当前位置:文档之家› 聚烯烃催化剂的发展现状与趋势

聚烯烃催化剂的发展现状与趋势

聚烯烃催化剂的发展现状与趋势
聚烯烃催化剂的发展现状与趋势

聚烯烃催化剂的发展现状与趋势

摘要:本文评述了自二十世纪五十年代初至今的近五十年时间里聚烯烃催化剂的几个重要发展阶段,讨论了Ziegler-Natta催化剂、无烷基金属化合物催化剂、茂金属催化剂及非茂有机金属催化剂的组成及特性,提出了我国在聚烯烃催化剂开发方面的对策。

关键词:Ziegler-Natta催化剂;茂金属催化剂;非茂催化剂;聚烯烃;对策

聚烯烃工业的发展是一个国家石化工业发展的重要标志,九十年代以来,世界聚烯烃生产能力大幅度增长,世界市场面临着供大于求的形势,在这种情况下,只有加大技术开发力度,掌握和采用先进技术,才能降低成本,提高产品附加值和市场竞争力。众所周知,聚烯烃技术的关键在于催化剂,聚烯烃树脂性能的改进与聚烯烃催化剂的开发有着极为密切的关系。所以研究和总结聚烯烃催化剂的发展历程对制定我国在聚烯烃工业中的中、长期战略目标具有十分重要的意义。

在各种聚烯烃催化剂中,目前使用最广泛的仍是齐格勒-纳塔(Ziegler-Natta)催化剂,它自五十年代问世以来,经过各国共同开发研究,经历了由第一代至第四代的发展,催化性能不断提高,推动了聚烯烃工业的迅猛发展,生产规模的不断扩大及高性能聚烯烃树脂(如高等规聚丙烯)的合成均可归因于齐格勒-纳塔催化剂的成熟与发展。目前对这类催化剂的研究和开发工作主要集中在高活性和高度立体定向催化剂的研制上。

1976年德国汉堡大学的Kaminsky教授偶然发现向Cp2ZrCl2 /三甲基铝(TMA)体系中加入少量水,催化剂活性会明显增大,后来对产生这一现象的原因进行了深入研究,结果发现,少量水的引入使TMA变成了甲基铝氧烷(MAO),由此揭开了烯烃聚合催化剂又一个新的篇章。茂金属催化剂由于具有理想的单活性中心,通过变换其配位基团又可以改变活性中心的电负性和空间环境,从而能精密地控制分子量、分子量分布、共聚单体含量和在主链上的分布及结晶构造。因而茂金属催化剂在聚合物品种的开发上显示出了明显的优势,用齐格勒-纳塔催化剂很难实现的聚烯烃树脂的功能化在茂金属催化剂作用下则很快得到了解决。正是由于茂金属聚烯烃所具备的优异性能,才使得茂金属催化剂自八十年代中期逐步成

为聚烯烃工业中的研究热点,世界各大聚烯烃生产厂家都纷纷投入到茂金属催化剂技术开发和应用大潮之中,相继在不同品种上达到了商业化规模。

随着茂金属催化剂的开发应用,九十年代中后期,在聚烯烃领域里又出现了非茂有机金属烯烃聚合催化剂,它与茂金属催化剂和齐格勒-纳塔催化剂的不同之处在于其主催化剂的中心原子不光是第四副族元素,而是包括了几乎所有过渡金属元素,尤其是第八副族元素(如铁、钴、镍、钯等)。这类催化剂也是单活性中心均相催化剂,因此可以按照预定的目的极精确地控制聚合物的链结构。近几年来,非茂型催化剂的研究十分活跃,尽管目前还没有工业化应用,但对试验样品的分析和表征表明,这类催化剂所得的聚烯烃产品性能优良,而且成本也较低。

1 齐格勒-纳塔催化剂

1.1齐格勒-纳塔催化剂的定义

广义的齐格勒-纳塔催化剂是指周期表Ⅰ至Ⅲ族金属烷基化物与Ⅳ至Ⅷ族过渡金属盐的混合物。但实际上,只有几个烷基Ⅰ至Ⅲ族的金属化合物是有效的,其中烷基铝是最常用的烷基金属化合物,而其它几种金属如锌、镁、铍和锂的烷基化合物已证明效率是相当低的。而研究较多的过渡金属盐是以钛、钒、铬、钴和镍金属为基础的金属盐类。

对一种单体具有聚合活性的催化剂,并不意味着它对所有单体都有活性。实际上,一种烷基金属化合物和过渡金属盐的特有组合方法的选择,主要取决于聚合单体的结构。例如,以Ⅷ族过渡金属盐,如AlEt2Cl+CoCl2为基础的齐格勒-纳塔催化剂容易使二烯烃(如丁二烯)聚合,但它却不能使乙烯或者α-烯烃聚合。另一方面,以Ⅳ、Ⅴ和Ⅵ族过渡金属为基础的催化剂,如 Ti、V、Cr为基础的催化剂,对二烯烃和α-烯烃都有活性。

这里还要说明的一点是,根据齐格勒-纳塔催化剂的定义,只有由过渡金属组分和烷基Ⅰ至Ⅲ族的金属化合物共同组成的催化剂才能称之为齐格勒-纳塔催化剂。若催化剂中没有加入烷基Ⅰ至Ⅲ族的金属化合物,就不能称之为齐格勒-纳塔催化剂,而把它定名为“无烷基金属化合物催化剂” [1]。

1.2齐格勒-纳塔催化剂的历史起源及其发展

1953年以前,K.齐格勒教授一直在西德Mulheim的Max Planck Institute

的煤研究室致力于聚乙烯以及乙烯和丙烯共聚物的研究。1953年底,他和他的学生们进行用乙烯与AlEt3及锆的乙炔酮反应的实验室工作,发现充满釜中的白色粉末是高分子量的线性聚乙烯,这是齐格勒催化剂的第一个例子。随后齐格勒开展了更深入的研究工作,他以及他的合作者进一步考察了一系列过渡金属盐与AlEt3的络合作用,发现过渡金属盐Ⅳ-Ⅵ族较为活泼,而活性最高的催化剂是由TiCl4和AlEt3组成的。这就是以后发展为大规模生产高密度聚乙烯树脂的催化剂。

由于齐格勒在Max Planck Institute的煤研究室中一直从事乙烯聚合的研究,而当时丙烯、较高级的α-烯烃和二烯烃的聚合是由另外一些人进行研究的,所以TiCl4/AlEt3这种新型催化剂催化烯烃聚合的潜力并没有在齐格勒研究室中被发现。

齐格勒的发明引起了意大利化学家纳塔教授的注意,纳塔着手研究了这种催化剂,1954年初,他发现将TiCl4/AlEt3用于催化丙烯聚合时,生产出来的产物是无定型和结晶聚丙烯的混合物,当用其它钛的氯化物,特别是在高温下用氢还原TiCl4制备的α-TiCl3代替TiCl4时,可以很容易地合成出丙烯、1-丁烯、苯乙烯的高结晶聚合物。纳塔和Corradini确定,聚合物链是由相同构型的单体单元构成的长链段组成的,纳塔将这种聚合物叫做“等规立构聚合物”。

起初有些人为了把低价态与高价态的催化剂区别开来,就把含有最高价态的过渡金属即TiCl4、VCl4的催化剂称为齐格勒催化剂,而将含有较低价态过渡金属盐即TiCl3、VCl3的催化剂称为纳塔催化剂。后来,人们又将此类催化剂统称为齐格勒-纳塔催化剂。齐格勒-纳塔催化剂使得以前不可能发生的α-烯烃聚合得以实现,至于等规立构聚合就更不必说了,为此,瑞典皇家科学院给K. 齐格勒教授和G.纳塔教授颁发了1963年度的诺贝尔化学奖。

四十多年来,齐格勒-纳塔催化剂不断地完善,经历了四代的改进,催化剂的更新换代带来了聚烯烃工业的飞速发展。

第一代催化剂是由3TiCl3.AlCl3的固体部分组成,其中的TiCl3是用AlEt2Cl 处理TiCl4而生成的。这种催化剂用于工业生产效率很低,聚合物等规度也很低,在聚丙烯生产中需要脱灰和脱无规物工序。

第二代催化剂是对TiCl3催化剂添加路易斯碱,大大提高了催化剂的定向能

力。

第一代和第二代催化剂中的TiCl3是由钛原子层和氯原子层交替组成的晶体,其中仅有很少比例的钛原子起活性中心作用,大部分钛原子只能起载体作用,因此这种催化剂活性中心浓度不高,活性较低,大量催化剂残留在产品中作为灰分而使得聚合物需要脱灰处理。为解决这一问题,第三代齐格勒-纳塔催化剂即高效载体型催化剂便应运而生,它是在70年代出现于聚丙烯工业生产中的,第三代催化剂的突出优点是高催化效率和高定向能力,可省去脱灰和脱无规物工序。

第四代催化剂除具有高活性和高定向能力的特点外,还提高了聚合物颗粒的平均直径(0.2-5.0nm),颗粒分布窄,呈球形,从而可省去造粒工序。据报道[2],意大利蒙埃公司最近开发了聚合过程中直接生产大颗粒球形聚丙烯的技术,已在费拉拉和布林迪两个工厂建有月产1.6kt的装置。

1.3齐格勒-纳塔催化剂的组成

1.3.1过渡金属化合物

1.3.1.1过渡金属及其氧化态

齐格勒-纳塔催化剂的过渡金属一般是第四周期过渡金属元素,如 Ti、 V、Cr、Ni等。在烷基铝的作用下,过渡金属的氧化态在一些反应中是在不断变化的。例如在TiCl4/AlEt3体系中, Ti+4、Ti+3、Ti+2可能同时存在,且随着时间的增长,低价态组分不断增加。随着过渡金属价态的降低,电负性增加,而使金属-碳键更为极化,从而有利于烯烃的插入反应。以TiCl4与γ-Al2O3在庚烷中反应制得的催化剂而言,Ti+4、Ti+3、Ti+2对乙烯聚合具有活性;Ti+3对其他烯烃的聚合也具有活性,而Ti+4的活性不太突出,这是Ti+4的电负性较Ti+3减小所致。因此,使用不同的催化体系和不同的聚合体系时,钛的氧化态对催化剂活性的影响是不同的[1]。

1.3.1.2过渡金属配位体

过渡金属配位体选择是控制催化剂活性和选择性的主要因素。配位体一般都是电子授体,它不限于直接与过渡金属作用,有时也可以通过和助催化剂作用,间接影响过渡金属的催化行为。配位体作用通常是用它的电子效应和空间效应来解释,以哪种效应为主,要根据不同情况作具体分析。例如,使用球磨法制备的

催化剂 MgCl2-TiX4[X=N(C2H5)2、OC6H5、Cl],在三异丁基铝存在下进行乙烯聚合时,催化剂的活性随N(C2H5)2 < OC4H9 < OC6H5 < Cl顺序增加,和这些配位体释电子能力的顺序相反。

1.3.2助催化剂

齐格勒-纳塔催化体系中常用的助催化剂是烷基铝化合物。烷基铝在反应过程中主要起烷基化作用,生成活性物种,并能起到清除系统杂质的作用,此外尚有链转移剂和还原剂的作用,它可以调节各基团反应的速度,甚至控制反应的途径,选择合适的铝化合物可使催化剂活性呈数量级提高。例如:使用TiCl3作主催化剂催化丙烯聚合时,聚合速率随AlEt3 > Et2AlCl > Et2AlCl2顺序增加,但以Et2AlCl的立体选择性最好,所以常选它作助催化剂。

1.3.3载体

目前多数催化剂采用非均相载体体系,催化剂负载后有利于其分散,大幅度提高催化剂的有效利用率。另外,它还提高了聚合物的立体规整性,使催化剂及其聚合物的颗粒形态更好,因而可省去聚合物脱灰和脱无规物的工序。

经特殊处理的MgCl2是最常用的载体,这是因为MgCl2与TiCl3在晶体结构及离子半径方面很相似[3],这样MgCl2能提供最多的反应位置,使得活性点浓度增加,因此能提高催化剂的活性。

对不同金属氯化物MCl x 的研究发现[4],影响催化剂活性的主要因素是这些氯化物中的金属M的电负性。当M的电负性小于Ti+3的电负性(10.5)时,会增加聚合速率;当M的电负性大于Ti+3的电负性,则会降低聚合速率。金属氯化物对聚合速率的改善是由于它对过渡金属提供电子从而使得活性钛种子上电子密度增大而引起的。在活性种子中包含的金属氯化物通过诱导效应影响活性钛种子的电子结构,使用电负性小的氯化物会引起活性钛种子上电子密度的增加,通过返还一个电子而使一个烯烃单体的配位稳定,导致在金属离子-聚合物键间后续插入的加速。相反,有较大电负性的金属氯化物则在增长反应中起到不利的作用。

1.3.4第三组分

在丙烯聚合及其它α-烯烃聚合中,研究工作已由早期的追求聚合活性转移到控制催化剂的定向能力方面。人们发现向催化剂和聚合体系中加入路易斯碱可以使催化剂的定向能力大大提高。常用的路易斯碱有醚、酯、胺、氯化亚磷等,

它们主要起以下作用: (1)催化剂中加入的路易斯碱可以避免在研磨过程中

MgCl 2颗粒的凝结,使有效表面积增加;吸附在承载TiCl 4 (可形成非等规立构规

整基团)的MgCl 2的表面,避免非等规立构规整基团的形成;参与形成高等规基

团;由给电子体取代,形成等规指数更高的基团。(2)在聚合体系中加入的路易

斯碱可以有选择地毒化非等规活性基团;将非等规基团转化为高等规基团;将等

规基团转化为更高等规指数的基团;增加等规基团的反应活性。

1. 4聚合机理

为解释齐格勒-纳塔催化剂两组分相互作用生成活性中心的途径,曾提出许

多机理,例如在过渡金属-碳键上的链增长机理;在碱金属-碳键上的链增长机理;

阴离子机理;自由基机理等。其中以过渡金属-链增长机理即Cossee 机理最引人

注目。

Cossee 认为,活性中心是八面体构型中的过渡金属原子,其中一个位置由于

与烷基铝作用失去配位基而形成空穴,其余的位置为一个烷基和四个配位基所占

有[5]。

M 是过渡金属离子,R 是烷基金属化合物或增

长的聚合物链衍生的烷基,X 是结晶的配位基 (如TiCl 3中的Cl ), 是空着的八面体位置。 式1所示为Cossee 机理的一个链增长过程,式中R 为增长的聚合物链, 为

空着的八面体位置。

迁移 式1 Cossee 机理

由式1可以看出催化剂是先经烷基化形成活性中心,烯烃在活性中心上配位,

然后插入金属-碳键,金属上的烷基顺式迁移到配位的烯烃上,使烷基增加二个

M

R X 1

X 4X X 3

M R X X X + C 2H 42222R M

X X X M X X X R CH 2

CH 2M R CH 2

CH M

R

X X

碳原子。如此,配位与插入(或迁移)交替进行,使聚合链不断增长。最后,由于β-碳上的氢转移到过渡金属或配位的烯烃,使聚合链终止,同时生成一种过渡金属氢化物或过渡金属烷基化物。

1.5国外齐格勒-纳塔催化剂的发展状况

1.5.1聚乙烯用催化剂

众所周知,聚乙烯的基本品种可分为线性低密度聚乙烯(LLDPE)、高密度聚乙烯(HDPE)和低密度聚乙烯(LDPE)。

生产LDPE的工艺,主要是采用高压釜式法和高压管式法,使用有机过氧化物为引发剂,进行自由基聚合;生产LLDPE和HDPE的工艺主要有气相法、溶液法、淤浆法。对于气相法工艺,目前普遍使用美国UCC公司的Unipol工艺及英国BP公司的BP气相法;采用溶液法聚合工艺的公司以美国DOW公司、荷兰DSM 公司以及加拿大杜邦公司为代表;而淤浆法又分为搅拌釜淤浆法和环管反应器淤浆法,搅拌釜淤浆法工业化较早,发展比较成熟,很多公司都拥有这种工艺,目前世界上的HDPE大部分是用此工艺生产出来的,而采用环管反应器的主要是Phillips公司,可用于LLDPE、HDPE等的生产。表1归纳出世界上一些著名石化公司PE催化剂概况。

表1世界主要石化公司PE催化剂概况

1.5.2 聚丙烯用催化剂

表2归纳出世界上一些著名石化公司PP催化剂概况。

表2 世界主要石化公司PP催化剂概况

1.6 国内齐格勒-纳塔催化剂的发展状况

国内对齐格勒-纳塔催化剂用于乙烯聚合的研究主要集中在对气相工艺和淤浆工艺所需催化剂的研究上,研究单位有北京化工研究院、中科院化学所、中山大学高分子研究所、厦门大学化学系等。

国内70年代初开始研究聚丙烯催化剂,其中最有成效的是北京化工研究院等单位研制的络合Ⅰ型和络合Ⅱ型催化剂。络合Ⅱ型催化剂已在国内间歇液相本

体法聚丙烯装置上普遍使用。该催化剂活性较高(40-50kgPP /gTi),定向能力也较高(等规指数可达97%)。但络合Ⅱ型催化剂仍然属于第二代催化剂。

国内从70年代末开始研究第三代聚丙烯高效催化剂。到目前为止,比较有成效的是北京化工研究院研制的N型催化剂、中科院化学所研制的CS-1型催化剂以及中山大学研制的STP型催化剂,这几种催化剂均进行了成功的工业应用试验,现已应用于部分聚丙烯装置上,它们的性能对比见表3[6]。

表3 N型、CS-1型、STP型、络合Ⅱ型催化剂性能对比

2 无烷基金属化合物催化剂

为了强调这类催化剂不含烷基碱金属化合物以及把这类催化剂与齐格勒-纳塔催化剂加以区分,而将它命名为无烷基金属化合物催化剂[1]。

这类催化剂最典型的例子就是Phillips公司发明的铬系催化剂[7]。它是将CrO3沉淀在SiO2-Al2O3(90:10)的载体上,在氧、氮、二氧化碳等气流中加热活化而成,这种催化剂悬浮在烷烃、萘系烃溶剂中用于浆液聚合。改变负载量或

改变载体的孔径,可以控制聚合活性和分子量。用此类催化剂制得的PE具有中等程度的支链,因此熔融张力较高,广泛用作吹塑成型用树脂。由于铬系催化剂所制得的共聚物的组成分布宽,不适用于生产LLDPE等低密度的PE;另外,再加上铬系催化剂的毒性,目前Phillips公司已由铬系催化剂转向钛系催化剂。

3 茂金属催化剂

3.1茂金属催化剂的定义

茂金属催化剂是由过渡金属锆、钛或铪与一个或几个环戊二烯基或取代环戊二烯基,或与含有环戊二烯环的多环化结构(如茚基、芴基)及其它原子或基团形成的有机金属络合物和助催化剂(某些情况下,还需要载体)等组成的。其中,含有与过渡金属直接键合的环戊二烯基结构的有机金属化合物我们称之为“茂金属化合物”,由于组成茂金属催化剂的主催化剂必须是“茂金属化合物”,故“茂金属催化剂”由此得名。

由于在有机化合物的系统命名中,用甲、乙、丙、丁、戊……代表化合物主链上的碳原子数,组成茂金属化合物的环戊二烯基环有五个碳原子,故用“戊”称,而环戊二烯基环与金属键合后,便形成了具有五个p轨道六个π电子的平面共轭结构,从而有了芳香性,依照中文的习惯,具有芳香性的物质的名称上一般有“艹”头,故在“戊”字上加“艹”头,即得“茂”,这即为“茂”的来历。

其实,早在本世纪中叶,人们就已发现了茂金属化合物。1954年,Harvard 大学的Geoffrey Wilkinson和Munich大学的Ernst Otto Fischer第一次描述了一种茂金属化合物--二茂铁。1957年,Breslow等采用双环戊二烯基二氯化钛(Cp2TiCl2)/三乙基铝(AlEt3)、二乙基氯化铝(AlEt2Cl)为催化体系进行了乙烯的催化聚合,但因其催化活性较低,故催化体系并未得以应用。1976年,Hamburg 大学的Kaminsky 偶然发现三甲基铝中引入少量水可显著提高茂金属化合物的催化活性。进一步的研究表明:产生高活性的原因在于三甲基铝与微量水反应得到了MAO,由此,茂金属催化剂得以诞生,掀开了聚烯烃工业的又一个新的篇章。3.2茂金属催化剂的组成

3.2.1茂金属化合物

3.2.1.1分类

茂金属化合物按其结构可以分为非桥链茂金属结构、桥链茂金属结构和限定

几何构型茂金属结构。

(1) 非桥链结构茂金属化合物

非桥链结构茂金属化合物是由一个或两个环戊二烯基(或芴基、茚基)或其

衍生物与过渡金属原子直接键合形成的化合物,环戊二烯基、茚基或芴基上可以

有各种取代基,其结构如图1所示。

环戊二烯基 芴基

图1 非桥链结构茂金属化合物

(M-Ti,Zr,Hf;X-CH 3-,Cl-,C 6H 5CH 2-等)

这类催化剂以Cp 2MCl 2最为常见(Cp 为环戊二烯基;M 为Ti ,Zr ,Hf ),其中

尤以Cp 2ZrCl 2最为常用。在Cp 2ZrCl 2中,由于金属原子上存在两个Zr 与Cl 之间的σ键,金属原子与两个茂环中心存在一个约140°的键角θ,两个茂环平面并

非平行,而是存在一个约40°的平面角,整个催化剂分子呈C 2v 对称[8]。

(2)桥链结构茂金属化合物

桥链结构是在非桥链结构的基础上,用桥链联接两个环结构以防止结构发生

旋转,赋予茂金属以立体刚性,其结构如图2所示。

图2 桥链结构茂金属催化剂

(M-Ti,Zr,Hf;X-CH 3-,Cl-,C 6H 5CH 2-等; R`- -CH 3,-iPr, -Si(CH 3) 2等)

这类结构的催化剂最早由Brintzinger 及其同事合成[9-11],是当前研究领域

最感兴趣的。桥链连接两个环结构可防止环旋转,故赋予茂金属以立体刚性并导

致产生手性,因此可合成等规聚丙烯和间规聚丙烯,这些高规整性聚合物用非桥

联茂金属是无法合成的。桥的变化对催化剂的性能有很大的影响,因为桥原子的

大小、桥链的长短及桥原子的电子结构将会引起催化剂的空间排列、电子结构以

M X X M

X X M X X M

X X M X

X M X X

及手征性的变化。例如通过改变桥链的长度可调节两个配体与金属之间的夹角,

从而改变对活性中心的覆盖程度即反应活性中心场所的大小和调节活性中心的

立体环境,最终影响催化剂的活性和聚合物的立体选择性。

另外,直接与金属原子相连的配位基团的变化自然也会引起金属有机化合物

的空间排列、电子结构以及手性变化,进而影响其催化性能,从而达到改变聚合

物材料性能的目的。因此人们通过变换桥链或配位基团以及变化配位基团上的取

代基来改变主催化剂的分子结构,设计出不同的茂金属化合物,通过其空间效应

或电子效应的差别调控聚合物结构。

在桥链结构化合物中,尤以柄型茂金属(ansa-metallocene )最为常用。由

于茂环上的取代基及桥链结构的不同,柄型茂金属可以是C S 、C 2或C 1对称结构。

(3)限定几何构型茂金属化合物

限定几何构型结构是用氨取代非桥链结构中的一个环戊二烯(或茚基、芴基)

或其衍生物,用烷基或硅烷基等作桥链。限定几何构型茂金属化合物是Dow 化学

公司于1989年首先合成并公诸于世的,其结构式如图3所示 [12,13] :

M-Ti,Zr,Hf)

图3-3 限定几何构型茂金属化合物结构示意图

它是一种单环戊二烯与第Ⅳ副族过渡金属以配位键形成的络合物,单环戊二

烯基、过渡金属与杂原子(例如氮)间键角小于115°[14]。一方面二齿配位体稳

定了金属电子云,另一方面短桥基团的存在又使配位体的位置发生偏移,从空间

构型上使催化剂活性中心只能向一个方向打开,从而达到限制几何构型的目的

[15]。

改变图3中茂环上的取代基R ,变换桥链基团R 1,配位基团L 及其上的取代

基R 2可得到不同结构、性能的茂金属化合物。目前研究最多的限定几何构型茂金

属化合物为(叔-丁氨基)二甲基(四甲基环戊二烯基)硅烷二氯化锆 [16,17],其结构

L 2R 2

式见图4:

图4 (叔-丁氨基)二甲基(四甲基环戊二烯基)硅烷二氯化锆结构示意图

这种茂金属化合物只有一个由四个甲基取代的茂环,另一个茂环由氮衍生物

替代,茂环与氮衍生物间有一个桥链,这样,就赋予此类茂金属化合物以两个受

限定的几何构型,第一个是因四个甲基取代了限定几何构型的单茂环,第二个是

由过渡金属、四个甲基取代的茂环、桥联基和氮衍生物构成的四元环结构,因有

桥联基,故此四元环立体结构受到限制,不能绕茂-氮中心轴旋转。由于上述原

因,限定几何构型的茂金属化合物在它的活性位点附近立体障碍较少,故对烯烃

聚合体现出较高的活性及较理想的选择性。

3.2.2组成茂金属催化剂的助催化剂

从本世纪八十年代初至今的近二十年时间里,茂金属催化剂的助催化剂也得

到了很大的发展,除已经合成出了甲基铝氧烷(MAO )、乙基铝氧烷(EAO )、正丁

基及异丁基铝氧烷(BAO )、混合烷基铝氧烷等以外,还合成出了含硼阳离子活化

剂型助催化剂,起初由于MAO 用量较大,导致茂金属聚烯烃的成本居高不下,近

几年来,通过各种助催化剂的复配及催化剂的负载化已有明显的改善,与此同时,

烷基铝氧烷尤其是MAO 的合成方法得到了进一步的优化,这些均对茂金属催化剂

催化烯烃聚合的工业化铺平了道路。

单独的茂金属化合物对烯烃聚合基本没有催化活性,只有与助催化剂如MAO

一起使用才具有很高的聚合活性。MAO 的作用是将茂金属烷基化并通过与茂金属

化合物形成阳离子活性中心,从而引发配位聚合。此外,MAO 在聚合体系中还起

着清除系统杂质的作用。

甲基铝氧烷(MAO )是由三甲基铝(TMA )与水逐步反应制得的。 反应式如

下: Me Si 2N t

-Bu 3

n(CH 3)3Al + H 2O +2nCH

4↑ MAO 的结构主要有铝氧烷链式结构、铝氧烷环状结构和以Al 为中心的三维空

间结构三种,其结构式见图5:

链式结构 环状结构

环状结构 三维空间结构

图5 甲基铝氧烷结构示意图

MAO 的分子量和结构根据合成反应条件如反应温度、时间、有机铝/水添加比等的变化而变化。MAO 对聚合活性起着重要作用。不同分子量MAO 的聚合活性也

不相同,在Al/CH 3 一定时,n 值范围在12到26之间,其聚合活性较高[18]。 在实验室里,通常采用结晶水合物(如Al 2(S O 4)3.18H 2O ,MgCl 2.6H 2 O 等)

与TMA 进行反应来制备MAO 。

3.2.3茂金属催化剂的负载化

在茂金属催化剂的研究过程中,起初是采用均相催化剂体系实现烯烃聚合

的。后来,研究人员发现均相茂金属催化剂在拥有许多优点的同时,也存在一些

不足,如催化剂的活性中心易发生双分子缔合而失活[19],因此必须加入大量的

CH 3Al CH 3CH 3CH 3Al

Al

Al Me Me Me O O

O

Al Al Al O O O Me O Al O Al

MAO将活性中心隔离开来,这提高了生产成本。同时均相茂金属催化剂用于烯烃

聚合时,所制备的聚合物形态不好。为了克服以上缺点,人们试图将茂金属催化

剂固定到载体上,以获得负载化的茂金属催化剂。茂金属催化剂固定在载体上后,活性中心不能相互靠近,因而不会发生双分子失活,可大大降低MAO的用量,同

时可减少β-H消除,提高聚合物的相对分子质量。另一方面,催化剂负载化后

可进行淤浆和气相聚合,并能够充分利用现有的烯烃聚合工业化装置。此外由于

载体具有较好的颗粒形态,由此制备的聚合物可望也具有较好的形态和较大的堆

积密度 [20]。

作为茂金属负载化的载体主要为无机载体,如SiO2[21-29]、Al2O3[30-32]、

Al(OH)x O y[33]、烷基铝的水解产物[34]、MgCl2 [35]、黏土[36]等,但是由于无机载体本

身结构较复杂,存在不同的活性部位,因此也有选用聚合物作为催化剂载体的

[37-39]。

3. 3茂金属催化剂的催化聚合机理

自从茂金属催化剂问世以来,已做了大量探讨其聚合机理和链增长动力学的

研究。

根据目前茂金属催化剂活性估计,每摩尔过渡金属每小时约可得到108克聚

乙烯,即相当于每小时每摩尔每活性中心要插入350万个乙烯分子。若数均分子

量()为28000,则平均聚合度为1000,相当于每小时要产生3500个聚合Mn

物链。

茂金属催化剂催化烯烃聚合的链增长机理基本上仍遵循了Cossee机理。现

以催化乙烯聚合为例加以说明。首先MAO或其它助催化剂使茂金属化合物甲基化

并阳离子化,然后,乙烯分子的σ键在过渡金属阳离子如锆阳离子的d轨道空位

上进行π络合,形成σ-π键,从而使乙烯分子的π键活化,随后发生移位重排,即锆阳离子上原有的Zr-CH3这一σ配位键通过其电子被热激发跃迁到邻位的Zr-C2H4这一σ-π键中的单电子反馈键轨道上而发生断裂,于是甲基移位接到邻近的双键已打开的乙烯分子上,从而实现了乙烯分子链的第一次链增长。随后,第二个单体乙烯分子在甲基移位后留下的d轨道空位上被络合活化,并又发生移位重排,这次是有3个碳的烷基链移位接到活化乙烯分子上,形成具有五个碳的分子链,这样周而复始,通过这种在锆阳离子活性中心的两个相邻的络合位之间

交替进行的插入反应实现了链增长,这就是单活性中心乙烯配位聚合的链增长机

理,反应式如下:

茂金属催化剂的链终止主要是链转移反应。包括β-H 和β-Me 的消除,同时链向Al 、单体、氢转移。所有这些终止反应取决于茂金属、铝氧烷和聚合条件。在不加链转移剂时,均相催化剂主要是以β-H 的消除方式进行链终止,这样在

每个聚合物的链端留下一个乙烯基双键,这种不饱和聚合物可以和其他官能团单

体进行接枝共聚,很容易实现聚烯烃的功能化[43]

3.4立体规整性控制机理

目前在茂金属催化剂催化α-烯烃的聚合中,存在着两种类型的立体控制机

理:(1)茂金属催化剂本身的手性环境控制,即对映中心控制决定了聚合物的立

体规整性。α-烯烃在聚合时,单体与螯合配体间的作用使在链增长时优先选择

两种手性方向中的一种,即催化剂金属原子的手性环境保证了单体聚合插入的对

映选择性,如桥联外消旋rac-Et(IndH 4)2ZrCl 2 /MAO 体系催化丙烯等规聚合得到

的等规聚丙烯(iPP )可证明是对映中心控制。茂金属的不同立体化学结构与聚

丙烯的立体规整性的种类有着严格的对应性,如果茂金属的两个相同配体间有外

消旋手性关系的可得到iPP ,两个相同的配体间无外消旋手性关系的可得到无规

聚丙烯,两个配体种类不同,但沿它们的共同中心轴具对称性的可得到间规聚丙

烯,对应关系如图6所示。(2)后继插入的单体单元立体化学控制(链端控制)

确定了聚合物的立体规整性,如Cp 2TiPh 2/MAO 体系催化丙烯聚合得到等规聚丙

烯,这主要靠链端控制机理,因为Cp 2TiPh 2并不具有手性,由于这一机制一般在Cp 2ZrCl 2+MAO Cp 2ZrCl 23Cp Cp Zr MAO CH 2=CH 2Cp Cp Zr CH 2CH 2CH 3Cp Cp Zr CH 2=CH 2Cp Cp Zr CH 2CH 2CH 2CH 2CH 3

Cp

Cp Zr

低温下才能发生作用,所以在室温以上发生的α-烯烃聚合的立体规整性主要还

是依从催化剂本身的对映中心控制机理。

等规

无规

图6 不同结构茂金属化合物对应聚丙烯结构示意图

3. 5茂金属催化剂的特点及其应用

综上所述,我们可以看出,茂金属催化剂与传统的齐格勒-纳塔催化剂相比

有以下四个特点:(1)具有单一催化活性中心,这也是茂金属催化剂和传统齐格勒-纳塔

催化剂的主要区别也是最根本的区别。齐格勒-纳塔催化剂有许多活性中心,但其中只有一

部分活性中心有立体选择性,因此得到的聚合物支链多,分子量分布宽。而茂金属催化剂具

有单一活性中心,且100%的活性中心都有活性,每一个活性中心生成的分子链长度和共聚

单体含量几乎相同,因而能精确地控制分子量、分子量分布、共聚单体含量和在主链上的分

布及结晶构造等。单活性中心催化剂给聚合物带来三个主要特性:特性之一是所得聚合物分

子量分布较为均一,分布指数MWD 等于2左右,而常规催化剂则高达5左右;特性之二是

共聚物中共聚单体分布均匀,这可提高共聚单体的利用率,仅在反应器中保持较低共聚单体

浓度时,聚合物仍能达到原有性能,从而可节省共聚单体的用量,这是传统的齐格勒-纳塔

催化剂所不能做到的;特性之三是所得聚合物分子量分布窄,从而赋予聚合物以较低的结晶

度,较高的强度及优良的透明性,但也同时给树脂的加工性带来了不利的影响。

(2)能催化烯烃聚合生成间规聚合物,这在以往是无法实现的。这些间规聚合物大都具有

独特的力学和物理性能。(3)几乎能使所有含乙烯基的单体包括极性单体参与聚合及共聚

合。

Si Me Me R R

M Cl Cl Si Me Me

(4)茂金属聚合物常含有较多的末端乙烯基,这对实现产品的官能化,改进树脂的湿润性、可镀性、可涂饰性、粘着性和相溶性提供了十分便利的条件。

上述特点使得茂金属催化剂成为设计制造各种均聚物和共聚物的一种多变手段。因此它的应用范围十分广阔,可应用于HDPE、LDPE、LLDPE、超低密度聚乙烯(ULDPE)、极低密度聚乙烯(VLDPE)、乙丙橡胶、乙烯与环烯烃共聚物、全同立构、间同立构和半等规聚丙烯、间规聚苯乙烯等的烯烃聚合的各种领域。

目前,世界上许多有实力的聚烯烃生产厂家都在加速开发茂金属催化剂技术并使之工业化。其中Exxon、三井石化、Dow公司是申请专利最多的公司。从1991年起,在改进的已有聚烯烃工业装置上生产茂金属聚烯烃树脂的工业化技术不断涌现。Exxon将其Exxpol茂金属催化剂技术与三井石化的高压法工艺技术相结合,在一套15千吨/年的生产装置上生产多种牌号茂金属聚乙烯,称之为Exact 树脂,该树脂具有以下特征:分子量分布窄,共聚单体组成分布均匀,薄膜强度、热封性、己烷萃取率都比一般的聚乙烯树脂有大幅度的改进。1993年,DOW公司首先成功地使用限定几何构型茂金属催化剂在溶液法装置上生产LLDPE和HDPE,称之为Insite树脂。另外,三井石化、BASF、Fina、Nova、Phillips等大公司相继开发了自己的茂金属聚乙烯树脂。

我国也有十几家单位不同程度地介入了茂金属催化剂的研究领域,如中石化北京石油化工科学研究院、北京化工研究院、兰州石化公司研究院、中科院化学所、中山大学、浙江大学等,研究的方向主要集中在茂金属聚乙烯、聚丙烯、茂金属间规聚苯乙烯等领域,已有单位开始了中试研究,但目前尚未实现工业化应用。

4 非茂有机金属烯烃聚合催化剂

尽管茂金属催化剂已发展了十几年,但仍然留下一个问题:就是环戊二烯

基团是不是形成单催化活性中心的必要条件。要回答这个问题,先要了解环戊

二烯基团在整个催化过程中所起的作用:(1)控制催化活性中心的立体性和电

负性;(2)防止形成会加宽聚合物分子量分布的第二个活性中心。了解环戊二

烯基团作用后,就会发现其实许多有机基团都能起到这个作用,由此便衍生出

非茂有机金属烯烃聚合催化体系。

其实非茂类烯烃聚合催化剂不是现在才有,早在50年代初期人们曾将一些烷基钛(或锆)配合物,如Ti(OBu)4在烷基铝助催化剂下使烯烃聚合。但相对于Ziegler-Natta 催化剂其催化活性太低。因此对其研究较少。随着MAO 高效助催化剂的发现及近年来烯烃均相聚合催化剂的不断发展[44],人们逐渐开始对非茂有机金属配合物用于烯烃聚合进行了研究。

4. 1非茂有机金属烯烃聚合催化剂的定义

非茂有机金属烯烃聚合催化剂是指不含有环戊二烯基团,配位原子为氧,氮,硫和碳,金属中心包括所有过渡金属元素和部分主族金属元素的有机金属配合物,且能催化烯烃聚合。

非茂有机金属配合物要成为具有良好的烯烃聚合催化剂应具备以下条件:

(1)中心离子应有较强的亲电性,且具有顺式二烷基或二卤素金属中心结构,使之容易进行烯烃插入和 -键转移;(2)金属易烷基化,使之有利于阳离子的生成;(3)形成的配合物具有限定的几何构型,立体选择性,电负性及手性可调节性;(4)形成的M -C 键容易极化。

4. 2非茂有机金属烯烃聚合催化剂的分类

4.2.1中心原子为钛、锆的配合物

4.2.1.1联二酚为配体的配合物

Kakugo 等[45] 用TiCl 4与等量的2,2’-硫代二(6-叔丁基-4- 甲基酚)(TBP )在乙醚中反应,得到第一个高活性非茂类烯烃聚合催化剂,(TBP)TiCl 2所得聚烯烃具有超高分子量 。

又有人进一步发现联二酚-锆的配合物对烯烃聚合几乎没有催化活性[46]。在考查不同取代基存在下对烯烃聚合的影响时发现只有硫桥基的联二酚-钛配合物(图7)具有高的催化活性,而其它桥基或非桥联的联二酚则显示出较低的催化活性。该类催化体系对长链烯烃及二烯烃的聚合也有很好的催化活性。

TiX 2

CH 3O

S

O

图7 联二酚类配合物(TBP)TiX 2

4.2.1.2 Ti -β二酮配合物的制备

许学翔等[47]用TiCl 4与不同摩尔比的β-二酮衍生物在乙醚中反应,得到产率高达98%的β-二酮 – 钛配合物(图8)。此类催化剂在MAO 助催化下对苯乙烯间规聚合显示出良好的催化活性,所得聚合物的间规度达95%以上。其催化性能已达到单茂钛(CpTiCl 3)的水平。

图8 β-二酮 类钛配合物

β-二酮 – 锆配合物的合成也可用此方法,但产率只有30%左右。

4.2.1.3与二胺配位的(Ti,Zr )烯烃聚合催化剂

加拿大的McConville 等[48]用TiCl 4与三甲基硅烷取代的二胺在二甲苯中反应获得高产率的二胺-Ti 烯烃聚合催化剂(图9)。二胺氮上的不同取代基对催化效应有很大的影响,由于芳基取代基是垂直于N-Ti-N 平面的,对Ti 原子起到一定的保护作用,因此具有较好的催化活性。

图9 二胺类—钛配合物

二胺-钛配合物对烯烃有着很好的催化活性,尤其对长链α-烯烃,其活性达490kg/molTi ?h ,并且在室温下就呈现活性聚合的特性。

但二胺-锆配合物对烯烃聚合的催化活性较钛的配合物要低,如对1-己烯只+TiCl 4O O R R R R

O O TiCl 4-n n R = CH

3

, Ph; n = 4

Me NR NR Me B(C 6F 5)3

钌催化剂催化苯加氢制环己烯反应条件的对比研究

钌催化剂催化苯加氢制环己烯反应条件的对比研究 摘要研究了以金属钌催化剂在不同的反应温度、氢气压力、搅拌速率对苯转化率、环己烯选择性及收率的影响,所用催化剂为浸渍法制得的钌锌催化剂。试验结果表明,反应的最佳条件为:反应温度为140 ℃、氢气压力为6 MPa、搅拌速率为900 r/min、固定反应时间为20 min时,苯转化率可达49.31%,环己烯选择性为43.52%,环己烯收率为21.45%。 关键词钌催化剂;苯加氢;环己烯;反应条件;对比 苯加氢反应是典型的有机催化反应,无论在理论研究还是在工业生产上,都具有十分重要的意义。而环己烯作为重要的有机中间体,水合可得环己醇,进一步氧化制环己酮和己二酸,缩短了尼龙66盐的生产工艺,是重要的化工原料;由苯在液相条件下选择加氢一步制备环己烯可使工艺流程缩短、效率提高、设备投资减少,而且对于环保也有积极的作用,并且原料苯来源丰富,成本低廉。因此,苯选择加氢制备环己烯技术的开发和应用具有重要的意义和广阔的应用前景。但是,由于苯比较稳定,而且环己烷的热力学稳定性比环己烯的要高得多,生成环己烯阶段,大部分生成最终产物环己烷,所以苯加氢反应很难被控制[1-6]。钌系催化剂在苯加氢催化反应中的动力学及反应机理前人已做过研究,本试验采用化学还原法制备负载型钌催化剂进行苯选择加氢制环己烯,探讨不同反应条件对催化剂的催化活性及环己烯选择性和收率的影响,以得到最适宜的反应条件,为进一步的工业生产提供依据。 1材料与方法 1.1试验原料及仪器 三氯化钌:钌含量(37.0±0.3)%,湖南信力金属有限公司生产;ZrO2载体,纯度大于等于99.95%,平均粒径0.5 μm,自制;苯:分析纯,北京化工厂生产;硫酸锌:分析纯,北京平谷双燕化工厂生产;氯化锌:分析纯,天津市环威精细化工有限公司生产;GSH-1 1L高压反应釜,山东威海化工厂制;HP5890Ⅱ型气相色谱仪。 1.2催化剂及载体制备方法 1.2.1催化剂。以ZnCl2水溶液作为前体,采用浸渍法在载体上先负载1.2%(质量分数)的Zn,经烘干并在500 ℃下焙烧,再负载Ru,以RuCl3·xH2O的盐酸溶液作浸渍液,每次负载5%(质量分数)的Ru。当W(Ru)>5%时,采用分步浸渍法。最后浸

公司现状分析报告

XX公司现状分析报告

4、目前我司明星产品(2017年上半年销售额前5)有哪些?平均利润率 5、公司目前品质问题主要集中在哪些(客诉问题类型前5), (1)防锈油盐雾时间达不到; (2)脱模剂卡模; (3)清洗剂味道大; (4)切削油过敏; 6、新开发产品平均试样周期天。 四、品牌市场定位及目前市场发展现状: 1.2016年经典案例客户(年度交易额前5名或单笔交易超过30万的客户)是1.精 艺2.智诚3.海亮集团4.皓月5.建大. 2.目前在交易客户总数 410 家,历史累计客户总数 370 家,客户流失率 9.7% 。 其中战略客户(年交易200万以上) 6 家。 3.2014年总业绩0.8亿,2015年总业绩 1亿,2016年总业绩 1.2亿,年均增长 率 20% 。 五、管理现状: 1、财务管理: (1)没有年度预算机制。 (2)现金支出审批没有设定明确的把关标准及节点 (3)没有根据管理岗位的职责大小设定报销审批权限及标准。 (4)缺乏“通过精确的财务管理,预防系统性风险”的意识,没有资产、负债整体情况的盘点。对现金流进出规律及未来预测、利润分析,成本分析等有基础, 但没有比例上的分析,也没有从过去的变化中发现规律,预判未来,导致公司 领导无法做精准决策。 2、事务管理: (1)部门之间协作不够,衔接有零散的、约定俗成的规则,但没有清晰界定的工作内容、标准、时限、权责划分。出现不配合现象需要高层亲自干预。 (2)干部关注业务,不关注管理。注重部门利益,不关注整体利益。 (3)中层执行不力,乱执行,执行方向不明确,有矫枉过正的现象。 3、质量管理现状: (1)主要检测设备名称及数量? (2)我们的质量检测人员总人数 5 个,工程师 3 个。 (3)我们的品质在主要原料入厂检测、在研发以及小试阶段、新产品试生产阶段、常规生产的中间过程控制和最终产品检测在发挥品质管理和检测功能? (4)我们目前运用了ISO9001管理体系进行精细化工生产和质量科学化管控,哪些质量管理工具?或者我们的质量管理方法GB、HG、SH等标准是

精细化工的发展

精细化工的发展 班级2015制药工程(兴)学号:2015961019 姓名:陈诗豪 [摘要]精细化工具有高技术含量、高附加值等特点,在国民经济中起着重要作用,对促进经济发展和提高人民生产生活质量具有重要的意义,是当今世界化学工业激烈竞争的焦点。本文主要描述了国内外的精细化工行业的发展现状,简单分析了精细化工发展过程中要优先发展的关键技术及精细化工的发展趋势。 [关键词]精细化工;发展现状;关键技术;趋势 前言 精细化工是当今化学工业中最具活力的新兴领域之一。精细化工产品种类多、用途广,直接服务于国民经济的诸多行业和高新技术产业的各个领域。相对基础原料化学品,精细化工产品资源消耗较少、能耗较小、产品附加值高、抗风险能力较强。大力发展精细化工已成为世界各国调整化学工业结构、提升化学工业产业能级和扩大经济效益的战略重点。精细化工率(即精细化工产值占化工总产值的比例)的高低已经成为衡量一个国家或地区化学工业发达程度和化工科技水平高低的重要标志 一,国内外精细化工发展现状 精细化工的发展起源于上世纪70年代,当时由于传统的煤化工和石油化工的工艺路线和效益不佳,导致德国、美国和日本等国的化工企业开始走精细化的路线。他们致力于专用化工产品的生产,如仿生医疗品、抗癌药物、高效除菌剂和杀菌剂等的生产。 近年来,随着能源危机的出现,环境问题的日益严重,各国纷纷加大了精细化工产业的开发和利用。世界范围内都在试图依靠科技使精细化工生产出更多的能源替代品,以满足经济发展的需求。尤其是发达国家,化工产品的精细化比例不断上升,科技投入的比例不断上升,不断研发新产品,发达国家在发展精细化工方面的另外一个特点是:十分注重科学技术的保护,严格控制技术外流,形成一定的技术垄断,保持精细化工领域的国际发展优势。一些发达国家在发展精细化工的同时,也注意减少三废排放、加强污物处理,环保意识渗透其中,这一点也是值得推崇和学习的,毕竟保护环境是发展一切的前提,而发展精细化工也是为了更好地保护环境[2]。 我国的精细化工发展起步较晚,从上世纪80年代开始起步。从“六五”开始,直至“七五”、“八五”、“九五”、“十五”国民经济发展计划中,我国都把精细化工,特别是新领域精细化工作为发展的战略重点之一,精细化工的地位已在我国得到确立。 在看到成绩的同时,我们也要意识到其中的不足,从总体来看,我国在精细化工产品的质量、产品种类及生产经验、高新技术和设备先进程度方面都与国外存在着非常明显的差距。 二,精细化工发展中要优先发展的关键技术

中国园林产业发展现状及前景

xx园林产业发展现状及前景 就世界范围而言,园林景观行业已被公认为“永远的朝阳产业”,其独特的绿色环保和生态概念已经获得愈来愈多的认同,展现出越来越广阔的市场前景。近年来,随着我国经济的快速发展,我国园林行业也得到了长足的发展,但就发展现状来看,存在很多问题,并与国际水平相差很大距离,展望中国园林行业未来发展趋势,如何发展出有中国特色的体系化、现代化的风景园林,是值得探讨的。 园林业是以建设、维护和调整园林并提供服务为主要技术构成的从业人员及相关物资的集合。而就园林业的起源看,园林业起源于逐渐从农林业分工而独立开来的花卉和苗圃业,经过绿地和庭院建设业,目前已发展成为包括养护管理及其它服务在内的综合的技术经济系统[1]。中国的园林业经过改革开放近三十年的快速发展,到今天已经成为社会主义现代化建设的重要行业之一,在国际上的影响也越来越大。但是,随着WTO进程的推进,加速了园林行业市场化操作,园林行业蓬勃发展的同时也出现了一些亟待解决的现实难题。 1、我国园林行业的发展现状 1.1行业法制及技术标准体系起步较晚 我国园林行业法制标准化工作起步较晚,从20世纪80年代才开始制定风景园林技术标准,早期的标准主要有:1991年,建设部修订发布了《城市园林绿化行业技术标准体系表》,列出百余项拟编制的技术标准,已颁布《公园设计规范》、《城市绿化工程施工及验收规范》、《城市道路绿化规划与设计规范》、《风景名胜区规划规范》等近十项标准。1992年,建设部颁布《城市园林绿化条例》,2002年又颁布了《城市绿线管理办法》。据中国风景园林学会城市绿化专业委员会统计,在建设部现有颁布的城市绿化技术规范、规程和标准有26项。我国园林行业国家和地方颁发的法规文件,共368项,其中由全国人大批准颁布的条例4项;国务院令8项;国家建设部颁发的规定类43项、资质标准类11项、技术标准类15项;各省、区、市颁发的法规和标准272项。这些法规和标准是在我国园林绿化行业建设中逐步建立并巩固、推广,在规范生产、组织生产、指导生产、提高生产效率方面起到了积极的作用,为我国园林行业全面提高质量管理奠定了基础。同时,这些法规和标准建立实施,为在

论热处理技术的重点发展领域及趋势

论热处理技术的重点发展领域及趋势 摘 要:在我国,热处理技术正在不断朝环保化、精密化和少无氧化发展,逐渐与世界领先水平接近。本文简要介绍热处理技术的发展现状,详细介绍热处理生产技术着重发展的领域,主要包括真空热处理技术、可控气氛热处理技术以及信息化智能热处理技术。 关键词:热处理技术 发展领域 趋势 国内热处理技术在发展之初起点较低,发展底子薄弱。改革开放以后,通过对国外先进技术的引进和学习,我国的热处理技术有了很大进步,但与发达国家之间的差距仍然存在。 一、热处理技术的发展现状 1.节能化 热处理技术发展至今,已有了相当科学成熟的管理与生产体系,这也是能源利用率最大化的最重要原因。通过先进的管理方式,在生产开始前对不同能源的分配使用、生产设备的调配等做出精确预算,从而在生产过程中保证机械设备的满负荷运转,确保一分能源对应一分产出,减少和避免多余能耗的出现。同时,国外先进热处理技术还非常重视废热、

余热的使用,将工业废弃转化为生产能源,这是值得我们学习的。 2.清洁化 污染问题已经成为当今时代的全球性问题,而采用热处理技术的生产过程中所产出的废气、污水、粉尘、噪声以及一些剧毒物质,都会对当地环境造成极大的破坏。热处理技术在发展过程中对这一问题的解决下了很大功夫,从改良能源的燃烧工艺到废气污水的处理排放,在技术改进过程中的每一个环节注入环境保护元素,使热处理技术及其应用生产清洁化。 3.精密化 如今热处理技术所涉及的行业采用的计量单位已是纳米级别,热处理技术也在不断升级。目前,能够满足纳米级别生产要求的热处理技术和相应设备正在逐步推广,热处理技术的产品质量得到严密控制,其生产工艺和生产线调节也得到很大优化,能够稳定地满足大量精密生产的需求。 4.少无氧化 少无氧化曾经是热处理技术的高端配置,如今已得到了大规模推广。在热处理生产过程中应用气氛进行保护加热的技术也广泛地运用于各个领域。在真空热处理方面,国内外的差距并不如其他方面明显,主要因为这一技术在国内发展开始较早,没有落下太远。但是国内的生产设备如仪表、气

纳米催化剂

纳米催化剂的制备及应用 学院:化工学院专业:化学工程与技术 学生姓名:学号: 摘要:纳米催化剂具有大比表面积、高表面能、高度的光学非线性、特异催化性和光催化性等特性,在一些反应中表现出优良的催化性能。本文简要介绍了纳米催化剂的基本性质,综述了纳米催化剂的制备方法和特性,讨论了纳米催化在化工中的应用,对今后纳米催化材料研究方向进行了展望。 关键词:纳米催化剂制备在化工中的应用发展 近年来,纳米催化剂(Nanometer catalyst--NCs)的相关研究蓬勃发展。NCs 具有比表面积大、表面活性高等特点,显示出许多传统催化剂无法比拟的优异特性;此外,NCs还表现出优良的电催化、磁催化等性能,已被广泛地应用于石油、化工、能源、涂料、生物以及环境保护等许多领域。目前,纳米技术的研究主要向两个方向进行:一是通过新技术减少目前使用的材料如金属氧化物的用量;二是进行新材料的开发,如复合氧化物纳米晶。由于纳米粒子表面积大、表面活性中心多,所以是一种极好的催化材料。将普通的铁、钴、镍、钯、铂等金属催化剂制成纳米微粒,可大大改善催化效果。在石油化工工业采用纳米催化材料,可提高反应器的效率,改善产品结构,提高产品附加值、产率和质量。目前已经将纳米粉材如铂黑、银、氧化铝和氧化铁等直接用于高分子聚合物氧化、还原和合成反应的催化剂。纳米铂黑催化剂可使乙烯的反应温度从600e降至常温。随着世界对环境和能源问题认识的深入,纳米材料在处理污染、降解有毒物质方面有良好光解效果[1]。在润滑油中添加纳米材料可显著提高其润滑性能和承载能力,减少添加剂的用量,提高产品的质量。对纳米催化剂的研究无论理论上还是实际应用上都具有深远的意义。 1纳米催化剂的制备方法 纳米催化剂的制备方法直接影响到其结构、粒径分布和形态,从而影响其催化性能。文献中报道的制备方法多达数10种,本文主要介绍其中常用的几种。1.1溶胶-凝胶法 溶胶-凝胶法是指金属有机或无机化合物经过溶胶-凝胶化和热处理形成氧化物或其他固体化合物的方法。其过程是:用液体化学试剂(或粉状试剂溶于溶剂中)或溶胶为原料,而不是传统的粉状物为反应物,在液体中混合均匀并进行反

载体钌催化剂的应用领域(二):催化加氢反应

载体钌催化剂的应用领域(二):催化加氢反应 2016-06-10 12:55来源:内江洛伯尔材料科技有限公司作者:研发部 钌催化加氢案例一则作为一种性能优良的催化加氢催化剂, 负载型Ru基催化剂已广泛应用于各类气液相加氢反应中。 在精细化学品合成领域, 常将Ru/C催化剂用于液相水解耦合催化纤维素加氢制多元醇反应中。近来, 刘密等将Ru负载在杂多酸上制备出负载型Ru 催化剂 Ru/CsxH3-x PW12O40(x=1.0~3.0),发现这种催化剂在催化纤维二糖及纤维素加氢制山梨醇反应中具有较高的催化活性。Cobo课题组对于液相中Ru催化剂催化苯选择性加氢制环己烯进行了系统研究, 得出一系列与其它反应体系不同的结论。由含氯前驱体制备催化剂的选择性都明显优于无氯前驱体, 产物的选择性不受载体类型的影响, 只与纳米Ru粒子的性能有关。Carvalho 课题组对用于己二酸二甲酯氢化制1,6-己二醇反应中催化剂的载体效应进行了研究。结果表明, 由于多孔SiO2和活性组分Ru之间的强相互作用, 在其交界面上可以产生新的活性位, 因而相应催化剂的选择性和活性都高出其它载体数倍。在液相反应中, 负载型Ru催化剂经常用于喹啉加氢反应中。 负载型Ru催化剂也常用于CO2加氢制烃类、合成气或其它精细化学品等气相加氢反应中。在较宽的温度范围内进行气相加氢反应时, 与Ni催化剂相比, 负载型Ru催化剂稳定性更高。Bueno课题组发现, 以离子交换法制备的Ru/NaY催化剂在CO2加氢制CH4反应中表现出比Ru/SiO2更高的活性和稳定性。Kowalczyk 等的研究发现, 负载型Ru催化剂在富氢条件下用于CO2甲烷化反应时, 相同条件下其催化活性是负载型Ni催化剂的8~10倍。另外, 康丽琼将负载型Ru催化剂用于非均相条件下催化CO2加氢合成甲酸, 以达到对温室气体的资源化利用。结果表明, 2.0 %Ru/γ-Al2O3催化剂即具有优良的催化性能, 在80℃、H2分压5.0MPa, 总压力13.5 MPa的条件下, 甲酸转化数可达139mol/(h·mol)。

环保型溶剂油的生产现状与生产分析预测

环保型溶剂油的生产现状与生产分析预测 2.1 环保型溶剂油生产现状及预测 溶剂的用途广泛,几乎所有的制造业和加工业都使用溶剂。 国外环保型溶剂油的生产主要集中在几家国际著名的石油公司,如埃克森石油公司和壳牌石油公司,且多以直馏汽油为原料,经加氢脱芳、脱硫及精密分馏而得。 2.1.1 我国环保型溶剂油的发展 环保型溶剂油(脱芳溶剂油)属于特种溶剂油的范畴,2000年以前一般只有特种溶剂油的概念,区别于6#、120#、200#溶剂油以外的溶剂油而称之为特种溶刺油。国内较早进行特种溶剂油研究的是中国石化金陵石化有限责任公司开发的无味煤油和沧州炼油厂开发的铝板铝箔轧制油。 … 由于我国环保型溶剂油原料供给相对偏紧,部分企业停产以及装置检修等影响,我国环保型溶剂油厂家开工率一直低位徘徊。有资料称,2010年我国环保型溶剂油产销量在-吨。2011年我们估计产销量在-万吨左右。 表2.1 2007~2011年我国环保型溶剂油产能产量情况表 图2.1 2007~2011年我国环保型溶剂油产能产量走势图 2.1.2 我国环保型溶剂油生产现状分析 回顾我国特种溶剂油的开发和批量生产已有近20年,特别近10年来,国家颁布建筑装饰行业对芳烃等组分限量的强制性标准(如GB18581-2002和GB18582-2002),以及对挥发性有毒物质(VOCs)排放采取限用政策等,在研究和生产企业的共同努力下,逐步开发出质量稳步提高,品种系列化的环保型溶剂油。开发和应用的品种历经灯煤、航煤、无味煤油、Dx系列脱芳溶剂油等。而且根

据需求可分馏馏程较窄(10℃左右)的各段馏分油。 目前我国环保型溶剂油生产厂家与生产能力统计情况见表2.2。 表2.2 我国环保型溶剂油生产厂家产能情况表 单位:万吨/年 2.1.3 我国环保型溶剂油生产预测 国内百万吨级乙烯裂解装置纷纷建设投产,石化也积极准备将乙烯装置改扩建为百万吨级,乙烯装置副产品C9、C10、C11以上重芳烃产量增加较多,乙烯副产重芳烃主要指C9、C10、C11以上芳烃,含有甲苯、二甲苯、偏三甲苯、甲乙苯、苯乙烯、茚、萘等几十种芳烃及其衍生物。这些物质是生产耐热增塑剂、耐热高温树脂、抗氧剂、维生素E、麝香中间体以及高沸点芳烃溶剂油的原料。我国新建或扩建环保型溶剂油原料供应后继有保障。 新的环保型溶剂油的工厂开工或立项上马在即,如鄂尔多斯、茂名、漳州等地,势必为市场注入新的活力。 目前,我国环保型溶剂油生产企业有-家,产能达到-万吨,未来几年,我国环保型溶剂油还将有新的装置投产,预计到2015年我国环保型溶剂油产能达到-万吨/年。 表2.3 2012~2015年我国环保型溶剂油产能产量预测表 图2.2 2012~2015年我国环保型溶剂油产能产量预测图 2.2 我国主要环保型溶剂油生产/经销企业概况 1、沧炼特种油有限责任公司 沧炼特种油有限责任公司位于河北省沧州市北郊,沧州炼油厂西院。公司始

精细化工论文

精细化工论文 国内外精细化工现状及发展趋势 摘要: 概述了国内外精细化工的发展趋势及技术创新,并提出了我国精细化工需要解决的主 要问题和今后的发展。 关键词:精细化工,发展创新,趋势。 Fine chemicalindustry at home and abroad currentsituation and development trend Kong ling wei Abstract: Overview of the fine chemical industry at home and abroad and the development trend of the technology innovation, and put forward China's fine chemical industry need to solve problems and future development. Key words: Fine chemical ,Development and innovation ,Trend. 引言: 化学工业的发展过程是人类利用自然资源逐步深人的过程,即由初级加工逐步向 深度加工发展,即由初级加工逐步向深度加工发展,由一般加工逐步向精细加工发展,由主要生产大批量通用的基础材料逐步向既生产基础材料又生产小批量多品种的专用产品发展的过程。精细化工是以高新技术为基础,以市场需求为导向,以产品具有特定功附加价值高、小批量、多品种、系列化为特点的化学工业。我国的精细化工行业已有较好的基础和一定的生产规模,大部分产品已基本能满足国内市场的需求,有的还有相当数量的出口。但是我国精细化工行业与国外同行业相比,还有很大的差距,还需要不断的开创新的工业技术。 1 世界精细化工总体发展态势 世界精细化工总体发展态势综观近20多年来世界化工发展历程,各国、尤其是美国、欧洲、日本等化学工业发达国家及其著名的跨国化工公司,都十分重视发展精细化工,把精细化工作为调整化工产业结构、提高产品附加值、增强国际竞争力的有效举措,世界精细化工呈现快速发展态势,产业集中度进一步提高[1]。进入21世纪,世界精细化工发展的显著特征是:产业集群化,工艺清洁化、节能化,产品多样化、专用化、高性能化。受损细菌恢复的缺陷,故适用于实验室、生产现场和野外环境工作使用。 1.1 生产现状 国际石化工业以处于技术相对成熟的阶段,生产经营竞争激烈,导致利润明显下降。 国外大型炼化企业从两方面努力追求投资回报。一是致力于生产如千万吨的炼油装置、百万吨级装置规模大型化,乙烯装置、数十万吨级的基本原料装置,以追求规模效益,力求降低成本;二是利用其技术优势,集中力量,加快产品结构调整的步伐在石油化工高度发展的基础上,积极开展石油化工的。1深度加工及裂解产物(C4、C5、 C9、C10等)的综合利用,致力于中小吨位有机原料和精细化学品的生产,依靠技术保持效益。1997年全球化学工业的销售额约15000亿美元,1986年为300亿美元,年均增长率为6﹪。精细化学品产值为 450-500亿美元,比1986年的140亿美元增长近3倍,年均增长率为12%。专业化学品的发展也很快,已由1986年的900亿美元上升到1996年的约2400亿美元,年均增长率约10%。由此可见,精细和专用化学品的生产是国际化学工业发展的重点[2] 。 1.2 发展趋势 以大型石化装置为龙头发展精细化工,在精化工生产成本中,原料所占比例极低。大型石化企业可以对产品进行深加工,生产出下游产品,直接投向市场,另外,对副产品进行综合利

软件产业的国内外发展现状

无锡软件产业行动纲要(2009——2013年)

目录 一、无锡市软件产业的发展现状 (1) (一)无锡软件产业发展现状 (1) (二)无锡软件产业的优势分析 (1) (三)无锡软件产业的劣势分析 (3) 二、无锡市发展软件产业的重大意义 (6) (一)发展软件产业有助于促进无锡的产业结构的升级 (6) (二)发展软件产业有助于促进无锡的信息化与工业化融和 (7) (三)发展软件产业有助于提升无锡的服务信息化水平 (7) (四)发展软件产业有助于建设创新型无锡资源节约型社会 (7) 8 8 8 9 9 9 10 10 11 11 11 11 12 12 12 12 13 13 13 14 14 14 15 (一)强化服务功能建设,营造良好的软件产业发展环境 (15) (二)发挥集聚效应,完善和优化无锡软件产业链 (17) (三)增强软件企业自主创新能力,提升企业核心竞争力 (18) (四)积极利用各种渠道,稳定和壮大软件产业人才队伍 (18)

无锡市软件产业行动纲要 (2009—2013年) 一、无锡市软件产业的发展现状 IC 展,也逐步形成和积累了有利于产业快速发展的比较优势。 1.软件产业发展较快,具有一定的地方特色 无锡软件销售收入从2000年的4亿元增加到2008年的265亿元。2005至2008年,全市软件销售分别实现53亿元、103亿元、152亿元和265亿元,四年跨越了四大步。同时无锡软件产业的地方特色逐步形成。基本形成了基础办公软件、嵌入式软件和行业应用软件、出口外

包软件、IC设计、数码影视动漫软件等特色软件门类。产业竞争力不断增强。引进、培育了一批骨干核心企业,企业自主创新能力、产品质量和企业综合竞争力逐年提高,每年都有一批软件企业和软件产品获得国家和省级的各种奖励,品牌效应逐步形成。 2.强有力的政府推进 无锡市委、市政府明确将软件及创意产业作为重点发展产业,并将其作为加快产业结构调整,实现经济增长方式转变的关键环节来 与此同时,各区、县都相继制订了鼓励软件和信息外包发展的专门政策,安排充足的扶持资金和配套资金,扶持软件及信息外包产业发展。 3.高标准的载体建设 目前,无锡拥有15个省级以上开发区,并已经建成200多万平方米的软件专业载体,至2010年,全市将规划建设1000万平方米的创新

金属纳米晶体的表面与其催化效应

金属纳米晶体的表面与其催化效应 沈正阳 (浙大材料系1104 3110103281) 摘要:概括纳米材料的表面与界面特性,从金属纳米晶体表面活性与结构介绍其的催化性能,简要概述金属纳米晶体形状与晶面的关系以及金属纳米晶体的成核与生长。 关键词:纳米金属;表面活性;催化;高指数晶面 1.纳米材料的表面与界面 纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其他原子结合。强烈的表面效应,使超微粒子具有高度的活性。如将刚制成的金属超微粒子暴露在大气中,瞬时就会氧化,若在非超高真空环境,则不断吸附气体并发生反应。[1] 纳米晶体是至少有一个维度介于1到100纳米之间的晶体。纳米材料主要由晶粒和晶粒界面2部分组成,二者对纳米材料的性能有重要影响。纳米材料微观结构与传统晶体结构基本一致,但因每个晶粒仅包含着有限个晶胞,晶格点阵必然会发生一定程度的弹性畸变,其内部同样会存在各种缺陷,如点缺陷、位错、孪晶界等。纳米金属粒子的形状、粒径、颗粒间界、晶面间界、杂质原子、结构缺陷等是影响其催化性能的重要因素。纳米材料中,晶界原子质量分数达15%~50%,晶界上的原子排列极为复杂,尤其三相或更多相交叉区,原子几乎是自由的、孤立的,其量子力学状态和原子、电子结构已非传统固体物理、晶体理论所能解释。金属纳米晶体研究中,发现面心立方结构纳米金属如 Al、Ni、Cu 和密排六方结构Co都存在孪晶和层错缺陷,Cu纳米金属中存在晶界滑移。 2.金属纳米晶体的催化性能 近年来,关于纳米微粒催化剂的大量研究表明,纳米粒子作为催化剂,表现出非常高的催化活性和选择性。这是因为纳米微粒尺寸小,位于表面的原子或分子所占的比例非常大,并随纳米粒子尺寸的减小而急剧增大,同时微粒的比表面积及表面结合能迅速增大。纳米颗粒表面原子数的增加、原子配位的不足必然导致了纳米结构表面存在许多缺陷。从化学角度看,表面原子所处的键合状态或键

钌金属催化剂

钌金属催化剂 1 钌催化剂简介 金属催化剂是指以金属为主要活性组分的固体催化剂。主要是贵金属及铁、钴、镍等过渡元素。有单金属和多金属催化剂。 近半个世纪以来,贵金属催化剂的发展十分迅速,已被广泛应用于石油化工、制药、环境工程和精细化工工业。其中钌在有机物如烯烃和醇的催化氧化中具有很好的活性;同时还具有良好的加氢性能;可以在常温常压下活化N2和H2分子,适用于低温低压下合成氨;因而对钌催化剂进行研究开发具有重要的理论意义和工业应用前景。Ru原子的电子结构为4d75s1,是氧化态最多的元素,每一种电子结构又具有多种几何结构,为多样的Ru配合物合成提供良好的基础,因而广泛应用于烯烃复分解聚合和异构化等有机合成反应中 2 应用实例 以钌催化苯选择加氢制备环己烯的反应为例。 2.1 主催化剂 在苯选择加氢制备环己烯的反应中,Ru、Ni、Pt、Rh、Pd和稀土(La、Eu、Yb)等第Ⅷ族及周边的金属都具有一定的活性。使用Pt、Ir、Pd等金属的络合物催化加氢制备环己烯时,环己烯选择性几乎100%,收率可达90%,但该过程过于复杂,难以实现工业化;采用苯蒸气为原料进行气固相催化加氢制备环己烯时,Ni、Ru、Rh都是较好的催化剂,但因其反应条件苛刻,使得环己烯得率很低。大量研究表明,对于目前研究得最多、并且已用于工业生产的气液液固相法催化加氢,Ru是最合适的主催化剂,它可有效抑制环己烯的深度加氢,具有较高的苯选择加氢性能。但是,Ru催化剂的性能,也受到催化剂前驱体、制备方法、助剂和载体等因素的影响。 对于液相苯部分加氢制备环己烯的反应,钌是最适宜的催化剂。随着活性组分前驱体

RuCl 3·3H 2O 、Ru(acac)3、Ru(Ac)3和Ru(NO)(NO 3)3的不同,钌的分散状况、电子云密度等发生变化,从而对反应活性、环己烯的选择性和得率影响较大。Milone 等的研究发现,以RuCl 3·3H 2O 作为前驱体制备的催化剂在催化苯部分加氢时有着较高的环己烯选择性。其可能的原因是,使用RuCl 3·3H 2O 作为前驱体时,催化剂中将残留少量Cl -,这些残留的Cl -优先占据催化剂上一些对环己烯吸附能力非常强的活性位,从而有利于环己烯脱附,提高环己烯的选择性。此外,吸附在催化剂表面的氯离子,还可能与水形成氢键,从而有利于提高催化剂表面的亲水性,而催化剂表面亲水性的提高有利于苯部分加氢生成环己烯。但在催化剂的表面引入Cl 元素,催化活性会显着降低,所以如何控制Cl 元素的含量,获得较佳的反应活性和环己烯选择性,是需要解决的一个问题。 2.2 助催化剂 助催化剂也称促进剂,它是催化剂中含量较少的物质。虽然它本身常无催化活性,但加入后,可大大提高主催化剂的活性、选择性或寿命。假设在苯选择加氢制备环己烯的钌基催化剂中加入加氢能力比钌弱,但与环己烯间的吸附比钌强的助剂,利用它从钌上夺取环己烯,或者减少钌催化剂活性点附近潜在的氢的数量,使环己烯深度加氢难以进行,从而提高环己烯的选择性。众多文献报道,在苯选择加氢负载型钌催化剂中加入一种或几种金属元素,如K 、Fe 、Co 、Cu 、Ag 、Au 、Zn 、Mn 等作助催化剂,可以显着提高催化剂的催化性能。由于助催化剂本身常无活性,因此助催化剂的加入量有最佳值,即添加量在钌重量的0.01~0.2倍时效果最好。 Zn 、Fe 、Co 、La 、Ni 和稀土金属等,这些过渡金属具有空的d 轨道,可以与环己烯产生强作用力,从而与Ru 活性位争夺环己烯,促进环己烯从催化剂上脱附,进而提高环己烯收率;同时,助催化剂的加入还能占据部分钌活性位,从而减少环己烯深度加氢的几率。同时,有些助剂如Fe 、Ce 、B 的加入还起着结构助剂的作用,提高了活性组分的分散

公司现状分析报告

XX公司现状分析报告一公司发展历史及目前产能规模公司200年发展以来,经个阶段第一阶段200年201年此段以销售为主的公司201年开始,正式转入自主研发、生产、销售、服务于体的制造业公司公司目前产能规模:公司拥3条生产线,有各型号反应个个丙类储罐,生产线自动化程度、生产过程管道化传递。年万吨 二人力资源状况 部门设置:1个部门,销售部,人事部,财务部,技术部,生产部,品质部,储部,综合管理部,采购部,工艺设备部 管理岗位:公司层面:副总个(技术副总,综合管理部副总),总秘1个管理层面:部门总监岗个(昆个销售总监),经理岗个(昆山、无锡上个 201平均人人201平均人人201平均人80人,人员规模长,年均流动 现有人员状况目前在80人其中技术人8人生产人人销37人内勤及管理支2人。管理团队本科以4人,其中硕人(研发),管理队平均年3周4岁以人管理团队平均工作年10年平均司4~5 201年人均产150万元左右201年平均人力成7万元左右单位人工成2元 培训情况201年销售、技术、管理岗位的培训总时。人均时 人力资源管理问题

管理团队经验不足,普遍缺乏领导力 薪酬体系与公司发展战略关联度不够精确,比较模糊 没有清晰可测评的干部胜任力标准 对于部分管理岗位权、责、利不匹配,如权力大,责任小。权力小,责任大利益小。等,难以调动干部积极性 干部整体缺乏长远发展和持续自我学习的意愿 三技术现状 、品油性、水性、脱模大类,细分产品型255种201年总交易量超20万的产品6种,占,全年交易额低万的产种, 、研发设备情况:安捷伦液相色谱,气相色谱GC-M气质联用,红外色谱仪Karl 滴定,专利Fisher 。3、研发项目管理方式20174、目前我司明星产品(年上半年销售额前5)有哪些?平均利润率5),5、公司目前品质问题主要集中在哪些(客诉问题类型前防锈油盐雾时间达不到;(1)脱模剂卡模;(2)清洗剂味道大;3)(切削油过敏;4)(天。6、新开发产品平均试样周期 品牌市场定位及目前市场发展现状:四、 精1.30万的客户)是2016年经典案例客户(年度交易额前5名或单笔交易超过1. .建大皓月5.2.智诚3.海亮集团4.艺

国内外精细化工发展现状趋势

国内外精细化工发展现状趋势精细化工是当今化学工业中最具活力的新兴领域之一,是新材料的重要组成部分。 精细化工产品种类多、附加值高、用途广、产业关联度大,直接服务于国民经济的诸多行业和高新技术产业的各个领域。 大力发展精细化工已成为世界各国调整化学工业结构、提升化学工业产业能级和扩大经济效益的战略重点。 精细化工率(精细化工产值占化工总产值的比例)的高低已经成为衡量一个国家或地区化学工业发达程度和化工科技水平高低的重要标志。 一、世界精细化工总体发展态势综观近20多年来世界化工发展历程,各国、尤其是美国、欧洲、日本等化学工业发达国家及其着名的跨国化工公司,都十分重视发展精细化工,把精细化工作为调整化工产业结构、提高产品附加值、增强国际竞争力的有效举措,世界精细化工呈现快速发展态势,产业集中度进一步提高。 进入21世纪,世界精细化工发展的显着特征是:产业集群化,工艺清洁化、节能化,产品多样化,专用化、高性能化。 1精细化学品销售收入快速增长,精细化率不断提高上世纪九十年代以来,基于世界高度发达的石油化工向深加工发展和高新技术的蓬勃兴起,世界精细化工得到前所未有的快速发展,其增长速度明显高于整个化学工业的发展。

近几年,全世界化工产品年总销售额约为万亿美元,其中精细化学品和专用化学品约为3800亿美元,年均增长率在5~6%,高于化学工业2~3个百分点。 预计至2017年,全球精细化学品市场仍将以6%的年均速度增长。 2017年,世界精细化学品市场规模将达到4500亿美元。 目前,世界精细化学品品种已超过10万种。 精细化率是衡量一个国家和地区化学工业技术水平的重要标志。 美国,西欧和日本等化学工业发达国家,其精细化工也最为发达,代表了当今世界精细化工的发展水平。 目前,这些国家的精细化率已达到60~70%。 近几年,美国精细化学品年销售额约为1250亿美元,居世界首位,欧洲约为1000亿美元,日本约为600亿美元,名列第三。 三者合计约占世界总销售额的75%以上。 2加强技术创新,调整和优化精细化工产品结构加强技术创新,调整和优化精细化工产品结构,重点开发高性能化、专用化、绿色化产品,已成为当前世界精细化工发展的重要特征,也是今后世界精细化工发展的重点方向。 以精细化工发达的日本为例,技术创新对精细化学品的发展起到至关重要的作用。

产品设计的现状和发展趋势.doc

2产品设计的现状 2.1大的社会环境 由于整个社会处在转型期,我们周围充满了浮躁的味道。产品设计免不了也陷入其中。浮躁不是一种病,是一个发展中国家,一个正在奋起直追的国家的常态。我们正在追赶世界,世界张开双臂迎接我们。身在其中,想做到不浮躁真的很难。产品设计在我国还处在幼稚阶段,如何面对这么强大的社会背景值得深思。 2.1.1 整体设计意识的薄弱 拿工业设计而言,现代工业设计已经是现代意识与现代心理的物化,是理性与感性的构成,是科技、艺术、经济、社会的有机统一的创造活动。这时,设计意识也就有个人意识上升为社会意识,只有在社会意识表现出对设计的渴求,设计活动才会被认可与重视。而一个国家的设计发展与否,也与这个国家的社会意识对设计的需求的有无来决定。 今天,世界已经不知不觉进入了一个以计算机和通信技术为标志的数字化信息时代。理智上我们知道新时代已经来临,但心理上我们还没有准备好!我们看看周围,设计常常被社会“作为肤浅的比附,即使没有被丢弃,至少也是被冷落的和轻视的”(张道一,1994)更谈不上深刻的体现或揭示社会的心理。但是,我们相信,当设计师的个体设计意识积累到一定程度,发展到一定阶段,势必会使设计成为生活的必需,社会的渴求,汇聚成一定的社会意识从而替代整个社会意识。也只有当社会意识对设计情有独钟,形成设计意识的时候,我国的设计才有真正的出路,才会后来居上。 2.1.2 认识的缺陷 一个很重要的问题,人民大众混淆了设计和艺术两个概念。很多人认为做设计就是艺术设计人就是艺术人。他们总带有一种蔑视的眼光,口语称其为“看不起学设计的人”。认为做设计的就知道画画,就是恶搞,就是与众不同。足见设计并没有这么乐观的称为已经大众化。 3产品设计的发展趋势 产品设计未来发展是一种完全依据新思路的创造性的设计,这种未来型设计也许不能为当代人们所接受,但它是人们对今后生活的美的憧憬,是未来社会图

-----中国精细化工的现状和发展前景

-----中国精细化工的现状和发展前景

中国精细化工的现状和发展前景摘要:阐述了中国传统精细化工和新领域精细化工的现状,对今后的发展进行了预测。 关键词:精细化工;现状;发展;预测 Abstract:Expounding the present condition of the traditional and new field fine chemical industry as well as prospect of the development of the fine chemical industry from now on in China. Key words:fine chemical industry;present condintion;development; forecast 一、中国精细化工的定义 中国和日本把产量小、组成明确,可按规格说明书进行小批量生产和小包装销售的化学品,以及产量小,经过加工配制,具有专门功能,既按其规格说明书,又根据其使用效果进行小批量生产和小包装销售的化学品,统称为精细化学品。而欧美一些国家把前者称为精细化学品,把后者称为专用化学品。精细化学品起到“工业味精”、“工业催化剂”、和其他特殊功能的作用。 中国把生产精细化学品的工业称为精细化学工业,简称精细化工。精细化工生产过程与一般化工(通用化工)生产不同,它是由化学合成(或从天然物质中分离、提取)、精制加工和商品化等三个部分组成,大多以灵活性较大的多功能装置和间歇方式进行小批量生产,化学合成多数采用液相反应、流程长、精制复杂、需要精密的工程技术;从制剂到商品化需要一个复杂的加工过程,主要是迎合市场要求而进行复配,外加的复配物愈多,产品的性能也愈复杂。因此,精细化工技术密集程度高、保密性和商品性强、市场竞争激烈。必须要根据市场变化的需要及时更新产品,做到多品种生产,使产品质量稳定,还要符合各种法规,做好应用和技术服务,才能培育和争取市场、扩大销路,才能体现出投资省、利润率和附加价值率高的特点。 1987年,原化学工业部对中国的精细化品颁布了一个暂行规定,将中国的精细化学品分为农药、染料、涂料(包括油漆和油墨)、颜料、试剂和高纯物、信息用化学品(包括感光材料和磁性记录材料)、食品和饲料添加剂、粘合剂、

2017年热处理行业现状及发展前景展望分析报告

2017年热处理行业分析报告Array 2017年1月出版

文本目录 一、行业监管体系及相关法律法规 (3) 1.热处理行业监管体制 (3) 2.行业主要法律法规与相关政策 (3) 二、行业发展现状 (5) 1、热处理设备制造业竞争格局 (5) 2、行业产业链结构 (6) 3、行业发展方向 (7) 三、市场规模 (8) 1.机械基础件行业 (8) 2.汽车零部件制造业 (10) 四、基本风险特征 (12) 1.原材料价格波动风险 (12) 2.经济波动风险 (12) 3.政策风险 (13) 4.技术风险 (13) 5.人才短缺风险 (14) 五、行业竞争状况 (14)

一、行业监管体系及相关法律法规 1.热处理行业监管体制 国家发展和改革委员会为热处理行业的最高管理机构。国家发展和改革委员会负责热处理行业的宏观管理职能,制定产业政策,发布行业发展规划,指导技术改造。中国机械工业联合会协调管理下的中国热处理行业协会、中国机械工程学会热处理学会承担热处理行业的引导和服务职能。中国热处理行业协会主要负责行业自律,调查研究国内外热处理行业发展趋势,向政府提出发展战略、产业政策等建议;协调机械制造各行业之间的经济技术关系,推动横向经济联合与协作;组织开展行业对外技术经济协作与交流。中国机械工程学会热处理学会主要负责组织评价热处理行业重大科学技术成就,发布中国热处理行业科学技术重大进展;承担科学技术重大项目或课题的论证、评估、咨询和成果鉴定工作;承担专业技术职称评审和技术资格认证工作;组织科学技术普及推广和技术培训、技术咨询活动等,推动行业技术进步。 国家质量监督检验检疫局下属的全国热处理标准化技术委员会承担热处理行业的标准制定工作,主要负责全国热处理专业标准的技术归口,标准的制订、宣传和贯彻。 2.行业主要法律法规与相关政策 热处理行业相关产业政策如下表所示: 序号发布单位法律法规/政策名称同热处理行业有关内容

影响纳米材料光催化性能的因素

二、影响纳米材料光催化活性的因素。 1、半导体的能带位置 半导体的带隙宽度决定了催化剂的光学吸收性能。半导体的光学吸收阈值λg与Eg有关,其关系式为:λg=1240/Eg。半导体的能带位置和被吸附物质的氧化还原电势,从本质上决定了半导体光催化反应的能力。热力学允许的光催化氧化还原反应要求受体电势比半导体导带电势低(更正);而给体电势比半导体价带电势高(更负)。导带与价带的氧化还原电位对光催化活性具有更重要的影响。通常价带顶VBT越正,空穴的氧化能力越强,导带底CBB越负,电子的还原能力越强。价带或导带的离域性越好,光生电子或空穴的迁移能力越强,越有利于发生氧化还原反应。对于用于光解水的光催化剂,导带底位置必须比 H+/H2O(-0.41eV)的氧化还原势负,才能产生H2,价带顶必须比O2/H2O(+0.82eV)的氧化还原势正,才能产生O2,。因此发生光解水必须具有合适的导带和价带位置,而且考虑到超电压的存在,半导体禁带宽度Eg应至少大于1.8eV。目前常被用作催化剂的半导体大多数具有较大的禁带宽度,这使得电子-空穴具有较强的氧化还原能力。 2、光生电子和空穴的分离和捕获 光激发产生的电子和空穴可经历多种变化途径,其中最主要的是分离和复合两个相互竞争的过程。对于光催化反应来说,光生电子和空穴的分离与给体或受体发生作用才是有效的。如果没有适当的电子或空穴的捕获剂,分离的电子和空穴可能在半导体粒子内部或表面复合并放出荧光或热量。空穴捕获剂通常是光催化剂表面吸附的OH-基团或水分子,可能生成活性物种·OH,它无论是在吸附相还是在溶液相都易引发物质的氧化还原反应,是强氧化剂。光生电子的捕获剂主要是吸附于光催化剂表面上的氧,它既能够抑制电子与空穴的复合,同时也是氧化剂,可以氧化已经羟基化的反应产物。 3、晶体结构 除了对晶胞单元的主要金属氧化物的四面体或八面体单元的偶极矩的影响,晶体结构(晶系、晶胞参数等)也影响半导体的光催化活性。TiO2是目前认为最好的光催化剂之一。TiO2主要有两种晶型—锐钛矿和金红石,两种晶型结构均可由相互连接的TiO6八面体表示,两者的差别在于八面体的畸变程度和八面体间相互连接的方式不同。结构上的差异导致了两种晶型有不同的质量密度及电子能带结构。锐钛矿的质量密度略小于金红石,且带间隙(3.2eV)略大于金红石(3.1eV),这是其光催化活性比金红石的高。 4、晶格缺陷 根据热力学第三定律,除了在绝对零度,所有的物理系统都存在不同程度的不规则分布,实际晶体都是近似的空间点阵式结构,总有一种或几种结构上的缺陷。当有微量杂质元素掺入晶体时,也可能形成杂质置换缺陷。这些缺陷的存在对光催化活性可能起着非常重要的影响。有的缺陷可能会成为电子或空穴的捕获

相关主题
文本预览
相关文档 最新文档