当前位置:文档之家› 固体火箭发动机壳体用材料综述

固体火箭发动机壳体用材料综述

固体火箭发动机壳体用材料综述
固体火箭发动机壳体用材料综述

固体火箭发动机壳体用材料综述

摘要:概述了国内外固体火箭发动机壳体用先进复合材料研究应用现状,同时对固体火箭发动机壳体的纤维缠绕成型工艺进行了阐述。

关键词:固体火箭发动机复合材料树脂基体纤维缠绕成型

1 固体火箭发动机简介

固体火箭发动机是当今各种导弹武器的主要动力装置,在航空航天领域也有相当广泛的应用。它的特点是结构简单,因而具有机动、可靠、易于维护等一系列优点,非常适合现代化战争和航天事业的需要。但固体火箭发动机部件在工作中要承受高温、高压和化学气氛下的各种复杂载荷作用,因此其材料通常具有极优异的性能,往往代表着当代材料科学的最先进水平。标志当代高性能固体发动机的主要特征是:“高能、轻质、可控”,这三者都是以先进材料为基础和支柱的,选用具有优良比强度和卓越耐热性能的先进复合材料已成为提高发动机性能的一项决定性因素。

2 固体火箭发动机壳体用材料

固体火箭发动机壳体既是推进剂贮箱又是燃烧室,同时还是火箭或导弹的弹体,因此,在进行发动机壳体材料设计时,应考虑如下几个基本原则[1]:

a. 固体火箭发动机壳体就其工作方式来讲,是一个内压容器,所以壳体承受内压的能力是衡量其技术水平的首要指标;

b. 发动机壳体是导弹整体结构的一部分,所以又要求壳体具有适当结构刚度;

c. 作为航天产品,不仅要求结构强度高,而且要求材料密度小;

d. 发动机点火工作时,壳体将受到来自内部燃气的加热,而壳体结构材料,尤其是壳体结构复合材料的强度对温度的敏感性较强,所以,在设计壳体结构材料时,不能仅限于其常温力学性能,而应充分考虑其在发动机工作过程中,可能遇到的温度范围内的全面性能。评价和鉴定壳体材料的性能水平,固然要以最终产品是否满足使用要求为原则,但从设计选材的角度来说,也应有衡量的指标和

尺度。60年代以前一直沿用航空材料常用的比强度和比模量作为主要衡量指标。70年代以后,考虑到固体发动机是一种高压容器,选用反映材料容器效率的容器特性系数PV/W 作为衡量指标。目前为止,发动机壳体材料大体经历了四代发展过程,第一代为金属材料;第二代为玻璃纤维复合材料;第三代为有机芳纶复合材料;第四代为高强中模碳纤维复合材料。

2.1金属材料

金属材料是最早应用的固体火箭发动机壳体材料,其中主要是低合金钢。其优点是成本低、工艺成熟、便于大批量生产,特别是后来在断裂韧性方面有了重大突破,因此即便新型复合材料发展迅速,但在质量比要求不十分苛刻的发动机上仍大量使用。从容器特性系数PV/W来看,金属材料壳体的特性系数都很低,超高强度钢通常为5km~8km,钛合金也只有7km~11km,远不能满足先进固体发动机的要求,因此壳体复合材料化将是大势所趋。

2.2纤维缠绕复合材料

利用纤维缠绕工艺制造固体发动机壳体是近代复合材料发展史上的一个重要里程碑。这种缠绕制品除了具有复合材料共有的优点外,由于缠绕结构的方向强度比可根据结构要求而定,因此可设计成能充分发挥材料效率的结构,其各部位载荷要求的强度都与各部位材料提供的实际强度相适应,这是金属材料所做不到的。因此这种结构可获得同种材料的最高比强度,同时它还具有工艺简单、制造周期短、成本低等优点。

2.2.1玻璃纤维复合材料

固体火箭发动机壳体使用的第一代复合材料是玻璃纤维复合材料。第一个成功的范例是20世纪60年代初期的“北极星A2”导弹发动机壳体,它比“北极星A1”的合金钢壳体重量减轻了60%以上,成本降低了66%。

近年来我国玻璃钢壳体的研制也取得了重大进展。尤其采用国内2#玻璃纤维/环氧树脂复合材料的壳体已成功地应用于多种发动机。资料表明,国内已成功应用于型号发动机的玻璃钢壳体与目前法国M4导弹的402V发动机壳体水平相当,但比最先进的“海神”导弹发动机壳体的复合强度约低10%。

然而,玻璃钢虽然具有比强度较高的优点,但它的弹性模量偏低,仅有0.6×105MPa(单向环)。这是由于复合材料中提供主要模量分数的高强2#玻璃纤维的弹性模量太低(0.85×105MPa,只是钢的2/5)的缘故,这一缺点引起发动机工作时变形量大,其应变一般为1.5%,甚至更大,而传统的金属壳体的应变一般小于

0.8%。这样大的变形量会给导弹总体带来很多不利因素;为了保证壳体的结构刚度,不得不增加厚度,从而造成强度富裕,消极重量增加等。

2.2.2芳纶复合材料

为了满足高性能火箭发动机的高质量比要求(战略导弹发动机质量比要求在0.9 以上,某些宇航发动机的质量比已达到0.94),必须选用同时具有高比强度和高比模量的先进复合材料作为壳体的第二代材料,逐步取代玻璃纤维复合材料。

60 年代,美国杜邦公司首先对芳纶纤维进行了探索性研究,1965 年获得突破性进展。其研制的“芳香族聚芳酰胺”高性能纤维(商品名为Kevlar)于1972 年开始了工业化生产。继美国杜邦公司开发芳纶纤维之后,俄罗斯、荷兰、日本及中国等也相继开发了具有各自特色的一系列芳纶纤维。表1列出了几种典型的航天用芳纶纤维力学性能。

芳纶纤维及其树脂基复合材料的问世,立即引起航空和导弹专家们的高度兴趣。70年代初,美国将Kevlar49纤维增强环氧基复合材料成功地应用于固体导弹“三叉戟Ⅰ(C3)”的第一、二、三级发动机;至70年代末,美国又将Kevlar49纤维增强环氧基复合材料应用于洲际导弹MX,其发动机壳体采用Kevlar49纤维/HBRF缠绕结构,壳体由18个螺旋缠绕循环和51个环向缠绕循环构成。还有最新的“三叉戟Ⅱ(C5)”导弹的第三级发动机也是由Kevlar49复合材料壳体制成,特别是美国新的战术导弹“潘新Ⅱ”两级发动机都是Kevlar49复合材料壳体。还有前苏联的SS 20、SS 24和SS 25导弹各级发动机均采用APMOC纤维/环氧复合材料。国内结合高质量比的固体发动机预研工作,也开展了芳纶复合材料的应用研究。从1980年开始,利用进口的Kevlar49纤维进行了浸胶复丝的力学性能测试研究,与芳酰胺纤维相容性好的高性能树脂基体配方和预浸工艺研究,单向环、Φ150 小容器和Φ480 模拟容器的缠绕和性能测试;并在这些基础上结合设计部门的结构试

验,开展了直径1m和2m的模样发动机壳体材料工艺试验。研究资料表明:对于相同尺寸的发动机壳体,Kevlar49与高强2#玻璃纤维相比,Kevlar49复合材料容器效率提高近1/3,重量减轻1/3以上,同时,Kevlar49与高强2#玻璃纤维相比,Kevlar49复合材料容器环向应变减少35%,纵向应变减少26.4%,轴向伸长减少30.7%径向伸长减少33.8%,其刚度大为提高。

2.2.3碳纤维复合材料

80 年代以来,碳纤维在力学性能方面取得重大突破,它的比强度、比模量跃居各先进纤维之首。固体火箭发动机壳体要求复合材料具有高的比强度、比模量和断裂应变。拉伸模量为265~320GPa,拉伸强度在5GPa左右,断裂延伸率约为1.7%的高强中模碳纤维是理想的壳体增强材料,因而近年来各国都在大力开发高强中模碳纤维。表2列出了几种典型的航天用高强中模碳纤维力学性能。

碳纤维复合材料壳体PV/W 值是Kevlar49/环氧的1.3~1.4倍,可使壳体重量再度减轻30%,使发动机质量比高达0.93以上。如美国最新的“三叉戟Ⅱ(C5)”导弹的第一、二级壳体及“侏儒”导弹的第一、二、三级壳体均采用IM 7碳纤维/环氧复合材料。另外,碳纤维复合材料还具有有机纤维/环氧所不及的其它优良性能:比模量高,热胀系数小、尺寸稳定性好,层间剪切强度及纤维强度转化率都较高,不易产生静电聚集,使用温度高、不会产生热失强,并有吸收雷达波的隐身功能。另外,目前最有希望解决未来发动机飞行生存能力的基本材料,预计用高性能碳纤维,加上多功能基体通过特种工艺技术途径,有可能使“三抗”结构材料成为现实。

2.3树脂基体

2.3.1树脂基体的选择原则

固体火箭发动机壳体就其主要工作方式而言,是一个内压容器。它作为航天产品,不仅要求具有足够的强度、刚度和模量,而且要求密度低,即要求具有高的容器特性(PV/W)值[2]。影响PV/W值的因素很多,基体树脂的性能是其中之一。此外,发动机工作后,为使壳体在内部高温燃气的加热下仍保持足够的强度

和刚度,树脂基体又应具有较高的热变形温度。固体火箭发动机壳体用复合材料树脂基体的选择遵循如下原则[2]:

第一个原则是热力学应变能原则。树脂基体的热变形温度不低于120℃。在树脂力学性能方面,主要考察拉伸性能,而拉伸性能的优劣应以拉伸强度和断裂伸长率的乘积—相对应变能来衡量。相对应变能高的树脂基体其相应容器爆破压强将会高些。对于大型发动机壳体制造用的环氧树脂应具有下列物理力学性能:拉伸强度≥80MPa;拉伸模量>2800MPa;断裂伸长率为4%~8%;热变形温度>120℃。

第二个原则是树脂体系的工艺性。对于湿法缠绕来说,树脂系统在缠绕条件下的粘度及粘度的稳定性是最重要的工艺性要求。为了得到较佳的容器性能,树脂系统在缠绕条件下的粘度一般应在0.2~0.8Pa·s范围,适用期在5h以上。对于干法缠绕来说,树脂系统的使用期表现在预浸胶纱带的使用期上。所选树脂系统应使预浸胶纱带的室温使用期不低于30h,一般应在两天以上,否则难于保证复合材料质量的稳定和可靠。

第三个原则是原材料的来源、毒性和经济性,还应考虑原材料性能的已知性。

2.3.2 树脂基体的现状与发展

环氧树脂是普遍应用的先进复合材料树脂基体,它是最早应用的大型固体火箭发动机壳体缠绕用树脂。按照增强材料分,固体火箭发动机壳体发展经历了三个阶段[3],从玻璃纤维到碳纤维,目前各国在新研制的固体火箭发动机上几乎都采用了碳纤维壳体,但基体树脂仍普遍采用环氧树脂,这是与环氧树脂较好的耐热性、良好的粘接性以及优异的工艺性能分不开的。近年来,为了满足新型航空航天器的需要,不断提高热固性树脂基复合材料的使用温度及力学性能,各国都相继开发了许多新型耐高温树脂,主要有双马来酰亚胺(BMI)和聚酰亚胺(PI)等。但由于其工艺性和价格等因素的制约,目前,火箭发动机壳体用树脂基体仍以环氧树脂为主。许多科技工作者都致力于开发高性能环氧树脂,以与不断提高的纤维性能相匹配,更好地适应航空航天技术的发展。

目前,对于环氧树脂的改性,存在着两种不同的看法:一种认为断裂延伸率是影响容器特性(PV/W)的主要因素,应致力于开发高延伸率的高韧性环氧树脂;一种认为耐热性是主要因素,应致力于开发高耐热性的环氧树脂。鉴于两种不同的观点,将就两个方面(耐热性与高延伸高韧)分别展开论述,这也代表了当今环氧改性的两个主要的方向。

(1)环氧树脂的增韧改性

随着纤维增强材料性能的提高,如碳纤维,其延伸率可达2.3%左右,为了充分发挥增强纤维的性能,提高容器PV/W值,必须开发高延伸率的环氧树脂。现在常用的高延伸率树脂普遍存在着低强度低模量的问题,所以在开发高延伸率环氧树脂时应从环氧树脂的增韧入手,在提高延伸率的同时,保证树脂基体的高强度和高模量。环氧树脂的增韧方法很多,归纳起来主要有如下四种。

a.橡胶类弹性体增韧环氧树脂

这一类最常用的是液体橡胶.橡胶改性剂(弹性体)通常带有活性端基(如羧基、羟基、氨基等)与环氧基反应形成嵌段[4,5]。在树脂固化过程中,这些橡胶类弹性体嵌段一般能从基体中析出,子物理上形成两相结构,其断裂韧性GIC比未增韧的树脂有很大幅度的提高.研究表明,正确控制反应性橡胶与环氧树脂体系中的相分离过程是增韧能否成功的关键[6]。

b.热塑性树脂增韧环氧树脂

橡胶弹性体的加入,是以牺牲耐热性与刚度为代价来提高韧性的,这对于火箭发动机壳体来说是一个致命的缺陷。所以,80年代又兴起用耐热性强韧性热塑性树脂来增韧环氧树脂[7]。这些热塑性树脂本身有良好的韧性,而且模量和耐热性较高,作为增韧剂加入到环氧树脂中同样能形成颗粒分散相,它们的加入使环氧树脂的韧性得到提高,而且不影响环氧固化物的模量和耐热性。但热塑性树脂的加入,往往导致体系的粘度增大,且增韧的效果在一定范围内随添加量增大而增大,这给这类树脂的工程应用带来了诸多难题,尤其是诸如火箭发动机壳体的缠绕成型工艺,但热塑性树脂还是一种很有前途的环氧增韧剂。

c.热致性液晶聚合物增韧环氧树脂[8]

液晶聚合物(LCP)中都含有大量的刚性介晶单元和一定量的柔性间隔段,其结构特点决定了它的优异性能。它在加工过程中受到剪切力作用具有形成纤维状结构的特性,因而能产生高度自增强作用。TLCP增韧环氧树脂的机理主要为裂纹钉锚作用机制。少量TLCP原纤存在可阻止裂纹发展,提高了基体的韧性,而材料的耐热性和刚度则基本不损失。随着研究的进展,热致性液晶聚合物增韧环氧树脂作为一种新的技术,必将在工程应用中发挥重要的作用。

d.改变交联网络的化学结构增韧环氧树脂

以上三种方法均为适当的条件下,在固化物中出现韧性的第二相,诱发基体的耗能过程,破坏的主体仍是树脂基体,因此增韧的根本潜力在于提高基体的屈服应变能力。有关这方面的研究主要集中在:在保证基体达到一定的热变形温度

的前提下,尽可能多地在其分子结构中引入柔性段。具体地说,可以通过加入第二组分或改变固化剂两种方法来实现。

(2)环氧树脂的耐高温改性

另一种方案认为,对发动机的壳体性能影响起主要作用的是基体树脂的耐热性。因此必须对环氧树脂进行耐高温化改性,开发热变形温度在180℃以上的耐高温基体树脂。环氧树脂以其优异的工艺性能和良好的断裂韧性(断裂能为100~500J/ m2),在材料科学领域中受到广泛的重视。但是由于普通环氧树脂固化物在干态下最高工作温度为177℃,在湿态下最高工作温度为130℃,已不能满足航空航天工业对复合材料用基体树脂温度指标的要求。虽然聚酰亚胺类树脂的工作温度可高达250~300℃,但成型困难、工艺复杂。对环氧树脂进行改性,研究开发出具有良好工艺性能,又具有良好的热稳定性的环氧树脂基体具有十分重要的实际意义。环氧树脂要想耐高温化,一方面通过改变合成环氧树脂的原材料,合成出具有耐热结构或耐热骨架的新型环氧树脂,如脂环族、多官能团的环氧树脂等,但是它们一般价格昂贵;另一方面就是采用耐高温的改性剂。目前研究主要集中在利用加工性能良好的马来酰亚胺类单体对环氧树脂体系进行改性[9]。它充分利用了环氧树脂良好的粘接性与马来酰亚胺的耐热性。双马来酰亚胺单体由于具有结构高度的对称性,在溶于环氧树脂体系后比较容易析出结晶,形成不均匀胶液,为此采用一种烯丙基双酚A对双马单体进行改性,得到一种双马来酰亚胺预聚体改性剂。这种预聚体改性剂在一定温度下溶于环氧树脂或其固化剂中,可以形成稳定的均相胶液,同时提高了环氧树脂体系的耐热性能,因此是一种性能良好的耐高温改性剂。

3固体火箭发动机壳体用复合材料成型工艺

固体火箭发动机壳体复合材料所采用的成型工艺为纤维缠绕成型。1947 年美国Kellog公司成功地制成世界上第一台缠绕机[10]。随后缠绕了第一台火箭发动机壳体,直径5 英寸,长5 英尺。20 世纪50 年代美国宇航局和空军材料研究室用纤维缠绕工艺研制成功“北极星A3”导弹发动机壳体,在质量减轻1/2、射程提高一倍的情况下,成本仅为钛合金的1/10,从而奠定了纤维缠绕在制造尖端军用产品(火箭和导弹)中的重要地位。正是在火箭发动机壳体等军事需要的推动下,纤维缠绕成型工艺得到了飞速的发展。

所谓纤维缠绕成型,是将浸过树脂胶液的连续纤维或布带、预浸纱按照一定规律缠绕到芯模上,然后经固化、脱模,获得制品。

3.1纤维缠绕成型工艺分类[11]

纤维缠绕成型工艺按其工艺特点,通常分为三种。

3.1.1干法缠绕成型工艺

将连续的纤维粗纱浸渍树脂后,在一定的温度下烘干一定时间,除去溶剂,并使树脂胶液由A阶段转到B阶段,然后络纱制成纱锭,缠绕时将预浸纱带按给定的缠绕规律直接排布于芯模上的成型方法,称为干法缠绕成型工艺。干法缠绕成型工艺的优点是产品质量比较稳定,工艺过程易控制,劳动条件良好。缺点是缠绕设备比较复杂,投资较大。

3.1.2湿法缠绕成形工艺

将连续玻璃纤维粗纱或玻璃布带浸渍树脂胶液后,直接缠绕到芯模或内衬上,然后再经固化的成型方法称为湿法缠绕成型工艺。

湿法缠绕工艺设备比较简单,对原材料要求不高,可选用不同材料,因纱带浸胶后马上缠绕,对纱带的质量不易控制和检验,同时胶液中尚存大量的溶剂,固化时易产生气泡,缠绕过程中纤维的张力也不易控制。缠绕过程中的每个环节,如:浸胶辊、张力控制器、导丝头等,经常需要人进行维护,不断刷洗,使之保持良好的工作状态,万一某一环节发生纤维缠结,势必影响整个缠绕工艺及产品质量,有时会造成浪费。

3.1.3半干法缠绕成型工艺

这种工艺与湿法相比增加了烘干工序,与干法相比,缩短了烘干时间,降低了胶纱烘干程度,可在室温下进行缠绕。这种成型工艺,既除去了溶剂,提高了缠绕速度,又减少了设备,提高了制品质量。

3.2 纤维缠绕制品的特点

纤维缠绕成型玻璃钢除具有一般玻璃钢制品的优点外,它还具有其它成型工艺所没有的特点:

(1)比强度高

缠绕成型玻璃钢的比强度三倍于钢、四倍于钛。这是由于该产品所采用的增强材料是连续玻璃纤维,而后者的拉伸强度很高,甚至高于高合金钢。并且玻璃纤维的直径很细,由此使得连续玻璃纤维表面上的微裂纹的尺寸和数量较小,从而减少了应力集中,使得玻璃纤维具有较高的强度。此外,连续纤维特别是无捻

粗纱由于没有经过纺织工序,其强度损失大大减小。

(2)避免了布纹交织点与短切纤维末端的应力集中

玻璃钢玻璃纤维方向的拉伸强度的大小主要由玻璃纤维含量和纤维拉伸强度来决定的。因为在玻璃钢产品中,增强纤维是主要的承载物,而树脂是支撑和保护纤维,并在纤维间起着分布和传递载荷的作用。据实验测得,在玻璃纤维两端产生的拉应力为零,向纤维内部则逐渐增加,应力曲线平滑连续。而就纤维和树脂之间的剪切应力而言,纤维的两端最大,中间区域为零。显然,短切纤维端部的剪切应力集中是造成纤维和树脂界面破坏的重要原因。所以采用短切纤维做增强材料的玻璃钢制品的强度,均低于缠绕成型玻璃钢制品。

(3)可使产品实现等强度结构

纤维缠绕成型工艺可使产品结构在不同方向的强度比最佳。也就是说,在纤维缠绕结构的任何方向上,可以使设计的制品的材料强度,与该制品材料实际承受的强度基本一致,使产品实现等强度结构。例如:内压缠绕成型的薄壁容器的环向应力是轴向应力的两倍,而无论增强材料采用玻璃纤维布,还是玻璃纤维毡,制品的轴向强度均有剩余,缠绕成型的制品却可实现等强度。

参考文献

[1] 陈刚,赵珂等,固体火箭发动机壳体复合材料发展进展,航天制造技术,2004,6(3):18-22

[2] 徐璋,固体火箭发动机复合材料壳体树脂基体的选择原则,宇航材料工艺,1992,(4):38-41

[3] 孔庆宝,纤维缠绕技术进入新的高速发展阶段,纤维复合材料,1998,15(3):35-40

[4] 陶德辉,双酚A在环氧树脂和端羧丁腈增韧环氧树脂中作用的研究,高分子通讯,1983(3):196-199

[5] 王惠民等,端羧基丁腈橡胶和双酚A增韧混合环氧树脂体系的研究,复合材料学报,1989 6 (1):32-39

[6] 陈平等,热固性树脂的增韧方法及其增韧机理,复合材料学报,1999 16(3):19-22

[7] 王晓洁等,热塑性树脂改性环氧基体配方研究,宇航材料工艺,1999(2):21-23

[8] 陈平,韩冰等,固体火箭发动机壳体用环氧树脂基体的研究进展,纤维复合材

料,2000,1(3):54-57

[9] 白永平,张志谦等,宇航材料工艺,1996,(4):12-15

[10] 谢霞,邱冠雄等,纤维缠绕技术的发展及研究现状,天津工业大学学报,2004,23(6):19-23

[11] 韩冰,碳纤维复合材料火箭发动机壳体用韧性环氧树脂基体,哈尔滨工业大学研究生硕士学位论文,2001

变速器使用说明及零件明细

MSG5E变速器使用说明及零件明细 结构特点 ?结构紧凑,档位配置合理,重量轻,噪音低,操作灵活可靠。 ?五个前进档均采用惯性同步器,换档轻便,所有档位均设有防跳 档措施,工作工作可靠。 ?其结构采用前、后壳体加中间板型式,装配方便。 ?壳体采用压铸铝结构,减轻了变速器总成重量,且散热性好。主要技术参数 ?中心距:69.5mm ?允许输入最大扭矩:175N.m ?允许输入最高转速:6000rpm ?总质量:38Kg ?润滑油量:1.55L ?润滑油牌号:10W-30 ?各档速比 变速箱使用注意事项: 1、车辆行驶过程中,要经常检查离合器踏板行程,查看离合器是否 彻底分离和完全接合。否则,将影响变速箱换档性能和同步器寿

命。 2、车辆在行驶中应尽可能使用较高档行驶,以保证发动机处于经济 转速区,提高整车的动力性和经济性。 3、车辆起动中,不应频繁使用急剧加速或紧急制动。 4、车辆起动时,变速箱空档,离合器完全接合,应怠速运行3-5分 钟,通过齿轮油的飞溅,使各档齿轮、同步器及各类型轴承得到充分地润滑,否则将影响变速箱性能及使用寿命。 5、变速箱不应空档滑行,特别是下坡行驶时应换入高速档,此时为 后轮推动车辆快速运转,变速箱齿轮相对转速很高,此刻变速箱若换入空档,中间轴转速相对较低,所以齿轮油飞油量减少,容易烧损同步器及各类型轴承。 6、换档时,离合器踏板应踩到底,平稳而准确地移动变速杆到所需 档位,此时需逐渐克服一定的阻力才能挂入。 7、换倒档时,必须停车挂档,否则将损坏倒档齿轮、齿套及相关零件。 变速箱的保养 1、车辆行驶4000Km-6000Km后,变速箱应首次清洗更换新润滑油, 并检查变速箱总成各紧固件是否松动,各结合面及油封等处是否漏油。 2、车辆行驶25000Km-30000Km后,应拆检变速箱并更换新润滑油。 以后应定戎检查油面高度,检查时应在水平位置车辆行驶后,油温稳定时进行,拧下注油塞,如果油面低于注油孔下边缘时,应加注到油从注油孔溢出为止。以后每行驶二万公里左右,更换一次润滑油。 3、通气塞保养:车辆行驶时变速箱内油温升高,变速箱内外气压差 是通过通气塞加以消除的,以保持变速箱内外气压平衡,避免因箱内高压使密封件损坏,导致变速箱漏油。因此保持通气塞清洁和畅通是十分重要的。应经常检查通气塞上是否有赃物淤塞,如有应及时清理,保持通气塞清洁畅通。

固体火箭发动机设计复习题答案

1. 画简图说明固体火箭发动机的典型结构 参考书中的发动机图吧 2. 固体火箭发动机的质量比是什么?什么是质量比冲? 质量比:推进剂质量与发动机初始质量的比。 质量比冲:单位发动机质量所能产生的冲量。 3. 固体火箭发动机总体设计的任务是什么? 依据导弹总体提出的技术要求,选择并确定发动机总体设计方案,计算发动机性能,确定发动机主要设计参数、结构形式和主要结构材料,固体推进剂类别和药柱形式等。在此基础上提出发动机各部件的具体设计要求。 4.请写出齐奥尔科夫斯基公式 式vm 中为导弹理想飞行速度,Is 为发动机比冲,mp 为药柱质量,mm 为发动机结构质量,ml 为导弹载荷量(除发动机以外的一切质量) 5.举出两种实现单室双推力的方案 (1)不改变喷管喉径,采用不同燃速的两种推进剂药柱,这两种药柱可前后放置,也可同心并列放置。前者推力比受燃速比的限制较小,后者较大。 (2)不改变喷管喉径,采用一种推进剂的两种药形,通过燃面变化实现双推力。该方法简单易行,但推力比调节范围较小。 (3)采用不同燃速的推进剂和不同药形,即同时用调节燃速和燃面的方法实现双推力。该方法有较大的灵活性,推力比调节范围宽,实际应用较为广泛。 (4)采用可调喷管改变推力大小,可得到较宽的推力比调节范围,但结构复杂。 6.什么是最佳长径比? 最佳长径比——对应最佳直径的长径比 第二章 7.什么是肉厚分数? 8.什么是装填密度、装填分数、体积装填分数? ln 1p m s m L m v I m m ??=+ ?+??

9.星形装药燃面变化规律与几何参数的关系? 参考2-2节,P49 10.单根管状装药的设计过程?如何计算? 参考2-4节,P64 11.什么是线性粘弹性? 指当应力值低于某一极限值时,粘弹性态是近似线性的,即在给定的时间内,由阶跃应力所导致的应变与应力值成正比。 12.什么是时温等效原理? 各种温度条件下所获得的松弛模量(或其他力学性能数据),可以通过时间标度的适当移动而叠加;这也就是说,材料性能随温度的变化关系可以用改变时间标度相应地(等效)表示出来。反过来,材料性能依赖于时间的变化,也可以靠改变温度条件相应地表示出来。这种关系就叫做时-温等效原理 第三章 13.固体火箭发动机燃烧室的主要组成部分和功用。 对于贴壁浇铸推进剂药柱的燃烧室,通常由壳体、内绝热层和衬层组成;对于自由装填药柱的燃烧室,一般由壳体、内绝热层和挡药板组成。 壳体主要承受内压作用。由于壳体还是弹体外壳的一部分,所以还要承受外载荷的作用。内绝热层用来对壳体内壁进行热防护。 衬层的作用是防止界面间的分子迁移,使浇铸的药柱与内绝热层粘结更牢,并缓和药柱与内绝热层之间的应力传递。 挡药板用于防止自由装填的药柱的运动。 14.发动机燃烧室壳体受到的载荷有哪些?

汽车设计-汽车发动机盖性能校核规范模板

汽车设计- 发动机盖(罩)性能校核规范模板

发动机盖(罩)性能校核规范 1范围 本规范定义了发动机盖性能设计校核工作的内容及要求。 本规范适用于公司轿车、SUV等新车型开发的发动机盖性能设计校核工作。 2规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本,凡是不注日期的引用文件,其最新版本适用于本规范。 2003/102/EC 欧洲行人碰撞保护技术指令 3对于产品设计的校核要求 3.1 结构性能 3.1.1 模态频率 图1 发动机盖一阶模态图2 发动机盖二阶模态 边界条件 ——自由,无约束。 试验样件要求 ——具有代表性的整车(车身状态稳定,尺寸符合要求); ——试验发动机盖:材料合格,尺寸合格,焊接,涂装,总装工艺符合要求,装配完整的发动机盖。目标 一阶自由模态≥20Hz。 3.1.2 扭转刚度

图3 扭转刚度约束条件图4 扭转刚度分析结果 试验样件要求 ——具有代表性的整车(车身状态稳定,尺寸符合要求); ——试验发动机盖:材料合格,尺寸合格,焊接,涂装,总装工艺符合要求,装配完整的发动机盖。目标 >120 N.m/° 3.1.3 横向刚度 图5 横向刚度约束条件图6 横向刚度分析结果 试验样件要求 ——具有代表性的整车(车身状态稳定,尺寸符合要求); ——试验发动机盖:材料合格,尺寸合格,焊接,涂装,总装工艺符合要求,装配完整的发动机盖。目标 ≥150 N/mm。 3.1.4 铰链安装点刚度

壳体零件加工

摘要 数控技术应用的飞速发展对国民生产及生活起着越来越重要的作用。 本论文详细的介绍了壳体数控加工的全过程。从怎样确定零件的选材;工艺路线的确定;数控机床刀具的选择;测量工具的使用及切削参数的确定;工装的设计;数控编程、加工等。内容涉及广泛,个章节紧密连接。 这次毕业设计查阅了大量资料和文献,咨询相关的专业人员,并结合了本人所学的知识加上实际的工作完成毕业论文。使自己对数控技术及应用有了更深刻的了解。 关键词: 工艺路线, 数控加工, 数控编程, 刀具、参数 Abstract The rapid development of numerical control technology and life on the national production is playing an increasingly important role. This paper describes in detail the whole process of machining the shell. How to determine from the parts selection; process route is indeed the choice of CNC machine tools; measure the use of tools and cutting parameters determination; tooling design; NC programming and processing. Covering a wide range, closely connected chapters. The graduation project examined a large amount of information and documentation, consult the relevant professionals, combined with the knowledge I learned with the actual completion of thesis. Keywords: technology line, CNC machining, CNC programming, tool, parameter

某轿车引擎盖外板拉深模具毕业设计及成形模拟

摘要............................................................. I 绪论 ............................................................... I I 汽车覆盖件的成形特点[7]. (3) 1 冲压件的工艺设计 (4) 1.1零件总体分析 (4) 1.2零件材料的选择 (4) 1.3冲压方向的选择 (5) 1.4 工艺补充部分的设计 (7) 1.6拉延筋的设计[1] (9) 2 拉深件成型工艺CAE分析 (10) 3 拉深模结构与零件设计 (13) 3.2拉深模材料的选择 (14) 3.3冲压设备的选择 (14) 3.3.1拉深力的计算 (14) 3.3.2压料力的计算 (14) 3.3.3冲压设备的选择 (15) 3.4模具操作 (15) 3.5 凹模结构 (16) 3.6凸模结构 (18) 3.8导向部分 (22) 3.9起吊装置 (22) 3.10拉深模的结构和原理说明 (22) 4 总结 (24) 致谢 (25) 参考文献 (26) 文献综述 (26)

通过对某轿车车身覆盖件的引擎盖外板拉深模具型面的设计,介绍了复杂型面拉深件拉深模具型面的设计流程,研究了复杂型面拉深件拉深模具型面的造型设计方法和原则。利用板料成形分析有限元软件Dynaform对引擎盖外板的拉深成形过程进行仿真模拟,探讨了仿真过程中出现的质量缺陷(如破裂、起皱、变形不足等)的原因,并针对这些现象对拉深模具型面进行优化设计改进。并根据仿真模拟结果,制造加工了合格的拉深件模具。对于复杂型面拉深件的拉深模具的设计和制造具有一定的指导意义。 关键词:车身覆盖件;冲压成形;模具;优化设计;

壳体零件的加工工艺规程及其夹具设计毕业设计说明书

题目:壳体零件的加工工艺规程及其夹具设计

毕业设计说明书 毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期: I

毕业设计说明书 摘要 本设计是一种壳体的工艺设计和夹具设计。该零件是一种支承和包容传动机构的壳体零件。设计中先进行零件的结构和工艺分析,确定粗基准和精基准以及零件的加工余量与毛坯的尺寸,得出零件的加工工艺过程,接着再计算各工序的切削用量以及工时。 除此之外,还设计了一套专用车床夹具和专用钻床夹具。首先确定合适的定位基准,设计夹具体,再选择定位元件、夹紧元件等部件。然后计算出定位误差、夹紧力以及切削力,分析夹具的合理性。最后对关键部位进行Proe有限元分析,确保夹具可以安全的工作。 关键词:壳体;工艺分析;车床夹具;钻床夹具;有限元分析 II

毕业设计说明书 Abstract This design is a process design and fixture design of the shell. This section is a shell of supporting and embracing transmission mechanism. In the design, it should first process the structural and industrial analysis of the section, and then determine the coarse benchmark, fine benchmark, machining allowance and blank size of the section to obtain the process of the parts making. After that it calculated the cutting dosages of every process and the production time. In addition, this design involved a set of special milling fixture and a set of special drill press fixture. First, it identified the appropriate locating datum, chose clip specific. Then it chose positioning components, clamping component, and so on. It should also calculate the positioning error, clamping force, cutting force and then analyze the rationality of the fixture. Finally it had a finite-element analysis of the key parts to ensure that the fixture can work safely. Key words:Shell; Process analysis; Turning attachment; Drill jig; FEA III

发动机盖

发动机盖 发盖在汽车碰撞中主要起到两个关键作用:一是吸能,二是行人保护。由这两个作用决定了发盖设计的整体思路:不能太硬。昊锐的发动机盖发动机盖一般有发动机外板、内板、铰链加强板和发盖锁加强板组成。其中,外板是表面覆盖件,主要起到美观的作用;而铰链加强板和锁加强板只是作为局部加强件;内板则是最为关键的发盖件了。发盖内板上一般都会开溃缩槽,以便发盖在撞击中在此处折弯,避免发盖向后切入乘员舱内板则一般是0.8mm的钢板,在设计时会在内部上沿着车身宽度方向开一道溃缩槽,以便在汽车发生正面碰撞时发盖能沿此槽向上折弯变形,在吸收部分能力的同时还以防止发盖受力后向后切入乘员舱。撞击时发盖向上折起吸能的同时有避免发盖向后移动 此外,处于行人保护的目的,发盖内部不能做的太强,特别是在行人保护区域,不能出现硬点,以防止对受到撞击的行人头部造成致命伤害。发盖处于保护行人的角度决定了其本身不能太硬四、笼形车身前面我们说到不论是发生正面碰撞还是后部以及侧面碰撞,除去被各种吸能装置吸收的能量外,剩余的能量都要传递到车身乘员舱上。如果说吸能盒以及纵梁和前防撞梁是可以收缩变形的“软组织”的话,乘员舱则必须是坚固不可变形的“硬组织”。乘员舱一般由

车身立柱、底板总成和车顶总成三部分组成。车身立柱一般汽车车身有三个立柱,从前往后依次为前柱(A柱)、中柱(B柱)和后柱(C柱),SUV和MPV等部分车型还有另外一根立柱D柱。这些立柱除了有支撑车身顶盖、保证车身车顶强度的共同作用外,立柱的刚度又很大程度上决定了车身的整体刚度,因此在整个车身结构中,立柱是关键件,它要有很高的刚度。除此之外,在设计上它们也有一个共同点,那就是在保证其他条件的情况下,其截面越大越好!车身3大立柱前挡风玻璃和前车门之间的斜立柱叫A 柱(又称前柱),前车门和后车门之间的立柱叫B柱(又称中柱),后车门和后挡风玻璃之间的斜立柱叫C柱(又称后柱)。小轿车的A柱、B柱和C柱有不同的功能,但各自又伴随功能有必然的矛盾,比如A柱有视野与刚度之间的矛盾,B柱有刚度与便利性之间的矛盾等。B柱截面的大小会对乘员上下车的方便性产生影响,B柱一般是下粗上细前挡风玻璃和前车门之间的斜立柱叫A柱。A柱对于汽车安全起着极为关键的作用,特别是在发生正面碰撞时,强度足够高的A柱能够有效的避免变形,从而能够保证乘员在发生事故后顺利打开车门逃生。而现实中,因为A柱变形导致车门打不开,乘员被困死在车内的例子比比皆是。另外,拥有较高抗剪强度的A柱在轿车追尾大货车车能有效的避免A柱被货车尾部切断,从而最大限度保护乘员安全。在轿车追尾大货车

汽车设计-汽车安全钩式发动机盖锁总成技术规范模板

汽车设计- 汽车安全钩式发动机盖锁总成 技术规范模板

安全钩式发动机盖锁总成技术规范 1 范围 本规范定义了零件发动机罩锁总成的技术规范。 它确定了机罩锁在车辆使用寿命期内需保证的最低性能级别。此外,这些性能的认可方案也包含在本文件中。 2 术语与定义 2.1 机罩锁系统 机罩锁系统的基本功能是用于机罩的锁闭。 机罩锁包括与其周边环境的接口件并且包含下面的子系统: ●一个主锁:活动锁舌,固定板(在车身上)+卡爪(棘爪); ●操纵机构:塑料或钢手柄(安全挂钩的操纵); ●锁扣(在机罩上)。 独立于罩锁的安全机构。当锁扣轴下降时,安全挂钩会自动机械地回位。

发动机罩锁 3 基本要求 锁体由远距操纵机构驱动,且从车辆外部无法取用,手柄集成到安全挂钩上。 3.1 本规范定义了定量的,可实现的,可检查的技术规范的全部内容,它说明了可抓取部位的基本要求。这些要求可用来进行零件设计。 3.2 功能图纸中未定义设计,材料,保护和外观的情况下,可由供应商自行确定,但是需经过众泰控股集团的技术部门认可。 3.3 安全钩开启功能通过不同于机罩开启操纵机构的工具(内置或非内置挂钩和集成或非集成式的手柄)。

4 日常使用状况4.1 用于机罩的锁止与解锁 4.2 适配于用户

4.3 适配于外部环境 4.4 适配于操作工

5 装配,可接近性和可维修性 5.1 机罩锁应当是: a)能够与周边环境装备相兼容的,不损伤它们的性能; b)从人体工学角度方便操作工的装配; c)使用项目范围规定的工具可以装配的; d)可装配上车的,同时保证: —装配至机罩和结构上时有工具进出通道; —满足焊装工序要求; —具有安装需要的间隙; —方便定位和调节(如果要求做出调节)。 5.2 机罩锁及其固定件的设计需有利于下述操作工序: a) 机罩锁的拆卸/安装; b) 位于前面罩区域的各种零部件的进出通道。

固体火箭冲压发动机设计技术问题分析

第33卷第2期 固体火箭技术 J o u r n a l o f S o l i dR o c k e t T e c h n o l o g y V o l .33N o .22010 固体火箭冲压发动机设计技术问题分析 ① 徐东来,陈凤明,蔡飞超,杨 茂 (西北工业大学航天学院,西安 710072) 摘要:总结了自1965年以来固体火箭冲压发动机研制技术的总体发展特征和趋势,结合当前新一代战术导弹提出的大空域、宽M a 数和大机动性等越来越高的设计需求,从冲压发动机热力循环技术本质要求出发,分析了当前工程上普遍采用的固定几何进气道、固定几何喷管、燃烧室共用、无喷管助推器和变流量燃气发生器等5项主体设计技术固有的技术缺陷、不足和局限性,明确指出现行的折中设计思想是产生问题的根源,提出未来应遵循“开源节流”设计思想,优先突破喷管调节技术,积极开发进气道调节技术,努力提高现有燃气发生器变流量调节技术水平,切实完善固体火箭冲压发动机热力循环,以促其成功应用。 关键词:固体火箭冲压发动机;设计技术;进气道;喷管;燃气发生器 中图分类号:V 438 文献标识码:A 文章编号:1006-2793(2010)02-0142-06 A s s e s s m e n t o f d e s i g nt e c h n i q u e s o f d u c t e dr o c k e t s X UD o n g -l a i ,C H E NF e n g -m i n g ,C A I F e i -c h a o ,Y A N GM a o (C o l l e g e o f A s t r o n a u t i c s ,N o r t h w e s t e r nP o l y t e c h n i c a l U n i v .,X i 'a n 710072,C h i n a ) A b s t r a c t :T h e d e s i g n c h a r a c t e r i s t i c s a n d t r e n d s o f d u c t e d r o c k e t s s i n c e 1965a r e s u m m a r i z e d .A i m i n g a t d e m a n d i n g d e s i g nr e -q u i r e m e n t s p o s e d b y n e wg e n e r a t i o nt a c t i c a l m i s s i l e s ,n a m e l y ,l o n g r a n g e ,w i d e M a c hn u m b e r r a n g e ,a n dh i g hm a n e u v e r a b i l i t y ,e t c .,t h e i n h e r e n t l i m i t a t i o n s a n dd i s a d v a n t a g e s o f f i v ec o m m o n l y u s e d m a j o r d e s i g nt e c h n i q u e s ,i .e .t h e d e s i g no f f i x e d -g e o m e t r y i n l e t ,f i x e d -g e o m e t r y n o z z l e ,c o m m o nc o m b u s t i o nc h a m b e r ,n o z z l e l e s s b o o s t e r ,a n dv a r i a b l ef l o wg a s g e n e r a t o r ,a r e a n a l y z e df r o m t h ev i e w p o i n t o f e s s e n t i a l r e q u i r e m e n t s o f r a m j e t t h e r m o d y n a m i c c y c l e .T h e p a p e r c l e a r l y p o i n t s o u t t h a t t h e c o m p r o m i s e p h i l o s o p h y i s t h es o u r c e o f t h e s e p r o b l e m s a n d s u g g e s t s t h a t t h e o p t i m u m c o n t r o l i d e a ,i .e .,m a k i n g b r e a k t h r o u g hi nn o z z l er e g u l a t i o nt e c h -n i q u e f i r s t ,a c t i v e l y d e v e l o p i n g i n l e t r e g u l a t i o n t e c h n i q u e ,a n d i m p r o v i n g g a s g e n e r a t o r f l o wc o n t r o l t e c h n i q u e s h o u l db e f o l l o w e d t o p e r f e c t r a m j e t t h e r m o d y n a m i c c y c l e a n df a c i l i t a t e t h e a p p l i c a t i o n s u c c e s s f u l l y . K e yw o r d s :d u c t e dr o c k e t ;d e s i g nt e c h n i q u e s ;i n l e t ;n o z z l e ;g a s g e n e r a t o r 0 引言 固体火箭冲压发动机是第3代冲压发动机。除具 有传统冲压发动机主级比冲高、可提供导弹较远的动力射程且保持高速飞行等性能优势外,因其全固体设计,不仅燃烧稳定可靠,而且突破液体燃料稳定燃烧对于燃烧室的最小尺寸限制,更易于小型化,结构更为简单紧凑,方便贮存和使用维护。所以,被认为是最适合于中等超声速、中远程、小尺寸战术导弹使用的理想高速巡航动力装置。自1965年以来,世界各主要武器大国针对其竞相大力开展了技术研究。 但迄今为止,除前苏联在1965~1967年间研制定型,并成功用于S A -6近程防空导弹外,极少有固体火 箭冲压发动机成功研制和应用案例。特别是自1995年后,针对射程100k m 以上的小尺寸中等超声速超视距空空导弹,欧洲和俄罗斯正在分别大力研制“流星”(M e t e o r )导弹和R -77M 导弹,虽然均历经10余年努力研发,却都迟迟难以定型。不论欧洲等西方发达国家, 即便是继承前苏联衣钵的俄罗斯,历经近半个世纪不懈努力,技术上已经长足进步,却也难以取得研制成功。这究竟是何道理?特别值得深刻反思。 关于冲压发动机的技术发展,国外S o s o u n o v [1] 、W i l s o n [2] 、Wa l t r u p [3] 、F r y [4] 、S t e c h m a n [5] 、B e s s e r [6]和H e w i t t [7]等先后做了阶段性总结和探讨。其中,最具代表性的是在2004年F r y 总结提出的冲压发动机T o p 10 — 142—① 收稿日期:2009-12-28。 基金项目:武器装备预研基金项目(9140A 28030207H K 0332)。 作者简介:徐东来(1970—),男,博士生,主要研究方向为航空宇航推进理论与工程。

壳体零件机械加工工艺及工艺装备设计

壳体零件机械加工工艺规程制订及工艺装备设计

目录 第一部分工艺设计说明书……………………………………………………………………………第二部分第05道工序夹具设计说明书……………………………………………………………第三部分第08道工序刀具设计说明书……………………………………………………………第四部分第08号工序量具设计说明书……………………………………………………………第五部分毕业设计体会………………………………………………………………………………

陕西航空职业技术学院 二零零七届毕业设计(论文)任务书 专业:机械制造班级:机制5022班姓名:学号:13# 一、设计题目:壳体零件机械加工工艺规程制订及工艺装备设计 二、设计条件: 1、零件图 2、生产批量:中批量生产 三、设计内容: ㈠零件图分析: 1、零件图工艺性分析(结构工艺性及条件分析); 2、绘制零件图。 ㈡毛坯选择 ㈢机械加工工艺路线确定: 1、加工方案分析及确定 2、基准的选择 3、绘制加工工艺流程图 ㈣工序尺寸及其公差确定 1、基准重合时(工序尺寸关系图绘制); 2、利用工序尺寸关系图计算工序尺寸; 3、基准重合时(绘制尺寸链图)并计算工序尺寸。 ㈤设备及其工艺装备的确定 ㈥切削用量及工时定额确定:确定全部工序切削用量及工时定额。 ㈦工艺文件制订: 1、编写工艺文件设计说明书: 2、编写工艺规程: ㈧指定工序机床夹具设计 1、工序图分析; 2、定位方案确定; 3、定位误差计算; 4、夹具总装图绘制; ㈨刀具、量具设计 四设计任务(工作量): 1、零件机械加工工艺规程制订设计说明书一份; 2、工艺文件一套(含工艺流程卡片、某一道工序的工序卡片、全套工序附图); 3、机床夹具设计说明书一份; 4、夹具总装图一张(A2图纸);零件图两张(A4图纸); 5、刀量具设计说明书一份; 6、刀具工作图一张(A4图纸);量具图一张(A4图纸)。 五起止日期: 2006年11月28日——2007年1月20日(共8周) 六指导教师: 七审核批准 教研室主任:系主任: 八设计评语: 年月日九设计成绩:年月日

汽车车身设计 基于proe的引擎盖建模

汽车车身结构与设计 课程设计 题目基于proe的引擎盖建模 及有限元分析 班级M10车辆工程 姓名 学号 指导教师

绪论 随着社会的快速发展,汽车已成为人类社会生活中不可缺少的工具,汽车工业已成为许多工业发达国家的支柱产业。汽车工业是衡量一个国家工业水平的重要标志,在国民经济中占有重要地位,已被只要工业发达国家和新型工业国家列为国民经济支柱产业。中国汽车工业自1953年起步以来,经过50多年的发展,现已成为汽车生产大国,被国际制造商组织列为世界十大汽车生产国之一。汽车引擎盖的生产是汽车制造的一个重要生产过程。在板材冲压成形技术中,以汽车覆盖件为代表的大型薄板零件的冲压成形技术已发展成为一个很重要的组成部分。 汽车覆盖件是汽车车身的重要组成零件,分为外覆盖件和内覆盖件。外覆盖件指的是汽车车身外部的裸露件,这种零件的特点是涂装后不能再添加其他的装饰层。因此,对于外覆盖件的表面质量要求很高。 采用有限元法的数值模拟研究板料成形问题始于20世纪70年代。1971年,日本学者Yamada首先将弹塑性有限元方法引入到板料成形模拟中,分析了圆筒形的拉伸问题。同时Hibbitt在Hill有限变形理论基础上采用拉格朗日描述,建立了大变形弹塑性有限元理论。在国外,早在90年代以前板料成形有限元数值模拟技术已经成为汽车生产厂家和模具生产制造公司用来提高产品核心竞争力的必备技术。

第一章引擎盖的特点 1.1表面质量 引擎盖表面上任何微小的缺陷都会在涂漆后引起光线的漫反射而损坏外形的美观,因此引擎盖表面不允许有波纹、折皱、凹痕、擦伤、边缘拉痕和其他破坏表面美观的缺陷。引擎盖上的装饰棱线和筋条要求清晰、平滑、左右对称和过度均匀。总之引擎盖不仅要满足结构上的功能要求,更要满足表面装饰的美观要求。 1.2制造材料 采用橡胶发泡棉和铝箔材料制造而成,在降低发动机噪音的时候,能够同时隔离由于发动机工作时产生的热量,有效保护引擎盖表面上的漆面,防止老化。 1.3作用 1、空气导流。对于在空气中高速运动物体,气流在运动物体周边产生的空气阻力和扰流会直接影响运动轨迹和运动速度,通过引擎盖外形可有效调整空气相对汽车运动时的流动方向和对车产生的阻碍力作用,减小气流对车得影响。通过导流,空气阻力可分解成有益力,力高前轮轮胎对地的力量,有利于车的行驶稳定。流线型引擎盖外观基本是依照这个原理设计的。 2、保护发动机及周边管线配件等。引擎盖下,都是汽车重要的组成部分,包括发动机、电路、油路、刹车系统以及传动系统等等。对车辆至关重要。通过提高引擎盖强度和构造,可充分防止冲击、腐蚀、雨水、及电干扰等不利影响,充分保护车辆的正常工作。 3、美观。车辆外观设计是车辆价值的一个直观体现,引擎盖作为整体外观的一个重要组成部分,有着至关重要的作用,赏心悦目,体现整体汽车的概念。 4 、辅助驾驶视觉。驾驶员在驾驶汽车过程中,前方视线和自然光的反射对驾驶员正确判断路面和前方状况至关重要,通过引擎盖的外形可有效调整反射光线方向和形式,从而降低光线对驾驶员的影响。 5 、防止意外。引擎工作在高温高压易燃环境下,存在由于过热或者是原件意外损坏而发生爆炸或者是燃烧、泄露等事故,引擎盖可有效阻挡因爆炸引起的伤害,起到防护盾作用。有效阻隔空气和阻止火焰的蔓延,降低燃烧风险和损失。 6、特殊用途平台。特种车辆中,有利用高强度引擎盖作为工作平台,起到支撑作用。

壳体零件模具设计说明

摘要 (2) 前言 (4) 绪论 (5) 1 分析研究零件的工艺性 (11) 1.1零件分析说明 (11) 1.2工艺方案的确定 (11) 1.2.1落料工序 (13) 1.2.2弯曲工序 (13) 2 模具设计 (13) 2.1零件工艺分析 (13) 2.2模具结构设计 (13) 2.2.1模具结构形式的选择 (13) 2.2.2模具结构的分析与说明 (14) 2.2工艺参数计算 (15) 2.2.1展开尺寸的计算 (15) 2.2.2 排样尺寸的计算 (16) 2.2.3冲压力的计算 (19) 2.2.4压力中心的计算 (20) 2.2.5落料凸、凹模的刃口尺寸的计算和公差的确定 (22) 2.2.6凹模周界尺寸计算 (26) 2.2.7弹性元件的参数计算 (27) 2.2.8弯曲工序力的计算 (27) 2.2.9弯曲凸模圆角半径 (28) 2.2.10弯曲凹模圆角半径 (28) 2.2.11弯曲凹模的深度 (28) 2.2.12弯曲凸凹模的间隙 (29) 2.2.13弯曲凸凹模的尺寸 (29) 2.3压力机的选择 (31) 2.4模架的选择及压力机的校核 (32) 2.5确定装配基准 (32) 附录 (33) 英语资料翻译.................................... 错误!未定义书签。 英语资料:................................... 错误!未定义书签。 中文:....................................... 错误!未定义书签。 毕业设计小结 (35) 参考文献 (37)

轿车发动机盖抗凹性分析

Altair 2009 HyperWorks 技术大会论文集
轿车发动机盖抗凹性分析
肖介平 张立玲 郁向东 叶子青
北京汽车研究总院 CAE 技术部门
-1-

Altair 2009 HyperWorks 技术大会论文集
轿车发动机盖抗凹性分析 Outer Panel Denting Analysis of Car Hood
肖介平 张立玲 郁向东 叶子青 (北京汽车研究总院 CAE 技术部门 北京 100021)

要:轿车外覆盖件的抗凹性直接影响整车的外观品质。本文借助于 HyperMesh 前处理平台建立了某
轿车发动机盖的有限元模型,采用 ABAQUS 求解器对发动机盖的指压和罐压两种工况进行了数值模拟分 析,给出了相关评价标准,对轿车发动机盖的抗凹性设计具有一定的指导意义。
关键词: HyperWorks,HyperMesh,发动机盖,抗凹性,指压,罐压 Abstract: The out panel's dent resistance ability could directly affect the appearance quality of whole
car. The FEM model of a car hood was built using HyperMesh, and hood’s dent resistance including the dimpling and oil-canning denting was analyzed using ABAQUS solver. The analysis method and evaluation criterions in denting simulation could have some guiding significance on the design of the car hood denting.
Key words: HyperWorks, Hood, Denting, Dimpling, Oil-canning
1 概述
发动机盖抗凹性分析是评价其在使用过程中,受到如手指触摸按压,罐状物体挤压等载荷工况下外板 薄弱区域抵抗凹陷挠曲的能力,即考察载荷作用下的最大变形情况和局部区域在卸载后的永久变形情况。 轿车发动加盖的抗凹性直接影响整车的外观品质,因此在发动机盖设计开发过程中,有必要进行抗凹性分 析。 本文拟对某轿车的发动机盖的指压和罐压两种工况进行抗凹性分析,指压(Dimpling)分析采用指压 探头,模拟手指按压外观件的情况。罐压(Oil-canning)分析采用罐压探头模拟较大表面物体按压外观件 的情况, 基于 HyperMesh 前处理平台创建发动机盖有限元模型, 采用 ABAQUS 进行准静态非线性分析, 考察外板局部区域受外力作用时的弹性恢复性能,及外力卸载后的残余变形。
2 有限元建模
2.1 发动机盖
进行发动机盖抗凹分析需要建立发动机盖和铰链的有限元模型,选用壳单元,基本网格尺寸 10mm, 发动机盖受压部位使用 2mm 标准进行网格局部细化。单元质量的控制从两方面把握: (1)发动机盖几何 对称部分应保持网格对称,关键部位孔的周围不允许有三角形单元 ,需进行自由边(Edges) 、重复节点 和法向检查; (2)单元质量根据图 2 所示网格质量标准要求进行控制,发动机盖的有限元网格模型见图 1。
-2-

固体火箭发动机工作原理及应用前景浅析

固体火箭发动机工作原理及应用前景浅析 摘要:本文主要介绍了固体火箭发动机的发展简史、基本结构和工作原理以及随着国民经济的日益发展,固体火箭发动机的应用前景。 关键词:火箭发动机工作原理应用 概述 火箭有着悠久的发展历史,早在公元九世纪中期人们便利用火药制成了火箭,并应用于军事。到了14~17世纪,火箭技术相继传入阿拉伯国家和欧洲,并对火箭的结构进行了改进,火箭技术得到进一步发展。19世纪早期,人们将火箭技术的研究从军事目的转向宇宙航行,从固体推进剂转向液体推进剂。到19世纪50年代,中、远程导弹和人造卫星的运载火箭,以及后来发展的各种航天飞船、登月飞行器和航天飞机,其主发动机均为液体火箭发动机,在这一时期,液体火箭推进技术得到了飞速发展。随着浇注成型复合推进剂的研制成功,现代固体火箭推进技术的发展也进入了一个新的时期。使固体火箭推进技术向大尺寸、长工作时间的方向迅速发展,大大提高了固体火箭推进技术的水平,并扩大了它的应用范围。 固体火箭发动机的基本结构 固体火箭发动机主要由固体火箭推进剂装药、燃烧室、喷管和点火装置等部件组成,如图一所示。 图一发动机结构图 1推进剂装药:包含燃烧剂、氧化剂和其他组分是固体火箭发动机的能源部份。装药必须有一定的几何形状和尺寸,其燃烧面的变化必须符合一定的规律,才能实现预期的推力变化要求。 2燃烧室:是贮存装药的容器,也是装药燃烧的工作室。因此不仅要有一定的容积,而且还需具有对高温、高压气体的承载能力。燃烧室材料大多采用高强度的金属材料,也有采用玻璃纤维缠绕加树脂成型的玻璃钢结构,可以大幅减轻燃烧室壳体的重量。 3 点火装置:用于点燃装药的装置。一般采用电点火,由电发火管和点火剂组成。

汽车设计(整理版)讲解

1.简述发动机前置前驱动的轿车的优缺点? 优点: 1.前轮驱动乘用车的前桥轴荷大,有明显的不足转向性能,越过障碍能力高。 2.动力总成结构紧凑。 3.车内地板凸包高度可降低,提高乘坐舒适性。 4.发动机不知在轴距外时,汽车轴距可以缩短,因而有利于提高汽车的机动性。发动机冷却散热条件好。 5.行李箱大易改装为其他类型车。 6.供暖机构简单,操纵机构简单。 7.发动机横置时可省掉锥齿轮,缩短汽车总长,使整备质量减轻 缺点: 1.前轮驱动并转向需采用等速万向节,其结构及制造工艺复杂。 2.前桥负荷较后轴重,前轮是转向轮,故前轮工作条件恶劣,轮胎寿命短。 3.汽车爬坡能力降低。 4.当发动机横置时受空间限制,总体布置工作困难,维修与保养时的接近性变差。 5.一旦发生正面碰撞事故,因发动机及其附件损失较大,维修费用高。 2.发动机后置后驱大客车的优缺点: 优点: ?能较好地隔绝发动机的气味和热量和噪声; ?检修发动机方便; ?轴荷分配合理; ?由于后桥簧上质量与簧下质量之比增大,可改善车厢后部的乘坐舒适性; ?发动机横置时,车厢面积利用较好,并且布置座椅受发动机影响较少; ?作为城市客车使用不需要行李箱时,可以降低地板高度; ?传动轴长度短。 缺点: ?发动机的冷却条件不好,必须采用冷却效果强的散热器; ?动力总成的操纵机构复杂; ?驾驶员不容易发现发动机故障。 3.发动机前置后驱的货车有什么特点? 优点:(1)可以采用直列、V型或卧式发动机; (2)发现发动机故障容易; (3)发动机的接近性良好,维修方便; (4)离合器等操纵机构的结构简单,容易布置; (5)货箱地板高度低; 缺点:(1)如果采用平头式驾驶室,而且将发动机布置在前轴之上,处于驾驶员、副驾驶员座位之间时,驾驶室内部拥挤,隔绝发动机工作噪声、气味、热量和振 动的工作困难,离合器、变速器等操纵机构复杂; (2)如果采用长头式驾驶室,在增加整车长度的同时,为保证驾驶员 有良好的视野,需将座椅布置的高些,这又会增加整车和整车质心高度以及 一些其他方面显而易见的缺点。

壳体零件的设计

计说明 前言 机械制造工艺学课程设计是在全部学完机械制造工艺学及机床夹具设计课程,并进行了生产实习的基础上进行的一个教学环节。这是我们在进行毕业设计之前对所学课程的一次深入的全面的总复习,也是一次理论联系实际的训练。 一零件的分析 1. 1 零件的作用 1. 2 零件的工艺分析 (1)Φ145的孔,表面粗糙度要求为1.6 (2)4×Φ10孔,表面粗糙度要求为1.6 (3)零件的下底面,2个台阶面,还有Φ145孔端面的表面粗糙度为3.2 二工艺规程的设计 1. 1 确定毛坯的制造形式 零件的材料为铸钢。采用铸造 1.2 基准的选择 (1)粗基准的选择,按照有关粗基准的选择原则(即当零件有不加工表面时,应该以这些不加工表面作为粗基准),利用两个不加工的侧面和斜面作为粗基准来加工底平面。 (2)精基准的选择:精基准的选择主要应该考虑基准重合的问题,当设计基准与工序基准不重合时,应该进行尺寸换算。 1. 3 制订工艺路线 工序一:下料铸造 工序二:热处理时效处理 工序三:粗铣,半精铣下底面 工序四:粗铣,半精铣两个台阶面 ...... 目录: 前言

一、零件的分析 二、工艺规程的设计 (一)确定毛坯的制造形式 (二)基准的选择 (三)工艺路线的拟定及工艺方案的分析 (四)机械加工余量、工序尺寸及毛坯尺寸的确定 (五)各工序的定位夹紧方案及切削用量的选择 (六)各工序基本工时 三、专用夹具的设计 (一)设计思想与设计方案的比较; (二)定位分析与定位误差的计算; (三)对刀与导引装置设计; (四)夹紧机构设计与夹紧力计算; (五)夹具操作动作说明。 四、总结 五、主要参考文献 参考资料: 【1】王光斗,《机床夹具设计手册》,上海科学技术出版社主编 【2】李旦邵东向王杰,《机床专用夹具图册》,哈尔滨工业大学出版社主编【3】艾兴肖诗纲,《切削用量简明手册》,机械工业出版社主编 【4】王凡《,实用机械制造工艺设计手册》,机械工业出版社主编 【5】王先逵,《机械加工工艺手册》,机械工业出版社主编 【6】陈明,《机械制造工艺学》,机械工业出版社主编 【7】廖念钊等,《互换性与技术测量》,中国计量出版社主编 【8】孙丽媛,《机械制造工艺及专用夹具设计指导》,冶金工业出版社

相关主题
文本预览
相关文档 最新文档