上海市浦东区2015年高考模拟名校命题研究专家预测数学试题(文理合卷)及答案
- 格式:doc
- 大小:1.12 MB
- 文档页数:13
上海市杨浦区2015届高三一模数学文含答案XXX年度第一学期高三年级学业质量调研数学学科试卷(文科)考生注意:1.答卷前,务必在答题纸上写上姓名、考号,并将核对后的条形码贴在指定位置上。
2.本试卷共有23道题,满分150分,考试时间120分钟。
一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1.已知sinα=1/2,α∈(0,π),则α=π/6.2.设A={x|1≤x≤3},B={xm+1≤x≤2m+4,m∈R},A⊆B,则m的取值范围是[-1,3)。
3.已知等差数列{an}中,a3=7,a7=3,则通项公式为an=-2n+11.4.已知直线l经过点A(1,-2)、B(-3,2),则直线l的方程是y=-x-1.5.函数f(x)=x^2-1(x<0)的反函数f^-1(x)=√(x+1)(x≥1)。
6.二项式(x-1/2)^4的展开式中的第4项是6x^2-12x+5/16.7.不等式log2(x-3)+x>2的解是(3,∞)。
8.已知条件p:x+1≤2;条件q:x≤a,若p是q的充分不必要条件,则a的取值范围是(-∞,1]。
9.向量a=(2,3),b=(-1,2),若ma+b与a-2b平行,则实数m=1/2.10.一家5口春节回老家探亲,买到了如下图的一排5张车票:6排A座 | 6排B座 | 6排C座 | 走廊 | 6排D座 | 6排E座| 窗口 | 窗口 |其中爷爷行动不便要坐靠近走廊的座位,小孙女喜欢看风景要坐靠窗的座位,则座位的安排方式一共有60种。
11.已知一个铁球的体积为36π,则该铁球的表面积为54π。
12.已知集合A={z|z=1+i+i^2+。
+in,n∈N*},则集合A的子集个数为2^n-1.13.设△ABC的内角A,B,C所对的边分别为a,b,c。
若(a+b-c)(a+b+c)=ab,则角C=π/3.14.如图所示,已知函数y=log2(4x)图像上的两点A,B和函数y=log2(x)上的点C,线段AC平行于y轴,三角形ABC 为正三角形时,点B的坐标为(-1,2),则实数p=-1/4.值为_______________。
2015高考预测金卷(上海卷)理科数学一、填空题:本大题共14小题,每小题4分,共56分.把答案填在答题卡的相应位置1.已知A={1,3,4},B={3,4,5},则A∩B=.2.复数z满足iz=3+4i(i是虚数单位),则z= .3.已知幂函数Z为偶函数,且在区间上是单调增函数,则的值为.4.已知,则的值为.5.如图,在中,是边上一点,,则的长为6.围是__________________.7.已知函数(其中)经过不等式组所表示的平面区域,则实数的取值范围是.8.一个几何体的三视图如图所示,该几何体体积为____________.9.右图是一个算法的流程图,最后输出的k=_____________.10.已知四棱锥P-ABCD的顶点都在球O的球面上,底面ABCD是矩形,平面PAD⊥底面ABCD,△PAD为正三角形,AB=2AD=4,则球O的表面积为______________.11.若曲线与曲线在处的两条切线互相垂直,则实数a的值为.12.两曲线所围成的图形的面积是_________.13.已知F1、F2为双曲线22194x y-=的两个焦点,P为双曲线右支上异于顶点的任意一点,O为坐标原点,下列四个命题:①△PF1F2的内切圆的圆心必在直线x=3上;②△PF1F2的内切圆的圆心必在直线x=2上;③△PF1F2的内切圆的圆心必在直线OP上;④△PF1F2的内切圆必过(3,0).其中真命题的序号是__________________.14.给出如下五个结论:①若为钝角三角形,则②存在区间()使为减函数而<0③函数的图象关于点成中心对称④既有最大、最小值,又是偶函数⑤最小正周期为π其中正确结论的序号是 .二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的15. 设等差数列{a n }的前n 项和为S n ,若S 8=32,则a 2+a 7=( )A.1B.4C.8D.916. 已知向量a ,b 的夹角为3π,||1a = ,且对任意实数x ,不等式||||a xb a b +≥+恒成立,则 ||b 的取值范围是( )A.1[,)2+∞B.1(,)2+∞ C.[1,)+∞ D.(1,)+∞17.已知展开式的二项式系数的最大值为a ,系数的最大值为b ,则A .B .C .D .18.已知,若在上恒成立,则实数的取值范围是( ) A. B.C.D.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.19.(本小题满分14分)如图4,在边长为的菱形中,,点,分别是边,的中点,,沿将△翻折到△,连接,得到如图5的五棱锥,且. (1)求证:平面; (2)求二面角的正切值.20.(15分)(2015•嘉兴一模)设二次函数f(x)=ax2+bx+c(a,b∈R)满足条件:①当x∈R 时,f(x)的最大值为0,且f(x﹣1)=f(3﹣x)成立;②二次函数f(x)的图象与直线y=﹣2交于A、B两点,且|AB|=4(Ⅰ)求f(x)的解析式;(Ⅱ)求最小的实数n(n<﹣1),使得存在实数t,只要当x∈[n,﹣1]时,就有f(x+t)≥2x成立.21.(本小题满分12分)如图,已知四棱锥的底面为菱形,.(1)求证:;(II)求二面角的余弦值.22已知直线l:y=kx+1(k≠0)与椭圆3x2+y2=a相交于A、B两个不同的点,记l与y轴的交点为C.(Ⅰ)若k=1,且|AB|=,求实数a的值;(Ⅱ)若=2,求△AOB面积的最大值,及此时椭圆的方程.23.(本小题满分12分)已知函数( I)判断函数g(x)的单调性;(Ⅱ)是否存在实数m,使得对任意x≥1恒成立,若存在,求出实数m的取值范围;若不存在,请说明理由.2015高考预测金卷(上海卷)数学理word版参考答案1.{3,4}解:∵A={1,3,4},B={3,4,5},∴则A∩B={3,4}2.4﹣3i3.164.5.6.7.8.9.1110.64 311.12.13.①④14.③④15.c16.C17.A18.D19.(1)证明见解析;(2).试题分析:(1)由,,可证平面,进而可证平面;(2)先建立空间直角坐标系,再计算平面和平面的法向量,进而可算出二面角的平面角的余弦值,利用同角三角函数的基本关系,即可得二面角的平面角的正弦值.试题解析:(1)证明:∵点,分别是边,的中点,∴∥. …………………………1分∵菱形的对角线互相垂直,∴.∴.∴,. …………………………2分∵平面,平面,,∴平面. …………………………3分∴平面. …………………………4分(2)解法1:设,连接,∵,∴△为等边三角形.∴,,,. ……5分在R t△中,,在△中,,∴. …………………………6分∵,,平面,平面,∴平面. …………………………7分过作,垂足为,连接,由(1)知平面,且平面,∴.∵,平面,平面,∴平面. …………………………8分∵平面,∴. …………………………9分∴为二面角的平面角. …………………………10分在Rt△中,,在Rt△和Rt△中,,∴Rt△~Rt△. …………………………11分∴.∴. …………………………12分在Rt△中,. ……………………13分∴二面角的正切值为. …………………………14分解法2:设,连接,∵,∴△为等边三角形.∴,,,.………………………5分在R t△中,,在△中,,∴. …………………………6分∵,,平面,平面,∴平面. …………………………7分以为原点,所在直线为轴,所在直线为轴,所在直线为轴,建立空间直角坐标系,则,,,.…………8分∴,.设平面的法向量为,由,,得……9分令,得,.∴平面的一个法向量为. …………………………10分由(1)知平面的一个法向量为,……………………11分设二面角的平面角为,则.………………………12分∴,.………………………13分∴二面角的正切值为. …………………………14分考点:1、线面垂直;2、二面角;3、空间向量及坐标运算;4、同角三角函数的基本关系.20.【考点】:二次函数的性质;函数恒成立问题.【专题】:函数的性质及应用.【分析】:(Ⅰ)根据题意可假设f(x)=a(x﹣1)2.(a<0),令a(x﹣1)2=﹣2,x=1,求解即可得出解析式.(Ⅱ)利用不等式解得﹣t﹣1≤x,又f(x+t)≥2x在x∈[n,﹣1]时恒成立,转化为令g(t)=﹣t﹣1﹣2,易知g(t)=﹣t﹣1﹣2单调递减,所以,g(t)≥g(4)=﹣9,得出n能取到的最小实数为﹣9.解:(Ⅰ)由f(x﹣1)=f(3﹣x)可知函数f(x)的对称轴为x=1,由f(x)的最大值为0,可假设f(x)=a(x﹣1)2.(a<0)令a(x﹣1)2=﹣2,x=1,则易知2=4,a=﹣.所以,f(x)=﹣(x﹣1)2.(Ⅱ)由f(x+t)≥2x可得,(x﹣1+t)2≥2x,即x2+2(t+1)x+(t﹣1)2≤0,解得﹣t﹣1≤x,又f(x+t)≥2x在x∈[n,﹣1]时恒成立,可得由(2)得0≤t≤4.令g(t)=﹣t﹣1﹣2,易知g(t)=﹣t﹣1﹣2单调递减,所以,g(t)≥g(4)=﹣9,由于只需存在实数,故n≥﹣9,则n能取到的最小实数为﹣9.此时,存在实数t=4,只要当x∈[n,﹣1]时,就有f(x+t)≥2x成立.【点评】:本题考查了函数的解析式的求解,方程组求解问题,分类讨论求解,属于中档题.21.22.【考点】:椭圆的简单性质.【专题】:圆锥曲线中的最值与范围问题.【分析】:(Ⅰ)若k=1,联立直线和椭圆方程,结合相交弦的弦长公式以及|AB|=,即可求实数a的值;(Ⅱ)根据=2关系,结合一元二次方程根与系数之间的关系,以及基本不等式进行求解即可.解:设A(x1,y1),B(x2,y2),(Ⅰ)由得4x2+2x+1﹣a=0,则x1+x2=,x1x2=,则|AB|==,解得a=2.(Ⅱ)由,得(3+k2)x2+2kx+1﹣a=0,则x1+x2=﹣,x1x2=,由=2得(﹣x1,1﹣y1)=2(x2,y2﹣1),解得x1=﹣2x2,代入上式得:x1+x2=﹣x2=﹣,则x2=,==,当且仅当k2=3时取等号,此时x2=,x1x2=﹣2x22=﹣2×,又x1x2==,则=,解得a=5.所以,△AOB面积的最大值为,此时椭圆的方程为3x2+y2=5.【点评】:本题主要考查椭圆方程的求解,利用直线方程和椭圆方程构造方程组,转化为根与系数之间的关系是解决本题的关键.23.。
上海市2015年高考数学考前预测卷(二)理科考生注意:1. 本试卷共5页,23道试题,满分150分. 考试时间120分钟.2. 本考试分设试卷和答题纸. 试卷包括试题与答题要求. 作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3. 答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对 后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.一、填空题(本大题共有14题,满分56分)只要求直接填写结果,每个空格填对得4分,否则一律得零分. 1. 已知集合A ={}1,1,3-,B=}2,a ,且B A ⊆,则实数a 的值是 .2. 现从甲、乙、丙3人中随机选派2人参加某项活动,则甲被选中的概率为 .3. 函数x x y 2cos 2sin +=的递增区间为 .4. 已知向量(5,3)a =-,(2,)b x =,若向量a 、b 互相平行,则x = .5. 若一组样本数据2,3,7,8,a 的平均数为5,则该组数据的方差s 2= .6. 若函数()8xf x =的图像经过点1()3a ,,则1(2)f a -+= .7. 123101011111111111392733C C C C -+-+--+ 除以5的余数是 .8. 关于x 的方程组(1)21y q x y qx =-+⎧⎪⎨=-⎪⎩有唯一的一组实数解,则实数q 的值为____________. 9. 设随机变量ξ的概率分布为n nk P k,5)(==ξ为常数,1,2,3,k =,则=n .10. 将函数x x f lg )(=的图象向左平移1个单位,再将位于x 轴下方的图象沿x 轴翻折得到函数()x g 的图象,若实数()n m n m <,满足),21()(++-=n n g m g 2lg 4)21610(=++n m g 则n m -的值是__________.11. 已知b ,c∈R ,若关于的不等式204x bx c ≤++≤的解集为1234234312[,][,],(),(2)(2)x x x x x x x x x x <-=-则的最小值是 .12. 二维空间中圆的二维度(面积)2r S π=,一维测度(周长)r l π2=; 三维空间中球的三维测度(体积)334r V π=,二维测度(表面积)24r S π=.若四维空间中“超球”的四维测度42r W π=,请根据上述规律,猜想“超球”的三维测度(体积)=V .13. 已知定义在R 上的函数()f x 是奇函数且满足3()(),(2)52f x f x f -=-=,数列{a n }满足a 1=-1,且21n n S an n=⨯+(其中S n 为数列{a n }的前n 项和),则67()()f a f a += . 14. 如图,在边长为3的正方形ABCD 中,点M 在AD 上,正方形ABCD 以AD 为轴逆时针旋 转θ角)3π(0≤≤θ到11AB C D 的位置 ,同时点M 沿着AD 从点A 运动到点D ,11MN DC =, 点Q 在1MN 上,在运动过程中点Q 始终满足QM 1cos =θ,记点Q 在面ABCD 上的射影为0Q ,则在运动过程中向量0BQ 与BM 夹角α的正切的最大值为 .二、选择题(本大题共有4题,满分20分) 每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 5分,否则一律得零分.15. 某商品的广告词为“幸福的人们都拥有”,初听起来,这似乎只是普通的赞美说辞,然而它的实际效果很大.这句话的等价命题是 ( ) A. 不拥有的人们不一定幸福 B. 不拥有的人们可能幸福 C. 拥有的人们不一定幸福 D. 不拥有的人们不幸福16. 方程0432=-+z z 在复平面内所表示的图形是 ( ) A. 一个圆 B. 两个圆 C. 两条直线 D. 两个点17.设等差数列{}n a 的前n 项和为n S ,在同一个坐标系中,()n a f n =及()n S g n =的部分图象如图所示,则 ( )A. 当3n =时,n S 取得最大值B. 当4n =时,n S 取得最大值C. 当3n =时,n S 取得最小值D. 当4n =时,n S 取得最小值18. 用a 代表红球,b 代表蓝球,c 代表黑球,由加法原理及乘法原理,从1个红球和1个篮球中取出若干个球的所有取法可由()()b a ++11的展开式ab b a +++1表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球,面“ab ”用表示把红球和篮球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的篮球都取出或都不取出的所有取法的是 ( )A. ()()()555432111c b a a a a a +++++++ B. ()()()554325111c b b b b b a +++++++C. ()()()554325111c b b b b b a +++++++ D. ()()()543255111c c c c c b a +++++++三、解答题(本大题共有5题,满分74分)解答下列各题必须写出必要的步骤. 19.(本小题满分12分,第1小题满分6分,第2小题满分6分)已知圆柱的底面半径为r ,上底面圆心为O ,正六边形ABCDEF 内接于下底面圆1O , OA 与底面所成角为60,(1) 试用r 表示圆柱的表面积S ;(2) 若圆柱体积为π9,若P 为线段BC 的点,求点P 到平面OEF 的距离.20.(本小题满分14分,第1小题满分6分,第2小题满分8分)攀岩运动是一项刺激而危险的运动,如图(1)在某次攀岩活动中,两名运动员在如图所在位置,为确保运动员的安全,地面救援者应时刻注意两人离地面的距离,以备发生危险时进行及时救援.为了方便测量和计算,现如图(2) A ,C 分别为两名攀岩者所在位置,B 为山的拐角处,且斜坡AB 的坡角为θ,D 为山脚,某人在E 处测得A ,B ,C 的仰角分别为α,β,γ,α=ED ,求:(1) BD 间的距离及CD 间的距离; (2) 在A 处攀岩者距地面的距离h .图(1) 图(2)21.(本小题满分14分,第1小题满分6分,第2小题满分8分)利用自然对数的底数e (271828=.e …)构建三个基本初等函数ln (0)x ey e y x y x x===>,,. 探究发现,它们具有以下结论:三个函数的图像形成的图形(如图)具有“对称美”;图形中阴影区A 的面积为1等.M N ,是函数图像的交点.(1) 根据图形回答下列问题: ①写出图形的一条对称轴方程; ②直接写出阴影区B 的面积; ③写出M N ,的坐标. (2) 设()ln xe f x e x x=-+, 证明:对任意的正实数12x x ,,都有1212()()()22f x f x x xf ++≥.22.(本小题满分16分,第1小题满分2分,第2小题满分6分,第3小题满分8分)设向量12(,),a a =a 12(,)b b =b ,定义一种向量积12121122(,)(,)(,)a a b b a b a b ⊗=⊗=a b . 已知向量1(2,)2=m ,(,0)3π=n ,点),(00y x P 为x y sin =的图象上的动点,点),(y x Q 为)(x f y =的图象上的动点,且满足OQ OP =⊗+m n (其中O 为坐标原点). (1) 请用0x 表示OP ⊗m ;(2) 求)(x f y =的表达式并求它的周期;(3) 把函数)(x f y =图象上各点的横坐标缩小为原来的14倍(纵坐标不变),得到函数)(x g y =的图象.设函数=)(x h t x g -)(()t ∈R ,试讨论函数)(x h 在区间[0,]2π内的零点个数.23.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)如果项数均为n ()2,n n *≥∈N的两个数列{}na ,{}nb 满足),,,2,1(n k k b ak k==-且集合}2,,3,2,1{},,,,,,,{2121n b b b a a a n n =,则称数列}{},{n n b a 是一对 “n 项相关数列”. (1) 设}{},{n n b a 是一对“4项相关数列”,求1234a a a a +++和1234b b b b +++的值,并写出一对“4项相关数列” }{},{n n b a ;(2) 是否存在 “15项相关数列” }{},{n n b a ?若存在,试写出一对}{},{n n b a ;若不存在,请说明理由;(3) 对于确定的n ,若存在“n 项相关数列”,试证明符合条件的“n 项相关数列”有偶数对.。
2015年高考模拟考试名校命题研究专家预测数学(文科)试题时间120分钟 满分150分 2015.5 一.选择题(每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.)1、设集合{}062≤-+=x x x A ,集合B 为函数11-=x y 的定义域,则=B A( )A. B. C. D.2、若复数z 满足i iz 42+=,则在复平面内z 对应的点的坐标是( )A .()4,2B .()4,2-C .()2,4-D .()2,43、一枚质地均匀的正方体骰子,六个面上分别刻着一点至六点.甲乙两人各掷骰子一次,则甲掷骰子向上的点数大于乙的概率为( )A .29B .14C .512D .124、变量x 、y 满足条件⎪⎩⎪⎨⎧->≤≤+-1101x y y x ,则22)2(y x +-的最小值为( )A .223 B .5 C .29 D .55、将函数sin()()6y x x R π=+∈的图象上所有的点向左平移4π个单位长度,再把图象上各点的横坐标扩大到原来的2倍,则所得的图象的解析式为( )A .5sin(2)()12y x x R π=+∈ B .5sin()()212x y x R π=+∈C .sin()()212x y x R π=-∈D .5sin()()224x y x R π=+∈6、某校通过随机询问100名性别不同的学生是否能做到“光盘”行动,得到如下联表:确的是( )A .在犯错误的概率不超过1%的前提下,认为“该校学生能否做到‘光盘’与性别无关”B .有99%以上的把握认为“该校学生能否做到‘光盘’与性别有关”C .在犯错误的概率不超过10%的前提下,认为“该校学生能否做到‘光盘’与性别有关”D .有90%以上的把握认为“该校学生能否做到‘光盘’与性别无关”7、已知向量(sin 2)θ=-,a ,(1cos )θ=,b ,且⊥a b ,则2sin 2cos θθ+的值为 A .1 B .2 C .12D .38、如图所示程序框图中,输出=S ( ) A.45 B. 55- C. 66- D. 669、某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是( )A .2B .29C .23D .310、下图可能是下列哪个函数的图象( )第8题图第10题图 第9题图A .221xy x =-- B .2sin 41x x xy =+C .2(2)xy x x e =- D .ln x y x=11、已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为12F F 、,这两条曲线在第一象限的交点为P ,12PF F ∆是以1PF 为底边的等腰三角形。
P ABC DE浦东新区2014学年度第一学期期末质量测试高三数学 2015.1注意:1. 答卷前,考生务必在答题纸上指定位置将学校、姓名、考号填写清楚. 2. 本试卷共有32道试题,满分150分,考试时间130分钟.一、填空题(本大题共有12题,满分36分)只要求直接填写结果,每个空格填对得3分,否则一律得零分. 1.不等式21x>的解为 .2.已知复数z 满足2)1(=+i z (i 为虚数单位),则z = .3.关于,x y 的方程22240x y x y m ++-+=表示圆,则实数m 的取值范围是 . 4.函数sin 3cos y x x =-的最大值为 . 5.若0lim=∞→n n x ,则实数x 的取值范围是 .6.已知一个关于y x ,的二元线性方程组的增广矩阵是⎪⎪⎭⎫⎝⎛-210211,则y x += . 7.双曲线1322=-y x 的两条渐近线的夹角为 . 8.已知1()y f x -=是函数3()f x x a =+的反函数,且1(2)1f -=,则实数a = . 9.二项式4)2(x x +的展开式中,含3x 项系数为 .10.定义在R 上的偶函数()y f x =,在),0[+∞上单调递增,则不等式 )3()12(f x f <-的解是 .11.如图,已知⊥PA 平面ABC ,AB AC ⊥,BC AP =,︒=∠30CBA ,D 、E分别是BC 、AP 的中点. 则异面直线AC 与DE 所成角的大小为 . 12.若直线l 的方程为0=++c by ax (b a ,不同时为零),则下列命题正确的是 . (1)以方程0=++c by ax 的解为坐标的点都在直线l 上;(2)方程0=++c by ax 可以表示平面坐标系中的任意一条直线; (3)直线l 的一个法向量为),(b a ;(4)直线l 的倾斜角为arctan()ab-.二、选择题(本大题共有12题,满分36分)每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 3分,否则一律得零分.13.设椭圆的一个焦点为)0,3(,且b a 2=,则椭圆的标准方程为 ( )()A 1422=+y x ()B 1222=+y x ()C 1422=+x y ()D 1222=+x y 14.用1,2,3,4、5组成没有重复数字的三位数,其中是奇数的概率为 ( )()A15()B25 ()C 35()D4515.下列四个命题中,为真命题的是 ( )()A 若a b >,则22ac bc > ()B 若a b >,c d >则a c b d ->-()C 若a b >,则22a b > ()D 若a b >,则11a b<16.某校共有高一、高二、高三学生共有1290人,其中高一480人,高二比高三多30人。
上海市浦东新区2015届高考数 学三模试卷(文科)一、填空题:(本大题满分56分,每小题4分)本大题共有14小题,考生应在答题纸相应的 编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. (4 分)若集合 A={x|1 < x w 3},集合 B={x|x V 2},则 A A B=.22. (4分)函数f (x ) =x , (x V- 2)的反函数是.3. (4分)过点(1, 0)且与直线2x+y=0垂直的直线的方程.4. (4分)已知数列{a n }为等比数列,前n 项和为S,且a 5=2S+3, a 6=2S+3,则此数列的公比 q=.5. (4分)如果复数z 满足|z+i|+|z- i|=2 (i 是虚数单位),则|z|的最大值为.6. (4分)函数y=cos 2x 的单调增区间为.4 2 k7. (4分)三阶行列式 -3 5 4 第2行第1列元素的代数余子式为-10,则k=.-1 1 -2I 2& (4分)设F 1、F 2是双曲线x 2-二=1的两个焦点,P 是双曲线上的一点,且 3|PF 1|=4|PF 2| ,24则厶PF 1F 2的周长.10. ( 4分)从3名男生和4名女生中选出4人组成一个学习小组.若这 4人中必须男女生都 有的概率为.12. ( 4分)若也,|b|, c 均为平面单位向量,且9. (4分)设A B 、C 、D 是球面上的四个点,且在同平面内, AB=BC=CD=DA=1球心到该平面的距离是球半径的「咅,则球的体积是.11. ( 4分)数列{a n }中,且a 1=2,则数列{a n }前2015项的积等于.F Ls+y- SCO13. ( 4分)已知P ( x ,y )满足约束条件< x - y- 1<Q , O 为坐标原点,A ( 3,4),则|6?|?cos / AOP 的最大值是.14. ( 4分)记符号 m i n {c i , C 2,…,c n }表示集合{c 1, C 2,…,c n }中最小的数.已知无穷项的正整数数列{a n }满足 a i < a i+i , (i € N ),令 b k =min {n|a n >k }, (k € N ),若 b k =2k - 1,则数列{a n } 前100项的和为.二、选择题(本大题共有 4题,满分20分)每小题都给出四个选项,其中有且只有一个选项 是正确的,选对得 5分,否则一律得零分•直线 a 1X+b 1y=C 1, a 2x+b 2y=c 2不平行16. ( 5分)用符号(X]表示不小于x 的最小整数,如(n ]=4 , (- 1.2]= - 1 .则方程(x]- x=:在(1 , 4)上实数解的个数为()2A. 0 B . 1 C. 2 D. 317.( 5分)已知P 为椭圆二一+y 2=1的左顶点,如果存在过点M ( x o , 0) ( x o > 0)的直线交椭圆于A 、B 两点,使得S AAOB =2S ^AOP ,则X 。
浦东新区2014学年第二学期高三教学质量检测数学试卷(文科)注意:1. 答卷前,考生务必在答题纸上指定位置将姓名、学校、考号填写清楚. 2. 本试卷共有23道试题,满分150分,考试时间120分钟.一、填空题(本大题共有14题,满分56分);考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.不等式32x>的解为 3log 2x > .2.设i 是虚数单位,复数)1)(3(i i a -+是实数,则实数a = 3 .3.已知一个关于y x ,的二元一次方程组的增广矩阵为112012-⎛⎫⎪⎝⎭,则x y -= 2 .4.已知数列{}n a 的前n 项和n n S n +=2,则该数列的通项公式=n a n 2 .5.已知21nx x ⎛⎫- ⎪⎝⎭展开式中二项式系数之和为1024,则含2x 项的系数为 210 .6.已知直线0243=++y x 与圆()2221r y x =+-相切,则该圆的半径大小为 1 .7.已知,x y 满足⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+003232y x y x y x ,则x y +的最大值为 2 .8.若对任意R x ∈,不等式0sin 22sin 2<-+m x x 恒成立,则m 的取值范围是),21(+∞+.9.已知球的表面积为64π2cm ,用一个平面截球,使截面圆的半径为2cm ,则截面与球心的距离是.10.已知{},1,2,3,4,5,6a b ∈,直线1:210l x y --=,直线2:10l ax by +-=,则直线12l l ⊥的概率为112. 11.若函数223()4f x x x =+-的零点(),1,m a a a ∈+为整数.则所有满足条件a 的值为1或2-.12.若正项数列{}n a 是以q 为公比的等比数列,已知该数列的每一项k a 的值都大于从2k a +开始的各项和,则公比q 的取值范围是 1(0,)2. 13.已知等比数列{}n a 的首项1a ,公比q 是关于x 的方程22(2)0x x t -+-=的实数解,若数列{}n a 有且只有一个,则实数t 的取值集合为 {}2,3 .14.给定函数()f x 和()g x ,若存在实常数,k b ,使得函数()f x 和()g x 对其公共定义域D 上的任何实数x 分别满足()f x kx b ≥+和()g x kx b ≤+,则称直线:l y kx b =+为函数()f x 和()g x 的“隔离直线”. 给出下列四组函数;① x x g x f xsin )(,121)(=+=; ② x x g x x f 1)(,)(3-==; ③ x x g x x x f lg )(,1)(=+=; ④ x x g x f x=-=)(,212)(其中函数()f x 和()g x 存在“隔离直线”的序号是 ①③④ .二、选择题(本大题共有4题,满分20分); 每小题都给出四个选项,其中有且只有一个选项是正确的,考生应在答题纸相应位置上,选对得 5分,否则一律得零分. 15.已知,a b 都是实数,那么“0a b <<”是“11a b>”的 ( A ) )(A 充分不必要条件 )(B 必要不充分条件)(C 充分必要条件 )(D 既不充分也不必要条件16.平面α上存在不同的三点到平面β的距离相等且不为零,则平面α与平面β的位置关系为 ( D ))(A 平行 )(B 相交 )(C 平行或重合 )(D 平行或相交 17.若直线30ax by +-=与圆223x y +=没有公共点,设点P 的坐标(,)a b ,则过点P 的一条直线与椭圆22143x y +=的公共点的个数为 ( C ))(A 0 )(B 1 )(C 2)(D 1或218.如图,由四个边长为1的等边三角形拼成一个边长为2的等边三角形,各顶点依次为6321,,,,A A A A ,则j i A A A A ⋅21,(}6,,3,2,1{, ∈j i )的值组成的集合为 ( D ))(A {}21012、、、、--)(B ⎭⎬⎫⎩⎨⎧---212102112、、、、、、)(C ⎭⎬⎫⎩⎨⎧---23121021123、、、、、、 )(D ⎭⎬⎫⎩⎨⎧----2231210211232、、、、、、、、 三、解答题(本大题共有5题,满分74分);解答下列各题必须在答题纸的相应位置上,写出必要的步骤.19.(本题共有2个小题,满分12分);第(1)小题满分6分,第(2)小题满分6分. 已知函数(),(0),af x x x a x=+>为实数. (1)当1a =-时,判断函数()y f x =在()1,+∞上的单调性,并加以证明; (2)根据实数a 的不同取值,讨论函数()y f x =的最小值. 解:(1)由条件:1()f x x x=-在()1,+∞上单调递增.…………………………2分 任取()12,1,x x ∈+∞且12x x <1212121212111()()()(1)f x f x x x x x x x x x -=--+=-+ ……………………4分 211x x >>,∴121210,10x x x x -<+>∴ 12()()f x f x < ∴ 结论成立 …………………………………………6分 (2)当0a =时,()y f x =的最小值不存在; …………………………………7分当0a <时,()y f x =的最小值为0;………………………………………9分当0a >时,()ay f x x x==+≥x =A 1 A 5A 3A 4 A 6A 2()y f x =的最小值为12分20.(本题共有2个小题,满分14分);第(1)小题满分7分,第(2)小题满分7分. 如图,在四棱锥ABCD P -中,底面ABCD 为边长为2的正方形,⊥PA 底面ABCD , 2=PA . (1)求异面直线PC 与BD 所成角的大小; (2)求点A 到平面PBD 的距离.解:(1)联结AC 与BD 交于点M ,取PA 的中点N ,联结MN ,则CP MN //,所以NMB ∠为异面直线PC 与BD 所成角或补角.……………………2分在BMN ∆中,由已知条件得,5=BN ,2=BM ,3=MN ,……………………5分所以222MN BM BN +=,2π=∠BMN ,所以异面直PC与BD 所成角为2π.…………………………………7分 (或用线面垂直求异面直线PC 与BD 所成角的大小) (2)设点A 到平面PBD 的距离为h ,因为ABD P PBD A V V --=,…………………………9分所以,11113232BD PM h BC CD PA ⨯⋅⋅=⨯⋅⋅,得332=h .(或在MAN Rt ∆中求解)………14分PABDNPABCDM21.(本题共有2个小题,满分14分);第(1)小题满分6分,第(2)小题满分8分.一颗人造地球卫星在地球表面上空沿着圆形轨道匀速运行,每2将地球近似为一个球体,半径为6370道所在圆的圆心与地球球心重合.点整通过卫星跟踪站A 点的正上空A ',通过C 点.间忽略不计)(1)求人造卫星在12:03(2)求此时天线方向AC 解:(1)设人造卫星在12:03时位于C 在ACO ∆中,222=6370+8000-2AC 1977.803AC ≈ 即在下午12:03(2)设此时天线的瞄准方向与水平线的夹角为ϕ,则90CAO ϕ∠=+︒,sin9sin(90)19788000ϕ︒+︒=,8000sin(90)sin90.63271978ϕ+︒=︒≈,…………………9分即cos 0.6327ϕ≈,5045'ϕ≈︒,……………………………………………………11分 即此时天线瞄准的方向与水平线的夹角约为5045'︒.………………………………12分 22.(本题共有3个小题,满分16分);第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分.已知直线l 与圆锥曲线C 相交于,A B 两点,与x 轴、y 轴分别交于D 、E 两点,且满足1λ=、2λ=.(1)已知直线l 的方程为42-=x y ,抛物线C 的方程为x y 42=,求21λλ+的值;(2)已知直线l :1+=my x (1>m ),椭圆C :1222=+y x ,求2111λλ+的取值范围;(3)已知双曲线C :1322=-y x ,621=+λλ,求点D 的坐标. 解:(1)将42-=x y ,代入x y 42=,求得点()2,1-A ,()4,4B ,又因为()0,2D ,()4,0-E ,……………………………………………………2分由1λ= 得到,()()2,12,11λ=()112,λλ=,11=λ,同理由2λ=得,22-=λ.所以21λλ+=1-.………………………4分 (2)联立方程组:⎩⎨⎧=-++=022122y x my x 得()012222=-++my y m ,21,22221221+-=+-=+m y y m m y y ,又点()⎪⎭⎫ ⎝⎛-m E D 1,0,0,1, 由AD EA 1λ= 得到1111y m y λ-=+,⎪⎪⎭⎫ ⎝⎛+-=11111y m λ, 同理由2λ= 得到2221y m y λ-=+,⎪⎪⎭⎫ ⎝⎛+-=22111y m λ, 21λλ+=4212)(122121-=⎪⎭⎫ ⎝⎛⋅+-=⎪⎪⎭⎫ ⎝⎛++-m m y y y y m ,即21λλ+4-=,…6分 2121411λλλλ-=+12144λλ+=()42421-+=λ, ………………………………8分因为1>m ,所以点A 在椭圆上位于第三象限的部分上运动,由分点的性质可知()0,221-∈λ,所以()2,1121-∞-∈+λλ.………………………………10分 (3)直线l 的方程为t my x +=,代入方程1322=-y x 得到:()()0323222=-++-t mty y m . 33,322221221---=--=+m t y y m mty y ,3211221--=+t mty y (1)而由1λ=、2λ=得到:⎪⎪⎭⎫⎝⎛++=+-2121112)(y y m t λλ (2) 621=+λλ (3) …………………………………………………………………12分由(1)(2)(3)得到:63222-=⎪⎭⎫⎝⎛--+t mt m t ,2±=t ,所以点)0,2(±D ,………………………………………………………………14分当直线l 与x 轴重合时,a t a +-=1λ,a t a -=2λ或者a t a -=1λ,at a+-=2λ,都有6222221=-=+a t a λλ也满足要求, 所以在x 轴上存在定点)0,2(±D .……………………………………………16分23.(本题共有3个小题,满分18分);第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.记无穷数列{}n a 的前n 项12,,,n a a a 的最大项为n A ,第n 项之后的各项12,,n n a a ++的最小项为n B ,令n n n b A B =-.(1)若数列{}n a 的通项公式为221n a n n =-+,写出12b b 、,并求数列{}n b 的通项公式;(2)若数列{}n a 递增,且{}1n n a a +-是等差数列,求证:{}n b 为等差数列;(3)若数列{}n b 的通项公式为12n b n =-,判断{}1n n a a +-是否等差数列,若是,求出公差;若不是,请说明理由.解:因为数列{}n a 单调递增,1232,7,16a a a ===,所以1275b =-=-;27169b =-=-;……………………………………2分当3n ≥时,141n n n b a a n +=-=--数列{}n b 的通项公式141n n n b a a n +=-=-- ………………………………4分 (2)数列{}n a 递增,即123n a a a a <<<<<,令数列{}1n n a a +-公差为d '1112,n n n n n n n n b A B a a b a a ++++=-=-=-…………………………………6分 1121()()n n n n n n b b a a a a ++++-=---[]211()()n n n n a a a a d +++'=----=-所以{}n b 为等差数列.………………………………………………………10分 (3)数列{}n b 的通项公式为12n b n =-,∴n b 递减且0n b <.…………12分 由定义知,1,n n n n A a B a +≥≤………………………………………………14分 10n n n n n b A B a a +>=-≥-∴1n n a a +>,数列{}n a 递增,即121n n a a a a +<<<<<…………16分()()21112111()()()()()12122n n n n n n n n n n n n a a a a a a a a b b b b n n ++++++++---=--+-=-+=--=-----=⎡⎤⎣⎦………………18分。
上海市2015年高考数学考前预测卷(四)理科本试卷共有23道试题,满分150分.考试时间120分钟.一、填空题(本大题共有14题,满分56分)只要求直接填写结果,每个空格填对得4分,否则一律得零分. 1. 函数3)(x x f =的反函数是 . 2. 复数2i12i z -=+,则||z = . 3. 行列式965643321的元素1的代数余子式的值为 .4. 函数()sin 2f x x x =的最小正周期是 .5. 甲、乙两位同学下棋,若甲获胜的概率为0.2,甲、乙下和棋的概率为0.5,则乙获胜的 概率为 .6. 已知点(1,3)A ,(4,1)B -,则与向量方向相同的单位向量的坐标为 .7. 圆锥的底面半径为3,高为1,则圆锥的侧面积为 .8. 设12,F F 为双曲线C :2221(0)16x y a a -=>的左、右焦点,点P 为双曲线C 上一点,如果 12||||4PF PF -=,那么双曲线C 的方程为 .9. 已知函数2x ay +=的图象关于y 轴对称,则实数a 的值是 .10.设直线02)2()1(=-+++y k x k 与两坐标轴围成的三角形面积为k S ,则=+++1021...S S S .11. 已知二次项展开式55443322151)1(x b x b x b x b x b bx +++++=+,集合{}10,32,40,80=B ,若)5,4,3,2,1(B b i ∈,则=b .12. 已知曲线1C 的参数方程是⎩⎨⎧+==a t y t x ,(t 为参数,a 为实数常数),曲线2C 的参数方程是⎩⎨⎧+-=-=b t y t x ,(t 为参数,b 为实数常数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线3C 的极坐标方程是1=ρ. 若1C 与2C 分曲线3C 所成长度相等的四段弧,则=+22b a .13. 如图所示,等边ABC ∆的边长为2,D 为AC 中点,且△ADE 也是等边 三角形,在△ADE 以点A 为中心向下转动到稳定位置的过程中,BD CE ⋅的 取值范围 .14. 已知直线1cos sin :=-a y a x l ,其中α为常数且)2,0[π∈.有以下结论:① 直线l 的倾斜角为α;② 无论α为何值,直线l 总与一定圆相切;③ 若直线l 与两坐标轴都相交,则与两坐标轴围成的三角形面积不小于1; ④ 若),(y x P 是直线l 上的任意一点,则122≥+y x .其中,正确的结论有 . (写出所有正确结论的序号)二、选择题(本大题共有4题,满分20分) 每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 5分,否则一律得零分.15. “021≥+-x x ”是“()()021≥+-x x ”的 答 [ ] )(A 充要条件 )(B 充分不必要条件 )(C 必要不充分条件 )(D 既不充分也不必要条件16. 某人根据自己的爱好,希望从{}Z Y X W ,,,中选2个不同的字母,从{}9,6,1,0中选3个不同数字编拟车牌号,要求前三位是数字,后两位是字母,且字母1不能排在首位,字母Z和数字1不能相邻,那么满足要求的车牌号有答 [ ])(A 198个 )(B 180个 )(C 216个 )(D 234个 17. 在ABC Rt ∆中,已知D 是斜边AB 上任意一点(如图①),沿直线CD 将ABC ∆折成二面角B-CD-A (如图②).若折叠后A ,B 两点间的距离为d ,则下列说法正确的是答 [ ])(A 当CD 为ABC Rt ∆的高线时,d 取得最小值)(B 当CD 为ABC Rt ∆的中线时,d 取得最小值 )(C 当CD 为ABC Rt ∆的角平分线时,d 取得最小值 )(D 当CD 为ABC Rt ∆的AB 边上移动时,d 为定值18. 已知椭圆221:132x y C +=的左右焦点为21F F ,直线1l 过点1F 且垂直于椭圆的长轴,动直线2l 垂直于直线1l 于点P ,线段2PF 的垂直平分线与2l 的交点的轨迹为曲线2C ,若()11221,2,(,),(,)A B x y C x y 是2C 上不同的点,且AB BC ⊥,则2y 的取值范围是答 [ ])(A ()[),610,-∞-+∞ )(B (][),610,-∞-+∞)(C ()(),610,-∞-+∞ )(D ()(,6]10,-∞-+∞三、解答题(本大题共有5题,满分74分)解答下列各题必须写出必要的步骤. 19. (本题满分12分) 本题共有2个小题,第1小题满分4分,第2小题满分8分.在ABC ∆中,c b a ,,分别是内角A ,B ,C 的对边,51cos 5=∠=ABC AB ,. (1) 若2=BC ,求ACB ∠sin 的值; (2) 若D 是边AC 中点,且27=BD ,求边AC 的长.20. (本题满分14分) 本题共有2个小题,第1小题满分5分,第2小题满分9分.已知函数)(x f 是定义在R 上的偶函数,且0≥x 时,1)21()(+-=x x f x. (1) 求)1(-f 的值;(2) 设)(x f 的值域为A ,函数a x a x x g +-+-=)1()(2的定义域为B .若A B ⊆,求实数a 的取值范围.21. (本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.某地拟模仿图(1)建造一座大型体育馆,其设计方案侧面的外轮廓线如图(2)所示:曲线AB 是以点E 为圆心的圆的一部分,其中(0,)E t (025t <≤,单位:米);曲线BC 是抛物线250(0)y ax a =-+>的一部分;CD AD ⊥,且CD 恰好等于圆E 的半径. 假定拟建体育馆的高50OB =米.(1) 若要求30CD =米,AD=求t 与a 值; (2) 若要求体育馆侧面的最大宽度DF 不超过75米, 求a 的取值范围.图(1)图(2)BCD A22. (本题满分16分) 本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分.设函数)(x f y =的定义域为D ,值域为B ,如果存在函数()x g t =,使得函数(())y f g t =的值域仍然是B ,那么,称函数()x g t =是函数)(x f y =的一个Γ变换.(1) 判断函数223,x t t t R =-+∈是不是()2,f x x b x R =+∈,的一个Γ变换?说明你的理由;(2) 设2()log f x x =的值域[1,3]B =,已知223()1mt t nx g t t -+==+是)(x f y =的一个Γ变换,且函数(())f g t 的定义域为R ,求实数,m n 的值;(3) 设函数)(x f y =的定义域为D ,值域为B ,函数()g t 的定义域为1D ,值域为1B ,写出()x g t =是)(x f y =的一个Γ变换的充分非必要条件(不必证明).23. (本题满分18分) 本题共有3个小题,第1小题满分3分,第2小题满分7分,第3小题满分8分.已知数列n a 满足)(...*221N n n a a a n ∈=+++.(1) 求数列n a 的通项公式;(2) 对任意给定的*N k ∈,是否存在)(,*r p k N r p <<∈使rp k a a a 1,1,1成等差数列?若存在,用k 分别表示p 和r (只要写出一组);若不存在,请说明理由;(3) 证明:存在无穷多个三边成等比数列且互不相似的三角形,其边长为1n a ,2n a ,3n a .。
2015年上海市高考数学试卷模拟卷(理科)一.填空题(本大题满分56分) 本大题共有14题,考生应在答题卷的相应编号的空格内直接填写结果,每题填对得4分,否则一律得零1.已知全集R U =,集合{}0542>--=x x x M ,{}1≥=x x N ,则)(N C M U ⋂= .2、如果αcos =51,且α是第四象限的角,那么αsin = . 3.不等式120010321x x x +-≥的解为 . 4.在二项式52)1(xx -的展开式中,x 的一次项系数为 .(用数字表示) 5.已知i z -=1(i 是虚数单位),计算=++i z zi||231_____(其中z 是z 的共轭复数). 6.若函数2()log f x x =,则方程112()2x f x --=的解x = .7.从一堆苹果中任取5只,称得它们的质量如下(单位:克):125,124,121,123,127.则该样本的标准差=s8.在极坐标系中,过圆6cos ρθ=的圆心,且垂直于极轴的直线的极坐标方程是 .9.执行右面的程序框图,如果输入的n 是4,则输出的P=____.10.某圆锥体的侧面展开图是半圆,当侧面积是32π时,则该圆锥体的体积是 .11.已知等差数列{}n a 中,,101=a 当且仅当5=n 时,前n 项和n S 取得最大值,则公差d 的范围是.___________12.在平面直角坐标系中,若O 为坐标原点,则A 、B 、C 三点在同一直线上的充要条件为存在惟一的实数λ,使得(1)OC OA OB λλ=⋅+-⋅成立,此时称实数λ为“向量OC 关于OA 和OB 的终点共线分解系数”.若已知1(3,1)P 、2(1,3)P -,且向量3OP 是直线:100l x y -+=的法向量,则“向量3OP 关于1OP 2OP 和的终点共线分解系数”为 .13.已知抛物线y x 32=上的两点A 、B 的横坐标恰是方程02=++q px x (,p q 是实数)的两个实根,则直线AB 的方程是 .14. 已知函数()f x 满足:①对任意(0,)x ∈+∞,恒有(2)2()f x f x =成立;②当(1,2]x ∈时,()2f x x =-.若()f a =)2020(f ,则满足条件的最小的正实数a 是二.选择题(本大题满分20分) 本大题共有4题,每题有且只有一个正确答案,考生应在答题卷的相应编号上,将代表答案的小方格涂黑,选对得4分,否则一律得零分.15.已知x a α≥:,1|1x β-<:|.若α是β的必要非充分条件,则实数a 的取值范围是 ( ) A .0a ≥. B .0a ≤. C .2a ≥. D .2a ≤.16.观察下列式子: ,474131211,3531211,23211222222<+++<++<+,可以猜想结论为( ) .(A)2221112n 1123n n ++++⋅⋅⋅+< (n N*)∈ (B) 2221112n 1123(n 1)n -+++⋅⋅⋅+<+(n N*)∈(C) 2221112n 1123(n 1)n 1++++⋅⋅⋅+<++(n N*)∈ (D) 2221112n 1123n n 1++++⋅⋅⋅+<+(n N*)∈17.已知数列{}n a ,对于任意的正整数n ,⎪⎩⎪⎨⎧≥⋅-≤≤=-)2010(.)31(2)20091(12009n n a n n ,,设n S 表 示数列{}n a 的前n 项和.下列关于n n S +∞→lim 的结论,正确的是( ).A .1lim -=+∞→n n SB .2008lim =+∞→n n SC .⎩⎨⎧≥-≤≤=+∞→)2010(.1)20091(2009lim n n S n n ,(*N n ∈) D .以上结论都不对18设函数2()()1||xf x x R x =∈+,区间[,]M a b =,()a b <,集合{|(),}N y y f x x M ==∈,则使M N =成立的实数对(),a b 有( ).(A)3对; (B)5对; (C)1对; (D)无数对.19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.在长方体1111ABCD A B C D -中,2AB BC ==,过1A 、1C 、B 三点的平面截去长方体的一个角后,得到如图所示的几何体111ABCD AC D -,且这个几何体的体积为10.(1)求棱1A A 的长;(2)求点D 到平面11A BC 的距离.20.(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.已知向量(sin ,cos )a x x =, (sin ,sin )b x x =, (1,0)c =-. (1)若3x π=,求向量a 、c 的夹角θ;(2)若3,84x ππ⎡⎤∈-⎢⎥⎣⎦,函数x f ⋅=λ)(的最大值为21,求实数λ的值.21.(本小题满分14分,第1小题满分7分,第2小题满分7分)一自来水厂用蓄水池通过管道向所管辖区域供水.某日凌晨,已知蓄水池有水9千吨,水厂计划在当日每小时向蓄水池注入水2千吨,且每x 小时通过管道向所管辖区域供水x 8千吨.(1)多少小时后,蓄水池存水量最少?(2)当蓄水池存水量少于3千吨时,供水就会出现紧张现象,那么当日出现这种情况的时间有多长?22. (本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分5分,第3小题满分7分.设椭圆)0(1:2222>>=+b a by a x C 的左、右焦点分别为21,F F ,上顶点为A ,过点A 与2AF 垂直的直线交x 轴负半轴于点Q ,且2221=+F F F .若过A 、Q 、2F 三点的圆恰好与直线033:=--y x l 相切. (1)求椭圆C 的方程;(2)设椭圆的右顶点为B ,过椭圆右焦点2F 作斜率为k 的直线l 与椭圆C 交于M 、N两点.ABCD1A 1C 1D①(理)当MBN ∆的面积为726时,求直线l(文)当1=k 时,求MBN ∆的面积;②(理)在x 轴上的点)0,(m P 与点N M ,构成以MN 取值范围.(文)试问:MBN ∆能否为锐角三角形?若能,请求出k 的范围;若不能,请说明理由.23.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分 .从数列{}n a 中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列{}n a 的一个子数列.设数列{}n a 是一个首项为1a 、公差为d (0)d ≠的无穷等差数列.(1)若1a ,2a ,5a 成等比数列,求其公比q .(2)若17a d =,从数列{}n a 中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为{}n a 的无穷等比子数列,请说明理由.(3)若11a =,从数列{}n a 中取出第1项、第m (2)m ≥项(设m a t =)作为一个等比数列的第1项、第2项,试问当且仅当t 为何值时,该数列为{}n a 的无穷等比子数列,请说明理由.。
浦东新区2015学年第二学期高三教学质量检测数学试卷(文理合卷)一、填空题1.已知全集U R =,若集合|01x A x x ⎧⎫=>⎨⎬-⎩⎭,则U C A = . 2.已知复数z 满足(1)2z i i ⋅-=,其中i 为虚数单位,则z = . 3.双曲线2226x y -=的焦距为 .4.已知61ax x ⎛⎫+ ⎪⎝⎭二项展开式中的第五项系数为152,则正实数a .5.方程22log (97)2log (31)x x+=++的解为 .6.已知函数311()=3x f x a x a +⎛⎫≠ ⎪+⎝⎭的图像与它的反函数的图像重合,则实数a 的值为 .7.在ABC ∆中,边,,a b c 所对角分别为,,A B C ,若sin 02cos a B b Aπ⎛⎫+ ⎪=⎝⎭,则ABC ∆的形状为 .8.(理)在极坐标系中,点(2,)2A π到直线cos()24πρθ+=的距离为________.(文)若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .9.(理)离散型随机变量ξ的概率分布列如图,若1E ξ=, 则D ξ的值为________.(文)设,x y 满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,则目标函数2z x y =+的最大值为_____.10.已知四面体ABCD 中,2==CD AB ,E ,F 分别为BC ,AD 的中点,且异面直线AB 与CD 所成的角为3π,则EF =________. 11.设,m n 分别为连续两次投掷骰子得到的点数,且向量(,)a m n =r ,(1,1)b =-r,则a r 与b r的夹角为锐角的概率是________.ξ0 12 P 0.2ab12. (理)已知数列{}n a 的通项公式为(1)2n n n a n =-⋅+,*n N ∈,则这个数列的前n 项和n S =___________.(文)已知数列{}n a 的通项公式为(1)2n n n a n =-⋅+,*n N ∈,则这个数列的前2n 项和2n S =___________.13.(理)任意实数,a b ,定义00ab ab a b a ab b≥⎧⎪⊗=⎨<⎪⎩,设函数2()log f x x x =⊗().数列{}n a 是公比大于0的等比数列,且61a =,1239101()()()()()2f a f a f a f a f a a +++++=L ,则1a =_______.(文)已知函数1()f x x x=-,数列{}n a 是公比大于0的等比数列,且61a =,1239101()()()()()f a f a f a f a f a a +++++=-L ,则1a =_______.14.(理)关于x 的方程11sin 211x x π=--在[]2016,2016-上解的个数是 .(文)关于x 的方程11sin 211x x π=--在[]6,6-上解的个数是 .二、选择题(本大题共有4题,满分20分); 每小题都给出四个选项,其中有且只有一个选项是正确的,考生应在答题纸相应位置上,选对得 5分,否则一律得零分. 15. “112x <<”是“不等式11x -<成立”的( ) (A )充分非必要条件. (B )必要非充分条件. (C )充要条件. (D )既非充分亦非必要条件. 16.给出下列命题,其中正确的命题为( )(A )若直线a 和b 共面,直线b 和c 共面,则a 和c 共面;(B )直线a 与平面α不垂直,则a 与平面α内的所有直线都不垂直; (C )直线a 与平面α不平行,则a 与平面α内的所有直线都不平行; (D )异面直线a 、b 不垂直,则过a 的任何平面与b 都不垂直.17.抛物线24y x =的焦点为F ,点(,)P x y 为该抛物线上的动点,又点(1,0)A -,则PF PA的最小值是( )(A )12(B)2(C)2 (D)318.已知平面直角坐标系中两个定点(3,2),(3,2)E F -,如果对于常数λ,在函数224,[4,4]y x x x =++--∈-的图像上有且只有6个不同的点P ,使得λ=⋅PF PE 成立,那么λ的取值范围是( )(A )95,5⎛⎫-- ⎪⎝⎭ (B )9,115⎛⎫- ⎪⎝⎭(C )9,15⎛⎫-- ⎪⎝⎭ (D )()5,11- 三、解答题(本大题共有5题,满分74分);解答下列各题必须在答题纸的相应位置上,写出必要的步骤.19.(本题满分12分,第(1)题6分,第(2)题6分)如图,在圆锥SO 中,AB 为底面圆O 的直径,点C 为»AB 的中点,SO AB =. (1)证明:AB ⊥平面SOC ;(2)若点D 为母线SC 的中点,求AD 与平面SOC 所成的角.(结果用反三角函数表示)20. (本题满分14分,第(1)题8分,第(2)题6分)如图,一智能扫地机器人在A 处发现位于它正西方向的B 处和北偏东︒30方向上的C 处分别有需要清扫的垃圾,红外线感应测量发现机器人到B 的距离比到C 的距离少0.4m ,于是选择沿C B A →→路线清扫.已知智能扫地机器人的直线行走速度为0.2m/s,忽略机器人吸入垃圾及在B 处旋转所用时间,10秒钟完成了清扫任务.(1)B 、C 两处垃圾的距离是多少?(精确到0.1) (2)智能扫地机器人此次清扫行走路线的夹角B ∠是多少?(用反三角函数表示)东北AC21.(理)(本题满分14分,第(1)题6分,第(2)题8分)数列{}n a 满足:112,2nn n a a a λ+==+⋅,且123,1,a a a +成等差数列,其中*n N ∈。
上海市浦东区2015年高考模拟名校命题研究专家预测数学试题(文理合卷)时间120分钟 满分150分 2015.5.20 一、填空题(每小题4分,共56分)1.函数0(2)()lg(3)1x f x x x -=-++的定义域是 .2.函数22log (1)y x =-的单调递减区间是 .3.已知集合{}{}2|160,R ,|3,R A x x x B x x a x =-≤∈=-≤∈,若B A ⊆,则正实数a 的取值范围是 .4.若二次函数222(2)31y x m x m =+--+是定义域为R 的偶函数,则函数()2(1,R)m f x x mx x x =-+≤∈的反函数1()f x -= .5.已知角α的顶点与平面直角坐标系的原点重合,始边在x 轴的正半轴上,终边经过点()3,4P a a -(0,R)a a ≠∈,则cos 2α的值是 .6.在△ABC 中,内角A B C 、、所对的边分别为a b c 、、,且2222sin a b c bc A =+-,则 ∠A = .7.在等差数列{}n a 中,若8103,1a a =-=,9m a =,则正整数m = . 8.已知点(2,3)(1,4)A B --、,则直线AB 的点法向式方程是 .9.已知抛物线216y x =的焦点与双曲线2221(0)12x y a a -=>的一个焦点重合,则双曲线的渐近线方程是 .10.已知AB 是球O 的一条直径,点1O 是AB 上一点,若14OO =,平面α过点1O 且垂直AB ,截得圆1O ,当圆1O 的面积为9π时,则球O 的表面积是 .11.若二次函数()y f x =对一切R x ∈恒有2224()245x x f x x x -+≤≤-+成立,且(5)27f =,则(11)f = .12.(理科)在平面直角坐标系中,直线l :3,(R)32x t t t y t=+⎧∈⎨=-⎩是参数,,圆2c o s ,:22s i n x C y θθ=⎧⎨=+⎩([0,2)θθπ∈是参数, ,则圆心到直线的距离是 . 13.(理科)一个不透明的袋子里装有外形和质地完全一样的5个白球,3个红球,2个黄球,将它们充分混合后,摸得一个白球计2分,摸得一个红球记3分,摸得一个黄球计4分,若用随机变量ξ表示随机摸一个球的得分,则随机变量ξ的数学期望E ξ的值是 分.14.(理科)已知点(4,0)(2,2)B C 、,平面直角坐标系上的动点P 满足OP OB OC λμ=⋅+⋅(其中O 是坐标原点,且1,1a b λμ<≤<≤),若动点P 组成的区域的面积为8,则a b +的最小值是 .二、选择题(每小题4分,共20分)15.在空间中,下列命题正确的是 ( )A .若两直线a ,b 与直线l 所成的角相等,那么a ∥bB .空间不同的三点A BC 、、确定一个平面 C .如果直线l //平面α且l //平面β,那么βα//D .若直线a 与平面M 没有公共点,则直线a //平面M16.设实数1212,,,a a b b 均不为0,则“1122a b a b =成立”是“关于x 的不等式110a x b +>与220a x b +>的解集相同”的 ( ).A .充分非必要条件B .必要非充分条件C .充要条件D .非充分非必要条件17.若复数z 同时满足2i z z -=,i z z =,则z = (i 是虚数单位,z 是z 的共轭复数) ( ).A .1i -B .iC .1i --D . 1i -+18.已知数列{}n a 共有5项,满足123450a a a a a >>>>≥,且对任意(15)i j i j ≤≤≤、,有i j a a -仍是该数列的某一项,现给出下列4个命题: (1)50a =;(2)414a a =;(3)数列{}n a 是等差数列;(4)集合{}|,15i j A x x a a i j ==+≤≤≤中共有9个元素.则其中真命题的序号是 ( ).A .(1)、(2)、(3)、(4)B .(1)、(4)C .(2)、(3)D .(1)、(3)、(4)三、解答题(本大题满分74分).19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.在长方体1111ABCD A B C D -中,2AB BC ==,13AA =,过1A 、1C 、B 三点的平面截去长方体的一个角后,得到如下所示的几何体111ABCD AC D -.(理科)(1) 若11AC 的中点为1O ,求异面直线1BO 与11A D 所成角的大小(结果用反三角函数值表示);(2)求点D 到平面11A BC 的距离d .第1919题图20.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分.已知函数13g()sin 2cos 21R 22x x x x =-+∈,,函数()f x 与函数()g x 的图像关于原点对称.(1)求()y f x =的解析式;(2)(理科)求函数()f x 在[0]π,上的单调递增区间.ABCD 1A 1C 1D21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 有一块铁皮零件,其形状是由边长为40cm 的正方形截去一个三角形ABF 所得的五边形ABCDE ,其中12,10AF cm BF cm ==,如图所示.现在需要用这块材料截取矩形铁皮DMPN ,使得矩形相邻两边分别落在,CD DE 上,另一顶点P 落在边CB 或BA 边上.设DM x =cm ,矩形DMPN 的面积为y 2cm .(1)试求出矩形铁皮DMPN 的面积y 关于x 的函数解析式, 并写出定义域;(2)试问如何截取(即x 取何值时),可使得到的矩形DMPN 的面积最大?22.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分7分,第3小题满分8分.(理科)已知数列{}n a 满足112a =,对任意*N m p ∈、都有m p m p a a a +=⋅. (1)求数列{}n a (*N n ∈)的递推公式; (2)数列{}n b 满足131223(1)21212121n nn nb b b ba +=-+-++-++++(*N n ∈),求通项公式n b ;(3)设2n n n c b λ=+,问是否存在实数λ使得数列{}n c (*N n ∈)是单调递增数列?若存在,求出λ的取值范围;若不存在,请说明你的理由.23.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知点12(2,0)(2,0)F F -、,平面直角坐标系上的一个动点(,)P x y 满足12||+||=4PF PF .设动点P 的轨迹为曲线C .(1)求曲线C 的轨迹方程;(2)点M 是曲线C 上的任意一点,GH 为圆22:(3)1N x y -+=的任意一条直径,求MG MH ⋅的取值范围;(3)(理科)已知点A B 、是曲线C 上的两个动点,若OA OB ⊥(O 是坐标原点),试证明:直线AB 与某个定圆恒相切,并写出定圆的方程.数学试卷(文理合卷)参考答案一、填空题1.(3,)+ ; 8.7(2)3(3)0 7(1)3(4)0x y x y ++-=-++=也可以是;2.(,1)-?; 9.3y x =;3.(0,1] ; 10.100p ; 4.1()11(1)f x x x -=-- ; 11.153;5.725-; 12.(理科)755;(文科)143;6.4p ; 13.(理科)2.7;(文科)23;7.14 ; 14.(理科)4.(文科)2或32.二、选择题 15.D 16.B 17.D 18.A三、解答题19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分. (理科)解 (1)按如图所示建立空间直角坐标系.由题知,可得点D(0,0,0)、(2,2,0)B 、1(0,0,3)D 、1(2,0,3)A 、1(0,2,3)C .由1O 是11AC 中点,可得1(1,1,3)O . 于是,111(1,1,3),(2,0,0)BO A D =--=-. 设异面直线1BO 与11A D 所成的角为θ,则111111211c o s 11||||211BO A DBO A D θ⋅===.因此,异面直线1BO 与11A D 所成的角为11arccos11. (2)设(,,)n x y z =是平面ABD 的法向量.∴110,0.n BA n BC ⎧⋅=⎪⎨⋅=⎪⎩ 又11(0,2,3),(2,0,3)BA BC =-=-,A BC D1A 1C 1D xyz∴230,230.y z x z -+=⎧⎨-+=⎩ 取2z =,可得3,3,2.x y z =⎧⎪=⎨⎪=⎩即平面11BAC 的一个法向量是(3,3,2)n =. ∴||n DB d n ⋅=62211=.(文科)解(1) 2AB BC ==,13AA =,11111=2232231032ABCD A D C V V V -∴=-⨯⨯-⨯⨯⨯⨯=长方体三棱锥.左视图如右图所示. (2)依据题意,有11,A D AD AD BC ,即11A D BC .∴1C BC ∠就是异面直线1BC 与11A D 所成的角. 又1C C BC ⊥,∴113tan 2C C C BC BC ∠==. ∴异面直线1BC 与11A D 所成的角是3tan 2arc .20.(本题满分12分) 本题共有2个小题,第1小题满分5分,第2小题满分7分. 解(1)设点(,)x y 是函数()y f x =的图像上任意一点,由题意可知,点(,)x y --在()y g x =的图像上,于是有13sin(2)cos(2)1,22R y x x x -=---+∈. 所以,13()sin 2cos 2122f x x x =+-,R x ∈.(理科)(2)由(1)可知,13()sin 2cos 21sin(2)1,[0,]223f x x x x x ππ=+-=+-∈,记[0,]D π=.由222,Z 232k x k k πππππ-≤+≤+∈,解得5,1212Z k x k k ππππ-≤≤+∈,则函数()f x 在形如5[,],1212k k k Z ππππ-+∈的区间上单调递增. 结合定义域,可知上述区间中符合题意的整数k 只能是0和1. 令0k =得15[,]1212D ππ=-;1k =时,得1713[,]1212D ππ=.所以,1[0,]12D D π=,27[,]12D D ππ=.于是,函数()f x 在[0,]π上的单调递增区间是[0,]12π和7[,]12ππ.(文科)(2)由(1)可知,13()sin 2cos 21sin(2)1223f x x x x π=+-=+-.又[,]42x ππ∈-, 所以,42633x πππ-≤+≤.考察正弦函数sin y x =的图像,可知,3sin(2)123x π-≤+≤,[,]42x ππ∈-. 于是,31sin(2)1023x π--≤+-≤. 所以,当[,]42x ππ∈-时,函数()f x 的取值范围是23()02f x +-≤≤.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 解(1)依据题意并结合图形,可知:01 当点P 在线段CB 上,即030x <≤时,40y x =; 02 当点P 在线段BA 上,即3040x <≤时,由PQ BFQA FA=,得6485QA x =-.于是,26765y DM PM DM EQ x x =⋅=⋅=-.所以,240,030676.30405 < x x y x x x ≤⎧⎪=⎨-<≤⎪⎩ 定义域(0,40]D =. (2)由(1)知,当030x <≤时,01200y <≤;当3040x <≤时,2266953610361076()55333y x x x =-=--+≤,当且仅当953x =时,等号成立. 因此,y 的最大值为36103. 答:先在DE 上截取线段953DM cm =,然后过点M 作DE 的垂线交BA 于点P ,再过点P 作DE 的平行线交DC 于点N ,最后沿MP 与PN 截铁皮,所得矩形面积最大,最大面积为361032cm .22.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分7分,第3小题满分8分. (理科)解(1) 对任意*N m p ∈、都有m p m p a a a +=⋅成立,∴令,1m n p ==,得*11,N n n a a a n +=⋅∈.∴数列{}n a (*N n ∈)的递推公式是1*111,2, N .n na a a a n +⎧=⎪⎨⎪=⋅∈⎩(2)由(1)可知,数列{}n a (*N n ∈)是首项和公比都为12的等比数列,于是*1()2N n n a n =∈. 由131223(1)21212121n n n n b b b ba +=-+-++-++++(*N n ∈),得31121231(1)21212121n n n n b b b ba ---=-+-++-++++(2n ≥).故111(1)(1)(1)(2)212n n n n n n n n b a a b n +--=-⇒=-+≥+.当1n =时,1113212b a b =⇒=+.所以*31)21(1)(1).(2,)2 ( N n n nn b n n ⎧=⎪⎪=⎨⎪-+≥∈⎪⎩,(3) ∵2n n n c b λ=+, ∴当3n ≥时,12(1)(1)2n n n nc =+-+λ,111112(1)(1)2n n n n c ----=+-+λ, 依据题意,有1132(1)(2)02n nn n n c c λ---=+-+>,即12(1)322n nn λ-->-+.01 当n 为大于或等于4的偶数时,有12322n n λ->-+ 恒成立,又12322n n-+ 随n 增大而增大,则1min2128(4)33522n n n -⎛⎫⎪== ⎪ ⎪+⎝⎭,故λ的取值范围为12835λ>-; 02 当n 为大于或等于3的奇数时,有12322n nλ-<+恒成立,故λ的取值范围为3219λ<;03 当2n =时,由22153(2)(2)042c c λλ-=+-+>,得8λ<.综上可得,所求λ的取值范围是128323519λ-<<. (文科)解(1) 对任意*N m p ∈、都有m p m p a a a +=⋅成立,12a =,∴令,1m n p ==,得*11,N n n a a a n +=⋅∈. ∴数列{}n a (*N n ∈)是首项和公比都为2的等比数列. ∴1*122(N )n n n a a n -=⋅=∈. (2) 由31223+21212121n n n b b b ba =+++++++(*N n ∈),得 31121231+21212121n n n b b b ba ---=+++++++(2n ≥).故121112(21)22(2)21n n n n n n n n n ba ab n -----=⇒=+=+≥+.当1n =时,111621ba b =⇒=+.于是,211*1)22.(2,)n n n n b n n --=⎧=⎨+≥∈⎩ ( N 6,当1n =时,116B b ==; 当2n ≥时,123221231241212131411311 =6+(2+2+2++2)+(2+2+2++2)2(14)2(12) =6+141224 =42.33n nn n n n n n B b b b b ⋅-⋅-⋅-⋅-------=++++--+--⋅++ 又1n =时,112442633n B =⋅++=,综上,有*2442N .33n n n B n =⋅++∈,(3)2nn n B c =,11132B c ==, ∴24121332n n n c =⋅+⋅+,*N n ∈.1111124124121(21)33233221=(2)0(2).32n n n n n n n n c c n -----∴-=⋅+⋅+-⋅+⋅+->≥∴数列{}n c (*N n ∈)是单调递增数列,即数列{}n c 中数值最小的项是1c ,其值为3.23.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.解(1)依据题意,动点(,)P x y 满足2222(2)(2)4x y x y -++++=.又12||224F F =<,因此,动点(,)P x y 的轨迹是焦点在x 轴上的椭圆,且24,2222a b c =⎧⎪⇒=⎨=⎪⎩. 所以,所求曲线C 的轨迹方程是22142x y +=. (2) 设00(,)M x y 是曲线C 上任一点.依据题意,可得,MG MN NG MH MN NH =+=+.GH 是直径,∴NH NG =-.又||=1NG ,22=()()=()() =||||.MG MH MN NG MN GH MN NG MN NG MN NG ∴⋅+⋅++⋅-- ∴22200||(3)(0)MN x y =-+-=201(6)72x --.由22142x y +=,可得22x -≤≤,即022x -≤≤.2221||25||||24M N M N N G ∴≤≤≤-≤,0. ∴M G M H ⋅的取值范围是024MG MH ≤⋅≤. (另解21||25MN ≤≤:结合椭圆和圆的位置关系,有||||||||||||OM ON MN OM ON -≤≤+(当且仅当M N O 、、共线时,等号成立),于是有1||5MN ≤≤.)(理科)(3)证明 因A B 、是曲线C 上满足OA OB ⊥的两个动点,由曲线C 关于原点对称,可知直线AB 也关于原点对称.若直线AB 与定圆相切,则定圆的圆心必在原点.因此,只要证明原点到直线AB 的距离(d )是定值即可.设12||,||OA r OB r ==,点11(cos ,sin )A r r θθ,则2222(c o s (),s i n ())(s i n ,c o s )22B r rrr ππθθθθ++=-. 利用面积相等,有11||||||22OA OB AB d ⋅=⋅,于是2221222122211111r r d r r r r ==++. 又A B 、两点在曲线C 上,故222211222222cos sin 1,42sin cos 1.42r r r r θθθθ⎧+=⎪⎪⎨⎪+=⎪⎩ 可得22212222cos sin 1,42sin cos 1.42r r θθθθ⎧+=⎪⎪⎨⎪+=⎪⎩ 因此,22121134r r +=.所以,243d =,即d 为定值233. 所以,直线AB 总与定圆相切,且定圆的方程为:2243x y +=.(文科)(3)证明 设原点到直线AB 的距离为d ,且A B 、是曲线C 上满足OA OB ⊥的两个动点.01若点A 在坐标轴上,则点B 也在坐标轴上,有11||||||22OA OB AB d =⋅,即22233ab d a b ==+.02若点(,)A A A x y 不在坐标轴上,可设1:,:OA y kx OB y x k==-. 由221,42.x y y kx ⎧+=⎪⎨⎪=⎩ 得222224,124.12A Ax k k y k ⎧=⎪⎪+⎨⎪=⎪+⎩设点(,)B B B x y ,同理可得,222224,24.2B B k x k y k ⎧=⎪⎪+⎨⎪=⎪+⎩于是,221||212k OA k +=+,221||22k OB k +=+,2222223(1)||(2)(12)k AB OA OB k k +=+=++ . 利用11||||||22OA OB AB d =⋅,得233d =.综合0012和可知,总有233d =,即原点O 到直线AB 的距离为定值233. (方法二:根据曲线C 关于原点和坐标轴都对称的特点,以及OA OB ⊥,求出A B 、的一组坐标,再用点到直线的距离公式求解,也可以得出结论)。