当前位置:文档之家› 结晶过程的观察

结晶过程的观察

结晶过程的观察
结晶过程的观察

结晶过程的观察

一、实验目的

1.通过观察透明盐类的结晶过程及其晶体组织特征,为理解、掌握金属的结晶理论建立感性认识。

2.通过观察具有枝晶组织的金相照片及其有枝晶特征的铸件或铸锭表面,建立金属晶体以树枝状形态成长的直观概念。

二、设备仪器

1.生物显微镜;

2.接近饱和的氯化铵或硝酸铅水溶液(由实验室预先配制好);

3.干净玻璃片、吸管;

4.电炉或电吹风;

5.有枝晶组织的金相照片。

6.有枝晶的金属铸件(锭)实物。

三、生物显微镜构造及工作原理

(一)显微镜的基本结构

显微镜是实验室中最常用的仪器。我们要了解它的基本结构,并学会使用显微镜的方法。

显微镜的中部有一弯曲的柄,称镜臂;基部有一马蹄形部分,是镜座。自柜中取用时,用右手握紧镜臂,左手托住镜座,保持镜体直立,轻轻放置于桌上,观察各部构造。

镜座上的短柱叫镜柱。镜臂基部有一个方形或圆形的平台,是载物台(或称镜台)。台的中央有一圆孔,可通过光线。两侧有压片夹,用以固定玻片标本。现代的显微镜具镜台X-Y驱动器,用以固定和移动玻片标本。在圆孔的下面,有由一片或数片透镜所组成的聚光器,有集射光线于物体的作用。在聚光器下方有反光镜,可将光线反射至聚光器。此镜一面平,一面凹。凹面具有较强的反光性,多用于光线较暗的情况下;光线较强时用平面镜即可。电子显微镜的光源来源于内光源,位于镜座靠后方。镜座右侧臂有调节螺旋,可以前后调节改变光线的强弱。光线较强适于观察色深的物体;光线较弱适于观察透明(或无色)的物体。

在载物台的圆孔上方,有一附于镜柄上端的圆筒称为镜筒,其上下两端附有镜头。现代的显微镜一般有两个镜筒。两镜筒之间的距离,可按观察者双目的的距离调节。

镜筒上端为接目镜(或称目镜),可从镜筒内抽出。接目镜有低倍和高倍之分。

在镜筒下端有可放置的圆盘叫旋转器,下面附有2~4个接物镜(或称物镜)以螺旋旋入旋转器内。接物镜也有低倍和高倍之分。转动旋转器可换用接物镜。

在镜臂上有两组螺旋。大的叫粗调焦器,小的叫细调焦器。现代的显微镜粗、细调焦器常组合在一起,外周粗的螺旋为粗调焦器,小的叫细调焦器。用调焦器调焦点。粗调焦器升降镜筒较快,用于低倍镜调焦;细调焦器升降镜筒较慢,用于高倍镜调焦。

接物镜有低倍和高倍之分。较短的是低倍,一般放大10倍(10×);较长的是高倍,一般放大40倍(40×)、油物镜放大100倍(100×)。接目镜也有高低倍之分,较长的是低倍,一般放大5倍(5×)或6倍(6×),较短的是高倍,一般放大10倍(10×)、12倍(12×)或15倍(15×)。

显微镜的总放大倍数是接目镜的放大倍数与接物镜放大倍数的乘积。例如,作用5×接目镜与10×接物镜,则总放大倍数是50倍。使用10×接目镜与40×接物镜,则总放大倍数是400倍。

(二)显微镜的使用方法

1.光线的调节:使用显微镜时,应使镜臂向着自己(现代显微镜使镜臂反向对着自己),摆好显微镜,平放在实验台上。转动粗调焦器,把镜筒向上提起。转动旋转器,使低倍接物镜对准载物台的圆孔。二者相距约2cm左右,打开光源按钮,向前向后移动按钮,两眼对着双筒接目镜观察,调节光线的强弱至适宜强度。

2.低倍镜的使用:将需观察的标本装片放在载物台上,使标本正对中央圆孔。用玻片夹固定。俯首侧视接物镜,并顺时针方向旋动粗调焦螺旋,使载物台上升到装片与接物镜约0.5厘米处。危重双眼全睁自目镜观察,并向逆时针方向慢慢地转动粗调焦螺旋,使载物台下降至能见到物像为止。为使见到的物像更清晰,再来回转动细调焦螺旋。

3.高倍镜的使用:需用高倍镜时,一定是在上述低倍镜下能看清物像的前提下进行。首先将要详细看的部分移到视野正中央,转动转换器,换高倍物镜。转动细调焦器,上下调节,使物像达到最清晰为止。

图1 电子生物显微镜

四、试验原理

晶体物质由液态凝固为固态的过程称结晶。结晶过程亦为原子呈规则排列的过程,包括形核和核长大两个基本过程。

由于液态金属的结晶过程难以直接观察,而盐类亦是晶体物质,其溶液的结晶过程和金属很相似,区别仅在于盐类是在室温下依靠溶剂蒸发使溶液过饱和而结晶,金属则主要依靠过冷,故完全可通过观察透明盐类溶液的结晶过程来了解金属的结晶过程。

在玻璃片上滴一滴接近饱和的氯化铵(NH4Cl)或硝酸铅[Pb(NO3)2]水溶液,随着水分蒸发,溶液逐渐变浓而达到饱和,继而开始结晶。我们可观察到其结晶大致可分为三个阶段:第一阶段开始于液滴边缘,因该处最薄,蒸发最快,易于形核,故产生大量晶核而先形成一圈细小的等轴晶,接着形成较粗大的柱状晶。因液滴的饱和程序是由外向里,故位向利于生长的等轴晶得以继续长大,形成伸向中心的柱状晶。第三阶段是在液滴中心形成杂乱的树枝状晶,且枝晶间有许多空隙(如图2所示)。这是因液滴已越来越薄,蒸发较快,晶核亦易形成,然而由于已无充足的溶液补充,结晶出的晶体填不满枝晶间的空隙,从而能观察到明显的枝晶。

图2 中心杂乱的树枝状晶区(100×)

实际金属结晶时,一般均按树枝状方式长大(如图3所示)。但若冷速小,液态金属的补给充分,则显示不出枝晶,故在纯金属铸锭内部是看不到枝晶的,只能看到外形不规则的等轴晶粒。但若冷速大,液态金属势必补缩不足而在枝晶间留下空隙,其宏观组织就可明显地观察到树枝状晶。某些金属如锑铸锭表面,即能清楚地看到枝晶组织,如图4所示。若金属在结晶过程中产生了枝晶偏析,由于枝干和枝间成分不同,其金相试样浸蚀时,浸蚀程度亦不同,枝晶特征即能显示出来,见图5。

图3 树枝晶生长图(100×)

图4 锑锭表面浮凸的树枝状晶

图5 铅锑合金的显微组织 五、实验步骤

1.在干净玻璃片上,用吸管滴上一滴配制好的氯化铵或硝酸铅水溶液,液滴不宜太厚,否则因蒸发太慢而不易结晶。

2.将上述滴有溶液的玻璃片放在电炉上烘烤,或用电吹风吹,以加速水分蒸发。

3.将玻璃片置于生物显微镜下,从液滴边缘开始观察结晶过程,并画下结晶过程示意图。

4.观察具有树枝晶组织的金相照片或铸件实物(可用放大镜)。

六、实验报告要求(记录、计算及数据处理)

1.简述实验目的。

2.绘出所观察到的盐类溶液结晶过程示意图,并简述结晶过程。 序号

结晶过程示意图 结晶过程 第一阶段

第二阶段

第三阶段

3.根据实验,简述枝晶生长过程并总结结晶规律。

(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

结晶度测试方法及研究意义

高分子结晶度的分析方法研究进展 ……专业聂荣健学号:……指导老师:…… 摘要:综述聚合物结晶度的测定方法,包括:差示扫描量热法;广角X衍射法;密度法;红外光谱法;反气相色谱法等,并对不同方法测定结晶度进行分析比较 , 同时对结晶度现代分析技术的发展作出展望。 关键词:结晶度;测试方法;分析比较

引言 高分子材料是以聚合物为主体的多组分复杂体系 , 由于具有很好的弹性、塑性及一定的强度,因此有多种加工形式及稳定的使用性能。由于聚合物自身结构的千变万化 , 带来了性能上的千差万别,正是这一特点 , 使得高分子材料应用十分广泛,已成为当今相当重要的一类新型材料[1]。 结晶度是表征聚合物性质的重要参数,聚合物的一些物理性能和机械性能与其有着密切的关系。结晶度愈大,尺寸稳定性愈好,其强度、硬度、刚度愈高;同时耐热性和耐化学性也愈好,但与链运动有关的性能如弹性、断裂伸长、抗冲击强度、溶胀度等降低。因而高分子材料结晶度的准确测定和描述对认识这种材料是很关键的。所以有必要对各种测试结晶度的方法做一总结和对比[2]。 1.结晶度定义 结晶度是高聚物中晶区部分所占的质量分数或体积分数 . ( )%100*W Wc Xc = 式中 : W ———高聚物样品的总质量 ; W c ———高聚物样品结晶部分的质量 结晶度的概念虽然沿用了很久,但是由于高聚物的晶区与非晶区的界限不明确,有时会有很大出入。下表给出了用不同方法测得的结晶度数据,可以看到,不同方法得到的数据的差别超过测量的误差。因此,指出某种聚合物的结晶度时,通常必须具体说明测量方法。 表1.1用不同方法测得的结晶度比较 结晶度(%) 方法 纤维素(棉花) 未拉伸涤纶 拉伸过的涤 纶 低压聚乙烯 高压聚乙烯 密度法 60 20 20 77 55 X 射线衍射法 80 29 2 78 57 红外光谱法 -- 61 59 76 53 水解法 93 -- -- -- -- 甲酰化法 87 -- -- -- -- 氘交换法 56 -- -- -- --

典型铁碳合金的结晶过程

一、共析钢的结晶过程 图中Ⅰ表示共析钢(Wc=0.77%),合金在1点以上为液体(L),当缓冷至稍低于1点温度时,开始从液体中结晶出奥氏体(A),A的数量随温度的下降而增多。 温度降到2点时,液体全部结晶为奥氏体。2~S点之间,合金是单一奥氏体相。继续缓冷至S点时,奥氏体发生共析转变,转变成珠光体(P)。727℃以下,P基本上不发生变化。故室温下共析钢的组织为P。 共析钢的结晶过程如下图。 二、亚共析钢的结晶过程 图3-6中合金Ⅱ表示亚共析钢。合金在1点以上为液体。缓冷至稍低于1点,开始从液体中结晶出奥氏体,冷却到2点结晶终了。在2~3点区间,合金为单一的奥氏体组织,当冷却到与GS线相交的3点时,开始从奥氏体中析出时,就会将多余的碳原子转移到奥氏体中,引起未转变的奥氏体的含碳量增加。沿着GS线变化。当温度降至4点(727℃)时,剩余奥氏体含碳量增加到了Wc=0.77%,具备了共析转变的条件,转变为珠光体。原铁素体不变保留了在基体中。4点以下不再发生组织变化。故亚共析钢的室温组织为铁素体+珠光体。 亚共析钢的结晶过程如图3-8所示。 三、过共析钢的结晶过程 图3-6中合金Ⅲ表示过共析钢。合金在1点以上为液体,当缓冷至稍低于1点后,开始从液体中结晶出奥氏体,直至2点结晶终了。在2~3点之间是含碳时为合金Ⅲ奥氏组织。缓冷至3点时,奥氏体中开始沿晶界析出渗碳体(即二次渗碳体)。随着温度不断降低,由奥氏体中析出的二次渗碳愈来愈多,而奥氏体中的含碳量不断减少,并沿着ES线变化。3~4点之间的组织为奥氏体+二次渗碳体。降至4点(727℃)时,奥氏体的成分达到了共析成分,于是这部分奥氏体发生共析反应,转变为珠光体。在4点以下,合金的组织不再发生变化。故室温组织为珠光体+二次渗碳体。过共析钢结晶过程如图3-9。

电镀的结晶过程

电镀的结晶过程 电镀过程实质上是金属的电结晶过程。大致分为以下几个步骤: 1)水化的金屑离子向阴极扩散和迁移 2)水化膜变形; 3)金属离子从水化膜中分离出来; 4)金属离子被吸附和迁移到阴极上的活性部分; 5)金属离子还原成金属原于,并排列组成一定晶格的金属晶体。 在形成金属晶体的同时进行着结晶核心的生成和成长过程,这两个过程的速度决定了金属结晶的粗细程度。在电镀过程中当晶核的生成速度大于晶核的成长速度时,就能获得结晶细致、排列紧密的镀层。晶核的生成速度大于晶核成长速度的程度越大,镀层结晶越细致、紧密;否则,结晶粗大。 结晶组织较细的镀层,其防护性能和外观质量都较理想,实践证明:提高金属电结晶时的阴极极化作用,可以提高晶核的生成速度,便于获得结晶细致紧密的镀层。但阴极极化作用不是越大越好,当阴极极化作用超过一定范围时,会导致氢气的大量析出,从而使镀层变得多孔、粗糙、疏松、烧焦,甚至呈粉末状,质量反而下降。 影响电镀层结晶粗细的主要因素 1)主盐特性在电镀中把含镀层金属的盐称做主盐,例如硫酸盐镀锌溶液中的硫酸锌即为主盐。 一般来讲,如果主盐是简单的盐,其电镀溶液的阴极极化作用很小,极化数值只有几十毫伏,因此镀层结晶晶粒较粗,例如硫酸盐镀锌、硫酸盐镀铜等由于电镀溶液阴极极化作用很小,故镀层结晶晶粒较粗,其外观质量及防护性能较差。

如果主盐是络盐,由于络离子在溶液中的离解能力较小,络合作用使金属离子在阴极上的还原过程变得困难,从而提高了阴极的极化作用,因此镀层的结晶晶粒较细。例如氨三乙酸—氯化铵型镀锌溶液中使用了络合能力较强的络合剂氨三乙酸,它和锌离子形成的络离于大大提高阴极极化作用,极化数值可达到250mV,因此获得的镀锌层比硫酸盐镀锌获得的镀层较为细致、紧密。 2)主盐浓度 在其它条件(如阴极电流密度和温度等)不变的情况下,随着主盐浓度的增大,阴极极化下降,结晶核心的生成速度变慢,所得镀层的结晶晶粒变粗。稀溶液的阴极极化作用虽比浓溶液大,但其导电性能较差,不能采用大的阴极电流密度,同时阴极电流效率也较低,所以不能利用这个因素来改善镀层结晶的细致程度。 3)附加盐 在电镀溶液中除了含主盐外,往往还要加入某些碱金属或碱土金属的盐类,这种附加盐的主要作用是提高电镀溶液的导电性能,有时还能提高阴极极化作用。例如以硫酸镍为主盐的镀镍溶液中加入硫酸钠和硫酸镁,既可提高导电性能,又能增大阴极极化作用(增大极化数值约100mV左右),使镀镍层的结晶晶粒更为细致、紧密。 4)添加剂 为了改善电镀溶液的性能和镀层质量,往往在电镀溶液中加入少量的某些有机物质的添加剂.例如阿拉伯树胶,糊精、聚乙二醇、硫脲、千千加、丁炔二醇,糖精及动物胶等。添加剂能吸附在阴极表面或与金属离子构成“胶体—金属离子型”络合物,从而大大提高金属离子在阴极还原时的极化作用,使镀层细致、均匀、平整、光亮。例如在铵盐镀锌溶液、柠檬酸盐镀锌溶液、氨三乙酸镀锌溶液中加入1~2g/L聚乙二醇和1~2 g/L.硫脲分别可以增加极化数值为70一100mV,100~200mV和200mV以上,都能使镀层结晶晶粒变细。必须注意有机添加剂是有选择性的,不可乱用,以免造成不良后果。

铁碳合金的平衡结晶过程

三、典型铁碳合金的平衡结晶过程 铁碳相图上的合金,按成分可分为三类: ⑴ 工业纯铁(<0.0218% C ),其显微组织为铁素体晶粒,工业上很少应用。 ⑵ 碳钢(0.0218%~2.11%C ),其特点是高温组织为单相A ,易于变形,碳钢又分为亚共析钢(0.0218%~0.77%C )、共析钢(0.77%C )和过共析钢(0.77%~2.11%C )。 ⑶ 白口铸铁(2.11%~6.69%C ),其特点是铸造性能好,但硬而脆,白口铸铁又分为亚共晶白口铸铁(2.11%~4.3%C )、共晶白口铸铁(4.3%C )和过共晶白口铸铁(4.3—6.69%C ) 下面结合图3-26,分析典型铁碳合金的结晶过程及其组织变化。 图3-26 七种典型合金在铁碳合金相图中的位置 ㈠ 工业纯铁(图3-26中合金①)的结晶过程 合金液体在1~2点之间通过匀晶反应转变为δ铁素体。继续降温时,在2~3点之间,不发生组织转变。温度降低到3点以后,开始从δ铁素体中析出奥氏体,在3~4点之间,随温度下降,奥氏体的数量不断增多,到达4点以后,δ铁素体全部转变为奥氏体。在4~5点之间,不发生组织转变。冷却到5点时,开始从奥氏体中析出铁素体,温度降到6点,奥氏体全部转变为铁素体。在6-7点之间冷却,不发生组织转变。温度降到7点,开始沿铁素体晶界析出三次渗碳体Fe 3C III 。7点以下,随温度下降,Fe 3C III 量不断增加,室温下Fe 3C III 的最大量为: %31.0%1000008.069.60008.00218.03=?--=ⅢC Fe Q 。图3-27为工业纯铁的冷却曲线及组织转变示意图。工业纯铁的室温组织为α+Fe 3C III ,如图3-28所示,图中个别部位的双 晶界内是Fe 3C III 。

聚合物的结晶

聚合物的结晶 聚合物按其能否结晶可以分为两大类:结晶性聚合物和非结晶性聚合物。后者是在任何条件下都不能结晶的聚合物,而前者是在一定条件下能结晶的聚合物,即结晶性聚合物可处于晶态,也可以处于非晶态。聚合物结晶能力和结晶速度的差别的根本原因是不同的高分子具有不同的结构特征,而这些结构特征中能不能和容易不容易规整排列形成高度有序的晶格是关键。 聚合物结晶的必要条件是分子结构的对称性和规整性,这也是影响其结晶能力、结晶速度的主要结构因素。此外,结晶还需要提供充分条件,即温度和时间。首先讨论分子结构的影响。高聚物结晶行为的一个明显特点就是各种高分子链的结晶能力和结晶速度差别很大。大量实验事实说明,链的结构愈简单,对称性愈高,取代基的空间位阻愈小,链的立构规整性愈好,则结晶速度愈大。例如,聚乙烯链相对简单、对称而又规整,因此结晶速度很快,即使在液氮中淬火,也得不到完全非晶态的样品。类似的,聚四氟乙烯的结晶速度也很快。脂肪族聚酯和聚酰胺结晶速度明显变慢,与它们的主链上引入的酯基和酰胺基有关。分子链带有侧基时,必须是有规立构的分子链才能结晶。分子链上有侧基或者主链上含有苯环,都会使分子链的截面变大,分子链变刚,不同程度地阻碍链段的运动,影响链段在结晶时扩散、迁移、规整排列的速度。如全同立构聚苯乙烯和聚对苯二甲酸乙二酯的结晶速度就慢多了,通过淬火比较容易得到完全的非晶态样品。另外,对于同一种聚合物,分子量对结晶速度是有显著影响的。一般在相同的结晶条件下,分子量大,熔体粘度增大,链段的运动能力降低,限制了链段向晶核的扩散和排列,聚合物的结晶速度慢。最后,共聚物的结晶能力与共聚单体的结构、共聚物组成、共聚物分子链的对称性、规整性有关。无规共聚通常会破坏链的对称性和规整性,从而使共聚物的结晶能力降低。如果两种共聚单元的均聚物结晶结构不同,当一种组分占优势时,该共聚物是可以结晶的。这时,含量少的组分作为结晶缺陷存在。但当两组分配比相近时,结晶能力大大减弱,如乙丙共聚物当丙烯含量达25%左右时,产物便不能结晶而成为乙丙橡胶。如果两种共聚单元的均聚物结晶结构相同,这种共聚物也是可以结晶的。通常,晶胞参数随共聚物组成而变化。嵌段共聚物的各个嵌段基本上保持着相对的独立性,其中能结晶的嵌段将形成自己的晶区。如聚酯-聚丁二烯-聚酯嵌段共聚物,聚酯段仍可较好地结晶,形成微晶区,起到物理交联的作用。而聚丁二烯段在室温下可以有高弹性,使共聚物成为一种良好的热塑性弹性体。 4.4.1结晶动力学 结晶性聚合物因分子结构和结晶条件不同,其结晶速度会有很大差别。而结晶速度大小,又对材料的结晶程度和结晶状态影响显著。为此,研究聚合物的结晶动力学将有助于人们控制结晶过程,改善制品性能。 一、结晶速度的测定方法 研究聚合物结晶速度的实验方法大体可以分为两种:一种是在一定温度下观察试样总体结晶速率,如膨胀计法、光学解偏振法、DSC法等;另一种是在一定温度下观察球晶半径随时间的变化,如热台偏光显微镜法、小角激光光散射法等。

各种结晶过程分析通用版

安全管理编号:YTO-FS-PD273 各种结晶过程分析通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

各种结晶过程分析通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 一、冷却结晶 冷却结晶法基本上不去除溶剂,溶液的过饱和度系借助冷却获得,故适用于溶解度随温度降低而显著下降的物系,如KNOs、NaNOs、MgSO‘等。 冷却的方法可分为自然冷却、间壁冷却或直接接触冷却3种。自然冷却是使溶液在大气中冷却而结晶,其设备构造及操作均较简单,但由于冷却缓慢,生产能力低,不易控制产品质量,在较大规模的生产中已不被采用。间壁冷却是广泛应用的工业结晶方法,与其他结晶方法相比所消耗的能量较少,但由于冷却传热面上常有晶体析出(晶垢),使传热系数下降,冷却传热速率较低,甚至影响生产的正常进行,故一般多用在产量较小的场合,或生产规模虽较大但用其他结晶方法不经济的场合。直接接触冷却法是以空气或与溶液不互溶的碳氢化合物或专用的液态物质为冷却剂与溶液直接接触而冷却,冷却剂在冷却过程中则被汽化的方法。直接接触冷却法有效地克服了间壁冷却的缺点,传热效率高,没有晶垢问题,但设备体积较大。

x射线测结晶度和晶粒尺寸

X 射线测结晶度和晶粒尺寸 一、实验目的 1、利用X 射线衍射仪测结晶度及其计算方法; 2、掌握晶粒尺寸的计算方法和测试方法。 二、实验原理 X 射线衍射法的理论依据是:由N 个原子所产生的总得相干散射强度是一个常数,而与这些原子相互间排列的有序程度无关。假设为两相结构,总相干散射强度等于晶区与非晶区相干散射强度之和。即 ds s I s ds S I s ds s I s a C )()()(222???+= (1) (1)式中I c 和I a 分别为晶相和非晶相的相干散射强度,设总原子数为N ,则 N=N c +N a ,N c 、N a 分别为晶相和非晶相的原子数,于是,结晶度Xc 等于: ???+=+=002202)()()(ds s I s ds s I s ds s I s N N N X a c c a C C C )(p q k kA A A qA pA pA a c c a c c =+=+= (2) 式中Ac 、Aa 分别为衍射曲线下,晶体衍射峰面积和无定形峰面积。P 、q 为各自的比例系数。在进行相对比较时也可以认为K=1,则: %100?+=a c c c A A A X (3) 因此,只要设法将衍射曲线下所包含的面积分离为晶区衍射贡献和非结晶区相干散射的贡献,便可利用(3)式计算结晶度。 按照两相结构理论,高聚物由晶相与非晶相所组成。高聚物X 射线衍射谱图由晶区衍射峰与非晶区散射峰叠加构成。从叠加谱中划分出晶区衍射贡献,计算结晶度是有一定困难的。 Challa 做了两个假设(1)样品中非晶散射曲线与完全无定形样品散射谱相同。(2)指定某两相邻晶峰之间的峰谷为非晶散射强度,按相对高度法划定两相贡献的分界线。这一方法所得结晶度值偏低,主要是由于将部分微晶衍射及晶格畸变宽化划归非晶散射所致。完全无定形样品的制备在一

实验五结晶过程的观察

实验五结晶过程的观察 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

实验五结晶过程的观察 一、实验目的 1.观察透明盐类的结晶过程及其晶体组织特征。为理解、掌握金属的结晶理论建立感性认识。 2.观察具有枝晶组织的金相照片及其有枝晶特征的铸件或铸锭表面,建立金属晶体以树枝状形态成长的直观概念。 二、实验设备及材料 1.带CCD的生物显微镜;2.投影仪;3. 接近饱和的氯化铵或硝酸铅水溶液(由实验室预先配制好);4.干净玻璃片、吸管;5.电炉或电吹风;6.有枝晶组织的金相照片;7.有枝晶的金属铸件实物。 三、实验原理 晶体物质由液态凝固为固态的过程称结晶。结晶过程亦为原子呈规则排列的过程,包括形核和核长大两个基本过程。 由于液态金属的结晶过程难以直接观察,而盐类亦是晶体物质,其溶液的结晶过程和金属很相似,区别仅在于盐类是在室温下依靠溶剂蒸发使溶液过饱和而结晶,金属则主要依靠过冷,故完全可通过观察透明盐类溶液的结晶过程来了解金属的结晶过程。

图5-1 结晶过程三个阶段形成的三个区域 a) 最外层的等轴细晶粒区(100×) b)次层粗大柱状晶区(100×) c)中心杂乱的树枝状晶区(100×) 在玻璃片上滴一滴接近饱和的氯化铵(NH4Cl)或硝酸铅[Pb(NO3)2]水溶液,随着水分蒸发,溶液逐渐变浓而达到饱和,继而开始结晶。我们可观察到其结晶大致可分为三个阶段:第一阶段开始于液滴边缘,因该处最薄,蒸发最快,易于形核,故产生大量晶核而先形成一圈细小的等轴晶(如图5-la 所示),接着形成较粗大的柱状晶(如图5-1b所示)。因液滴的饱和程序是由外向里,故位向利于生长的等轴晶得以继续长大,形成伸向中心的柱状晶。第三阶段是在液滴中心形成杂乱的树枝状晶,且枝晶间有许多空隙(如图5-1c 所示)。这是因液滴已越来越

结晶过程机理分析

编号:SM-ZD-11262 结晶过程机理分析 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

结晶过程机理分析 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员 之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整 体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅 读内容。 (1)结晶在固体物质溶解的同时,溶液中还进行着一个相反的过程,即已溶解的溶质粒子撞击到固体溶质表面时,又重新变成固体而从溶剂中析出,这个过程称为结晶。 (2)晶体晶体是化学组成均一的固体,组成它的分子(原子或离子)在空间格架的结点上对称排列,形成有规则的结构。 (3)晶系和晶格构成晶体的微观粒子(分子、原子或离子)按一定的几何规则排列,由此形成的最小单元称为晶格。晶体可按晶格空间结构的区别分为不同的晶系。同一种物质在不同的条件下可形成不同的晶系,或为两种晶系的混合物。例如,熔融的硝酸铵在冷却过程中可由立方晶系变成斜棱晶系、长方晶系等。 微观粒子的规则排列可以按不同方向发展,即各晶面以不同的速率生长,从而形成不同外形的晶体,这种习性以及

XRD结晶度数据分析

Jade 专题讲座-结晶度计算 宽角X射线衍射数据结晶度分析 小木虫出品 Bloveocean原创 2007-3-27

宽角X射线衍射数据结晶度分析 1、调出数据及图。 2、平滑曲线:点击 “BG”,出窗口框。 ②下移“”,选“Line Fit”。 ③在“ooooooo”中点击右2位使呈“⊙”,即基本上 为照顾谱线两边位。 ④点击“Apply”。 ⑤调整基线使与谱线两边位相切: a、点击取消2个“√”,使仪器作非自动调节。 b、点击各“ ,在图上显示峰位,如未全部显示,用 1次,屏幕上显示文字:L-click to Move or Add, R-click to Erase;Ctrl Drag Up/Dn toAlter FWHM, Drag left/Right to skew. ③、键入无定形峰:pp的无定形峰因试样状态(历史)而略有不同,一般在16-17(2θ)之间, 故设定其2T=16.5o。 a、左手按住键盘上的“ctrl”键,右手按住鼠标左键,移动“+”至2T=16.5o处时放开按 键,在该处定位加入一个新峰。 b、用“↖”对准新加的峰位,左手按住键盘上的“ctrl”键,右手按住鼠标左键,上下 左右移动“”符号,至无定形峰左、右端与实验谱线在低、高θ(2T)端相切→放开 双键,完成无定形峰的初步设定。 ④、结晶峰分峰:右手按住鼠标左键,用“+”符点击各结晶峰中心线及适当高度,分出形、 高大约与原始峰相似的各独立新结晶峰。

⑤、用鼠标右击

8、点击“Print”打出报告。 * 每次“Refine”后应检查无定形峰状态:有时计算机会把低于16.5°峰高的小峰均改为无定形峰。应把除16.5°外的无定形峰认定标记点击除去(即消去列前的“√”),结晶度会自动更正。如此“Refine”至结晶度值稳定。消除多余的“√”后直接“Print”打出报告或者“copy” 报告即可。

金属结晶的现象

第四讲金属结晶的现象及条件 第一节金属结晶的现象 一、主要内容: 金属结晶的宏观现象 金属结晶的微观现象 二、要点: 金属结晶的热分析曲线,热分析法,过冷现象,过冷度,结晶潜热,金属结晶的热分析曲线分析,金属结晶的微观过程分析,形核,晶核长大。 三、方法说明: 首先介绍热分析法,说明热分析曲线,介绍金属的热分析曲线的特征,说明过冷现象,过冷度,结晶潜热,金属结晶的微观现象,可举例说明晶核的形成和长大的过程,如窗花,盐,冰,植物等增加学生的感性认识和对形核、长大的理解。 授课内容: 物质从液态冷却转变为固态的过程称为凝固。 凝固后的物质可以是晶体,也可以是非晶体。若凝固后的物质为晶体,则这种凝固称为结晶。 一、金属结晶过程中的宏观现象 热分析法:将纯金属放入坩埚中加热熔化成液态,然后插入热电偶测量温度,让液态金属缓慢而均匀的冷却,用X-Y记录仪将冷却过程中的温度与时间记录下来,获得冷却曲线,这种实验方法叫热分析法。如图 图1 热分析实验装置示意图图2 纯金属的冷却曲线 2、热分析曲线:纯金属的冷却曲线,即温度随时间的变化曲线。 3、过冷现象:金属的实际开始凝固温度Tn总是低于理论凝固温度Tm的现象。 4、过冷度:理论凝固温度与实际开始凝固温度之差,即Δ T=Tm-Tn。 结晶潜热:金属熔化时从固态转变为液态需要吸收热量,而结晶时从液态转化为固态要放出热量,前者叫熔化潜热,后者叫结晶潜热。 二、金属结晶的微观过程 金属的结晶是一个晶核的形成和晶核的长大过程。

第二节金属结晶的热力学条件 第三节金属结晶的结构条件 一、主要内容: 金属结晶的驱动力和热力学条件 结构起伏的概念 二、要点: 热力学第二定律,物质系统,自发过程,熵的概念, 金属结晶过程液固两相自由能之差的推导, 液相、固相自由能随温度变化示意图 晶胚,晶核,近程有序,远程有序,液态金属的结构,液态金属中不同尺寸结构起伏出现的几率,最大结构起伏尺寸与过冷度的关系 三、方法说明: 熵,物质系统,自发过程等概念较抽象,打比方形象的说明有利于学生的理解。 用液态金属的宏观特性解释液态金属的微观结构,解释金属结晶的微观过程,讲清晶胚,晶核等概念及影响因素,说明金属结晶的结构条件 授课内容: 第二节金属结晶的热力学条件 热力学第二定律:在等温等压下,过程自发进行的方向是体系自由能降低的方向。自由能G 用下式表示: G=H-TS, 式中,H是焓;T是绝对温度;S是熵,可推导得 dG= Vdp- SdT。 在等压时,dp=0,故上式简化为: dG=- SdT。 由于熵恒为正值,所以自由能是随温度增高而减小。 图3 自由能随温度变化的示意图

聚合物密度和结晶度的测定

聚合物密度和结晶度的测定 聚合物密度和结晶度的测定一、实验目的 1. 掌握密度计测定聚合物密度和结晶度的基本原理。 2. 用密度计测定聚合物的密度,并由密度计算结晶度。二、实验原理 聚合物密度是聚合物物理性质的一个重要指标,是判断聚合物产物、指导成型加工和探索聚集态结构与性能之间关系的一个重要数据。对于结晶性聚合物,常用结晶度表征内部结构规则程度,而密度与结晶度有密切的关系。因此,可通过聚合物密度和结晶度的测定来研究结构状态,进而控制材料的性质。 密度天平利用阿基米德原理测定物质的密度,可测固体、液体、浮体、颗粒、粉末、粘稠体、海棉体,具有操作简单、直接的优点。 结晶性聚合物都是部分结晶的,即晶区和非晶区共存。而晶区和非晶区的密度不同。因此,同一聚合物由于结晶度不同,样品的密度不同。如采用两相结合模型,并假定比容(密度的倒数)具有加和性,即结晶性聚合物的比容等于晶区和非晶区比容的线性加和,则有: 111 (公式 1) ,,,f,1,fcc ,,, ca 式中,fc为结晶度,ρc为晶区密度,ρa为非晶区密度 则从测得的聚合物试样密度可计算出结晶度: ,,,,,,caf,,100%c (公式 2) ,,,,,,ca 三、实验仪器及试剂 实验仪器:密度天平(型号AND EK-300iD,产地:日本) 实验试剂:锡粒、聚氯乙烯板。高密度聚乙烯(粒料) 四、实验步骤

(一)聚合物密度测定: 1. 按电源键打开密度天平。 2. 观察密度天平的示数,若不为零,按“RE-ZERO”清零。 3. 将准备好的样品置于密度天平顶部称量处,示数稳定后按“SAMPLE”键。此时屏幕上端显示“LO”。 4. 将样品小心的置于密度天平内部,带示数稳定后按SAMPLE” 键。此时屏幕上端显示的数值即为样品的密度。 (二)结晶度的计算: 从文献查得: 聚乙烯的晶区密度、非晶区密度,根据公式 2 计算结晶度。 五、注意点 一定要熟读仪器说明书,没有疑问后,才开始操作仪器~~一,内容: a,通过密度天平测量三种物质的密度:锡粒(?99.9%)、矩形的PVC板、HDPE(粒料)。 b,通过液体比重天平测量参考液-----一次蒸馏水的密度。 c,密度的测量,至少测两次以上,后取平均值。 d,样品在空气中的质量、在参考液中的质量也要记录下来---------- 做实验报告时,根据实际测得的参考液密度,通过公式来计算出样品密度。 e, 矩形的PVC板可以用游标卡尺量出长、宽、高后,计算出体积,从而算出其密度。 二,仪器: (1)密度天平 a,我们实验室的密度天平是用来测量固体密度的--------虽然它可以固液两测,但我们并没有测量液体密度的配件。b,“上秤盘”指的是水槽的最上方的有机玻璃。 c,实验完成后,请将铁秤盘、铁网球用电吹风吹至干燥-----------

实验五 结晶过程的观察

实验五结晶过程的观察 一、实验目的 1.观察透明盐类的结晶过程及其晶体组织特征。为理解、掌握金属的结晶理论建立感性认识。 2.观察具有枝晶组织的金相照片及其有枝晶特征的铸件或铸锭表面,建立金属晶体以树枝状形态成长的直观概念。 二、实验设备及材料 1.带CCD的生物显微镜;2.投影仪;3. 接近饱和的氯化铵或硝酸铅水溶液(由实验室预先配制好);4.干净玻璃片、吸管;5.电炉或电吹风;6.有枝晶组织的金相照片;7.有枝晶的金属铸件实物。 三、实验原理 晶体物质由液态凝固为固态的过程称结晶。结晶过程亦为原子呈规则排列的过程,包括形核和核长大两个基本过程。 由于液态金属的结晶过程难以直接观察,而盐类亦是晶体物质,其溶液的结晶过程和金属很相似,区别仅在于盐类是在室温下依靠溶剂蒸发使溶液过饱和而结晶,金属则主要依靠过冷,故完全可通过观察透明盐类溶液的结晶过程来了解金属的结晶过程。

图5-1 结晶过程三个阶段形成的三个区域 a) 最外层的等轴细晶粒区(100×) b)次层粗大柱状晶区(100×) c)中心杂乱的树枝状晶区(100×) 在玻璃片上滴一滴接近饱和的氯化铵(NH4Cl)或硝酸铅[Pb(NO3)2]水溶液,随着水分蒸发,溶液逐渐变浓而达到饱和,继而开始结晶。我们可观察到其结晶大致可分为三个阶段:第一阶段开始于液滴边缘,因该处最薄,蒸发最快,易于形核,故产生大量晶核而先形成一圈细小的等轴晶(如图5-la 所示),接着形成较粗大的柱状晶(如图5-1b所示)。因液滴的饱和程序是由外向里,故位向利于生长的等轴晶得以继续长大,形成伸向中心的柱状晶。第三阶段是在液滴中心形成杂乱的树枝状晶,且枝晶间有许多空隙(如图5-1c 所示)。这是因液滴已越来越薄,蒸发较快,晶核亦易形成,然而由于已无充足的溶液补充,结晶出的晶体填不满枝晶间的空隙,从而能观察到明显的枝晶。 实际金属结晶时,一般均按树枝状方式长大(如图5-2 所示)。但若冷速小,液态金属的补给充分,则显示不出枝晶,故在纯金属铸锭内部是看不到枝晶的,只能看到外形不规则的等轴晶粒。但若冷速大,液态金属势必补缩不足而在枝晶间留下空隙,其宏观组织就可明显地观察到树枝状晶。某些金属如锑铸锭表面,即能清楚地看到枝晶组织,如图5-3 所示。若金属在结晶过程中产生了枝晶偏析,由于枝干和枝间成分不同,其金相试样浸蚀时,浸蚀程度亦不同,枝晶特征即能 显示出来,见图5-4。

结晶原理及操作

结晶原理及操作 1、定义:利用被提纯物质与杂质在同一种溶剂中溶解性能的显著差异,而将它们分离的操作称为重结晶。 从自然界提取或通过有机化学反应合成得到的固体有机化合物,常常含有少量的杂质,除去杂质最有效的方法就是用适当的溶剂进行重结晶,它是提纯固体有机物最常用的方法。大多数的固体有机物在溶剂中的溶解度随着温度的升高而增大,随温度的降低而减小,重结晶就是利用这个原理,使有机物在热溶剂中溶解,制成接近饱和的热溶液,趁热过滤,除去不溶性(在溶剂中溶解度很小)的杂质,再将溶液冷却,让有机物重新结晶析出,与可溶于冷溶剂(在溶剂中的溶解度很大)的杂质分离,这就是重结晶操作,经过一次或多次重结晶操作,可以大大提高固体有机物的纯度。 重结晶的一般过程为: 选择合适的溶剂→溶解固体有机物制热饱和溶液→热滤、脱色除去杂质→冷却、析出晶体→抽滤→洗涤→干燥。 2、基本操作: (1)选择溶剂:选择适合的溶剂是重结晶的关键之一, 适宜的溶剂必须符合以下几个条件: a、与被提纯的有机物不起化学反应; b、被提纯的有机物在该溶剂中的溶解度随温度变化显 著,在热溶剂中溶解度大,在冷溶剂中溶解度小; c、杂质的溶解度很大(被提纯物成晶体析出时,杂质仍留在母液中)或很小(被提纯物溶解在溶剂中而杂质不溶,借热滤除去); d、溶剂的沸点适中,沸点过低,被提纯物在其中溶解度变化不大;过高时,附着于晶体表面的溶剂难以经干燥除去; e、价廉易得、毒性低、容易回收。 选择溶剂时应根据“相似相溶”原理,溶质一般易溶于与其结构相似的溶剂中。极性溶剂溶解极性固体,非极性溶剂溶解非极性固体。具体选择可通过查阅有关化学手册,也可以通过实验来确定。 (2)固体溶解: 待提纯固体有机物的溶解一般在锥形瓶或圆底烧瓶等细口容器中进行,一般不在烧杯等广口容器中进行,因为在锥形瓶中瓶口较小,溶剂不易挥发,又便于振荡。溶解时先将待提纯的固体有机物放入锥形瓶中,加入比理论计算量略少的溶剂(因为含有杂质,溶解时需要的溶剂量少些),加热至微沸,振荡,若有固体未溶解,再加入少量溶剂,继续加热振荡,至瓶中固体不再溶解(当含有不溶性杂质时,添加足够量的溶剂杂质依然不溶。)或全溶(不含不溶性杂质)为止,最后再多加计算量20%的溶剂(将溶液稀释,防止热滤时由于溶剂的挥发和温度的下降导致晶体析出),振荡,制成热的近饱和溶液。 (3)除去杂质 a、脱色:若热溶液有色,说明其中有有色杂质,可利用活性炭进行脱色处理,除去有色杂质。 脱色操作: 将沸腾的溶液稍冷后,加入活性炭加热煮沸几分钟,然后趁热过滤,除去活 性炭,得到无色溶液。

DSC测定结晶度

结晶度的测定 对于结晶聚合物,用DSC(DTA)测定其结晶熔融时,得到的熔融峰曲线和基线所包围的面积,可直接换算成热量。此热量是聚合物中结晶部分的熔融热△H f。聚合物熔融热与其结晶度成正比,结晶度越高,熔融热越大.如果已知某聚合物百分之百结晶时的熔融热为△H f*,那么部分结晶聚合物的结晶度θ可按下式计算: 式中θ为结晶度(单位用百分表示),△H f是试样的熔融热,△H f*为该聚合物结晶度达到100%时的熔融热. △H f可用DSC(DTA)测定,△H f*可用三个方法求得: (1)取100密结晶度的试样,用Dsc(DTA)测其溶融热,即AH2. (2)取一组已知结晶度的试样(其结晶度用其他方法测定,如用密度梯度法,X射线衍射法等),用DSC(DTA)测定其熔融热,作结晶度对熔融热的关系图,外推到结晶度为100%时,对应的熔融热△H f*.此法求得的高密度聚乙烯的△H f*=125.9 J/g,聚四氟乙烯的△ H f*=28.0J/g。 (3)采用一个模拟物的熔融热来代表△H f*.例如为了求聚乙烯的结晶度,可选择正三十二碳烷的熔融热作为完全结晶聚乙烯的熔融热,则 必须提出,测定时影响DSC(DTA)曲线的因素,除聚合物的组成和结内外,还有晶格缺陷、结晶变态共存、不同分子结晶的共存、混晶共存、再结晶、过热、热分解、氧化、吸湿以及热处理、力学作用等,为了得到正确的结果,应予分析. 利用等速降温结晶热△H c,还可计算结晶性线型均聚物的分子量.其计算依据一是过冷度(T m一T c),过冷度超大,结晶速率越快。二是分子量,在一定范围内,分子量越大,分子链的迁移越困难,结晶速率越慢.如用规定的降温速率使过冷度保持一定,则结晶速率就是某一试样在该速率下能结晶的量(以结晶时放出的热量表示).1973年T. Suwa等研究了聚四氟乙烯(PTFE)的结晶和焙融行为,发现聚合物熔体的结晶热与它的分子量密切相关,并求得聚四氟乙烯的数均分子量M n与结晶热△H c之间的关系为 试验的分子量范围在5.2×105—4.5×107之间.这一关系为不溶不熔的聚四氟乙烯分子量的测定提供了非常方便的方法. 70年代后,DSC的发展为用量热法研究结晶聚合物的等温结晶动力学创造了条件,因为结晶量可用放热量来记录,因此就可分析结晶速度. 描述等温下结晶总速率变化的动力学关系式是众所周知的A v r ami-Erofeev方程,即 式中θ为结晶度,z为结晶速率常数,t为结晶时间,n是表征成核及其生长方式的整数。如应用热响应快的DSC曲线,将熔融状态的试样冷却到熔点以下某个温度,并在恒温下测定其结晶速率,则dH/dt随时间变化的曲线如图1.44(a)所示.

测结晶度与晶粒尺寸

利用X 射线衍射仪测定涤纶长丝的结晶度及晶粒尺寸 一、实验目的 1、了解纤维样品的制样方法; 2、学会利用计算机分峰法计算涤纶长丝的结晶度及利用Scherrer 公式计算晶粒尺寸。 二、实验原理 1、结晶度计算公式及“分峰”原理 X 射线衍射法的理论依据是:由N 个原子所产生的总的相干散射强度是一个常数,而与这些原子相互间排列的有序程度无关。假设为两相结构,总相干散射强度等于晶区与非晶区相干散射强度之和。即 ds s I s ds S I s ds s I s a C )()()(222???+= (1) 式中I c 和I a 分别为晶相和非晶相的相干散射强度,设总原子数为N ,则 N=N c +N a ,N c 、N a 分别为晶相和非晶相的原子数,于是,结晶度Xc 等于: ???+=+=002202)()()(ds s I s ds s I s ds s I s N N N X a c c a C C C )(p q k kA A A qA pA pA a c c a c c =+=+= (2) 式中Ac 、Aa 分别为衍射曲线下,晶体衍射峰面积和无定形峰面积。p 、q 为各自的比例系数。在进行相对比较时也可以认为K=1,则: %100?+=a c c c A A A X (3) 因此,只要设法将衍射曲线下所包含的面积分离为晶区衍射贡献(A C )和非结晶区相干散射的贡献(A α),便可利用(3)式计算结晶度。上述过程常称之为“分峰”(即将结晶衍射峰与无定形衍射峰分开)。 2、Scherrer 公式计算晶粒尺寸 根据X 射线衍射理论,在晶粒尺寸小于100nm 时,随晶粒尺寸的变小衍射峰宽变化得显著,考虑样品的吸收效应及结构对衍射线型的影响,样品晶粒尺寸

10讲 典型合金的结晶过程及组织

《机械制造技术基础》教案 教学内容:典型合金的结晶过程及组织 教学方式:结合实际,由浅如深讲解 教学目的: 1.了解铁碳合金的类型; 2.掌握共析钢、亚共析钢、过共析钢的结晶过程及其组织; 3.掌握共晶白口铸铁、亚共晶白口铸铁、过共晶白口铸铁的结晶过程及其组织。 重点、难点:六种典型合金的结晶过程及组织 教学过程: 4.3 典型铁碳合金的结晶过程及组织 4.3.1铁碳合金的分类 铁碳合金由于成分的不同,室温下将得到不同的组织。由简化的Fe-Fe 3C 相图,如图4-4所示。 图4-4 简化的Fe-Fe 3C 相图 根据铁碳合金的含碳量及组织的不同,可将铁碳合金分为工业纯铁、钢及白口铸铁三类: 1.工业纯铁(Wc ≤0.0218%) 性能特点:塑性韧性好,硬度强度低。 2.钢(0.0218%<Wc ≤2.11%) 共析钢:Wc=0.77%,室温组织为P 。 亚共析钢: 0.0218%< Wc <0.77%,室温组织为F+P 。 过共析钢: 0.77% < Wc ≤2.11%,室温组织为P+ Fe 3C Ⅱ 3.白口铸铁(2.11% < Wc ≤6.69%) 共晶白口铸铁: Wc=4.3%,室温组织为L’d 亚共晶白口铸铁: 2.11% < Wc <4.3%,室温组织为P+Fe 3C Ⅱ+L ’d 。 过共晶白口铸铁: 4.3% < Wc ≤6.69%,室温组织为L’d+Fe 3C Ⅰ 4.3.2典型铁碳合金的结晶过程 Fe 3C W C (%)图3-4 简化Fe-Fe 3C 相图F 0.0218K F 0 2.110.77 4.3D

依据成分垂线与相线相交情况,分析几种典型铁碳合金结晶过程中组织转变规律。 1.共析钢的结晶过程分析(如图4-5、4-6所示): AC AE PSK S S 3L L+A A P(F+Fe C)??→??→???→共析 图4-5 共析钢结晶过程示意图 图4-6 共析钢金相组织 2.亚共析钢的结晶过程分析(如图4-7、4-8所示): AC AE GS PSK PSK S L L A A A F A F P F ??→+??→??→+???→+???→+共析 图4-5 亚共析钢结晶过程示意图 图4-6 亚共析钢金相组织 亚共析钢的室温组织特征是:先析铁素体和共析珠光体呈均匀分布。 3.过共析钢的结晶过程分析(如图4-9、4-10所示): 333AC AE ES PSK S PSK L L A A A Fe C A Fe C P Fe C ??→+??→??→+???→+???→+共析

实验 密度梯度管法测定聚合物的密度和结晶度

实验 密度梯度管法测定聚合物的密度和结晶度 密度梯度法是测定聚合物密度的方法之一。聚合物的密度是聚合物的重要参数。聚合物结晶过程中密度变化的测定,可研究结晶度和结晶速率;拉伸、退火可以改变取向度和结晶度,也可通过密度来进行研究;对许多结晶性聚合物其结晶度的大小对聚合物的性能、加工条件选择及应用都有很大影响。聚合物的结晶度的测定方法虽有X 射线衍射法、红外吸收光谱法、核磁共振法、差热分析、反相色谱等等,但都要使用复杂的仪器设备。而用密度梯度管法从测得的密度换算到结晶度,既简单易行又较为准确。而且它能同时测定一定范围内多个不同密度的样品,尤其对很小的样品或是密度改变极小的一组样品,需要高灵敏的测定方法来观察其密度改变,此法既方便又灵敏。 一、实验目的: 1.掌握用密度梯度法测定聚合物密度、结晶度的基本原理和方法。 2.利用文献上某些结晶性聚合物PE 和PP 晶区和非晶区的密度数据,计算结晶度。 二、基本原理: 由于高分子结构的不均一性,大分子内摩擦的阻碍等原因,聚合物的结晶总是不完善的,而是晶相与非晶相共存的两相结构,结晶度f w 即表征聚合物样品中晶区部分重量占全部重量的百分数: 在结晶聚合物中(如PP 、PE 等),晶相结构排列规则,堆砌紧密,因而密度大;而非晶结构排列无序,堆砌松散,密度小。所以,晶区与非晶区以不同比例两相共存的聚合物,结晶度的差别反映了密度的差别。测定聚合物样品的密度,便可求出聚合物的结晶度。 密度梯度法测定结晶度的原理就是在此基础上,利用聚合物比容的线性加和关 系,即聚合物的比容是晶区部分比容与无定形部分比容之和。聚合物的比容V 和结晶度w f 有如下关系: ()1c w a w V V f V f =+- --------------------------------- (2) 式中c V 为样品中结晶区比容,可以从X 光衍射分析所得的晶胞参数计算求得; a V 为样品中无定形区的比容,可以用膨胀计测定不同温度时该聚合物熔体的比

钢铁结晶过程及其平衡组织

1.共析钢的结晶过程及平衡组织 图中(1)线的共析钢从高温液态冷却时,与相图中的AC、.AE和.PSK线分别交于1、2、3点。该合金在1点温度以上全部为液相(L);缓冷至1点温度时,开始从液相中结晶出奥氏体;缓冷至2点温度时,液相全部结晶为奥氏体;当温度缓冷至3点温度时(727℃)时,奥氏体发生共析转变,生成珠光体组织,用符号P表示,共析转变式为。这种由一定成分的固相,在一定温度下同时析出紧密相邻的两种或多种不同固相的转变,称为共析转变,发生共析转变的温度称共析温度。当温度继续下降时,铁素体成分沿PQ线变化,将会有少量的渗碳体(称为Fe3CⅢ)从铁素体中析出,并与共析渗碳体混在一起,这种渗碳体(Fe3CⅢ)在显微镜下难以分辩,故可忽略不计。因此,共析钢的室温平衡组织为珠光体。 2、亚共析钢的结晶过程及平衡组织 以图中(2)合金为例。冷却时与图中的AC、.AE.、GS和PSK线分别交于1、2、3、4点。该合金在3点以上的结晶过程与共析钢的结晶过程相似。当其缓冷至3点时,开始从奥氏体中析出铁素体,并且随温度的降纸,铁素体量不断增多,成分沿GP线变化,奥氏体量逐渐减少;当温度降至4点(727℃)时,剩余奥氏体的含碳量达到共析成分(Wc=0.77%),此时会发生共析转变,生成珠光体。随后的冷却过程中,也会从铁素体中析出三次渗碳体(Fe3CⅢ),但因量少忽略不计,因此亚共析钢的室温平衡组织为珠光体和铁素体。必须指出,随亚共析钢含碳量的增加,组织中铁素体量将减少。图中白亮色部分为铁素体,呈黑色或片层状的为珠光体。 3、过共析钢的结晶过程及平衡组织 过共析钢的结晶过程以图中(3)中合金为例。冷却时与图中AC、.AE、.ES和PSK线分别交于1、2、3、4点。该合金在3点以上的结晶过程与共析钢的结晶过程相似。当其缓冷至3点时,开始从奥氏体中析出渗碳体(称此为二次渗碳体Fe3CⅡ),随温度的降低,二次渗碳体量逐渐增多,而剩余奥氏体中的含碳量沿ES线变化,当温度降至4点(727℃)时,奥氏体的含碳量达到共析成分(Wc=0.77%),此时会发生共析转变,生成珠光体。因此,过共析钢室温平衡组织为珠光体和二次渗碳体。二次渗碳体一般以网状形式沿奥氏体晶界分布。图中片状或黑色组织为珠光体,白色网状组织为二次渗碳体。 4、共晶白口铸铁的结晶过程及组织 共晶白口铸铁的碳质量分数Wc=4.3%,该合金冷却时,与图中EF、.PSK线分别交于1、2点。该合金在1点以上为液相,缓冷至1点温度(即C点、1148℃)时,液体在恒温下同时结晶出奥氏体和渗碳体两种固相,称为莱氏体或高温莱氏体,用符号Ld表示。这种在一定温度下,由一定成分的液相同时结晶出两种或多种固相的转变,称为共晶转变。共晶转变式为Ld---→(AE+Fe3C)。共晶转变完成后,莱氏体在继续冷却过程中,其中的奥氏体将不断折出二次渗碳体,奥氏体中的含碳量沿ES线逐渐向共析成分接近,当温度降到2点(727℃)时,发生共析转变,形成珠光体,而二次渗碳体保留到室温。因此,共晶白口铸铁的室温组织为珠光体和渗碳体的两相组织,称为变态莱氏体(或低温莱氏体),用符号“Ldˊ”表示。

相关主题
文本预览
相关文档 最新文档