控制技术中占有重要的地位。它是利用光电器件的光电效应和光学原理制成的,主要用于光强、光通量、位移、浓度等参数的测量。 4.电势型传感器 电势型传感器是利用热电效应、光电效应、霍尔效应等原理制成,主要用于温度、磁通、电流、速度、光强、热辐射等参数的测量。 5.电荷传感器 电荷传感器是利用压电效应原理制成的,主要用于力及加速度的测量。 6.半导体传感器 半导体传感器是利用半导体的压阻效应、内光电效应、磁电效应、半导体与气体接触产生物质变化等原理制成,主要用于温度、湿度、压力、加速度、磁场和有害气体的测量。 7.谐振式传感器 谐振式传感器是利用改变电或机械的固有参数来改变谐振频率的原理制成,主要用来测量压力。 8.电化学式传感器 电化学式传感器是以离子导电为基础制成,根据其电特性的形成不同,电化学传感器可分为电位式传感器、电导式传感器、电量式传感器、极谱式传感器和电解式传感器等。电化学式传感器主要用于分析气体、液体或溶于液体的固体成分、液体的酸碱度、电导率及氧化还原电位等参数的测量。 另外,根据传感器对信号的检测转换过程,传感器可划分为直接转换型传感器和间接转换型传感器两大类。前者是把输入给传感器的非电量一次性的变换为电信号输出,如光

常见传感器原理介绍

Pellistoren Pellistors使用催化燃烧来测量可燃气体或蒸气在空气的含量直到达到该气体的LEL*。 标准传感器包括一对元件,主要指典型地指探测器和平衡器(参照元件)。探测器包括一颗催化材料的小珠子和其中埋置的铂金导线卷。平衡器和探测器很类似,但小珠子不具有催化作用所以是惰性的。 Figure 1 - Pellistors 两个元件通常被管理在Wheatstone桥梁电路中,如果探测器的阻力与平衡器不同,将导致产品只有输出。 500-550°C的恒定直流电压通过搭桥对元件加热,只有在探测器元件上可燃气体才被氧化,增加的热量会加大电阻,产生的信号与可燃气体的浓度成比例。平衡器帮助平衡四周温度、压力和湿度。 大多数pellistors中的元件被分开放置在金属罐中。在一台完整的气体探测器中(被用于可能爆炸的大气),金属罐通常被放在耐火封套中,这种耐火封套通常由金属多孔状淀土和外套组成。这种封套可以保证气体能到达传感器,但热的传感器元件不会点燃该易爆的气体混合物。因为这种设计十分重要,所以这种封套通常经符合国家标准的特许测试机构检验合格。在不同的国家,这种检测很可能费时及相当昂贵的过程。作为另一种选择,我们提供的完整的探测器将两个元件放入了耐火封套,并符合最新的欧洲(ATEX)并且北美(CSA & UL)标准。 对易爆大气的测量依赖于对可燃气体低于LEL浓度的精确测量。所以在该安全应用中,通常不考虑气体浓度。该测量通常被表示为气体LEL浓度的百分比(%LEL)。

多数可燃气体检测技术用于检测多种气体,理想化的传感器应该是不同的气体有不同的测量结果。但实际上不同的化学形态影响了测量的结果,催化氧化传感器也没有例外。因此,pellistor对不同气体的相同浓度做出的判断是不同的,但当暴露在相同%LEL 浓度的不同气体中时,输出信号的变化相对小于其它检测技术。但因为此安全应用重视%LEL测量也使其成为主要优势。 我们将不同气体产生同样%LEL浓度命名为“相对敏感性”。我们进行了许多实验为CiTipeLs确定一定范围内可燃气体“相对敏感性”的实验价值。 催化毒 某些物质对催化传感器负面影响,有两种可能性: 毒 一些化合物会分解在催化剂并在催化剂表面形成坚实的屏障,这种分解是逐渐形成的,而长时期的曝光会导致传感器的敏感性发生无法恢复的减退。典型的毒物是有机铅和硅化合物。 被抑制 某些其他化合物,特别是硫化氢和被卤化的碳氢化合物,会被被吸收、或形成由催化剂吸收的化合物。这种吸收作用很强大,会使得催化剂的反应点被封闭而造成正常反应被迫停止。由于这种原因造成的传感器敏感性损失是暂时的,大多数情况下放在干净的空气中一段时间后,传感器将恢复工作。 大多数化合物属于上述两类中的一个,可能有些表现出更大或更小的程度。在毒化或被抑制可能存在的应用中,CiTipeLs产品应该被避免暴露于它们不能抵抗的所有化合物中。 LEL说明 * 气体的LEL是指用火源使空气中的该气体爆炸的最低气体浓度。

市场上常见的压力传感器的种类及原理分析

市场上常见的压力传感器的种类及原理分析 什么是压力传感器呢?压力传感器是指将接收的气体、液体等压力信号转变成标准的电流信号(4~20mADC),以供给指示报警仪、记录仪、调节器等二次仪表进行测量、指示和过程调节的元器件。它主要是由测压元件传感器、测量电路和过程连接件等组成的(进气压力传感器)。 那么压力传感器的种类有哪些呢?就目前市场而言,压力传感器一般有差压传感器、绝压传感器、表压传感器,静态压力传感器和动态压力传感器。对于这几者之间的关系,我们可以这样定义定义:差压是两个实际压力的差,当差压中一个实际压力为大气压时,差压就是表压力。绝压是实际压力,而有意义的是表压力,表压力=绝压-大气压力。静态压力是管道内流体不流动时的压力。动态压力可以简单理解为管道内流体流动后发生的压力。 根据不同的方式压力传感器的种类也不尽相同。小编通过搜集整理资料,将与压力传感器的种类相关的知识做如下介绍,下面我们来看具体分析。 1.扩散硅压力传感器 扩散硅压力传感器工作原理是被测介质的压力直接作用于传感器的膜片上(不锈钢或陶瓷),使膜片产生与介质压力成正比的微位移,使传感器的电阻值发生变化,和用电子线路检测这一变化,并转换输出一个对应于这一压力的标准测量信号。 扩散硅压力传感器原理图 2.压电式压力传感器 (1)压电式压力传感器原理 压电式压力传感器原理基于压电效应。压电效应是某些电介质在沿一定方向上受到外力的作用而变形时,其内部会产生极化现象,同时在它的两个相对表面上出现正负相反的电荷。当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应。当作用力的方向改变时,电荷的极性也随之改变。相反,当在电介质的极化方向上施加电场,这些电介质也会发生变形,电场去掉后,电介质的变形随之消失,这种现象称为逆压电效应。 (2)压电式压力传感器的种类与应用 压电式压力传感器的种类和型号繁多,按弹性敏感元件和受力机构的形式可分为膜片式和活塞式两类。膜片式主要由本体、膜片和压电元件组成。压电元件支撑于本体上,由膜片将被测压力传递给压电元件,再由压电元件输出与被测压力成一定关系的电信号。这种传感器的特点是体积小、动态特性好、耐高温等。 现代测量技术对传感器的性能出越来越高的要求。例如用压力传感器测量绘制内燃机示功图,在测量中不允许用水冷却,并要求传感器能耐高温和体积小。压电材料最适合于研制这种压力传感器。石英是一种非常好的压电材料,压电效

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量 (取决于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T 的微分热电势为热电势率, 又称塞贝克系数。塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度差。 2. 热电偶的种类

《常见传感器的工作原理》教学设计要点

《常见传感器的工作原理》教学设计 山东版高中物理选修3-2第六章第二节 福建省建阳一中李瑜 一.教学思路:根据《课程标准》强调对传感器教学应侧重从技术应用的角度展示物理,强调物理学科与技术的结合,着重体现物理学的应用性、实践性。本课的教学思路是通过创设问题情境,引发对传感器工作原理的探究,进入新课教学。整节课以实验贯穿始终,通过对实验的观察、思考和探究,了解什么是光电传感器、温度传感器,传感器是如何将非电学量转换成电学量的,并抓住这一共性原理特征,使学生学会利用传感器的工作原理设计、制作简单的自控装置。但由于学生思维能力发展上的不成熟性,还不能成为完全独立的探究主体等特点,本节课的实验探究过程是在教师引导和启发下,学生独立思考、主动探索的过程。教学时力避深奥的理论,侧重于联系实际,让学生感受传感器的巨大作用,进而提高学生的学习兴趣,培养学生热爱科学的情感和崇尚科学的精神。本节课计划用2课时完成,该教学设计为第一课时。 二.教学重点:实验探究光敏电阻和热敏电阻的特性,理解传感器是如何将非电学量转变为电学量的 三.教学难点:本节的教学难点是设计简易温度报警器。虽然原理比较简单,但要学生独立设计出来却不容易。本教学难点的突破应在学生对光电报警电路原理的充分理解和熟知热敏电阻的阻值特性的基础上,通过提升传感器控制电路的共性特征,使设计简易温度报警器的难度降低,水到渠成。 四.教学目标:通过对光敏电阻阻值特性、热敏电阻阻值特性的实验探究,让学生在了解传感器是如何将非电学量转变为电学量的基础上,学会利用传感器设计简单的自控装置。在此过程中让学生经历科学探究过程,学习科学研究方法,培养学生的观察能力、实践能力和创新思维能力。通过动手实验,激发学生的学习兴趣,拓

常用传感器的原理与应用习题

第3章常用传感器的工作原理及应用 3.1电阻式传感器 填空: 1、常用的电阻应变片分为两大类:和。 2、金属电阻的是金属电阻应变片工作的物理基础。 3、金属电阻应变片有、及等结构形式。 4、电位器式传感器都是由、和三部分构成。 5、半导体应变片是利用半导体材料制成的一种纯电阻性元件。 6、半导体应变片与金属电阻应变片相比较: 其灵敏度更高,温度稳定性差。 7、弹性元件在传感器中起什么作用? 8、试列举金属丝电阻应变片与半导体应变片的相同点和不同点。 9、绘图说明如何利用电阻应变片测量未知的力。 10、电阻应变片阻值为120Ω,灵敏系数K=2,沿纵向粘贴于直径为0.05m的圆形钢柱表面,钢材的112 μ=。求钢柱受10t拉力作用时,应 E N m 210 =?,0.3 变片的相对变化量。又若应变片沿钢柱圆周方向粘贴、受同样拉力作用时,应变片电阻的相对变化量为多少? 11、采用阻值为120Ω、灵敏度系数K=2.0的金属电阻应变片和阻值为120Ω的 固定电阻组成电桥,供桥电压为4V,并假定负载电阻无穷大。当应变片上的应变分别为1με和1000με时,试求单臂工作电桥、双臂工作电桥以及全桥工作时的输出电压,并比较三种情况下的灵敏度。 3.2电容式传感器 1、电容式传感器采用作为传感元件,将不同的变化转换为的 变化。 2、根据工作原理的不同,电容式传感器可分为、和三种。 3、电容式传感器常用的转换电路有:、、运算放大器

电路、 和 等 。 4、电容式传感器有什么特点?试举出你所知道的电容传感器的实例。 5、试分析电容式物位传感器的灵敏度?为了提高传感器的灵敏度可采取什么措 施并应注意什么问题? 6、为什么说变间隙型电容传感器特性是非线性的?采取什么措施可改善其非线 性特征? 7、变间隙电容传感器的测量电路为运算放大器电路,如图所示。传感器的起始 电容量pF C x 200=,定动极板距离mm d 5.10=,pF C 100=,运算放大器为 理想放大器(即∞→∞→i Z K ,),f R 极大,输入电压t u i ωsin 5=V 。求当 电容传感器动极板上输入一位移量mm x 15.0=?使0d 减小时,电路输出电压 0u 为多少? 8、 如图所示正方形平板电容器,极板长度cm a 4=,极板间距离mm 2.0=δ。 若用此变面积型传感器测量位移x ,试计算该传感器的灵敏度并画出传感器的特性曲线。极板间介质为空气,m F /1085.8120-?=ε。 9、一电容式传感器的两个极板均为边长为10cm 的正方形,间距为1mm ,两极板 间气隙恰好放置一边长为10cm ,厚度为1mm ,相对介电常数为4的正方形介质。该介质可在气隙中自由滑动。若用该电容式传感器测量位移, 试计算当

常用压力传感器原理及结构介绍

常用压力传感器原理及结构介绍 常用压力传感器简介 振膜式谐振压力传感器 振膜式压力传感器结构如图(a)所示。振膜为一个平膜片,且与环形壳体做成整体结构,它和基座构成密封的压力测量室,被测压力 p经过导压管进入压力测量室内。参考压力室可以通大气用于测量表压,也可以抽成真空测量绝压。装于基座顶部的电磁线圈作为激振源给膜片提供激振力,当激振频率与膜片固有频率一致时,膜片产生谐振。没有压力时,膜片是平的,其谐振频率为 f0;当有压力作用时,膜片受力变形,其张紧力增加,则相应的谐振频率也随之增加,频率随压力变化且为单值函数关系。 在膜片上粘贴有应变片,它可以输出一个与谐振频率相同的信号。此信号经放大器放大后,再反馈给激振线圈以维持膜片的连续振动,构成一个闭环正反馈自激振荡系统。如图(b)所示 压电式压力传感器 某些电介质沿着某一个方向受力而发生机械变形(压缩或伸长)时,其内部将发生极化现象,而在其某些表面上会产生电荷。当外力去掉后,它又会重新回到不带电的状态,此现象称为“压电效应”。常用的压电材料有天然的压电晶体(如石英晶体)和压电陶瓷(如钛酸钡)两大类,它们的压电机理并不相同,压电陶瓷是人造多晶体,压电常数比石英晶体高,但机械性能和稳定性不如石英晶体好。它们都具有较好特性,均是较理想的压电材料。 压电式压力传感器是利用压电材料的压电效应将被测压力转换为电信号的。由压电材料制成的压电元件受到压力作用时产生的电荷量与作用力之间呈线性关系: Q=kSp 式中 Q为电荷量;k为压电常数;S为作用面积;p为压力。通过测量电荷量可知被测压力大小。 图1为一种压电式压力传感器的结构示意图。压电元件夹于两个弹性膜片之间,压电元件的一个侧面与膜片接触并接地,另一侧面通过引线将电荷量引出。被测压力均匀作用在膜片上,使压电元件受力而产生电荷。电荷量一般用电荷放大器或电压放大器放大,转换为电压或电流输出,输出信号与被测压力值相对应。 除在校准用的标准压力传感器或高精度压力传感器中采用石英晶体做压电 元件外,一般压电式压力传感器的压电元件材料多为压电陶瓷,也有用高分子材料(如聚偏二氟乙稀)或复合材料的合成膜的。

相关主题
文本预览
相关文档 最新文档