当前位置:文档之家› 三角形中做辅助线的技巧及典型例题

三角形中做辅助线的技巧及典型例题

三角形中做辅助线的技巧及典型例题
三角形中做辅助线的技巧及典型例题

三角形中做辅助线的技巧

口诀:

三角形

图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 一、由角平分线想到的辅助线 口诀:

图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。

角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。

①从角平分线上一点向两边作垂线;

②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。

通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。

与角有关的辅助线 (一)、截取构全等

如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,

则有△OED ≌△OFD ,从而为我们证明线段、角相等创造

了条件。

例1. 如图1-2,AB//CD ,BE 平分∠BCD ,CE 平分

∠BCD ,点E 在AD 上,求证:BC=AB+CD 。

例2. 已知:如图1-3,AB=2AC ,∠BAD=∠C AD ,D

A=DB ,求证DC ⊥AC

例3. 已知:如图1-4,在△ABC 中,∠C=2∠B,AD 平分∠BAC ,求证:AB-AC=CD

图1-2

D

B

C

分析:此题的条件中还有角的平分线,在证明中还要用到构造全等三角形,此题还是证明线段的和差倍分问题。用到的是截取法来证明的,在长的线段上截取短的线段,来证明。试试看可否把短

的延长来证明呢?

练习

1. 已知在△ABC 中,AD 平分∠BAC ,∠B=2∠C ,求证:AB

+BD=AC

2. 已知:在△ABC 中,∠CAB=2∠B ,AE 平分∠CAB 交BC 于E ,AB=2AC ,求证:AE=2CE 3. 已知:在△ABC 中,AB>AC,AD 为∠BAC 的平分线,M 为AD 上任一点。求证:BM-CM>AB-AC 4. 已知:D 是△ABC 的∠BAC 的外角的平分线AD 上的任一点,连接DB 、DC 。求证:BD+CD>AB +AC 。

(二)、角分线上点向角两边作垂线构全等

过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。 例1. 如图2-1,已知AB>AD, ∠BAC=∠FAC,CD=BC 。

求证:∠ADC+∠B=180

分析:可由C 向∠BAD 的两边作垂线。近而证∠ADC 与∠B

之和为平

角。

例2. 如图2-2,在△ABC 中,∠A=90 ,AB=AC ,∠AB D =∠C B

D 。

求证:BC=AB+AD

分析:过D 作DE ⊥BC 于E ,则AD=DE=CE ,则构造出全等三角形,从而得证。此题是证明线段的和差倍分问题,从中利用了相当于截取的方法。

例3. 已知如图2-3,△ABC 的角平分线BM 、CN 相交于点P 。求证:∠BAC 的平分线也经过点P 。

分析:连接AP ,证AP 平分∠BAC 即可,也就是证P 到AB 、AC 的距离相等。 练习:

1.如图2-4∠AOP=∠BOP=15 ,PC//OA ,PD ⊥O A ,

图1-4

A

B

C

图2-1

B

C

2-2

A

C

图2-3

A

B

C

O

A

D

如果PC=4,则PD=( )

A 4

B 3

C 2

D 1

2.已知在△ABC 中,∠C=90 ,AD 平分∠CAB ,CD=1.5,DB=2.5.求AC 。 3.已知:如图2-5, ∠BAC=∠CAD,AB>AD ,CE ⊥AB ,

AE=21

(AB+AD ).求证:∠D+∠B=180 。

4.已知:如图2-6,在正方形ABCD 中,E 为CD 的中点,F 为BC 上的点,∠FAE=∠DAE 。求证:AF=AD+CF 。

5. 已知:如图2-7,在Rt △ABC 中,∠ACB=90 ,CD ⊥AB ,垂足为D ,AE 平分∠CAB 交CD 于F ,过F 作FH//AB 交BC 于H 。求证CF=BH 。

(三):作角平分线的垂线构造等腰三角形

从角的一边上的一点作角平分线的垂线,使之与角的两边相交,则截得一个等腰三角形,垂足为底边上的中点,该角平分线又成为底边上的中线和高,以利用中位线的性质与等腰三角形的三线合一的性质。(如果题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交)。

例1. 已知:如图3-1,∠BAD=∠DAC ,AB>AC,CD ⊥AD 于D ,H 是B C 中

点。求证:DH=

2

1

(AB-AC ) 分析:延长CD 交AB 于点E ,则可得全等三角形。问题可证。 已知:如图3-2,AB=AC ,∠BAC=90 ,AD 为∠ABC 的平分线,CE

⊥BE.求证:BD=2CE 。

分析:给出了角平分线给出了边上的一点作角平分线的垂线,可延长此

垂线与另外一边相交,近而构造出等腰三角形。

例3.已知:如图3-3在△ABC 中,AD 、AE 分别∠BAC 的、外角平分

线,过顶点B 作BFAD ,交AD 的延长线于F ,连结FC 并延长

交AE 于M 。

A

B

D

2-6

E

C

D

图2-7

D

B

A

B

图3-2

B

C

求证:AM=ME 。

分析:由AD 、AE 是∠BAC 外角平分线,可得EA ⊥AF ,从而有BF//AE ,所以想到利用比例线段证相等。

例4. 已知:如图3-4,在△ABC 中,AD 平分∠BAC ,AD=AB ,CM ⊥AD 交AD 延长线于M 。求证:AM=

2

1

(AB+AC ) 分析:题设中给出了角平分线AD ,自然想到以AD 为轴作对称变换,作△ABD 关于AD 的对称△AE D ,然后只需证DM=

21EC ,另外由求证的结果AM=2

1

(AB +A C ),即2AM=AB+AC ,也可尝试作△ACM 关于CM 的对称△F

C

M ,然后只需证DF=CF 即可。

练习:

1. 已知:在△ABC 中,AB=5,AC=3,D 是BC 中点,A E

是∠BAC 的平分线,且CE ⊥AE 于E ,连接DE ,求DE 。

2. 已知BE 、BF 分别是△ABC 的∠ABC 的角与外角的平分线,AF ⊥BF 于F ,AE ⊥BE 于E ,连接EF 分别交AB 、AC 于M 、N ,求证MN=

2

1

BC (四)、以角分线上一点做角的另一边的平行线

有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形。或通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形。如图4-1和图4-2所示。

图4-2

图4-1

A

B

C B

I

G

例4 如图,AB>AC, ∠1=∠2,求证:AB -AC>BD -CD 。

1 2

A

C D

B

B

D

C

A

C

D

例5 如图,BC>BA ,BD 平分∠ABC ,且AD=CD ,求证:∠A+∠C=180。 例6 如图,AB ∥CD ,AE 、DE 分别平分∠BAD 各∠ADE ,求证:AD=AB+CD 。 练习:

1. 已知,如图,∠C=2∠A ,AC=2BC 。求证:△ABC 是直角三角形。 2.已知:如图,AB=2AC ,∠1=∠2,DA=DB ,求证:DC ⊥AC

3.已知CE 、AD 是△ABC 的角平分线,∠B=60°,求证:AC=AE+CD

4.已知:如图在△ABC 中,∠A=90°,AB=AC ,BD 是∠ABC 的平分线,求证:BC=AB+AD

二、 由线段和差想到的辅助线

口诀:

线段和差及倍半,延长缩短可试验。线段和差不等式,移到同一三角去。 遇到求证一条线段等于另两条线段之和时,一般方法是截长补短法:

1、截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;

2、补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段。

对于证明有关线段和差的不等式,通常会联系到三角形中两线段之和大于第三边、之差小于第三边,故可想办法放在一个三角形中证明。

一、 在利用三角形三边关系证明线段不等关系时,如直接证不出来,可连接两点或廷长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:

例1、 已知如图1-1:D 、E 为△ABC 两点,求证:AB+AC>BD+DE+CE.

证明:(法一)

将DE 两边延长分别交AB 、AC 于M 、N , 在△AMN 中,AM+AN>MD+DE+NE;(1) 在△BDM 中,MB+MD>BD ;(2)

C

A B

A

B C

D A E

B

D

A B

D

C

1 2

A

B

C

D

E

N M 1

1-图A

F G

在△CEN 中,CN+NE>CE ;(3) 由(1)+(2)+(3)得:

AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE ∴AB+AC>BD+DE+EC (法二:图1-2)

延长BD 交AC 于F ,廷长CE 交BF 于G ,在△ABF 和△GFC 和△GDE 中有: AB+AF>BD+DG+GF (三角形两边之和大于第三边)…(1) GF+FC>GE+CE (同上)(2) DG+GE>DE (同上)(3) 由(1)+(2)+(3)得:

AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE ∴AB+AC>BD+DE+EC 。

二、 在利用三角形的外角大于任何和它不相邻的角时如直接

证不出来

时,可连接两点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的角位置上,再利用外角定理:

例如:如图2-1:已知D 为△ABC 的任一点,求证:∠BDC>∠BAC 。

因为∠BDC 与∠BAC 不在同个三角形中,没有直接的联系,可适当添加辅助线构造新的三角形,使∠BDC 处于在外角的位置,∠BAC 处于在角的位置;

证法一:延长BD 交AC 于点E ,这时∠BDC 是△EDC 的外角, ∴∠BDC>∠DEC ,同理∠DEC>∠BAC ,∴∠BDC>∠BAC 证法二:连接AD ,并廷长交BC 于F ,这时∠BDF 是△ABD 的 外角,∴∠BDF>∠BAD ,同理,∠CDF>∠CAD ,∴∠BDF+ ∠CDF>∠BAD+∠CAD ,即:∠BDC>∠BAC 。

注意:利用三角形外角定理证明不等关系时,通常将大角放在某三角形的外角位置上,小角放在这个三角形的角位置上,再利用不等式性质证明。

三、 有角平分线时,通常在角的两边截取相等的线段,构造全等三角形,如:

例如:如图3-1:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求

证:BE+CF>EF 。

BE+CF>EF ,可利用三角形三边关系定理证明,须把BE ,CF ,

EF 移到同一个三角形中,而由已知∠1=∠2,

A

B

C

D E F

G

1

2-图A

E

F

N

123

4

∠3=∠4,可在角的两边截取相等的线段,利用三角形全等对应边相等,把EN,FN,EF移到同个三角形中。

证明:在DN上截取DN=DB,连接NE,NF,则DN=DC,

在△DBE和△NDE中:

DN=DB(辅助线作法)

∠1=∠2(已知)

ED=ED(公共边)

∴△DBE≌△NDE(SAS)

∴BE=NE(全等三角形对应边相等)

同理可得:CF=NF

在△EFN中EN+FN>EF(三角形两边之和大于第三边)

∴BE+CF>EF。

注意:当证题有角平分线时,常可考虑在角的两边截取相等的线段,构造全等三角形,然后用全等三角形的对应性质得到相等元素。

三、截长补短法作辅助线。

例如:已知如图6-1:在△ABC中,AB>AC,∠1=∠2,P为AD上任一点

求证:AB-AC>PB-PC。

AB-AC>PB-PC,想到利用三角形三边关系,定理证之,因为欲证的线段之差,故用两边之差小于第三边,从而想到构造第三边AB-AC,故可在AB上截取AN等于AC,得AB-AC=BN,再连接PN,则PC=PN,又在△PNB中,PB-PN

即:AB-AC>PB-PC。

证明:(截长法)

在AB上截取AN=AC连接PN,在△APN和△APC中

AN=AC(辅助线作法)

∠1=∠2(已知)

AP=AP(公共边)

∴△APN≌△APC(SAS),∴PC=PN(全等三角形对应边相等)

∵在△BPN中,有PB-PN

∴BP-PC

证明:(补短法)A

2

1

延长AC 至M ,使AM=AB ,连接PM , 在△ABP 和△AMP 中 AB=AM (辅助线作法) ∠1=∠2(已知) AP=AP (公共边) ∴△ABP

≌△AMP (SAS )

∴PB=PM (全等三角形对应边相等)

又∵在△PCM 中有:CM>PM-PC(三角形两边之差小于第三边)

∴AB-AC>PB-PC 。

例1.如图,AC 平分∠BAD ,CE ⊥AB ,且∠B+∠D=180°,求证:AE=AD+BE 。

例2如图,在四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,AD+AB=2AE , 求证:∠ADC+∠B=180o

例3已知:如图,等腰三角形ABC 中,AB=AC ,∠A=108°,BD 平分∠ABC 。 求证:BC=AB+DC 。

例4如图,已知Rt △ABC 中,∠ACB=90°,AD 是∠CAB 的平分线,DM ⊥AB 于M ,且AM=MB 。求

证:CD=21DB 。

【夯实基础】

例:ABC ?中,AD 是BAC ∠的平分线,且BD=CD ,求证AB=AC 方法1:作DE ⊥AB 于E ,作DF ⊥AC 于F ,证明二次全等 方法2:辅助线同上,利用面积 方法3:倍长中线AD

【方法精讲】常用辅助线添加方法——倍长中线

△ABC 中 方式1: 延长AD 到E ,

AD 是BC 边中线 使DE=AD ,

连接BE D

A E C

B

A

E

B

C

D

D

C

B

A

M

B

D

C A

方式2:间接倍长

作CF⊥AD于F,

延长MD到N,

作BE⊥AD的延长线于E

使DN=MD,

连接BE 连接CD

【经典例题】

例1:△ABC中,AB=5,AC=3,求中线AD的取值围

提示:画出图形,倍长中线AD,利用三角形两边之和大于第三边

例2:已知在△ABC中,AB=AC,D在AB上,E在AC的延长线上,DE交BC于F,且DF=EF,求证:BD=CE

方法1:过D作DG∥AE交BC于G,证明ΔDGF≌ΔCEF

方法2:过E作EG∥AB交BC的延长线于G,证明ΔEFG≌ΔDFB

方法3:过D作DG⊥BC于G,过E作EH⊥BC的延长线于H

证明ΔBDG≌ΔECH

例3:已知在△ABC中,AD是BC边上的中线,E是AD交AC于F,求证:AF=EF

提示:倍长AD至G,连接BG,证明ΔBDG≌ΔCDA

三角形BEG是等腰三角形

例4:已知:如图,在ABC

?中,AC

AB≠,D、E在BC上,且DE=EC,过D作BA

DF//交AE于点F,DF=AC.

求证:AE平分BAC

提示:

方法1:倍长AE至G,连结DG

方法2:倍长FE至H,连结CH

例5:已知CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAE

提示:倍长AE至F,连结DF

证明ΔABE≌ΔFDE(SAS)

进而证明ΔADF≌ΔADC(SAS)

【融会贯通】

1、在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F。试探究线段AB与AF、CF

提示:延长AE、DF交于G

证明AB=GC、AF=GF

第 1 题图

A

B

F

D E C

所以AB=AF+FC

2、如图,AD 为ABC ?的中线,DE 平分BDA ∠交AB 于E ,DF 平分ADC ∠交AC 于F. 求证:EF CF BE >+

提示:

方法1:在DA 上截取DG=BD ,连结EG 、FG 证明ΔBDE ≌ΔGDE ΔDCF ≌ΔDGF

所以BE=EG 、CF=FG

利用三角形两边之和大于第三边

方法2:倍长ED 至H ,连结CH 、FH

证明FH=EF 、CH=BE

利用三角形两边之和大于第三边

3、已知:如图,?ABC 中,∠C=90?,CM ⊥AB 于M ,AT 平分∠BAC 交CM 于D ,交BC 于T ,过D 作DE//AB 交BC 于E ,求证:CT=BE.

提示:过T 作TN ⊥AB 于N 证明ΔBTN ≌ΔECD

1.如图,AB ∥CD ,AE 、DE 分别平分∠BAD 各∠ADE ,求证:AD=AB+CD 。

2.如图,△ABC 中,∠BAC=90°,AB=AC ,AE 是过A 的一条直线,且B ,C 在AE 的异侧, BD ⊥AE 于D ,CE ⊥AE 于E 。求证:BD=DE+CE

四、 由中点想到的辅助线

口诀:三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。

在三角形中,如果已知一点是三角形某一边上的中点,那么首先应该联想到三角形的中线、中位线、加倍延长中线及其相关性质(直角三角形斜边中线性质、等腰三角形底边中线性质),然后通过探索,找到解决问题的方法。

E

D

C

B A 第 14 题图

D F C

B E

A

D

A

B

C

M

T

E

(一)、中线把原三角形分成两个面积相等的小三角形

即如图1,AD是ΔABC的中线,则SΔABD=SΔACD=SΔABC(因为ΔABD与ΔACD是等底同高的)。

例1.如图2,ΔABC中,AD是中线,延长AD到E,使DE=AD,DF是ΔDCE的中线。已知ΔABC 的面积为2,求:ΔCDF的面积。

解:因为AD是ΔABC的中线,所以SΔACD=SΔABC=×2=1,又因CD是ΔACE的中线,故SΔCDE=S

=1,

ΔACD

因DF是ΔCDE的中线,所以SΔCDF=SΔCDE=×1=。

∴ΔCDF的面积为。

(二)、由中点应想到利用三角形的中位线

例2.如图3,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,BA、CD的延长线分别交EF的延长线G、H。求证:∠BGE=∠CHE。

证明:连结BD,并取BD的中点为M,连结ME、MF,

∵ME是ΔBCD的中位线,

∴ME CD,∴∠MEF=∠CHE,

∵MF是ΔABD的中位线,

∴MF AB,∴∠MFE=∠BGE,

∵AB=CD,∴ME=MF,∴∠MEF=∠MFE,

从而∠BGE=∠CHE。

(三)、由中线应想到延长中线

例3.图4,已知ΔABC中,AB=5,AC=3,连BC上的中线AD=2,求BC的长。

解:延长AD到E,使DE=AD,则AE=2AD=2×2=4。

在ΔACD和ΔEBD中,

∵AD=ED,∠ADC=∠EDB,CD=BD,

∴ΔACD≌ΔEBD,∴AC=BE,

从而BE=AC=3。

在ΔABE中,因AE2+BE2=42+32=25=AB2,故∠E=90°,

∴BD===,故BC=2BD=2。

例4.如图5,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线。求证:ΔABC是等腰三角形。

证明:延长AD到E,使DE=AD。

仿例3可证:

ΔBED≌ΔCAD,

故EB=AC,∠E=∠2,

又∠1=∠2,

∴∠1=∠E,

∴AB=EB,从而AB=AC,即ΔABC是等腰三角形。

(四)、直角三角形斜边中线的性质

例5.如图6,已知梯形ABCD中,AB//DC,AC⊥BC,AD⊥BD,求证:AC=BD。

证明:取AB的中点E,连结DE、CE,则DE、CE分别为RtΔABD,RtΔAB C斜边AB上的中线,故DE=CE=AB,因此∠CDE=∠DCE。

∵AB//DC ,

∴∠CDE=∠1,∠DCE=∠2, ∴∠1=∠2,

在ΔADE 和ΔBCE 中, ∵DE=CE ,∠1=∠2,AE=BE ,

∴ΔADE ≌ΔBCE ,∴AD=BC ,从而梯形ABCD 是等腰梯形,因此AC=BD 。 (五)、角平分线且垂直一线段,应想到等腰三角形的中线

例6.如图7,ΔABC 是等腰直角三角形,∠BAC=90°,BD 平分∠ABC 交AC 于点D ,CE 垂直于B D ,交BD 的延长线于点E 。求证:BD=2CE 。

证明:延长BA ,CE 交于点F ,在ΔBEF 和ΔBEC 中, ∵∠1=∠2,BE=BE ,∠BEF=∠BEC=90°, ∴ΔBEF ≌ΔBEC ,∴EF=EC ,从而CF=2CE 。 又∠1+∠F=∠3+∠F=90°,故∠1=∠3。

在ΔABD 和ΔACF 中,∵∠1=∠3,AB=AC ,∠BAD=∠CAF=90°, ∴ΔABD ≌ΔACF ,∴BD=CF ,∴BD=2CE 。 注:此例中BE 是等腰ΔBCF 的底边CF 的中线。 (六)中线延长

口诀:三角形中有中线,延长中线等中线。

题目中如果出现了三角形的中线,常延长加倍此线段,再将端点连结,便可得到全等三角形。 例一:如图4-1:AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF 。 证明:廷长ED 至M ,使DM=DE ,连接CM ,MF 。在△BDE 和△C

DM 中,

BD=CD (中点定义) ∠1=∠5(对顶角相等) ED=MD (辅助线作法) ∴△BDE ≌△CDM (SAS ) 又∵∠1=∠2,∠3=∠4(已知) ∠1+∠2+∠3+∠4=180°(平角的定义)

1

4 图A

B

C

D

E F

M

123

4

∴∠3+∠2=90° 即:∠EDF=90° ∴∠FDM=∠EDF=90° 在△EDF 和△MDF 中

ED=MD (辅助线作法) ∠EDF=∠FDM (已证) DF=DF (公共边) ∴△EDF ≌△MDF (SAS )

∴EF=MF (全等三角形对应边相等)

∵在△CMF 中,CF+CM>MF (三角形两边之和大于第三边) ∴BE+CF>EF

上题也可加倍FD ,证法同上。

散的条件集中。

例二:如图5-1:AD 为△ABC 的中线,求证:AB+AC>2AD 。

分析:要证AB+AC>2AD ,由图想到:AB+BD>AD,AC+CD>AD ,所以有AB+AC+BD+CD>AD+AD=2AD ,左边比要证结论多BD+CD ,故不能直接证出此题,而由2AD 想到要构造2AD ,即加倍中线,把所要证的线段转移到同一个三角形中去

证明:延长AD 至E ,使DE=AD ,连接BE ,CE ∵AD 为△ABC 的中线(已知) ∴BD=CD (中线定义) 在△ACD 和△EBD 中 BD=CD (已证) ∠1=∠2(对顶角相等) AD=ED (辅助线作法) ∴△ACD ≌△EBD (SAS )

∴BE=CA (全等三角形对应边相等)

∵在△ABE 中有:AB+BE>AE (三角形两边之和大于第三边) ∴AB+AC>2AD 。 练习:

1 如图,AB=6,AC=8,D 为BC 的中点,求AD 的取值围。

A

B

C

D

E 1

5 图A

2 如图,AB=CD ,E

为BC 的中点,∠BAC=∠BCA ,求证:AD=2AE 。

3 如图,AB=AC ,AD=AE ,M 为BE 中点,∠BAC=∠DAE=90°。求证:AM ⊥DC 。

4,已知△ABC ,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向外作等腰直角三角形,如图5-2,求证EF

=2AD 。

5.已知:如图AD 为△ABC 的中线,AE=EF ,求证:BF=AC

常见辅助线的作法有以下几种:

1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”. 2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.

3) 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.

4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”

5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.

特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. (一)、倍长中线(线段)造全等

1:(“希望杯”试题)已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值围是_________.

A

D

C

B E

C D

A

B

C D

E

F

2

5 图

A B

D C

E F

E

D

C

B

A

P

Q

C

B

A

E D C

B

A

2:如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小. 3:如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE. 中考应用

(09崇文二模)以ABC ?的两边AB 、AC 为腰分别向外作等腰Rt ABD ?和等腰Rt ACE ?,

90,BAD CAE ∠=∠=?连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.

(1)如图① 当ABC ?为直角三角形时,AM 与DE 的位置关系是 , 线段AM 与DE 的数量关系是 ;

(2)将图①中的等腰Rt ABD ?绕点A 沿逆时针方向旋转?

θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.

(二)、截长补短

1.如图,ABC ?中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥A C

C

D

B

A

D

C

B

A

P

2

1

D

C

B

A

2:如图,AC ∥BD ,EA,EB 分别平分∠CAB,∠DBA ,CD 过点E ,求证;AB =AC+BD

3:如图,已知在ABC V ,0

60BAC ∠=,0

40C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别

是BAC ∠,ABC ∠的角平分线。求证:BQ+AQ=AB+BP

4:如图,在四边形ABCD 中,BC >BA,AD =CD ,BD 平分ABC ∠,求证:

0180=∠+∠C A

5:如图在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任意一点,求证;AB-AC >PB-PC 中考应用 (08海淀一模)

例题讲解:

一、利用转化倍角,构造等腰三角形

当一个三角形中出现一个角是另一个角的2倍时,我们就可以通过转化倍角寻找到等腰三角形. 如图①中,若∠ABC =2∠C ,如果作BD 平分∠ABC ,则△DBC 是等腰三角形;

如图②中,若∠ABC =2∠C ,如果延长线CB 到D ,使BD =BA ,连结AD ,则△ADC 是等腰三角形; 如图③中,若∠B =2∠ACB ,如果以C 为角的顶点,CA 为角的一边,在形外作∠ACD =∠ACB ,交BA 的延长线于点D ,则△DBC 是等腰三角形.

1、如图,△ABC 中,AB =AC ,BD ⊥AC 交AC 于D .求证:∠DBC =1

2∠BAC .

A

A

B C D A ① ② B C D A ③ B C D A

2、如图,△ABC 中,∠ACB =2∠B ,BC =2AC .求证:∠A =90°. 二、利用角平分线+平行线,构造等腰三角形

当一个三角形中出现角平分线和平行线时,我们就可以寻找到等腰三角形. 如图①中,若AD 平分∠BAC ,AD ∥EC ,则△ACE 是等腰三角形; 如图②中,AD 平分∠BAC ,DE ∥AC ,则△ADE 是等腰三角形; 如图③中,AD 平分∠BAC ,CE ∥AB ,则△ACE 是等腰三角形; 如图④中,AD 平分∠BAC ,EF ∥AD ,则△AGE 是等腰三角形.

3

P BC ,交BA 的延长线于点E ,垂足为点F .

求证:.

AE =AP .

4、如图,△ABC 中,AD 平分∠BAC ,E 、F 分别在BD 、AD 上,且DE =CD ,EF =AC .

求证:EF ∥

AB . 三、利用角平分线+垂线,构造等腰三角形 当一个三角形中出现角平分线和垂线时,我们就可以寻找到等腰三角形.如图1中,

AD 平分∠

BAC ,AD ⊥DC ,则△AEC 是等腰三角形.

5、如图2,已知等腰Rt △ABC 中,AB =AC ,∠BAC =90°,BF 平分∠ABC ,CD ⊥BD 交BF 的延长线于D 。求证: BF =2CD . 四:其他方法总结 1.截长补短法

6、如图,已知:正方形ABCD 中,∠BAC 的平分线交BC 于E ,

求证:AB+BE=AC .

2.倍长中线法

7、如图(7)AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F 求证:AC=BF

8、已知△ABC ,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向外作等腰直角三角形,如图,求证EF =2AD 。

F C D E B A

F B A C P

E E 图1 A B C D 图2

B F D

C A

① D ② C D C ④ F C

D A Q

O

A D E

A

B C D

F

3.平行线法(或平移法)

若题设中含有中点可以试过中点作平行线或中位线,对Rt △,有时可作出斜边的中线.

9、△ABC 中,∠BAC=60°,∠C=40°AP 平分∠BAC 交BC 于P ,BQ 平分∠ABC 交AC 于Q , 求证:AB+BP=BQ+AQ .

说明:⑴本题也可以在AB 截取AD=AQ ,连OD ,

构造全等三角形,即“截长补短法”.

⑵本题利用“平行法”解法也较多,举例如下:

① 如图(1),过O 作OD ∥BC 交AC 于D ,则△ADO ≌△ABO 来解决.

如图(2),过O 作DE ∥BC 交AB 于D ,交AC 于E , 则△ADO ≌△AQO ,△ABO ≌△AEO 来解决.

② 如图(3),过P 作PD ∥BQ 交AB 的延长线于D ,则△APD ≌△APC 来解决.

④ 如图(4),过P 作PD ∥BQ 交AC 于D ,则△ABP ≌△ADP 来解决.

10、已知:如图,在△ABC 中,∠A 的平分线AD 交BC 于D ,且AB=AD ,作CM ⊥AD 交AD 的延长于M .

求证:AM=2

1

(AB+AC )

巩固练习

1、(2009年省市)如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°,则APD ∠等于( ) A .42° B .48° C .52° D .58°

2(2009)如图所示,图中三角形的个数共有( ) A .1个 B .2个 C .3 个 D .4个

3、 (2009)如图,ABC △的周长为32,且AB AC AD BC =⊥,于D ,ACD △的周长为24,那么AD

A B C D

O A

B C P Q

D

图(1) A B C

P Q D E 图(2)

O A B C P Q 图(3)

D

O A B

C

P

Q 图(4)

D O A B

C

D M

C D C D B A

的长为 .

4、(09年达州)长度为2㎝、3㎝、4㎝、5㎝的四条线段,从中任取三条线段能组成三角形的概率是______

5、如图,在△ABC 中,AD ⊥BC 于D ,且∠ABC =2∠C .求证:CD =AB +BD .

6、如图,在△ABC 中,∠BAC 、∠BCA 的平分线相交于点O ,过点O 作DE ∥AC ,分别交AB 、BC 于点D 、E .试猜想线段AD 、CE 、DE 的数量关系,并说明你的猜想理由.

7、(2009年)如图,E F 、是平行四边形ABCD 对角线AC 上两点,BE DF ∥,求证:AF CE .

8、AD 为 △ABC 的中线,求证:AB +AC >2AD 。

9、已知D 为△ABC 的任一点,求证:∠BDC >∠BAC 。

10、(2009年市)如图(1),已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,E 是BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG .

(1)连接GD ,求证:△ADG ≌△ABE ;

(2)连接FC ,观察并猜测∠FCN 的度数,并说明理由; (3)如图(2),将图(1)中正方形ABCD 改为矩形ABCD ,AB =a ,BC =b (a 、

b 为常数),E 是线段BC 上一动点(不含端点B 、C ),以AE 为边在直线MN 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上.判断当点E 由B 向C 运动时,∠FCN 的大小是否总保持变

(1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对

折”。

1、已知,如图1,在四边形ABCD 中,BC >AB ,AD =DC ,BD 平分∠ABC 。 求证:∠BAD +∠BCD =180°。

D

C

B A

C

A B

E

D

O

A B C D A

B

C D

E F G N M B E A C D F

G 图(1) 图M B E A C D F G N C A B

E

F

三角形经典习题(必看)

三角形复习卷 一、选择题 1.一个三角形的两边长分别是2cm 和9cm ,第三边的长是一个奇数,则第三边长为( ) A 、5cm B 、7cm C 、9cm D 、11cm 2. 1.在下列条件中:①∠A+∠B=∠C ,②∠A∶∠B∶∠C=2∶3∶4,③∠A=90°-∠B ,④∠A=∠B= 2 1 ∠C 中,能确定△ABC 是直角三角形的条件有( ) A 、1个; B 、2个; C 、3个; D 、4个 3.对于三角形的内角,下列判断中不正确的是( ); A.至少有两个锐角 B.最多有一个直角 C.必有一个角大于600 D.至少有一个角不小600 4. 如图,∠BAC=90°,AD⊥BC,则图中互余的角有( ) A 、2对; B 、3对; C 、4对; D 、5对; 5. 下列说法错误的是( ) A. 三角形三条中线交于三角形内一点; B. 三角形三条角平分线交于三角形内一点 C. 三角形三条高交于三角形内一点; D. 三角形的中线、角平分线、高都是线段 6、一个三角形的两个内角分别为55°和65°,这个三角形的外角不可能是( ) A 、115° B、120° C、125° D、130° 7、如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,且CD 、BE 相交于一点P ,若∠A=50°,则∠BPC=( ) A 、150° B、130° C、120° D、100° 8、7.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是( ) A.5 B.6 C.7 D.8 9如图,在△ABC 中,AD 是角平分线,AE 是高,已知∠BAC=2∠B,∠B=2∠DAE,那么∠ACB 为( )A. 80° B. 72° C. 48° D. 36° 10.在△ABC 中,∠A=2∠B=4∠C ,则△ABC 为( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.都有可能 11.直角三角形两锐角的平分线相交所夹的钝角为( ) A 、125° B 、135° C 、145° D 、150° 12.等腰△ABC 的底边为5cm ,一腰上的中线把周长分为差为3cm 的两部分,则△ABC 的腰长是( )cm 。 A B C D E P 第7题 第9题

专题:全等三角形常见辅助线做法及典型例题

《全等三角形》辅助线做法总结 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 一、截长补短法(和,差,倍,分) 截长法:在长线段上截取与两条线段中的一条相等的一段,证明剩余的线段与另一段相等(截取----全等----等量代换) 补短法:延长其中一短线段使之与长线段相等,再证明延长段与另一短线段相等(延长----全等----等量代换) 例如:1,已知,如图,在△ABC中,∠C=2∠B,∠1=∠2。求证:AB=AC+CD。 2,已知:如图,AC∥BD,AE和BE分别平分∠CAB和∠DBA,CD过点E.求证:(1)AE⊥BE;(2)AB=AC+BD. 二、图中含有已知线段的两个图形显然不全等(或图形不完整)时,添加公共边(或一其中 一个图形为基础,添加线段)构建图形。(公共边,公共角,对顶角,延长,平行)例如:已知:如图,AC、BD相交于O点,且AB=DC,AC=BD,求证:∠A=∠D。 三、延长已知边构造三角形 例如:如图6:已知AC=BD,AD⊥AC于A ,BC⊥BD于B,求证:AD=BC D C B A 1 10 图 O A B C D E O

四、遇到角平分线,可自角平分线上的某个点向角的两边作垂线(“对折”全等) 例如:已知,如图,AC 平分∠BAD ,CD=CB ,AB>AD 。求证:∠B+∠ADC=180。 五、遇到中线,延长中线,使延长段与原中线等长(“旋转”全等) 例如:1如图,AD 为 △ABC 的中线,求证:AB +AC >2AD 。(三角形一边上的中线小 于其他两边之和的一半) 2,已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 。 3,如图,已知:AD 是△ABC 的中线,且CD=AB ,AE 是△ABD 的中线,求证:AC=2AE. E C B D A 六、遇到垂直平分线,常作垂直平分线上一点到线段两端的连线(可逆 :遇到两组线段相等, 可试着连接垂直平分线上的点) 例如:在△ABC 中,∠ACB=90,AC=BC,D 为△ABC 外一点,且AD=BD,DE ⊥AC 交AC 的延长 线于E,求证:DE=AE+BC 。 七、遇到等腰三角形,可作底边上的高,或延长加倍法(“三线合一”“对折”) A D B C C A E B D

三角形常见的辅助线

全等三角形问题中常见的辅助线的作法 常见辅助线的作法有以下几种: 1. 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折” 2. 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 3. 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线, 利用的思维模式是三角形全等变换中的“对折” ,所考知识点常常 是角平分线的性质定理或逆定理. 4. 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠” 5. 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用 三角形全等的有关性质加以说明?这种作法,适合于证明线段的和、差、倍、分等类的题目 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 一、倍长中线(线段)造全等 应用:1、(09崇文二模)以ABC 的两边AB 、AC 为腰分别向外作等腰Rt^ABD 和等腰Rt^ACE , ? BAD = ? CAE = 90 (1)如图① 当 ABC 为直角三角形时,AM 与 DE 的位置关系是 线段AM 与DE 的数量关系是 (2)将图①中的等腰Rt'ABD 绕点A 沿逆时针方向旋转 二(0<二<90)后,如图②所示,(1 )问中得到的两个结论是否发生改 变?并说明理由. 连接DE ,M 、N 分别是 BC 、DE 的中点?探究: AM 与DE 的位置关系及数量关系. 例1、已知, 例2、如图, 例3、如图,

(完整版)相似三角形中几种常见的辅助线作法(有辅助线)

相似三角形中几种常见的辅助线作法 在添加辅助线时,所添加的辅助线往往能够构造出一组或多组相似三角形,或得到成比例的线段或出等角,等边,从而为证明三角形相似或进行相关的计算找到等量关系。主要的辅助线有以下几种: 一、添加平行线构造“A ”“X ”型 例1:如图,D 是△ABC 的BC 边上的点,BD :DC=2:1,E 是AD 的中点,求:BE :EF 的值. 解法一:过点D 作CA 的平行线交BF 于点P ,则 ∴PE=EF BP=2PF=4EF 所以BE=5EF ∴BE :EF=5:1. 解法二:过点D 作BF 的平行线交AC 于点Q , ∴BE :EF=5:1. 解法三:过点E 作BC 的平行线交AC 于点S , 解法四:过点E 作AC 的平行线交BC 于点T , ∵BD=2DC ∴ ∴BE :EF=5:1. 变式:如图,D 是△ABC 的BC 边上的点,BD :DC=2:1,E 是AD 的中点, 连结BE 并延 长交AC 于F, 求AF :CF 的值. 解法一:过点D 作CA 的平行线交BF 于点P , 解法二:过点D 作BF 的平行线交AC 于点Q , 解法三:过点E 作BC 的平行线交AC 于点S , 解法四:过点E 作AC 的平行线交BC 于点T , , 1==AE DE FE PE ,2==DC BD PF BP ,则2==EA DA EF DQ ,3==DC BC DQ BF , EF EF EF EF DQ EF BF BE 563=-=-=-=,则DC CT DT 2 1 ==;TC BT EF BE =, DC BT 2 5=

例2:如图,在△ABC的AB边和AC边上各取一点D和E,且使AD=AE, DE延长线与BC延长线相交于F ,求证: (证明:过点C作CG//FD交AB于G) 例3:如图,△ABC中,AB

三角形经典题50道附答案解析

1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 ∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:1 2CD AB 延长CD 与P ,使D 为CP 中点。连接AP,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形 又∠ACB=90 ∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 A D B C

证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ 三角形BCF 全等于三角形EDF(边角边) ∴ BF=EF,∠CBF=∠DEF 连接BE 在三角形BEF 中,BF=EF ∴ ∠EBF=∠BEF 。 ∵ ∠ABC=∠AED 。 ∴ ∠ABE=∠AEB 。 ∴ AB=AE 。 在三角形ABF 和三角形AEF 中 AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴ 三角形ABF 和三角形AEF 全等。 ∴ ∠BAF=∠EAF (∠1=∠2)。 4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 过C 作CG ∥EF 交AD 的延长线于点G CG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角) ∴△EFD ≌△CGD EF =CG B A C D F 2 1 E

2017中考全等三角形专题(8种辅助线的作法)

全等三角形问题中常见得辅助线得作法【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折瞧,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试瞧。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 1、等腰三角形“三线合一”法:遇到等腰三角形,可作底边上得高,利用“三线合一”得性质解题 2、倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3、角平分线在三种添辅助线 4、垂直平分线联结线段两端 5、用“截长法”或“补短法”: 遇到有二条线段长之与等于第三条线段得长, 6、图形补全法:有一个角为60度或120度得把该角添线后构成等边三角形 7、角度数为30、60度得作垂线法:遇到三角形中得一个角为30度或60度,可以从角一边上一点向角得另一边作垂线,目得就是构成30-60-90得特殊直角三角形,然后计算边得长度与角得度数,这样可以得到在数值上相等得二条边或二个角。从而为证明全等三角形创造边、角之间得相等条件。 8、计算数值法:遇到等腰直角三角形,正方形时,或30-60-90得特殊直角三角形,或40-60-80得特殊直角三角形,常计算边得长度与角得度数,这样可以得到在数值上相等得二条边或二个角,从而为证明全等三角形创造边、角之间得相等条件。 常见辅助线得作法有以下几种:最主要得就是构造全等三角形,构造二条边之间得相等,二个角之间得相等。 1)遇到等腰三角形,可作底边上得高,利用“三线合一”得性质解题,思维模式就是全等变 换中得“对折”法构造全等三角形. 2)遇到三角形得中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用得思 维模式就是全等变换中得“旋转”法构造全等三角形. 3)遇到角平分线在三种添辅助线得方法,(1)可以自角平分线上得某一点向角得两边作垂

等腰三角形典型例题练习(含答案)#(精选.)

等腰三角形典型例题练习

等腰三角形典型例题练习 一.选择题(共2小题) 1.如图,∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,则点D到AB的距离为() A.5cm B.3cm C.2cm D.不能确定 2.如图,已知C是线段AB上的任意一点(端点除外),分别以AC、BC为边并且在AB的同一侧作等边△ACD 和等边△BCE,连接AE交CD于M,连接BD交CE于N.给出以下三个结论: ①AE=BD ②CN=CM ③MN∥AB 其中正确结论的个数是() A.0B.1C.2D.3 二.填空题(共1小题) 3.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF 的面积与△ABC的面积之比等于_________. 三.解答题(共15小题) 4.在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠EAF=180°,求证 DE=DF. 5.在△ABC中,∠ABC、∠ACB的平分线相交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.请说明DE=BD+EC.

6.>已知:如图,D是△ABC的BC边上的中点,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF.请判断△ABC 是什么三角形?并说明理由. 7.如图,△ABC是等边三角形,BD是AC边上的高,延长BC至E,使CE=CD.连接DE. (1)∠E等于多少度? (2)△DBE是什么三角形?为什么? 8.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠A=30°.求证:AB=4BD. 9.如图,△ABC中,AB=AC,点D、E分别在AB、AC的延长线上,且BD=CE,DE与BC相交于点F.求证:DF=EF. 10.已知等腰直角三角形ABC,BC是斜边.∠B的角平分线交AC于D,过C作CE与BD垂直且交BD延长线于E, 求证:BD=2CE.

三角形培优经典题型

《三角形》练习题 班级_________ 姓名__________ 分数__________一、选择题(每题4分) 1.等腰三角形的两边长分别是3和7,那么它的周长是() A、13 B、16 C、17 D、13或17 2、如图1,图中三角形的个数为() A.17 B.18 C.19 D.20 3、在△ABC中,∠A-∠C=25°,∠B-∠A=10°,则∠B=() A、28° B、35° C、15° D、21° 4、如图2,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点, ∠A=50°,则∠D=() A.15°B.20°C.25°D.30° 5、已知一个多边形的每一个内角都等于135°,则这个多边形是() A. 五边形 B. 六边形 C. 七边形 D. 八边形 6、如图3,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°, 则∠P的度数为() A.15°B.20°C.25°D.30° 7、一个多边形截去一个内角后,形成另一个多边形,它的内角和为2520°, 则原来多边形的边数不可能是() A、15条 B、16条 C、17条 D、18条 8、已知三条线段分别是a、b、c且a<b<c(a、b、c均为整数), 若c=6,则线段a、b、c能组成三角形的个数为() A、3个 B、4个 C、5个 D、6个

图1 图2 图3 二、填空题(每题4分) 9、若△ABC的三边长分别是4,X,9,则X的取值范围是_____, 周长L的取值范围是_____;当周长为奇数时,X=_____ 10、一条线段的长为a,若要使3a—l,4a+1,12-a这三条线段组成一个三角形,则a 的取值范围__________. 11、等腰三角形一腰上的中线把这个等腰三角形的周长分成12和10两部分, 则此等腰三角形的腰长是_____ 12、如图4,小亮从A点出发,沿直线前进100m后向左转30°,再沿直线前进100m, 又向左转30°,…照这样走下去,他第一次回到出发地A点时,一共走了________m 13、如图5,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,S△ABC=12, 则S△ADF -S△BEF=_____. 14、如图6,∠A+∠B+∠C+∠D+∠E+∠F的度数是______° 15、如图7,DC平分∠AD B,E C平分∠AEB,若∠DAE=α, ∠D BE=β,则∠D CE=______ (用α、β表示). 16、如图8,DO平分∠CDA,BO平分∠CBA,∠A=20°,∠C=30°,∠O=______°.

三角形常见的辅助线Word版

D C B A E D F C B A 全等三角形问题中常见的辅助线的作法 常见辅助线的作法有以下几种: 1.遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”. 2.遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”. 3.遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理. 4.过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠” 5.截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.一、倍长中线(线段)造全等 例1、已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________. 例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小. 例3、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE. A

应用:1、(09崇文二模)以 ABC ?的两边AB、AC为腰分别向外作等腰Rt ABD ?和等腰Rt ACE ?,90, BAD CAE ∠=∠=? 连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系及数量关系. (1)如图①当 ABC ?为直角三角形时,AM与DE的位置关系是 , 线段AM与DE的数量关系是; (2)将图①中的等腰Rt ABD ?绕点A沿逆时针方向旋转?θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由. 二、截长补短 1、如图,ABC ?中,AB=2AC,AD平分BAC ∠,且AD=BD,求证:CD⊥AC C D B A

全等三角形经典例题整理

全等三角形的典型习题 一、全等在特殊图形中的运用 1、如图,等边△ABC 中,D 、E 分别是AB 、CA 上的动点,AD =CE ,试求∠DFB 的度数. 2、如下图所示,等边△ABC 中,D 、E 、F 是AB 、BC 、CA 上动点,AD =BE =CF ,试判断△DEF 的形状. 3、如图,△ABC 和△ADE 都是等边三角形,线段BE 、CD 相交于点H ,线段BE 、AC 相交于点G ,线段BE 、CD 相交于点H .请你解决以下问题: (1) 试说明BE =CD 的理由; (2) 试求BE 和CD 的夹角∠FHE 的度数 A A

C B Ex1、如下图所示,△ABC 和△ADE 都是等边三角形,且点B 、A 、D 在同一直线上,AC 、BE 相交于点G ,AE 、CD 相交于点F ,试说明AG =AF 的理由. Ex2、如图,四边形ABCD 与BEFG 都是正方形,AG 、CE 相交于点O ,AG 、BC 相交于点M ,BG 、CE 相交于点N ,请你猜测AG 与CE 的关系(数量关系和位置关系)并说明理由. 4、△ABC 是等腰直角三角形,AB =AC ,∠BAC =90°,∠B =∠C =45°,D 是底边BC 的中点,DE ⊥DF ,试用两种不同的方法说明BE 、CF 、EF 为边长的三角形是直角三角形。 A

二.证明全等常用方法(截长发或补短法) 5、如图所示,在△ABC 中,∠ABC =2∠C ,∠BAC 的平分线交BC 于点D .请你试说明AB +BD =AC 的理由. Ex1,∠C +∠D =180°,∠1=∠2,∠3=∠4.试用截长法说明AD +BC =AB . Ex2、五边形ABCDE 中,AB =AE,∠BAC +∠DAE =∠CAD,∠ABC +∠AED =180°,连结AC ,AD .请你用补短法说明BC +DE =CD .(也可用截长法, 自己考虑) 6、如图,正方形ABCD 中,E 是AB 上的点,F 是BC 上的点,且∠EDF =45°.请你试用补短法说明AE +CF =EF . B B F C

全等三角形常用辅助线做法

五种辅助线助你证全等 姚全刚 在证明三角形全等时有时需添加辅助线,对学习几何证明不久的学生而言往往是难点?下面介绍证明全等时常见的五种辅助线,供同学们学习时参考. 一、截长补短 一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用 截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等. 例1.如图1,在△ ABC 中,/ ABC=60 ° , AD、CE 分别平分/ BAC、/ ACB .求证: AC=AE+CD . 分析:要证AC=AE+CD , AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明 CF=CD . 证明:在AC上截取AF=AE,连接OF. ?/ AD、CE 分别平分/ BAC、/ ACB,/ ABC=60 ° ???/ 1 + Z 2=60 ° ,A Z 4=Z 6= / 1 + Z 2=60 ° . 显然,△ AEO ◎△ AFO,?/ 5= / 4=60 ° ,?/ 7=180° — (/ 4+ / 5) =60 ° 在厶DOC 与厶FOC 中,/ 6= / 7=60°,/ 2= / 3, OC=OC ???△ DOC ◎△ FOC, CF=CD ? AC=AF+CF=AE+CD 截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等, 或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作 法,适合于证明线段的和、差、倍、分等类的题目。

例2:如图甲,AD// BC 点E在线段AB上,/ ADE=/CDE / DC=Z ECB 求证: CD=AD F BC 思路分析: 1)题意分析:本题考查全等三角形常见辅助线的知识:截长法或补短法。 2)解题思路:结论是CDAC+BC,可考虑用“截长补短法”中的“截长”,即在CD上截取CF=CE,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。 解答过程: 证明:在CD上截取CF=BC如图乙 6 = CS CE= CE ???△ FCE^A BCE(SAS, ???/ 2=Z 1。 又??? AD// BC ???/ ADG-Z BCD:180°, ???/ DC+Z CD=90°,

相似三角形常用辅助线

相似三角形之常用辅助线 在与相似有关的几何证明、计算的过程中,常常需要通过相似三角形,研究两条线段之间的比例关系,或者转移线段或角。而有些时候,这样的相似三角形在问题中,并不是十分明显。因此,我们需要通过添加辅助线,构造相似三角形,进而证明所需的结论。 专题一、添加平行线构造“A ”“X ”型 定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似. 定理的基本图形: 例1、平行四边形ABCD 中,E 为AB 中点,AF :FD =1:2,求AG :GC 变式练习: 已知在△ABC 中,AD 是∠BAC 的平分线.求证:. (本题有多种解法,多想想) G F E D C B A G F E D C B A CD BD AC AB

例2、如图,直线交△ABC 的BC,AB 两边于D,E,与CA 延长线交于F,若 DC BD =FA FC =2,求BE:EA 的比值. 变式练习:如图,直线交△ABC 的BC,AB 两边于D,E,与CA 延长线交于F,若BD DC = FE ED =2,求BE:EA 的比 值. 例3、BE =AD ,求证:EF ·BC =AC ·DF 变式1、如图,△ABC 中,AB

例4、已知:如图,在△ABC 中,AD 为中线,E 在AB 上,AE=AC ,CE 交AD 于F ,EF ∶FC=3∶5,EB=8cm, 求AB 、AC 的长. 变式:如图,21==DE AE CD BD ,求BF AF 。(试用多种方法解) 说明:此题充分展示了添加辅助线,构造相似形的方法和技巧.在解题中方法要灵活,思路要开阔. 总结: (1)遇燕尾,作平行,构造 字一般行。 (2)引平行线应注意以下几点: 1)选点:一般选已知(或求证)中线段的比的前项或后项,在同一直线的线段的端点作为引平行线的点。 2)引平行线时尽量使较多已知线段、求证线段成比例。

初中几何常见辅助线作法50种

初中常见辅助线作法 任何几何题目都需分析题目条件和结论找到解题思路,本讲从常见的条件和结论出发说明50种辅助线作法,分三角形部分、四边形部分、解直角三角形部分、圆。每种辅助线作法均配备了例题和练习。 三角形部分 1.在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某 边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题. 例:如图,已知D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE . 证法(一):将DE 向两边延长,分别交AB 、AC 于M 、N 在△AMN 中, AM + AN >MD +DE +NE ① 在△BDM 中,MB +MD >BD ② 在△CEN 中,CN +NE >CE ③ ①+②+③得 AM +AN +MB +MD +CN +NE >MD +DE +NE +BD +CE ∴AB +AC >BD +DE +CE 证法(二)延长BD 交AC 于F ,延长CE 交BF 于G , 在△ABF 和△GFC 和△GDE 中有, ①AB +AF >BD +DG +GF ②GF +FC >GE +CE ③DG +GE >DE ∴①+②+③有 AB +AF +GF +FC +DG +GE >BD +DG +GF +GE +CE +DE ∴AB +AC >BD +DE +CE 注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或与求证 有关的量)移到同一个或几个三角形中去然后再证题. 练习:已知:如图P 为△ABC 内任一点, 求证: 1 2 (AB +BC +AC )<P A +PB +PC <AB +BC +AC 2.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来, 可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题. 例:已知D 为△ABC 内任一点,求证:∠BDC >∠BAC 证法(一):延长BD 交AC 于E , F G N M E D C B A

三角形中位线中的常见辅助线

三角形中位线中的常见辅助线 知识梳理 知识点一中点 一、与中点有关的概念 三角形中线的定义:三角形顶点和对边中点的连线 等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合)三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线. 三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半. 中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边.直角三角形斜边中线:直角三角形斜边中线等于斜边一半 斜边中线判定:若三角性一边上的中线等于该边的一半,则这个三角形是直角三角形 二、与中点有关的辅助线 方法一:倍长中线 解读:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的可以旋转等长度的线段,从而达到将条件进行转化的目的。 方法二:构造中位线 解读:凡是出现中点,或多个中点,都可以考虑取另一边中点,或延长三角形一边,从而达到构造三角形中位线的目的。

方法三:构造三线合一 解读:只要出现等腰三角形,或共顶点等线段,就需要考虑构造三线合一,从而找到突破口 其他位置的也要能看出 方法四:构造斜边中线 解读:只要出现直角三角形,或直角,则考虑连接斜边中线段,第一可以出现三条等线段,第二可以出现两个等腰三角形,从而转化线段关系。 其他位置的也要能看出

C E D B A 常见考点 构造三角形中位线 考点说明:①凡是出现中点,或多个中点,都可以考虑取四边形对角线中点、等腰三 角形底边中点、直角三角形斜边中点或其他线段中点; ②延长三角形一边,从而达到构造三角形中位线的目的。 “题中有中点,莫忘中位线”.与此很相近的几何思想是“题中有中线,莫忘加倍延”,这两个是常用几何思想,但注意倍长中线的主要目的是通过构造三角形全等将分散的条件集中起来.平移也有类似作用. 典型例题 【例1】 已知:AD 是ABC △的中线,AE 是ABD △的中线,且AB BD =,求证:2AC AE =. 举一反三 1. 如右下图,在ABC ?中,若2B C ∠=∠,AD BC ⊥,E 为BC 边的中点.求证:2AB DE =.

相似三角形经典题(含答案)

相似三角形经典习题 例1 从下面这些三角形中,选出相似的三角形. 例2 已知:如图, ABCD 中,2:1:=EB AE ,求AEF ?与CDF ?的周长的比,如果2cm 6=?AEF S ,求CDF S ?. 例3 如图,已知ABD ?∽ACE ?,求证:ABC ?∽ADE ?. 例4 下列命题中哪些是正确的,哪些是错误的? (1)所有的直角三角形都相似. (2)所有的等腰三角形都相似. (3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似. 例5 如图,D 点是ABC ?的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ?的边上,并且点D 、点E 和ABC ?的一个顶点组成的小三角形与ABC ?相似.尽可能多地画出满足条件的图形,并说明线段DE 的画法. 例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.

例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,若5.1=AC m ,小明的眼睛离地面的高度为1.6m ,请你帮助小明计算一下楼房的高度(精确到0.1m ). 例8 格点图中的两个三角形是否是相似三角形,说明理由. 例9 根据下列各组条件,判定ABC ?和C B A '''?是否相似,并说明理由: (1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A . (2)?='∠?='∠?=∠?=∠35,44,104,35A C B A . (3)?='∠=''=''?=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB . 例10 如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据. 例11 已知:如图,在ABC ?中,BD A AC AB ,36,?=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ?=2 .

三角形中的常用辅助线方法总结

数学:三角形中的常用辅助线 典型例题 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 全等三角形辅助线 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: (1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。 思路分析: 1)题意分析:本题考查等腰三角形的三线合一定理的应用 2)解题思路:要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC的条件,可以和等腰三角形的三线合一定理结合起来。 解答过程: 证明:延长BA,CE交于点F,在ΔBEF和ΔBEC中, ∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°, ∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。 又∠1+∠F=∠3+∠F=90°,故∠1=∠3。 在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°, ∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。

三角形和四边形中常见的辅助线的作法和类型(绝对经典)

D C B A E D F C B A 三角形和四边形中常见的辅助线的作法和类型(绝对 经典) 一、倍长中线(线段)造全等 例1、(“希望杯”试题)已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________. 例2、如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小. 例3、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE. E D C B A 二、截长补短 1、如图,ABC ?中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC C D B A

C C B A 2、如图,AD ∥BC,EB,EA 分别平分∠CBA,∠DAB ,CD 过点E ,求证;AB =AD+BC 注意:三角形中位线与梯形中位线 3、如图,已知在ABC V 内,0 60BAC ∠=,0 40C ∠=,P ,Q 分别在BC ,CA 上,并且AP , BQ 分别是BAC ∠,ABC ∠的角平分线。求证:BQ+AQ=AB+BP 4、如图,在四边形ABCD 中,BC >BA,AD =CD ,BD 平分ABC ∠, 求证: 0 180=∠+∠C A

P 21 C B A 5、如图在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任意一点,求证;AB-AC >PB-PC 三、平移变换 例1 AD 为△ABC 的角平分线,直线MN ⊥AD 于A.E 为MN 上一点,△ABC 周长记为A P ,△EBC 周长记为B P .求证B P >A P . 例2 如图,在△ABC 的边上取两点D 、E ,且BD=CE ,求证:AB+AC>AD+AE.

常见三角形辅助线口诀

初二几何常见辅助线口诀 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。三角形中有中线,倍长中线得全等。四边形 平行四边形出现,对称中心等分点。梯形问题巧转换,变为三角或平四。平移腰,移对角,两腰延长作出高。如果出现腰中点,细心连上中位线。上述方法不奏效,过腰中点全等造。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。 由角平分线想到的辅助线 一、截取构全等

如图, AB//CD, BE平分/ ABC CE平分/ BCD点E在AD上,求证:BC=AB+C。 分析:在此题中可在长线段BC上截取BF=AB再证明CF=CD从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长BE与CD的延长线交于点来证明。自已试一试。 二、角分线上点向两边作垂线构全等 如图,已知AB>AD, / BAC K FAC,CD=B C求证:/ ADC# B=180 分析:可由C向/BAD的两边作垂线。近而证/ ADC与Z B之和为平角 三、三线合一构造等腰三角形 如图,AB=AC Z BAC=90, AD为Z ABC的平分线,CEL BE.求证:BD=2CE 分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。 四、角平分线+平行线 女口图,AB>AC, Z 1 = Z2,求证:AB-AC>BD-CD c

高考三角典型例题(教师版)

高中数学三角函数常见习题类型及解法 高考试题中的三角函数题相对比较传统,难度较低,位置靠前,重点突出。因此,在复习过程中既要注重三角知识的基础性,突出三角函数的图象、周期性、单调性、奇偶性、对称性等性质。以及化简、求值和最值等重点内容的复习,又要注重三角知识的工具性,突出三角与代数、几何、向量的综合联系,以及三角知识的应用意识。 一、知识整合 1.熟练掌握三角变换的所有公式,理解每个公式的意义,应用特点,常规使用方法等;熟悉三角变换常用的方法——化弦法,降幂法,角的变换法等;并能应用这些方法进行三角函数式的求值、化简、证明;掌握三角变换公式在三角形中应用的特点,并能结合三角形的公式解决一些实际问题. 2.熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质;熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、特点,并会用五点画出函数sin()y A x ω?=+的图象;理解图象平移变换、伸缩变换的意义,并会用这两种变换研究函数图象的变化. 二、考点分析 各地高考中本部分所占分值在17~22分,主要以选择题和解答题的形式出现。主要考察内容按综合难度分,我认为有以下几个层次: 第一层次:通过诱导公式和倍角公式的简单运用,解决有关三角函数基本性质的问题。如判断符号、求值、求周期、判断奇偶性等。 第二层次:三角函数公式变形中的某些常用技巧的运用。如辅助角公式、平方公式逆用、切弦互化等。 第三层次:充分利用三角函数作为一种特殊函数的图象及周期性、奇偶性、单调性、有界性等特殊性质,解决较复杂的函数问题。如分段函数值,求复合函数值域等。 三、方法技巧 1.三角函数恒等变形的基本策略。 (1)常值代换:特别是用“1”的代换,如1=cos 2θ+sin 2θ=tanx ·cotx=tan45°等。 (2)项的分拆与角的配凑。如分拆项: sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2x ; 配凑角:α=(α+β)-β,β=2βα+-2 βα-等。 (3)降次与升次。(4)化弦(切)法。 (4)引入辅助角。asin θ+bcos θ=22b a +sin(θ+?),这里辅助角?所在象限由a 、 b 的符号确定,?角的值由tan ?=a b 确定。 2.证明三角等式的思路和方法。 (1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。 (2)证明方法:综合法、分析法、比较法、代换法、相消法。 3.证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。 4.解题策略。 (1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。 (2)寻找联系:运用相关公式,找出差异之间的内在联系。

常见三角形辅助线口诀

初二几何常见辅助线口诀三角形 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。 三角形中两中点,连接则成中位线。 三角形中有中线,倍长中线得全等。 四边形 平行四边形出现,对称中心等分点。 梯形问题巧转换,变为三角或平四。 平移腰,移对角,两腰延长作出高。 如果出现腰中点,细心连上中位线。 上述方法不奏效,过腰中点全等造。 证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。

由角平分线想到的辅助线 一、截取构全等 如图,AB证:BD=2CE。 分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。 四、角平分线+平行线 如图,AB>AC, ∠1=∠2,求证:AB-AC>BD-CD。 分析:AB上取E使AC=AE,通过全等和组成三角形边边边的关系可证。 由线段和差想到的辅助线 五、截长补短法 AC平分∠BAD,CE⊥AB,且∠B+∠D=180°,求证:AE=AD+BE。

分析:过C点作AD垂线,得到全等即可。 由中点想到的辅助线 一、中线把三角形面积等分 如图,ΔABC中,AD是中线,延长AD到E,使DE=AD,DF是ΔDCE的中线。已知ΔABC的面积为2,求:ΔCDF的面积。 分析:利用中线分等底和同高得面积关系。 二、中点联中点得中位线 如图,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,BA、CD的延长线分别交EF的延长线G、H。求证:∠BGE=∠CHE。 分析:联BD取中点联接联接,通过中位线得平行传递角度。 三、倍长中线 如图,已知ΔABC中,AB=5,AC=3,连BC上的中线AD=2,求BC的长。

相关主题
文本预览
相关文档 最新文档