当前位置:文档之家› 生物医用高分子材料——聚乳酸

生物医用高分子材料——聚乳酸

生物医用高分子材料——聚乳酸
生物医用高分子材料——聚乳酸

生物医用高分子材料——聚乳酸

生物医用高分子材料——聚乳酸

摘要:聚乳酸由于其突出特点如可降解、生物相容性好且对人无毒等而备受重视,并且在生物医学领域的应用中得到了良好的效果。本文对聚乳酸的发展史、现状、性能、优缺点及其等做了简介,并对其未来应用前景做了展望。

关键词:聚乳酸;性能;展望

聚乳酸在医学领域中的发展史

聚乳酸(PLA)是一种具有优良生物相容性和可生物降解的合成高分子材料,它是美国食品和药物管理局(FDA)认可的一类生物医用材料。20世纪50年代,由丙交酯(LA)开环聚合制得了高分子量的聚乳酸,但由于这类脂肪族聚酯对热和水比较敏感,长时间未引起人们的足够重视。直到20世纪60年代,科学工作者重新研究PLA对水敏感这一特性时,发现聚乳酸适合作为可降解手术缝合线材料。1966年,Kulkarni等提出:低分子量的PLA能够在体内降解,最终的代谢产物是CO2和H2O,中间产物乳酸也是体内正常代谢的产物,不会在体内积累,因此PLA在生物体内降解后不会对生物体产生不良影响。随后报道了高分子量的PLA 也能在人体内降解,由此引发了以这类材料作为生物医用材料的开端。

聚乳酸性能、优缺点

PLA的制备以乳酸为原料进行,较为成熟的方法有两种:一种是乳酸直接缩聚法,另一种是先由乳酸合成丙交酯,再在催化剂的作用下开环聚合。

PLA无毒、无刺激性、具有良好的生物相容性,可生物分解吸收,强度高、不污染环境,可塑性好,易于加工成型。如:在体内,PLA分解成乳酸,再经

酶的代谢生成CO

2和H

2

O,由人体排出,没有发现严重的急性组织反应和毒性反

应。但PLA仍会导致一些温和的无菌性炎症反应。如颧骨固定术后3年产生了无痛的局部肿块,皮下组织出现了缓慢降解的结晶PLLA颗粒引发的噬菌作用,产生组织反应的真正原因没有定论。Sugonuma认为PLA降解所产生的碎片是导致迟发性无菌炎症反应的根本原因。植入部位也决定组织反应类型和强度,皮下植入时炎症发生率较高,在吞噬细胞较少的髓内固定组织反应发生率较低。

所以PLA具有以下缺点:1、降解不完全、且降解周期难以控制;2、PLA中有大量的酯键,亲水性差,降低了它与其他物质的生物相容性;3、聚合物所得产物的相对分子量分布过宽,聚乳酸本身为线型聚合物,这都使聚乳酸材料的强度往往不能满足要求,脆性高,热变形温度低抗冲击性差;4、价格太贵,乳酸价格以及聚合工艺决定了PLA的成本较高。而它的诸多优点就是以上提到的一系列性能。

聚乳酸在医学领域中的现状应用

1、聚乳酸及其共聚物在缓释药物中的作用

聚乳酸及其共聚物被用作一些半衰期短、稳定性差、易降解及毒副作用大的药物控释制剂的载体,有效的拓宽了给药的途径,减少了给药的次数和给药量,提高了药物的生物利用度,最大限度的减少药物对全身特别是肝、肾的毒副作用。高相对分子量聚乳酸用作缓释药物制剂的载体可分为两种:一是使用聚乳酸制作药物胶囊,可有效抑制吞噬细菌的作用,让药物定量持续释放以保持血药相当平稳,如:广谱抗生素、抗麻醉剂等等;另一种是作为-囊膜材料用于药物酶制剂、生物制品微粒及微球的微型包覆膜,更有效控制药物剂量的平稳释放。

聚乳酸作为释放剂的优点:熔融温度低,且易溶于溶剂中;聚乳酸水解产物为乳酸,对人体无害;低聚乳酸容易制备。

2聚乳酸在骨内固定及组织工程方面的应用

用聚乳酸材料代替钢板、钢针用于骨内固定,避免了金属固定物的几个缺点:弹性模量不匹配,产生应力遮挡。大量证据表明,坚硬接骨加压内固定时骨折发生愈合的同时,可诱发局部骨质疏松。由于固定骨板,皮质骨空隙过度增加,壁变薄,骨力学性能下降,因而在固定骨板取出之后,固定骨板有再骨折的可能。有些报道表明,再骨折发生率甚至高达20%;生物相容性差。金属钢板可破坏骨折愈合及再塑性,可降解材料可随时间的增加而逐渐失去强度,使正常的应力沿骨干传递;金属腐蚀的例子产生无菌性炎症反应。金属、合金等固定物腐蚀释放的金属离子与局部组织的炎症反应及疼痛密切相关。所以,骨修复材料选择组织相容性好且可免除手术摘除的可降解高分子材料是理想的

选择,而聚乳酸具有此优势。

3聚乳酸作为外科手术缝合线的应用

用聚乳酸,尤其是PLA树脂通过熔融纺丝或溶液拉丝,可制作成纤维缝合材料,其断裂强度单线可达 2.0一3.0g/d,复丝 4.5 ~ 6.0g/d,断裂拉伸率为20 ~ 40 %,已能达到一般合成纤维的力学性能。这种聚乳酸缝合线,既能满足缝孔强度要求,又能随伤口愈合而被机体缓慢分解吸收,无需拆线,尤其适合人体深部组织的缝合。为了改善PLA应用性能,日本三井东压化学公司在聚合物中加入适量增塑剂,使得缝合线更另柔润;在对纺丝纤维进行“退火”处理,可使缝合线的尺寸稳定性增加,收缩率降低。另一公司则研制出用PLA一5 轻基乙酸共聚制成缝合线。它通过调节两者之间的比例来控制缝合线在体内的降解速度。

4聚乳酸作为眼科材料的应用

视网膜脱离是严重致盲性的眼病,通常是通过手术,在眼巩膜表面植入填充物,传统方法用硅橡胶和硅胶海绵作填充物,但这两种物质不能被降解,容易引起异物反应,而利用聚乳酸作为填充材料,可有效地解决上述问题。如采用乳酸丙交酯在异辛酸亚锌引发下聚合得到的聚乳酸,制成膜片用于临床试验,结果表明,这种膜片在组织中既有一定的降解性,又符合视网膜脱落修复手术对巩膜维持支撑时间的要求,是一种非常理想的眼科材料。

5聚乳酸在其他方面的应用

聚乳酸的无毒、可生物降解吸收及必要的强度,可使它在医药医疗部门获得十分广泛的应用。如除上述介绍的以外,还可以作为夹具、粘结剂、止血剂、韧带、血管、皮肤、防粘膜、涂覆材料等。

聚乳酸未来应用前景之我见

尽管高分子聚乳酸,由于其不仅能符合医用要求,而且还有助于损伤机体的康复,自身治愈后能被人体逐步分解吸收等特点,在医药及医疗用品方面的应用于开发受到了国内外高度重视。但其实如若能对其性能进行改造,它将会有更广阔的发展空间。

1、虽然PLA原料是丰富的,但是在形成PLA的过程价格是昂贵的,这也限制

了其广泛应用的原因之一。假如我们对其进行改性:比如将聚乳酸与价格和耐久性等方面具有优势的物质共混,让生物降解性这个优势继续保持,更重要的是达到共混物成本的降低。假如真能实现,那么成本的降低将会为PLA的广泛应用打下了坚实的基础。

2、由于PLA亲水性差,所以假如我们能更改它的共聚改性,在亲脂性的乳酸主链上引入一些亲水的性链段如聚乙二醇等,形成具有两亲性的共聚物,这样应用的领域更加广泛,比如:我觉得可以用作药物胶囊的外壳,既具有亲水性又具有亲脂性,完全可以溶于人体,而且也可以进行稍加改造来控制药物释放的时间。又如可制成与血液接触的表面和组织粘合剂,让它在溶解时可释放出出亲水性大分子药物如多肽、蛋白质药物,增加它在血液中的寿命。

3、PLA质硬而韧性较差,缺乏柔性和弹性,极易弯曲变性,因此,假如我们进行增塑改性、复合改性,将PLA中加入某些增塑剂、或其他材料,既可提高其力学性能、柔韧性,又可以克服其脆性达到增强的目的,我觉得真能成功的话,那它在作为骨折内固定物方面将会更大力度的推广,而且也更完善了作为这种材料的功能。

4、就其安全性而言,改变聚乳酸的合成方法已经迫在眉睫,虽然它是绿色化学中目标产物绿色化的典型代表,但是在制备过程中还是存在着安全隐患,如:聚乳酸合成中催化剂的安全性问题,有悖绿色化学的原则。

PLA还存在:在剂型研制过程中,药物生物活性下降及药物突释效应;容易引起机体的炎性反应及免疫反应、个别缓释材料仍存在降解不均匀、不完全,其降解速度与组织生成速度不协调的现象等一系列问题,倘若我们能够将它一一解决,它必将成为最重要的生物高分子材料之一。而且也有望取代聚烯烃类聚合物现有的可降解塑料,并具有与聚烯烃类聚合物相竞争的能力,因此,除了在医药领域很有前景外,在其他方面也很有开发的价值。

比如:假如提高聚乳酸的耐热性,凭借它本身较好的阻气阻水性、透明性及印刷性,且又对人体无毒无害,所以在食品包装市场无疑将会有很多的用武之地,可以制造成一次性饭碗筷子、一次性杯子等等;根据资料,PLA与纤维相结合产物聚乳酸纤维具有:不易静电、舒适性好、透气性、手感好等优点,而且还具有防火性、耐候性、抗菌性等性能,所以我觉得PLA未来在服装市场、

家用及装饰市场、非织造布市场等领域也具有潜在的应用前景;此外,由于PLA有羧基,所以我觉得他可以和含羟基的高分子醇类反应制取聚乳酸树脂,而根据聚乳酸树脂具有如:不溶、不熔性,而且韧性、耐候性、耐热性、耐燃性、耐化学腐蚀性等等都非常强的特性。因此,我觉得它将在汽车、电子电器行业、建筑市场将会有更广阔的应用;此外,根据PLA的一些特性,我觉得经过某些方面的改造,增加它的保水功能,又加上它自己对人体的无毒无害性,或许在化妆品方面也将会有一席之地,也许以后还会进展到食品行列。

总结

总之,相信在不久的将来,在国内外学者的共同努力下,随着聚乳酸的合成方法、生产工艺改性的不断深入研究及其生产成本的大幅度降低,它不仅会在医用方面很有前景,而且也将会在农林业、食品工业、包装、服饰、汽车行业等方面展现出广阔的应用前景。因此,聚乳酸类生物材料势必成为21世纪最重要的生物高分子材料之一!

医用高分子常用材料(精)

医用高分子常用材料 学校名称:华南农业大学 院系名称:材料与能源学院 时间:2017年2月27日

3.结构与性能 3.3 常用材料 1.硅橡胶 硅橡胶是一种以Si-O-Si为主链的直链状高分子量的聚有机硅氧烷为基础,添加某些特定组分,按照一定的工艺要求加工后,制成具有一定强度和伸长率的橡胶态弹性体。 硅橡胶具有良好的生物相容性、血液相容性及组织相容性,植入体内无毒副反应,易于成型加工、适于做成各种形状的管、片、制品,是目前医用高分子材料中应用最广、能基本满足不同使用要求的一类主要材料。 具体应用有:静脉插管、透析管、导尿管、胸腔引流管、输血、输液管以及主要的医疗整容整形材料。 2.聚乳酸 聚乳酸是以乳酸或丙交酯为单体化学合成的一类聚合物,属于生物降解的热塑性聚酯,具有无毒、无刺激、良好的生物相容性、可生物分解吸收、强度高、可塑性加工成型的合成类生物降解高分子材料。 其降解产物是乳酸、CO2和H2O。经FDA批准可用作手术缝合线、注射用微胶囊、微球及埋置剂等制药的材料。u=3351883538,102612699&fm=21&gp=0 3.聚氨酯 聚氨酯是指高分子主链上含有氨基甲酸酯基团的聚合物,简称PU,是由异氰酸酯和羟基或氨基化合物通过逐步聚合反应制成的,其分子链由软段和硬段组成。聚氨酯具有一个主要的物理结构特征是微相分离结构,其微相分离表面结构与生物膜相似。 由于存在着不同表面自由能分布状态,改进了材料对血清蛋白的吸附力,抑

制血小板黏附,具有良好的生物相容性和血液相容性。目前医用聚氨酯被用于人工心脏、心血导管、血管涂层、人工瓣膜等领域。 参考文献 [1] 李小静,张东慧,张瑾,等.医用高分子材料应用五大新趋势[J].CPRJ中国塑料橡胶,2016 [2]杂志社学术部,医用高分子材料的临床应用:现状和发展趋势.中国组织工程研究与临床康复,2010,14(8)

完全生物降解材料聚乳酸的改性及应用

完全生物降解材料聚乳酸的改性及应用 1、聚乳酸 聚乳酸(PLA)是一种具有优良的生物相容性和可生物降解性的合成高分子材料。PLA这种线型热塑性生物可降解脂肪族聚酯是以玉米、小麦、木薯等一些植物中提取的淀粉为最初原料,经过酶分解得到葡萄糖,再经过乳酸菌发酵后变成乳酸,然后经过化学合成得到高纯度聚乳酸。聚乳酸制品废弃后在土壤或水中,30天内会在微生物、水、酸和碱的作用下彻底分解成CO2和H2O,随后在太阳光合作用下,又成为淀粉的起始原料,不会对环境产生污染,因而是一种完全自然循环型的可生物降解材料。 1.1聚乳酸的制备 目前聚乳酸的生产和制备主要有两条路线:(1)间接法即丙交酯开环聚合法(ROP法);(2)直接聚合法(PC法)。两类方法皆以乳酸为原料。丙交酯开环聚合法是先将乳酸缩聚为低聚物,低聚物在高温、高真空等条件下发生分子内酯交换反应,解聚为乳酸的环状二聚体2丙交酯,丙交酯再开环聚合得到聚乳酸,此方法中要求高纯度的丙交酯。直接法使用高效脱水剂使乳酸或其低聚物分子间脱水,以本体或溶液聚合的方式制备聚乳酸。 1.2聚乳酸的基本性质 由于乳酸具有旋光性,因此对应的聚乳酸有三种:PDLA、PLLA、PDLLA(消旋)。常用易得的是PDLLA和PLLA,分别由乳酸或丙交酯的消旋体、左旋体制得。 聚乳酸(PLA)是一种真正的生物塑料,其无毒、无刺激性,具有良好的生物相容性,可生物分解吸收,强度高,不污染环境,可塑性好,易于加工成型。由于聚乳酸优良的生物相容性,其降解产物能参与人体代谢,已被美国食品医药局(FDA)批准,可用作医用手术缝合线、注射用胶囊、微球及埋植剂等。 同时聚乳酸存在的缺点是:(1)聚乳酸中有大量的酯键,亲水性差,降低了它与其它物质的生物相容性;(2)聚合所得产物的相对分子量分布过宽,聚乳酸本身为线型聚合物,这都使聚乳酸材料的强度往往不能满足要求,脆性高,热变形温度低(0146MPa负荷下为54℃),抗冲击性差;(3)降解周期难以控制;(4)价格太贵,乳酸价格以及聚合工艺决定了PLA的成本较高。这都促使人们对聚乳酸的改性展开深入的研究。

生物医用高分子微球制备与应用

生物医用高分子微球的制备与应用 陈瑜陈明清**刘晓亚杨成 (无锡轻工大学化学与材料项目学院无锡 214036> 高分子微球以其分子结构的可设计性吸引了越来越多的科学工作者的兴趣,进而更加快了其开发应用的步伐。美国等西方发达国家在这一研究领域起步较早,技术力量已相当强。日本在这一研究领域中投入大量人力和财力,获得了众多的成果与专利。近年来我国也有不少的科研人员开始从事该领域的研究,并取得了一定的成果,但总的来说与国外相比仍有差距。 高分子微球可以通过选择聚合单体和聚合方式从分子水平上来设计合成和制备,并且可以比较方便地控制其尺寸的大小和均一性,使之具有所需要的特定性能与功能。这种微观结构和性能的可设计性,使得高分子微球在对材料特性要求较高的生物医学领域中显示出巨大的发展潜力。本文拟对近几年来报道的几种核-壳复合型高分子微球制备方法以及高分子微球在生物技术和医学诊治方面的应用加以综述。 1 生物医用高分子微球的制备方法 生物医用高分子微球通常为核-壳复合结构,其中壳层具有生物活性或对特定环境有亲合性,而核作为这类活性大分子的载体,使微球具有一定的稳定性;或者,核为具有一定生物功能性的高分子,而壳层作为保护层,维持核内物质的活性。 图1 大分子单体法合成微球 1.1 大分子单体法(Macromonomer Method> 大分子单体具有确定的分子量和明确的结构,所以近来被广泛地用来制备高分子微球。首先将某一单体聚合成有一定聚合度的低聚物,再在低聚物上引入一具有聚合反应活性的基团(如碳碳双键等>,制得具有确定分子量的大分子单体。然后在含有大分子单体的介质中加入第二单体、引发剂,进行接枝共聚反应。若大分子单体为亲水的,第二单体为疏水的,则水相中的大分子单体接枝到疏水性的第二单体上成双亲性接枝共聚物,并逐渐形成胶粒。疏水性单体可扩散到胶粒内,进一步参加共聚反应。亲水性的大分子链则起到了稳定作用,防止胶粒的凝聚。于是形成了核为疏水,壳为亲水的高分子微球(如图1所示>[1-4]。反之,也可用逆相乳液聚合的方法制备疏水性高分子微球。微球的大小及其分布可以通过溶剂组成和加入的单体及大分子单体的量来控制。其大小

医用高分子材料

医用高分子材料 1

摘要:随着高分子材料在社会的各个领域的广泛应用,尤其是在航天工程、医学等领域的应用。功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。医用高分子材料是用以制造人体内脏、体外器官、药物剂型及医疗器械的聚合物材料。对医用高分子材料的目前需求作了简要分析,介绍了医用高分子材料的主要类别、用途及其特殊要求,并浅谈了医用高分子材料的发展及展望。 关键词:医用高分子材料人工人体器官对人类健康的促进相容性 前言: 现代医学的发展,对材料的性能提出了复杂而严格的多功能要求,这是大多数金属材料和无机材料难以满足的;而合成高分子材料与生物体(天然高分子)有着 极其相似的化学结构,化学结构的相似性决定了它们在性能上能够彼此接近从而可能用聚合物制作人工器官,作为人体器官的替代物。另外,除人工器官用材料之外,医药用高分子材料、临床检查诊断和治疗用高分子材料的开发研究也在积极地展开,它们被统称为医用高分子材料。 医用高分子材料是一类令人瞩目的功能高分子材料,是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学、化学、生物化学、医学、病理学等多种边缘学科。医用高分子材料是生物材料的重要组成部分。医用高分子材料是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的新型高技术合成高分子材料,是科学技术中的一个正在发展的新领域,不仅技术含量和经济价值高,而且对人类的健康生活和社会发展具有极其重大意义,它已渗入到医学和生命科学的各个部门并应用于临床的诊断与治疗 一、医用高分子材料的概念及简介 医用高分子材料是依据高分子材料的某些特性及特征,如其本身是惰性的,不参与药的作用,能只起增稠、表面活性、崩解、粘合、赋形、润滑和包装等特效,对有机体组织进行修复、替代与再生,具有特殊功能作用的新型高技术合成高分子材料,用它制造成能有医学价值的产品。医用高分子材料是一类令人瞩目的功能高分子材料,是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学、化学、生物化学、医学、病理学等多种边缘学科。医用高分子材料是生物材料的重要组成部分。,是科学技术中的一个正在发展的新领域,不仅技术含量和经济价值高,而且对人类的健康生活和社会发展具有极其重大意义,它已渗入到医学和生命科学的各个部门并应用于临床的诊断与治疗。然而,医用高分子材料是一类根据医学的需求来研制与生物体结构相适应的、在医疗上使用的材 2

组织工程用聚乳酸系生物可降解高分子材料修饰研究进展

组织工程用聚乳酸系生物可降解高分子材料修饰研究进展 姚芳莲孟继红毛君淑#姚康德# (天津大学化工学院#天津大学高分子材料研究所天津 300072) 聚乳酸(PLA)和聚羟基乙酸(PGA)及它们的共聚物(PLG)为研究得最多的生物分解性脂肪族聚酯。它们已为美国FDA批准可用作外科缝合线及药物释放载体。近年来在组织工程中被广泛用于支架(scaffold)和细胞构建结构物。此类生物降解聚合物随组织重建在体内分步降解吸收。这些材料的本体性能和力学性质与降解速率有关。而材料的表面特性则因其与体内细胞接触而对材料与细胞间的相互作用情况起关键作用,因而对这类植入体内材料的表面修饰就显得特别主要。乳酸类聚合物的表面疏水性强,影响了其与细胞的亲和性,要扩大乳酸系聚合物在组织工程中的应用,对其与细胞亲和力的改进是一关键问题。由于聚乳酸分子链上缺乏反应位点,使得对其进行修饰变得非常困难。一般常用于聚合物表面修饰的方法,如调节材料表面亲水/疏水性及电荷、将细胞粘连因子和细胞增殖因子等生物活性因子固定于材料表面等,对乳酸类聚酯的表面修饰难于奏效。基于物理吸附的修饰方法是由范德华力维持吸附分子与基材间的作用,所以结合力弱,被结合分子易脱落,影响材料的长期使用性能,不能满足应用需要。因而,寻求聚乳酸系聚合物合适的修饰技术,包括用嵌段或接枝聚合方法对其化学结构进行本体修饰、表面修饰或复合改性,从而改善聚乳酸基生物降解材料对目标细胞的亲和性,使其在组织工程相关应用中发挥作用具有重要意义。 1 嵌段共聚物 纤连蛋白细胞粘连微区为精氨酸-甘氨酸-天冬氨酸(RGD)二肽,它可由含 侧链羧基的乳酸和苹果酸的共聚物而固定化。天冬氨酸与苄醇的80%H 2SO 4 水溶液 于70?C脱水缩合得其L-β天冬氨酸苄酯,将其在硫酸水溶液中与NaNO 2 反应得L-β 苹果酸苄酯(2),它与溴代乙酰氯在三乙胺存在下,于醚中反应得L-β溴乙酰苄 基苹果酸酯(3),它在二甲基甲酰胺中与NaHCO 3 反应则得其环状二聚体(BMD)(4)。将它与L-丙交酯(L-LAC)在己酸亚锡催化下于160?C开环聚合而后水解得 PMLA[1]。其中含苹果酸10%,数均分子量为31,700。以二环己基碳二亚胺(DCC)法或氯甲酸酯(ECF)法可将RGD在其薄膜上固定化。以后法为例,固定化量达6.3μg RGD/1mg PMLA。以1.0×105的NIH3T3细胞种植后,在D-MEM基中,37?C 下 5% CO 2 气氛中培养1h, 细胞培养后的薄膜用戊二醛固定化,对照薄膜上粘连细胞仅为种植细胞的1%,而固定化7.29μg后表面粘连细胞数增大30倍。可见利用聚(苹果酸-共-乳酸)侧链上的羧基使聚乳酸表面修饰,利于细胞粘连因子、细胞分化诱导因子和增殖因子固定化。

生物医用高分子材料

生物医用高分子材料 一、生物医用材料 生物医用材料简介: 生物医用材料指的是一类具有特殊性能、特种功能,用于人工器官、外科修复、理疗康复、诊断、治疗疾患,而对人体组织不会产生不良影响的材料。现在各种合成材料和天然高分子材料、金属和合金材料、陶瓷和碳素材料以及各种复合材料,其制成产品已经被广泛地应用于临床和科研。 生物医用材料分类: 生物材料应用广泛,品种很多,有不同的分类方法。通常是按材料属性分为:合成高分子材料(聚氨酯、聚酯、聚乳酸、聚乙醇酸、乳酸乙醇酸共聚物及其他医用合成塑料和橡胶等)、天然高分子材料(如胶原、丝蛋白、纤维素、壳聚糖等)、金属与合金材料(如钦金属及其合金等)、无机材料(生物活性陶瓷,羟基磷灰石等)、复合材料(碳纤维/聚合物、玻璃纤维/聚合物等)。根据材料的用途,这些材料又可以分为生物惰性(bioinert)、生物活性(bioactive)或生物降解(biodegradable)材料。 二、生物医用高分子材料 1、定义:生物医用高分子材料是指对生物体进行诊断、治疗和置换损坏组织、器官或增进其功能的材料。生物医学材料中发展最早、应用最广泛、用量最大的材料,也是一个正在迅速发展的材料。它既可以来源于天然产物,又可以人工合成。此类材料除应满足一般的物理、化学性能要求外,还必须具有足够好的生物相容性。 2、分类: 按材料来源分: (1)医用金属和合金。主要用于承力的骨、关节和牙等硬组织的修复和替换。 (2)医用高分子生物材料。高分子化合物是构成人体绝大部分组织和器官的物质,医用高分子生物材料包括合成(如:聚酯、硅橡胶)和天然高分子(如:胶原、甲壳素)。(3)医用生物陶瓷。有惰性生物陶瓷和活性生物陶瓷(羟基磷灰石陶瓷、可吸收磷酸三钙陶瓷等) (4)医用生物复合材料。如羟基磷灰石涂复钛合金,炭纤维或生物活性玻璃纤维增强聚乳酸等高分子材料。 (5)生物衍生材料。这类材料是将活性的生物体组织,包括自体和异体组织,经处理改性而获得的无活性的生物材料。 按用途分: (1)手术治疗用高分子材料,如: 缝合线,黏胶剂,止血剂,各种导管,引流管,一次性输血输液器材 (2)药用及药物传递用高分子材料,如: 靶向性高分子载体(肝靶向性,肿瘤靶向性),高分子药物(干扰素,降胆敏),高分子控制释放载体(胶囊,水凝胶,脂质体) (3)人造器官或组织,如: 人造皮肤,血管,骨,关节,肠道,心脏,肾等。 按降解性能分 (1)可生物降解材料-指聚合物在生物体内酶、酸碱性环境下或微生物存在的情况下可以发生分子量下降、生成水和二氧化碳等对生物体或环境无毒害的小分子化合物的性能。

医用高分子材料论文

医用高分子材料 高分子材料科学与工程,高材1006班,王中伟,20100221276 摘要:随着高分子材料在社会的各个领域的广泛应用,尤其是在航天工程、医学等领域的应用。功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。医用高分子材料是用以制造人体内脏、体外器官、药物剂型及医疗器械的聚合物材料。对医用高分子材料的目前需求作了简要分析,介绍了医用高分子材料的主要类别、用途及其特殊要求,并浅谈了医用高分子材料的发展及展望。 关键词:医用高分子材料人工人体器官对人类健康的促进相容性 前言:现代医学的发展,对材料的性能提出了复杂而严格的多功能要求,这是大多数金属材料和无机材料难以满足的;而合成高分子材料与生物体(天然高分子)有着极其相似的化学结构,化学结构的相似性决定了它们在性能上能够彼此接近从而可能用聚合物制作人工器官,作为人体器官的替代物。另外,除人工器官用材料之外, 医药用高分子材料、临床检查诊断和治疗用高分子材料的开发研究也在积极地展开,它们被统称为医用高分子材料.医用高分子材料是一类令人瞩目的功能高分子材料,是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学、化学、生物化学、医学、病理学等多种边缘学科。医用高分子材料是生物材料的重要组成部分。医用高分子材料是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的新型高技术合成高分子材料,是科学技术中的一个正在发展的新领域,不仅技术含量和经济价值高,而且对人类的健康生活和社会发展具有极其重大意义,它已渗入到医学和生命科学的各个部门并应用于临床的诊断与治疗。 正文: 一、医用高分子材料的概念及简介:医用高分子材料是依据高分子材料的某些特性及特征, 如其本身是惰性的,不参与药的作用,能只起增稠、表面活性、崩解、粘合、赋形、润滑和包装等特效,对有机体组织进行修复、替代与再生,具有特殊功能作用的新型高技术合成高分子材料,用它制造成能有医学价值的产品。医用高分子材料是一类令人瞩目的功能高分子材料,是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学、化学、生物化学、医学、病理学等多种边缘学科。医用高分子材料是生物材料的重要组成部分。是科学技术中的一个正在发展的新领域,不仅技术含量和经济价值高,而且对人类的健康生活和社会发展具有极其重大意义,它已渗入到医学和生命科学的各个部门并应用于临床的诊断与治疗。然而,医用高分子材料是一类根据医学的需求

生物医用高分子材料研究进展及趋势

生物医用高分子材料研究进展及趋势

J I A N G S U U N I V E R S I T Y 医用材料学课程学习总结及结课论文生物医用高分子材料的研究及发展趋势

学院名称:材料科学与工程 专业班级:金属1302 学生姓名:钱振 指导教师姓名:王宝志 2016年 10 月 生物医用高分子材料的研究及发展趋势 钱振 学号:63 班级:金属1302 材料科学与工程学院 摘要:随着我国经济发展水平的不断提高,分子材料在各领域得到了显著应用,在医用领域应用更多,本文综述了生物医用高分子材料的分类、特点及基本条件,概述了医用高分子材料的研究现状及其用途,并浅谈了医用高分子材料的发展及展望。通过介绍医用高分子材料在人工脏器、药剂及医疗器械方面的应用,以及我国近年来的研究情况和存在的问题,形成对生物医用功能高分子的认识和其重要性的认识。 关键词:生物材料,生物医用高分子材料,现状,应用,展望 1.引言 生物医用材料是生物医学科学中的最新分支学科,它是生物学、医学、化学、 物理学和材料学交叉形成的边缘学科,是用于人工组织或器官制备、高性能医疗

器械的研制、药物新剂型的开发和和仿生效应研究的基础[1] 。 生物医用材料,简称生物材料(BiomaterialS),是一类具有特殊性能或功能,用于与生物组织接触以形成功能的无生命的材料]2[。主要包括生物医用高分子材料、生物医用陶瓷材料、生物医用金属材料和生物医用复合材料等。研究领域涉及材料学、化学、医学、生命科学]3[,生物医用高分子材料是一门介于现代医学和高分子科学之间的新兴学科。目前医用高分子材料的应用已遍及整个医学领域(如:人工器官、外科修复、理疗康复、诊断治疗、心血管、骨修复、神经传递、皮肤、器官、药物控释等)。 2.研究现状 生物医用高分子材料是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的高分子材料。在功能高分子材料领域,生物医用高分子材料取得了长足的进展,目前已成为发展最快的一个重要分支。随着医用高分子产业的发展,出现了大量的医用新材料和人工装置,如人工心脏瓣膜、人工血管、人工肾用透析膜、心脏起博器及骨生长诱导剂等。近10年来,由于生物医学工程、材料科学和生物技术的发展,医用高分子材料及其制品正以其特有的生物相容性、无毒性等优异性能而获得越来越多的医学临床应用。 生物医用高分子材料是生物材料的重要组成部分,它发展最早、应用最广泛、用量最大、品种繁多,主要包括:塑料、橡胶、纤维、粘合剂等。随着医学的发展,这些材料在医学领域得到广泛的应用。如:膨体聚四氟乙烯人造血管、聚矾中空纤维人工肾、硅橡胶医用导管、介入栓塞材料、介入诊疗导管以及护理方面使用的一次性医疗用品等,都是由高分子材料制成的。这些产品在临床诊断、治疗、护理等方面起着越来越重要的作用。正是由于高分子材料在医学上的独特作用,因而在高分子化学上出现了一个新的分支—医用高分子(Medical highpolymers)。它是把高分子化学的理论、研究方法、临床医学的需要结合起来,用于研究生物体的结构、生物体器官的功能及医用材料的应用等的一门年轻而边缘性的学科]4[。

生物可降解材料聚乳酸的制备改性及应用

生物可降解材料聚乳酸的制备改性及应用 摘要:聚乳酸(PLA)是人工合成的可生物降解的的热塑性脂肪族聚酯,其具有良好的机械性能、热塑性、生物相容性和生物降解性等,广泛应用于可控释材料、生物医用材料、组织工程材料、合成纤维等领域。本文主要介绍了聚乳酸的合成、改性及其在各个领域的应用。关键词:聚乳酸;生物降解;合成;应用 随着大量高分子材料在各个领域的应用,废弃高分子材料对环境的污染有着日益加剧的趋势。处理高分子材料的一些老套方法如焚烧、掩埋、熔融共混挤出法、回收利用等都存在缺陷并有一定的局限性,给环境带来严重的负荷,因此开发环境可接受的降解性高分子材料是解决环境污染的重要途径。而乳酸主要来源于自然界十分丰富的可再生植物资源如玉米淀粉、甜菜糖等的发酵。聚乳酸(polylactide简称PLA)在自然环境中可被水解或微生物降解为无公害的最终产物CO2和H2O,对其进行堆肥或焚烧处理也不会带来新的环境污染[1]。此外聚乳酸及其共聚物是一种具有优良的生物相容性的合成高分子材料。它具有无毒、无刺激性、强度高、可塑性强、易加工成型等特点,因而被认为是最有前途的生物可降解高分子材料[2]。利用其可降解性,也可用作生物医用材料如组织支架、外科手术缝合线、专业包装、外科固定等。 1 生物降解机理[3,4] 生物降解是指高分子材料通过溶剂化作用、简单水解或酶反应,以及其他有机体转化为相对简单的中间产物或小分子的过程。高分子材料的生物降解过程可分为4个阶段:水合作用、强度损失、物质整体化丧失和质量损失。微生物首先向体外分泌水解酶,与可生物降解材料表面结合,通过水解切断这些材料表面的高分子链,生成低相对分子质量的化合物(有机酸、糖等),然后,降解的生成物被微生物摄入体内,合成为微生物体物或转化为微生物活动能量,在耗氧条件下转化为CO2,完成生物降解的全过程。材料的结构是决定其是否可生物降解的根本因素。合成高分子多为憎水性的,一般不能生物降解,只有能保持一定湿度的材料才有可能生物降解。含有亲水性基团的高分子可保持一定的湿度,宜生物降解,同时含有亲水和憎水基的聚合物生物降解性好。一般分子量大的材料较分子量小的更难生物降解;脂肪族聚合物比相应的芳香族聚合物容易生物降解;支化和交联会降低材料的生物降解性。另外,材料表面的特性对生物降解也有影响,粗糙表面材料比光滑表面材料更易降解。影响可生物降解性的化学因素主要有高分子的亲水性、构型、形态结构、链段的活动性、分子量、高聚物的组成以及上述因素之间的相互关系等。高分子的亲水性越强越易水解,水解酶对酯键、酰胺键和氨基甲酸酯都有较强的作用;无定型态的高聚物比结晶状态容易水解;分子链段越柔顺,玻璃化温度越低,越有利于降解;链段活动性越大,自由体积越大,越容易受到酶的进攻,也就越容易降解;可降解性随着分子量增大而降低;高聚物的组成,如共混、共聚等也影响着高分子的可降解性。一般情况下只有极性高分子才能与酶相吸附并能很好亲和,因此高分子具有极性是生物降解的必要条件。具有生物降解性(包括水解)的分子化学结构有:脂肪族酯键、酞键、脂肪族醚键、亚甲基、氨基、酰氨基、烯氨基、芳香族偶氮基、脲基、氨基甲酸乙酯等。 2 聚乳酸的基本性质

我国医用高分子材料的发展现状

我国医用高分子材料的发展现状 摘要: 对医用高分子材料的目前需求作了简要分析,介绍了医用高分子材料的主要类别、用途及其特殊要求,并浅谈了医用高分子材料的发展及展望。 关键词: 医用高分子材料;相容性;组织工程 前言: 现代医学的发展,对材料的性能提出了复杂而严格的多功能要求,这是大多数金属材料和无机材料难以满足的;而合成高分子材料与生物体(天然高分子)有着极其相似的化学结构,化学结构的相似性决定了它们在性能上能够彼此接近从而可能用聚合物制作人工器官,作为人体器官的替代物。另外,除人工器官用材料之外,医药用高分子材料、临床检查诊断和治疗用高分子材料的开发研究也在积极地展开,它们被统称为医用高分子材料。 医用高分子材料是一类令人瞩目的功能高分子材料,是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学、化学、生物化学、医学、病理学等多种边缘学科。医用高分子材料是生物材料的重要组成部分。医用高分子材料[1]是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的新型高技术合成高分子材料,是科学技术中的一个正在发展的新领域,不仅技术含量和经济价值高,而且对人类的健康生活和社会发展具有极其重大意义,它已渗入到医学和生命科学的各个部门并应用于临床的诊断与治疗。 1、医用高分子材料的目前需求 人的健康长寿依赖于医学的发展。现代医学的进步已经越来越依赖于生物材料和器械的发展,没有医用材料的医学诊断和治疗在现代医学中几乎是不可想象的。目前全球大量用于医疗器械的生物医学材料主要有20种,其中医用高分子12种,金属4种,陶瓷2种,其他2种[2]。利用现有的生物医学材料已开发应用的医用植入体、人工器官等近300种,主要包括:起搏器、心脏瓣膜、人工关节、骨板、骨螺钉、缝线、牙种植体,以及药物和生物活性物质控释载体等。近年来,西方国家在医学上消耗的高分子材料每年以10%~20%的速度增长[3],而国内也以20%左右的速度迅速增长。随着现代科学技术的发展,尤其是生物技术的重大突破,生物材料的应用将更加广泛,需求量也随之越来越大。生物医用材料产业发展如此迅猛,主要动力来自于人口老龄化、中青年创伤的增多、疑难疾病患者的增加和高新技术的发展。生物材料的研究与开发被许多国家列入高技术关键新材料发展计划,并迅速成为国际高技术制高点之一。

生物医用高分子材料

生物医用高分子材料

————————————————————————————————作者:————————————————————————————————日期:

生物医用高分子材料 080804106 黄涛 摘要:: 阐述了生物医用高分子材料的应用研究与发展状况,综述了生物医用高分子材料的分类、特性及研究成果,展望了未来的生物医用高分子材料的发展趋势。 关键词: 生物医用高分子材料分类进展综述发展趋势 1 概述 在功能高分子材料领域,生物医用高分子材料可谓异军突起,目前已成为发展最快的一个重要分支。生物医用高分子材料指用于生理系统疾病的诊断、治疗、修复或替换生物体组织或器官,增进或恢复其功能的高分子材料。研究领域涉及材料学、化学、医学、生命科学。虽已有四十多年的研究历史,但蓬勃发展始于20世纪70年代。简单地说,所谓生物医用高分子材料( Poly-mericbio - materials)是指在生理环境中使用的高分子材料,它们中有的可以全部植入体内,有的也可以部分植入体内而部分暴露在体外,或置于体外而通过某种方式作用于体内组织。 近十年来,由于生物医学工程、材料科学和生物技术的发展,医用高分子材料及其制品正以其特有的生物相容性、无毒性等优异性能而获得越来越多的医学临床应用。 2生物医用高分子材料分类 生物医用高分子材料主要有天然生物材料和合成高分子材料。 2 . 1 天 然 生 物 材 料 天 然 生 物 材 料 是

并得到迅速推广应用的一类天然生物材料。由 家蚕丝脱胶后可得到纯丝素蛋 白 成分 , 丝素 蛋白是 一种优质 的生 物医 学材料 ,具有无刺良好的2 . 2 合成高分子材料 合成高分子材料因与人体器官组织的天然高分子有着极其相似的化学结构和物理性能 ,因而可以 植入人体 ,部分或全部取代有关器官。因此 ,在现代 医学领域得到了最为广泛的应用 ,成为现代医学的重要支柱材料。与天然生物材料相比 ,合成高分 子材料具有优异的生物相容性 ,不会因与体液接触 而产生排斥和致癌作用 ,在人体环境中的老化不明 显。通过选用不同成分聚合物和添加剂 ,改变表面 活性状态等方法可进一步改善其抗血栓性和耐久性 ,从而获得高度可靠和适当有机物功能响应的生 物合成高 分子材 料。目 前 ,使用于人体植入产品的高分子合成材料 包 括聚环氧聚聚乙聚乳 目前为止 ,开发的具有生态可降解性的高分子材料主要以国外产品为主 ,国内这方面还远远不能 满足需要 ,尚处于国外产品的复制和仿制阶段。聚 乳酸类高分子是目前已开发应用于生命科学新增长 点 ———组织工程的生物可降解材料。一般以组织工程为应用目的的生物材料应符合 1) 表面能使细胞黏附并生长 ; 2 ) 植入 体内后 ,高分子材料及其降解产物不会引起炎症及 毒副作用 ;3) 材料能加工成三维结构 ;4) 为了保证细 胞2高分子反应能大面积进行 ,并提供细胞外再生的 足够空间 ,且在体外人工培养时有最小的扩散 ,材料 孔隙率不得降低于 90 % ; 5) 在完成组织再生后 ,高 分子能立即被机体吸收 ; 6) 高分子支架的降解速率 应控制在与不同组织细胞再生速度相匹配。对聚乳 酸高分子材料进行的研究 ,在力求符合上述要求时已形成了多种品种 ,如未经编织的单纤维合成材料 , 经编织的网状合成材料 ,具有包囊的多孔海绵状材 料等。尽管如此 ,目前应3 生物医用高分子材料特性 人们常 用的医用高分子 材料

生物医用高分子材料——聚乳酸

生物医用高分子材料——聚乳酸 姓

生物医用高分子材料——聚乳酸 摘要:聚乳酸由于其突出特点如可降解、生物相容性好且对人无毒等而备受重视,并且在生物医学领域的应用中得到了良好的效果。本文对聚乳酸的发展史、现状、性能、优缺点及其等做了简介,并对其未来应用前景做了展望。 关键词:聚乳酸;性能;展望 聚乳酸在医学领域中的发展史 聚乳酸(PLA)是一种具有优良生物相容性和可生物降解的合成高分子材料,它是美国食品和药物管理局(FDA)认可的一类生物医用材料。20世纪50年代,由丙交酯(LA)开环聚合制得了高分子量的聚乳酸,但由于这类脂肪族聚酯对热和水比较敏感,长时间未引起人们的足够重视。直到20世纪60年代,科学工作者重新研究PLA对水敏感这一特性时,发现聚乳酸适合作为可降解手术缝合线材料。1966年,Kulkarni等提出:低分子量的PLA能够在体内降解,最终的代谢产物是CO2和H2O,中间产物乳酸也是体内正常代谢的产物,不会在体内积累,因此PLA在生物体内降解后不会对生物体产生不良影响。随后报道了高分子量的PLA 也能在人体内降解,由此引发了以这类材料作为生物医用材料的开端。 聚乳酸性能、优缺点 PLA的制备以乳酸为原料进行,较为成熟的方法有两种:一种是乳酸直接缩聚法,另一种是先由乳酸合成丙交酯,再在催化剂的作用下开环聚合。 PLA无毒、无刺激性、具有良好的生物相容性,可生物分解吸收,强度高、不污染环境,可塑性好,易于加工成型。如:在体内,PLA分解成乳酸,再经 酶的代谢生成CO 2和H 2 O,由人体排出,没有发现严重的急性组织反应和毒性反 应。但PLA仍会导致一些温和的无菌性炎症反应。如颧骨固定术后3年产生了无痛的局部肿块,皮下组织出现了缓慢降解的结晶PLLA颗粒引发的噬菌作用,产生组织反应的真正原因没有定论。Sugonuma认为PLA降解所产生的碎片是导致迟发性无菌炎症反应的根本原因。植入部位也决定组织反应类型和强度,皮下植入时炎症发生率较高,在吞噬细胞较少的髓内固定组织反应发生率较低。

医用高分子材料

刘熙高分子092班 5701109065 生活中的高分子材料 ——医用高分子材料 摘要:我国医用高分子材料的研究起步较早、发展较快。医用高分子材料指用于生理系统疾病的诊断、治疗、修复或替换生物体组织或器官,增进或恢复其功能的高分子材料。医用高分子材料属于一种特殊的功能高分子材料,通常用于对生物体进行诊断、治疗、以及替换或修复、合成或再生损伤组织和器官,具有延长病人生命、提高病人生存质量等作用。 关键词:生物医用高分子材料 科技关爱健康,医用高分子材料的应运而生是医疗技术发展史上的一次飞跃。高分子材料充分体现了人类智慧,是人类科学技术的重要科技进步成果之一。高分子材料:macromolecular material,以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。所有的生命体都可以看作是高分子的集合。 而医用高分子材料是一类可对有机体组织进行修复、替代与再生, 具有特殊功能作用的合成高分子材料, 可以利用聚合的方法进行制备, 是生物医用材料的重要组成之一。由于医用高分子材料可以通过组成和结构的控制而使材料具有不同的物理和化学性质, 以满足不同的需求, 耐生物老化, 作为长期植入材料具有良好的生物稳定性和物理、机械性能, 易加工成型, 原料易得, 便于消毒灭菌, 因此受到人们普遍关注, 已成为生物材料中用途最广、用量最大的品种, 近年来发展需求量增长十分迅速。目前全世界应用的90多个品种, 西方国家消耗的医用高分子材料每年以10%~20%的速度增长。以美国为例, 每年有数以百万计的人患有各种组织、器官的丧失或功能障碍, 需进800万次手术进行修复, 年耗资超过400亿美元, 器官衰竭和组织缺损所需治疗费占整个医疗费用的一半。随着人民生活水平的提高和对生命质量的追求, 我国对医用高分子材料的需求也会不断增加。

生物医用高分子材料的发展现状、前景和趋势

生物医用高分子材料的发展现状、前 景和趋势 据相关研究调查显示,我国生物医用高分子材料研制和生产发展迅速。随着我国开始慢慢进入老龄化社会和经济发展水平的逐步提高,植入性医疗器械的需求日益增长,对生物医用高分子材料的需求也将日益旺盛。 根据evaluate MedTech公司基于全球300家顶尖医疗器械生产商的公开数据而得出的报告《2015-2020全球医疗器械市场》预测,2020年全球医疗器械市场将达到4775亿美元,2016-2020年间的复合年均增长率为4.1%。世界医疗器械格局的前6大领域包括:诊断、心血管、影像大型设备、骨科、眼科、内窥镜,其中生物医用高分子材料在其中都得到了广泛的应用,主要体现在人工器官、医用塑料和医用高分子材料 3个领域。 1. 人工器官人工器官指的是能植入人体或能与生物组织或生物流体相接触的材料;或者说是具有天然器官组织或部件功能的材料,如人工心瓣膜、人工血管、人工肾、人工关节、人工骨、人工肌腱等,通

常被认为是植入性医疗器械。人工器官主要分为机械性人工器官、半机械性半生物性人工器官、生物性人工器官 3种。第1种是指用高分子材料仿造器官,通常不具有生物活性;第2种是指将电子技术和生物技术结合;第3种是指用干细胞等纯生物的方法,人为“制造”出器官。生物医用高分子材料主要应用在第1种人工器官中。 目前,植入性医疗器械中骨科占据约为38%的市场份额;随后是心血管领域的 36% ;伤口护理和整形外科分别为 8%左右。人工重建骨骼在骨科产品市场中占据了超过31%的市场份额,主要产品是人工膝盖,人工髋关节以及骨骼生物活性材料等,主要应用的生物医用高分子材料有聚甲基丙烯酸甲酯、高密度聚乙烯、聚砜、聚左旋乳酸、乙醇酸共聚物、液晶自增强聚乳酸、自增强聚乙醇酸等。心血管产品市场中支架占据了一半以上的市场份额,此外还有周边血管导管移植、血管通路装置和心跳节律器等。 目前各国都认识到了人工器官的重要价值,加大了研发力度,取得了一些进展。2015年,美国康奈尔大学的研究人员开发出了一种轻量级的柔性材料,并准备将其用于创建一个人工心脏。在我国,3D打印人工髋关节产品获得国家食品药品监督管理总局(CFDA)

生物降解高分子材料——聚乳酸

生物降解高分子材料——聚乳酸 摘要:生物降解材料聚乳酸的性质及其制备方法的研究进程,其中主要介绍了通过开环聚合反映制取聚乳酸的方法以及聚乳酸易降解的特性,此外还讲了我国在聚乳酸方面的研究,最后介绍了聚乳酸在医药等方面的重大应用以及聚乳酸的发展前景。 关键词:环境材料生物降解聚乳酸前景 正文: 人类经济和社会的发展常常以扩大开发自然资源和无偿利用环境作为发展模式,这一方改造了空前巨大的物质财富和前所未有的社会文明,另一方面也造成了全球性自然环境的破坏。资源与能源是制造材料和推动材料发展的两大支柱。同时,材料的生产和使用过程也会带来众多的环境问题。因而,传统材料的生态化和开发新型生态材料以缓解日益恶化的环境问题,即材料与环境如何协调发展的问题日益受到人们重视,出现了“环境材料(ecomaterial)”的概念和环境材料学这一新兴的交叉学科,要求材料在满足使用性能要求的同时具有良好的全寿命过程的环境协调性,赋予材料及材料产业以环境协调功能。环境材料是未来新材料的重要方面之一。开发既有良好的使用性能,又具有较高的资源利用率,且对生态一步发展,能够更有效地利用有限的资源和能源,尽可能地减少环境负荷,实现材料产业和人类社会的可持续发展。 随着人类驾驭自然的本领按几何级数增长,向自然环境摄取的物质和抛弃的废弃物就越多。人类对自然环境的影响和干预越大,自然

环境对人类的反作用就越大[1]。当自然环境达到无法承受的程度时,在漫漫岁月里建立起来的生态平衡,就会遭到严重的破坏。材料的性能在很大程度上决定于环境的影响,环境包括“社会环境”和自然环境。其中人所组成的社会因素的总体称为社会环境。自然因素的总体称为自然环境,目前认为是以大气、水、土壤、地形、地质、矿产等一次要素为基础,以植物、动物、微生物等作为二次要素的系统的总体。为了得到更好的环境,开始从不同的环境材料开始研究.。 一、聚乳酸的合成与制备方法 乳酸的直接缩合是作为早期制备PLA的简单方法,但一般只能得到低聚物(数均分子量小于5000,分子量分布约2.0),而且聚合温度高于180℃时,通常导致产物带色。到目前为止,PLA主要是通过LA 的开环聚合制得。依据引发剂的不同,LA的开环聚合可分为正离子聚合、负离子聚合和配位聚合。目前,聚乳酸以乳酸或其衍生物乳酸酯为原料(最常见的是采用左旋乳酸为原料),通过化学合成得到聚合物。高力学性能的聚乳酸是指旋光纯度高的聚L酸(PIJA),单体为£一乳酸。合成工艺大致可以分为间接合成法和直接合成法。直接合成法,也被称作一步聚合法,是利用乳酸直接脱水缩合反应合成聚乳酸。直接法优点操作简单,成本低。缺点乳酸纯度要求高,反应时间长,反应温度控制要求严格[2]。 LA正离子开环聚合是烷氧键断开,每次增长是在手性碳上,因此外消旋成了不可避免的,而且随聚合温度的升高而增加。另外的不足之处在于:能引发LA正离子聚合的引发剂不多,而且难以得到高

生物医用高分子

生物医用高分子https://www.doczj.com/doc/395203680.html,work Information Technology Company.2020YEAR

《生物医用高分子材料》复习题 一、名词解释: 1、人工器官: 即人造器官,是模仿人体或生物体器官的部分或全部功能,通过特定的方式和方法制造的器官。 2、血液净化 血液净化是把血液引出体外,通过一个净化装置清除血液中的有害成物质,或补充营养成分到血液中达到治疗某些疾病的目的。 3、血浆分离 血浆分离是对患有某些疾病病人的血液进行整体处理,将其血浆分出,然后从血浆中除去致病的大分子蛋白质,用以治疗某些难于对付的血液和免疫性疾病。 4、血液灌流 让溶解在血液中的物质,如某些代谢产物、外源性药物和毒物质吸附到具有丰富表面积的固态物质上,从而清除血中的毒物。 5、缓释制剂 指用药后能在较长时间内持续释放药物以达到长效作用的制剂,其中药物按一级速率释放。 6、控释制剂:是指药物能在预定时间范围办自动以预定速率释放,使血 药浓度长时间恒定维持在有效范围内的制剂。 7、人工肾 又称人工透析机,人工肾是一种透析治疗设备。是用人工方法模仿人体肾小球的过滤作用,在体外循环的情况下,去除人体血液内过剩的含氮化合物、新陈代谢产物或逾量药物,调节水和电解质平衡,以使血液净化的一种高技术医疗仪器。 8、药用高分子:

药用高分子指的是药品生产和制造加工过程中使用的高分子材料,包括作为药物制剂成分之一的药用辅料与高分子药物,以及与药物接触的包装贮运高分子材料。 9、人工血液 也称人工替代血液,是利用和血红蛋白相同的加工处理方法,维持血压不变,在扮演搬运各种物质角色的白蛋白中放入血红素分子,制成白蛋白血红素,这就是人工血液,严格来说只能取代人体血液携带氧气的功能,并无法取代白血球的免疫功能与血小板的凝血功能。 10、磁性生物高分子微球: 指通过适当的方法使有机高分子与无机磁性物质结合起来形成具有一定磁性及特殊结构的微球。 11、软组织 软组织是指人体的皮肤、皮下组织、肌肉、肌腱、韧带、关节囊、滑膜囊、神经、血管等 二、简答题: 1. 高分子药物按分子结构和制剂的形式,它可分为哪三大类: 答:(1)高分子化的低分子药物(即高分子载体药物) (2)本身具有药理活性的高分子药物 (3)物理包埋的低分子药物 2. 理想透析膜材料的特点主要有哪些?

生物医用高分子材料

摘要 本文简述了生物医用高分子材料发展的历史;着重指出生物医用高分子材料所需要的性能要求,并且根据其特征进行分类;详细描述了人工器官、治疗器具的主要材料和用途,探讨对于生物医用高分子重要性的认识;最后对于其发展前景和产业化趋势做出简要点评。 关键词:生物医用高分子材料,性能分类,人工器官、治疗器具,应用前景, 产业化趋势 华东理工大学 温乐斐

10103638 Abstract Thehistoriesof the development about the biomedical polymeric materials are simply summarized in this paper. The emphasisof thispaper is placed on the performing requirements about the biomedical polymeric materials and being classified according to their characteristics.Detailed description of the artificial organs and the treatment instruments on their main materials and final uses. Then exploring the importance of the biomedical polymeric materials. At last, the strategic position and some future investigating trends are also presented. Keywords:TheBiomedical Polymeric Materials, Characteristics, Artificial Organs & Treatment Instruments, The Prospects & Future Investigating Trends

医用高分子材料及其应用

医用高分子材料及其应用 摘要:医用高分子材料是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的合成高分子材料,可以利用聚合的方法进行制备,是生物医用材料的重要组成之一。本文主要介绍了医用高分子材料的类别以及它们在不同要求下如何被选择。 关键词:医用,高分子材料,应用 Medical polymer materials and its application Xia Yun(College high polymer materials 0902) Abstract:Medical polymer materials is a kind of organisms can repair alternative and renewable organization, has special functions synthesis of polymer materials, can use the method of polymerization preparation, is an important component of biomedical materials one of this article mainly introduced the medical polymer materials and their requirements in different categories how to be a choice. Key Words: medical, polymer materials, application 前言 生物医用材料是研究开发人工器官和医疗器械的基础,已成为材料学科中的一个 重要分支和各国材料科学家竞相研究和开发的热点, 目前的研究重点是在保证 生物安全性的前提下寻找多功能的生物医用材料[1] 。由于医用高分子材料可以 通过组成和结构的控制而使材料具有不同的物理和化学性质,以满足不同的需求,

相关主题
文本预览
相关文档 最新文档