当前位置:文档之家› GPS原理与应用复习资料、课后思考题

GPS原理与应用复习资料、课后思考题

GPS原理与应用复习资料、课后思考题
GPS原理与应用复习资料、课后思考题

1、坐标转换需要那几个参数?

七参数布尔莎模型:即X平移,Y平移,Z平移,X旋转(WX),Y旋转(WY),Z 旋转(WY),尺度变化(DM)。若得七参数就需要在一个地区提供3个以上的公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z),可以向地方测绘局获取。

2、子午面、黄道、天球赤道面、天轴、春分点、升交点、升交点赤径几大参数的含义?

天球:天文学等领域中,天球是一个想象的旋转的球体,理论上具有无限大的半径,与地球同心。天空中所有的物体都想象成是在天球上。与地球相对应,它有天赤道,天极。

子午面:与地球自转轴平行,或包含地球椭球体短轴的平面。是量度经度的起始面或终止面,通过物点和光轴的截面称为子午面。轴上物点有无数个子午面,而轴外物点只有一个子午面。与子午面垂直相交的面称为弧矢面。

黄道:地球绕太阳公转的轨道平面与天球相交的大圆。由于地球的公转运动受到其他行星和月球等天体的引力作用,黄道面在空间的位置产生不规则的连续变化。但在变化过程中,瞬时轨道平面总是通过太阳中心。这种变化可以用一种很缓慢的长期运动再迭加一些短周期变化来表示。

天球赤道面:天球赤道是把我们的天空想象成一个密闭的球,将我们地球的赤道投射到这个天球上.天赤道有无限的直径和周长.

天轴:将地轴无限延长,所得到的直线叫天轴,当然,天轴也是一根假想的轴。天轴与天球的交点就叫天极,和地球上北极所对应的那一点叫北天极,或天球北极;和地球上南极对应的那一点叫南天极,也称天球南极.

春分点:从地球上看,太阳沿黄道逆时针运动,黄道和赤道在天球上存在相距180°的两个交点,其中太阳沿黄道从天赤道以南向北通过天赤道的那一点,称为春分点,与春分点相隔180°的另一点,称为秋分点,冬至后,太阳从南向北移动,在春分那一天通过这一点。太阳分别在每年的春分(3月21日前后)和秋分(9月23日前后)通过春分点和秋分点。

升交点:卫星自南向北运动,卫星轨道上升段和赤道面的交点

升交点赤径:含地轴和春分点的子午面与含地轴和升交点的子午面之间的交角

3、岁差、章动的含义

岁差:地轴绕着一条通过地球中心而又垂直于黄道面的轴线的缓慢圆锥运动,周期为26000年,由太阳、月球和其他行星对地球赤道隆起物的吸引力所造成,结果是春分点逐渐向西移动。

章动:由于月球、太阳和各大行星与地球之间的相对位置存在周期性变化,因此作用在地球赤道隆起部分的力矩也在发生变化,地月系质心绕日公转的轨道面也存在周期性的摄动,因此,在岁差上的基础上还存在各种大小和周期各不相同的微小的周期性变化。

4、参心坐标系、地心坐标系的定义及差异

参心坐标系:是以参考椭球几何中心为原点的大地坐标系;通常分为:参心空间直角坐标系(以X,Y,Z为其坐标元素)和参心大地坐标系(以B,L,H为其坐标元素)参心坐标系是在参考椭球内建立的O-XYZ坐标系,原点O为参考椭球的几何中心,X轴与赤道面和首子午面的交线重合,向东为正。Z轴与旋转椭球的短轴重合,向北为正。Y轴与XZ平面垂直构成右手系。

地心坐标系:以地球质心为原点建立的空间直角坐标系,或以球心与地球质心重合的地球椭球面为基准面所建立的大地坐标系,通常分为地心空间直角坐标系(以x,y,z为其坐标元素)和地心大地坐标系(以B,L,H为其坐标元素)。地心坐标系是在大地体内建立的O-XYZ坐标系。原点O设在大地体的质量中心,用相互垂直的X,Y,Z三个轴来表示,X

轴与首子午面与赤道面的交线重合,向东为正。Z轴与地球旋转轴重合,向北为正。Y轴与XZ平面垂直构成右手系。

5、我国BJ54、西安80坐标系的定义及差异

北京54坐标系(BJZ54):

北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。

西安80坐标系(XA80):

1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。

5、WGS坐标的具体意义

原点是地球的质心,空间直角坐标系的Z轴指向BIH(1984.0)定义的地极(CTP)方向,即国际协议原点CIO,它由IAU和IUGG共同推荐。X轴指向BIH定义的零度子午面和CTP赤道的交点,Y轴和Z,X轴构成右手坐标系。其四个基本参数公式长半径:a=6378137±2(m);地球引力常数:GM=3986005×108m3s-2±0.6×108m3s-2;正常化二阶带谐系数:C20=-484.16685×10-6±1.3×10-9;J2=108263×10-8 地球自转角速度:ω=7292115×10-11rads-1±0.150×10-11rads-1

建立WGS-84世界大地坐标系的一个重要目的,是在世界上建立一个统一的地心坐标系。

6、我国2000大地坐标系的具体定义

2000国家大地坐标系是全球地心坐标系在我国的具体体现,其原点为包括海洋和大气的整个地球的质量中心。2000国家大地坐标系采用的地球椭球参数如下:

长半轴 a=6378137m

扁率f=1/298.257222101

地心引力常数GM=3.986004418×1014m3s-2

自转角速度ω=7.292l15×10-5rad s-1

7、世界时、原子时、协调世界时、GPS时的定义

世界时:世界时是基于地球自转的一种时间计量系统,反映了地球在空间的位置。

原子时:无知内部原子的跃迁,所辐射或吸收的电磁波频率,具有极强的稳定性和复现性,是基于原子物理技术的一种更加均匀的时间系统,对于测量时间间隔非常重要。

协调世界时:是一种折衷的时间尺度,它用原子时的速率,而在时刻上逼近世界时,所用方法就是“闰秒”,当协调世界时和世界时之差即将超过±0.9秒时,就对协调世界时作

一整秒的调整。UTC在本质上还是一种原子时,因为它的秒长规定和原子时秒长相等,只是在时刻上,通过人工干预(闰秒),尽量靠近世界时。

GPS时:是全球定位系统GPS使用的一种时间系统,它是由GPS的地面监控系统和GPS 卫星中的原子钟建立和维持的一种原子时,其起点为1980年1月6日0h00m00s,在起始时刻,GPS时与UTC对齐,这两种时间系统所给出的时间是相同的,由于UTC存在跳秒,因而经过一段时间后,这两种时间系统中就会相差n个整秒,n是这段时间内UTC的积累跳秒数,将随时间的变化而变化。

8、电磁波及其特性

电磁波(又称电磁辐射)是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效的传递能量和动量。

特性:

1、叠加性:两列以上的同类波在空间相遇,总的是分波的矢量和,而两列波互不影响,保持各自的性质不变。

2、干涉:相同频率、固定相位差的同类波共存时,会形成振幅相互加强或相互减弱的现象。

3、衍射: 在传播的过程中遇到障碍物或孔隙时,会绕过障碍物的边缘,呈现路径弯曲,在障碍物或孔隙的背后展衍。

4、能量:波在媒质中的传播,波所带的能量总会因某种机理或快或慢地转换成热能或其他形式的能量,从而不断地衰弱,终至消失。

5、电磁波是一种横波

6、具有传播速度

7、具有波的共性

8、同一列波,频率不变,速度增加,波长变长

9、速度取决于传播介质和电磁波的频率,不同频率的电磁波在同一介质中传播速度不同。

9、数字地球的概念(百度)

一种可以嵌入海量地理数据的多分辨率和三维的地球的表示,可以在其上添加许多与我们所处的星球有关的数据”,是一个以地球空间信息为基础(框架),嵌入(融合)地球各种数字信息的一个系统平台,将数据的采集、存储、处理、传输、通信等一体化,通过地球数字的信息化手段,最大限度地利用地球信息,处理和分析整体的地球科学问题,为全球资源、环境保护与利用以至教育提供的先进工具,是一个以信息高速公路为基础,以空间数据基础设施为依托而更加广泛的概念。”

10、“3S”的概念

3S"技术是英文遥感技术(Remote Sensing RS)、地理信息系统(Geographical information System GIS)、全球地位系统(Global Positioning System GPS)这三种技术名词中最后一个单词字头的统称。

11、无线电导航系统的定位原理

无线电导航定位,就是通过电参量所测量到的几何参量确定用户位置。一种方法就是通过测量的几何参量与几何位置之间的数学关系进行位置的确定,称之为位置线法;另一种通过电测量的高阶运动参量,如速度等,积分确定位置,称之为推航定位。

无线电导航系统的定位精度是衡量无线电导航系统的最主要战术性能指标,是决定工作区的主要因素由于各种噪声、干扰和各种不可预见因素的存在,测量总会存在误差。通常可以认为测量误差是随机变量

12、RS的定义

RS(RemoteSensing)是遥感的英文缩写,顾名思义,就是遥远的感知。地球上的每一个物体都在不停的吸收、发射和反射信息和能量。其中的一种形式-电磁波早已经被人们所认识和利用。人们发现不同物体的电磁波特性是不同的。遥感就是根据这个原理来探测地表物体对电磁波的反射和其发射的电磁波,从而提取这些物体的信息,完成远距离识别物体。

13、遥感学科分辨率的内涵

分辨率一般分为三种:光谱分辨率,空间分辨率和时间分辨率

光谱分辨率是传感器能测量的最小波长差,例如常用的ETM/TM只有7个波段,其光谱分辨率就不如MODIS 36个波段高。光谱分辨率从理论上说与一天中的时段也是无关的。但是在一天中,正午时刻可见光最强,利于可见光和近红外遥感器工作,夜间远红外遥感器可以排除其他光谱的干扰。

空间分辨率是指遥感影像上能够识别的两个相邻地物的最小距离。是指图像中可辨认的临界物体空间几何长度的最小极限,即对细微结构的分辨率。对于摄影影像,通常用单位长度内包含可分辨的黑白“线对”数表示(线对/毫米);对于扫描影像,通常用瞬时视场角(IFOV)的大小来表示(毫弧度 mrad),即像元,是扫描影像中能够分辨的最小面积。空间分辨率数值在地面上的实际尺寸称为地面分辨率。对于摄影影像,用线对在地面的覆盖宽度表示(米);对于扫描影像,则是像元所对应的地面实际尺寸(米)。如陆地卫星多波段扫描影像的空间分辨率或地面分辨率为79米(像元大小56×79米2)。

时间分辨率是指在同一区域进行的相邻两次遥感观测的最小时间间隔。对轨道卫星,亦称覆盖周期,时间间隔大,时间分辨率低,反之时间分辨率高。时间分辨率是评价遥感系统动态监测能力和“多日摄影”系列遥感资料在多时相分析中应用能力的重要指标。

14、GIS的定义

GIS是由计算机硬件、软件和不同方法组成的系统,该系统设计来支持空间数据的采集、管理、处理、分析、建模和显示,以便解决复杂的规划和管理问题。

是以测绘测量为基础,以数据库作为数据储存和使用的数据源,以计算机编程为平台的全球空间分析即时技术。从学科的角度,GIS是在地理学、地图学、测量学和计算机科学等学科基础上发展起来的一门学科,具有独立的学科体系;从功能上,GIS具有空间数据的获取、存储、现示、编辑、处理、分析、输出和应用等功能;从系统学的角度,GIS具有一定结构和功能,是一个完整的系统。

15、栅格数据与矢量数据的区别

基于栅格模型的数据结构简称为栅格数据结构,是指将空间分割成有规则的网格,在各个网格上给出相应的属性值来表示地理实体的一种数据组织形式;而矢量数据结构是基于矢量模型,利用欧几里得(EUCLID)几何学中的点、线、面及其组合体来表示地理实体的空间分布。

栅格数据是以二维矩阵的形式来表示空间地物或现象分布的数据组织方式.每个矩阵单位称为一个栅格单元(cell),栅格的每个数据表示地物或现象的属性数据.因此栅格数据有属性明显,定位隐含的特点;而矢量数据结构是利用点,线,面的形式来表达现实世界,具有定位明显,属性隐含的特点。由于矢量数据具有数据结构紧凑,冗余度低,表达精度高,图形显示质量好,有利于网络和检索分析等优点。在GIS中得到广泛的应用,特别在小区

域(大比例尺)制图中充分利用了它的精度高的优点。但是,随着RS广泛的应用,同时数据压缩技术,计算机性能的提高克服了栅格数据的数据量大等缺点,栅格数据结构表达地理要素比较直观,容易实现多层数据的叠合操作,便于与遥感图像及扫描输入数据相匹配使用等,栅格数据将越来越发挥更大的作用。

16、子午卫星系统的主要缺点

子午卫星系统的局限性:

(1)一次定位所需时间过长,这一缺点是由多普勒定位方法的本质所决定的。会带来很多问题,例如:无法为飞机、导弹、卫星等高动态用户服务,也难以

满足汽车等运动轨迹较为复杂的地面车辆导航定位的需要;对船舶等低动态

用户来说,由于在一次导航定位过程中载体仍处于运动状态中,故各观测值

所对应的用户位置是不相同的,一次导航地位所需时间过长,船速等参数的

误差将影响定位的精度。

(2)不是一个连续的、独立的卫星导航系统。这个缺点只能让子午卫星系统成为辅助系统,多种导航的并存不仅增加了用户的费用,而且还有可能导致信号

相互干扰,

17、G PS的主要功能有哪些

(1)测距

(2)授时

(3)定位导航

18、GPS定位导航的基本原理

GPS定位的基本原理是根据高速运动的卫星瞬间位置作为已知的起算数据,采用空间距离后方交会的方法,确定待测点的位置。如图所示,假设t时刻在地面待测点上安置GPS接收机,可以测定GPS信号到达接收机的时间△t,再加上接收机所接收到的卫星星历等其它数据可以确定以下四个方程式:

19、解决gps限制政策中SA技术的方法

20、主控站、监控站和注入站各自的功能

主控站的功能:

(1)负责管理、协调整个地面控制中各部分的工作;

(2)根据各监测站送来的资料,计算、预报卫星轨道和卫星钟改正数,并按规定格式编制成导航电文送往地面注入站

(3)调整卫星轨道和卫星钟读数,当卫星出现故障时,负责修复或启用备用件以维持其正常工作。

监控站的功能:

(1)对视场中的各GPS卫星进行伪距测量

(2)通过气象传感器自动测定并记录气温、气压、相对湿度(水汽压)等气象元素(3)对伪距观测值进行改正后在进行编辑、平滑和压缩,然后传送给主控站

注入站的功能:在主控站的控制下,向卫星注入寻电文

21、GPS系统到目前的位置共研发了三代卫星,最新一代卫星的新特性有哪些

22、目前在国内市场上常用的GPS接收机有哪些品牌?与国外接收机相比,国产接收机在哪些方面还存在差距?

23、了解GPS\GLONASS\GALILEO\COMPASS的系统构成及相互间的差别GLONASS:由卫星星座、地面监测控制站和用户设备三部分组成。

GLONASS星座

GLONASS星座由27颗工作星和3颗备份星组成,所以GLONASS星座共由30颗卫星组成。27颗星均匀地分布在3个近圆形的轨道平面上,这三个轨道平面两两相隔120度,每个轨道面有8颗卫星,同平面内的卫星之间相隔45度,轨道高度2.36万公里,运行周期11小时15分,轨道倾角56度。

地面支持系统

地面支持系统由系统控制中心、中央同步器、遥测遥控站(含激光跟踪站)和外场导航控制设备组成。地面支持系统的功能由前苏联境内的许多场地来完成。随着苏联的解体,GLONASS系统由俄罗斯航天局管理,地面支持段已经减少到只有俄罗斯境内的场地了,系统控制中心和中央同步处理器位于莫斯科,遥测遥控站位于圣彼得堡、捷尔诺波尔、埃尼谢斯克和共青城。

用户设备

GLONASS用户设备(即接收机)能接收卫星发射的导航信号,并测量其伪距和伪距变化率,同时从卫星信号中提取并处理导航电文。接收机处理器对上述数据进行处理并计算出用户所在的位置、速度和时间信息。GLONASS系统提供军用和民用两种服务。GLONASS系统绝对定位精度水平方向为16米,垂直方向为25米。目前,GLONASS系统的主要用途是导航定位,当然与GPS系统一样,也可以广泛应用于各种等级和种类的定位、导航和时频领域等。

GPS:由卫星星座、地面控制系统、gps信号接收机

GALILEO:

GALILEO系统所采用的坐标系统是基于GALILEO地球参考框架(GTRF)的大地坐标系,其几何定义为:原点位于地球质心,Z轴指向IERS推荐的协议地球原点(CTP)方向,X轴指向地球赤道与BIH定义的零子午线焦点,Y轴满足右手坐标系

COMPASS:由空间卫星、地面控制中心站和用户终端等3部分构成

北斗卫星导航定位系统的基本工作原理是“双星定位”:以2颗在轨卫星的已知坐标为圆心,各以测定的卫星至用户终端的距离为半径,形成2个球面,用户终端将位于这2个球面交线的圆弧上。地面中心站配有电子高程地图,提供一个以地心为球心、以球心至地球表面高度为半径的非均匀球面。用数学方法求解圆弧与地球表面的交点即可获得用户的位置。

5颗静止轨道卫星和30颗非静止轨道卫星组成,提供两种服务方式:开放服务和授权服务。其中5颗静止轨道卫星,即高度为36000公里的地球同步卫星;5颗静止轨道卫星在赤道上空的分布为:58.75o E, 80oE, 110.5o E, 140o E and 160o E,提供RNSS和RDSS信号链路。30颗非静止轨道卫星由27颗中轨(MEO)卫星和3颗倾斜同步(IGSO)卫星组成,提供RNSS信号链路… 27颗MEO卫星分布在倾角为55度的三个轨道平面上,每个面上有9颗卫星,轨道高度为21500公里。

五大优势:

1.同时具备定位与通信功能,无需其他通信系统支持。

2.覆盖中国及周边国家和地区,24小时全天候服务,无通信盲区。

3.特别适合集团用户大范围监控与管理,以及无依托地区数据采集用户数据传输应用。

4.独特的中心节点式定位处理和指挥型用户机设计,可同时解决“我在哪”和“你在哪”。

5.自主系统,高强度加密设计,安全、可靠、稳定,适合关键部门应用。

差别:

与美国的GPS系统不同的是GLONASS系统采用频分多址(FDMA)方式,根据载波频率来区分不同卫星(GPS是码分多址(CDMA),根据调制码来区分卫星)。每颗GLONASS 卫星发播的两种载波的频率分别为L1=1,602+0.5625K(MHZ)和L2=1,246+0.4375K(MHZ),所有GPS卫星的载波的频率是相同,均为L1=1575.42MHZ 和L2=1227.6MHZ。

GLONASS卫星的载波上也调制了两种伪随机噪声码:S码和P码。俄罗斯对GLONASS 系统采用了军民合用、不加密的开放政策。

GLONASS系统单点定位精度水平方向为16M,垂直方向为25M。

GLONASS卫星由质子号运载火箭一箭三星发射入轨,卫星采用三轴稳定体制,整量质量1400KG,设计轨道寿命5年。所有GLONASS卫星均使用精密铯钟作为其频率基准。第一颗GLONASS卫星于1982年10月12日发射升空。到目前为止,共发射了80余颗GLONASS卫星,最近一次是2000年10月13日发射了三颗卫星。截止2001年1月10日为止尚有10颗GLONASS卫星正在运行。

为进一步提高GLONASS系统的定位能力,开拓广大的民用市场,俄政府计划用4年时间将其更新为GLONASS-M系统。内容有:改进一些地面测控站设施;延长卫星的在轨寿命到8年;实现系统高的定位精度:位置精度提高到10~15M,定时精度提高到20~30NS,速度精度达到0.01M/S。另外,俄计划将系统发播频率改为GPS的频率,并得到美罗克威尔公司的技术支援。 GLONASS系统的主要用途是导航定位,当然与GPS 系统一样,也可以广泛应用于各种等级和种类的测量应用、GIS应用和时频应用等。

从技术和应用前景上看,四大系统各有优劣,如果说GPS胜在成熟,伽利略胜在精准,那么格洛纳斯的最大价值就在于抗干扰能力强,而中国的北斗卫星导航系统的优势则在于互动性和开放性。与GPS相比,伽利略系统在许多方面具有优势,例如其卫星数量多达30颗,其卫星轨道位置比GPS高。伽利略可为地面用户提供3种类型的信号供选择,其中包括免费信号、加密且需交费才能使用的信号、加密且可以符合更高要求的信号。此外,伽利略卫星定位系统信号的最高精度比GPS高10倍,确定物体的误差范围在1米之内。正如有关专家所说:“如今的GPS只能找到街道,而伽利略却能找到车库的门。”而俄国的格洛纳斯由24颗卫星组成,也是由军方负责研制和控制的军民两用导航定位卫星系统。尽管其定位精度比GPS、伽利略略低,但其抗干扰能力却是最强的。中国自行研制生产的北斗卫星导航系统不仅具备在任何时间、任何地点为用户确定其所在的地理经纬度和海拔高度的能力,而且在定

位性能上有所创新。北斗系统与其他系统最大的不同,在于它不仅能使用户知道自己的所在位置,还可以告诉别人自己的位置,特别适用于需要导航与移动数据通信场所。此外,中国还致力于提高北斗卫星导航系统与其他全球卫星导航系统的兼容性,促进卫星定位、导航、授时服务功能的应用。

24、卫星在轨道运行过程中的受力主要有哪些

GPS卫星轨道离地面高达20 200km,大气阻力与类阻力影响几乎没有,地球的自转形变摄动、地球反辐射压力、地球扁率摄动、月球扁率间接摄动和相对论效应摄动都可忽略不计,由于GPS卫星的姿态控制和温度控制设计的原因,GPS卫星在轨运行时会在卫星体坐标系Y轴方向产生一个摄动,称为Y轴偏差。因此,GPS卫星在轨运行时所受的作用力主要包括:地球质心引力F0、除质心外的地球引力F E、太阳和月球引力F N、太阳辐射压力F A、卫星Y轴偏差F Y、地球潮汐附加力F T等

25、开普勒三大定律的内容及含义

椭圆定律(开普勒第一定律)

开普勒第一定律,也称椭圆定律:每一个行星都沿各自的椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点中。

面积定律(开普勒第二定律)

开普勒第二定律,也称面积定律:在相等时间内,太阳和运动着的行星的连线所扫过的面积都是相等的。这一定律实际揭示了行星绕太阳公转的角动量守恒。

调和定律(开普勒第三定律)

开普勒第三定律,也称调和定律:各个行星绕太阳公转周期的平方和它们的椭圆轨道的半长轴的立方成正比。由这一定律不难导出:行星与太阳之间的引力与半径的平方成反比。这是牛顿的万有引力定律的一个重要基础。

这里,a是行星公转轨道半长轴,T 是行星公转周期,K是常数。

26、确定卫星空间位置所需要的参数有哪些

确定轨道平面的位置:升交点赤径、轨道倾角

确定轨道的形状:半长轴、偏心率

确定轨道在轨道面内的位置:近距点角距

确定卫星轨道上的:真近点角

27、卫星轨道速度、轨道高度、轨道倾角、覆盖区域的定义及四者之间的关系

卫星轨道速度:

轨道高度:卫星在太空绕地球运行的轨道距地球表面的高度。

轨道倾角:轨道平面与地球迟到平面的夹角

覆盖区域:

关系:轨道高度决定了卫星对地球覆盖区域的大小

28、GPS信号传播要经过大气中的电离层、对流层,他们对电磁波的影响特点?GPS选用L波段的电磁波作为载波的原因

对电磁波的影响特点:

对GPS而言,卫星发射信号传播到接收机天线的时间约0.1秒,当光速值的最后一位含有一个单位的误差,将会引起0.1m的距离误差。表明准确确定电磁波传播速度的重要意义。实际的电磁波传播是在大气介质中,在到达地面接收机前要穿过性质、状态各异且不稳定的若干大气层,这些因素可能改变电磁波传播的方向、速度和强度,这种现象称为大气折射。

GPS选用L波段的电磁波作为载波的原因:

1、地球表面的由特性、地貌和电离层等因素的考量

2、遵循国际上制定的频谱资源的管理协议

3、要求远高于伪码信号频率(20.46MHZ)

4、对GPS接收天线的增益及其尺寸大小影响的考量

GPS选用L1、L2波段的电磁波作为载波的原因:

1、载波频率f<1GHz,电离层延迟严重,残余误差较大

2、载波频率f过高,信号受水汽吸收和氧气吸收谐振严重

3、采用L1、L2可应用双频观测技术计算电离层影响的改正提高定位精度

29、GPS信号中载波的意义及其用途

载波的作用:

1、搭载其他的调制方法

2、测距

3、测定多普勒频移

载波的意义:

1、减小传输中的噪声;

2、频分复用,即同一之间同一信道传输多路信号而不混叠。

3、可传播更远距离,有利于接收。

30、GPS伪码包括哪几种测距码,以及各自的特点

GPS伪码包括:

m序列:是由一组线性反馈移位寄存器产生的,序列的长度N越大,其自相关特性越接近白噪声的自相关特性。这样,序列和其自身的时间偏移就很容易区分,这对扩频通信是十分有利的。所以,在CDMA系统中采用较长的m序列作为扩频地址码以区分不同的用户。当然,N也不能取的过大,否则会给系统的同步及P N码的捕获造成困难,同时也会增加接收设备和发射设备的复杂性。

C/A码:1、C/A码的码长较短,易于捕获,而通过捕获C/A码所得到的信息,又可以方便地捕获P码,所以,通常称C/A码为捕获码。2、C/A码的码元宽度较大。由于其精度较低,所以称C/A码为粗精度码。

P码:可以较精确地测定从接收机至卫星的距离,1、P码的码长较长,一般是先捕获C/A码,然后根据导航电文中给出的相关信息,再捕获P码。2,、P码的码元宽度为C/A码的1/10,可用于较精密的导航和定位,称为精码。

Y码:Y码是在P码的基础上形成的,保密性能更佳

L2C码:

L5码

M码:信号发射功率更大,因而信号捕获更加快捷稳定;在block IIF卫星的L1和L2载波上调制的是两种不同的结构的M码,抗干扰力更强;调制在M码上的导航电文有利于使用基于信息的通信协议,这个协议允许定义新的信息

31、基准频率的定义

基准频率是由卫星上的原子钟直接产生的,它是一种标准频率,一种参考频率为10.23MHZ

32、导航电文包括的主要内容

导航电文是GPS卫星向用户播发的一组反映卫星在空间的运动轨道、卫星钟的改正参数、电离层延迟修正参数及卫星的工作状态等信息的二进制代码,也称数据码(D码)。

导航电文是以“帧”为单位向外播发的,一个主帧包括5个子帧,一个子帧包括10个字,一个字包括30bit。

第一子帧又称第一数据块,第一子帧的第一个字是遥测字,作为捕获导航电文的前导,第二个字为交接字,使用户捕获到C/A码解调出导航电文之后能尽快捕获P(Y)码。

第2、3子帧合起来称为第二数据块,是用来描述GPS卫星轨道的参数的,利用这些参数就可以求出导航电文有效时间段内任一时刻t卫星在空间位置的(X,Y,Z)及运动速度(X',Y',Z')。

子帧4和子帧5各含25页,包括子帧4和子帧5的3~10个字,提供所有卫星的历书参数、电离层延时校正参数、gps时间UTC中间的关系以及卫星的健康状况等数据信息。33、卫星历书与星历的区别

历书与星历都是表示卫星运行的参数,历书包括全部卫星的大概位置,用于卫星预报,它是从导航电文中提取的,每12.5分钟的导航电文才能得到一组完整的历书;星历只是当前接收机观测到的卫星的精确位置,用于定位

卫星历书是指:由卫星向用户发送的数据,包括全部卫星的粗略星历和卫星时钟校正量、卫星识别号和卫星健康状态等数据。

星历是指:在GPS测量中,是指天体运行随时间而变的精确位置或轨迹表,它是时间的函数。具体应用中有“广播星历”( broadcast ephemeris)与后处理“精密星历”(precise ephemeris)之分。卫星星历,又称为两行轨道数据(TLE,Two-Line Orbital Element),由美国celestrak发明创立。是用于描述太空飞行体位置和速度的表达式———两行式轨道数据系统。卫星星历以开普勒定律的6 个轨道参数之间的数学关系确定飞行体的时间、坐标、方位、速度等各项参数,具有极高的精度。能精确计算、预测、描绘、跟踪卫星、飞行体的时间、位置、速度等运行状态;能表达天体、卫星、航天器、导弹、太空垃圾等飞行体的精确参数;能将飞行体置于三维的空间;用时间立体描绘天体的过去、现在和将来。时间按世界标准时间(UTC)计算,定时更新。

34、现代化以后,GPS卫星信号有几种载波?包含哪几种信息?

35、GPS接收机的基本构造有哪些?画出各部块的流程图

GPS接收机主要由GPS接收机天线单元、GPS接收机主机单元和电源三部组成。天线单元的主要功能是将GPS卫星信号非常微弱的电磁波转化为电流,并对这种信号电流进行放大和变频处理。而接收机单元的主要功能是对经过放大和变频处理的信号电源进行跟踪、处理和测量,图1描述了GPS信号接收机的基本结构。

天线单元的基本结构:

36、GPS接收机可以分为哪几类?对应的大类里面的子类分法

按接收机的用途分类

导航型接收机此类型接收机主要用于运动载体的导航,它可以实时给出载体的位置和速度。这类接收机一般采用C/A码伪距测量,单点实时定位精度较低,一般为±25mm,有SA影响时为±100mm。这类接收机价格便宜,应用广泛。根据应用领域的不同,此类接收机还可以进一步分为:车载型——用于车辆导航定位;航海型——用于船舶导航定位;航空型——用于飞机导航定位。由于飞机运行速度快,因此,在航空上用的接收机要求能适应高速运动。星载型——用于卫星的导航定位。由于卫星的速度高达7km/s以上,因此对接收机的要求更高。

测地型接收机测地型接收机主要用于精密大地测量和精密工程测量。定位精度高。仪器结构复杂,价格较贵。授时型接收机这类接收机主要利用GPS卫星提供的高精度时间标准进行授时,常用于天文台及无线电通讯中时间同步。

授时型接收机:

按接收机的载波频率分类

单频接收机单频接收机只能接收L1载波信号,测定载波相位观测值进行定位。由于不能有效消除电离层延迟影响,单频接收机只适用于短基线(<15km)的精密定位。

双频接收机双频接收机可以同时接收L1,L2载波信号。利用双频对电离层延迟的不一样,可以消除电离层对电磁波信号的延迟的影响,因此双频接收机可用于长达几千公里的精密定位。

按接收机通道数分类

GPS接收机能同时接收多颗GPS卫星的信号,为了分离接收到的不同卫星的信号,以实现对卫星信号的跟踪、处理和量测,具有这样功能的器件称为天线信号通道。根据接收机所具有的通道种类可分为:

多通道接收机

序贯通道接收机

多路多用通道接收机

按接收机工作原理分类

码相关型接收机:是利用码相关技术得到伪距观测值。

平方型接收机:是利用载波信号的平方技术去掉调制信号,来恢复完整的载波信号通过相位计测定接收机内产生的载波信号与接收到的载波信号之间的相位差,测定伪距观测值。

混合型接收机:这种仪器是综合上述两种接收机的优点,既可以得到码相位伪距,也可以得到载波相位观测值。

干涉型接收机:这种接收机是将GPS卫星作为射电源,采用干涉测量方法,测定两个测站间距离。

37、误差分类:

与卫星有关的误差:卫星轨道误差、卫星钟差、相对论效应

与接收设备有关的误差:接收机天线相位中心的偏移和变化、接收机钟差、接收机内部噪声

与传播途径有关的误差:电离层延迟误差、对流层延迟误差、多路径效应

38、偶然误差与系统误差的区别;

偶然误差:内容:卫星信号发生部分的随机噪声;接收机信号接收处理部分的随机噪声;其它外部的某些具有随机特征的影响。

特点:随机的,量极小——毫米级。

系统误差:内容:其它具有某种系统特性的误差。

特点:具有某种系统性的特征,,量级大——最大可达数百米。

39、清除GPS定位误差的解决方法主要有哪4种?介绍基本原理及思路。

模型改正法、求差法、参数法、回避法

钟误差的应对方法:模型改正、相对定位和差分定位

电离层延迟的改正方法:经验模型改正、双频改正、实测模型改正

40、电离层延迟的定义

电离层中的中性气体分子部分被电离,产生了大量的电子和正离子,从而形成了一个电离区域,电磁波信号在穿过电离层时,其传播速度会发生变化,变化的成都主要取决于电离层中电子密度和信号频率;其传播的路径也会发生变化,从而使得信号的传播时间乘上真空中的光速不等于从信号源至接收机的几何距离

41、钟误差的定义

卫星信号的传播时间是由接收机钟所测定的信号到达接收机的时刻减去卫星钟所测定的信号离开卫星的时刻,信号离开卫星时卫星钟针对于标准的GPS时有一定的钟差,当信号达到接收机的时候,接收机钟与标准的GPS时也有一定的钟差,用后者减去前者的钟差,最后再乘以光速所得就是钟误差对测距产生的影响。

42、星历误差的定义

由卫星星历所给出的卫星轨道与卫星的实际轨道之差称为卫星星历误差。

43、对流层延迟的定义

通常是泛指电磁波信号在通过高度为50km以下的未被电离的中性大气层时所产生的信号延迟

44、多路径误差的定义

由发射器到接收仪,经由不同长度两路径的无线电波间互相干扰形成定位误差。

45、相位中心偏差的定义

天线的瞬时相位中心与平均相位中心的差值。

46、整周未知数的定义

是在全球定位系统技术的载波相位测量时,载波相位与基准相位之间相位差的首观测值所对应的整周未知数。正确地确定它,是全球定位系统载波相位测量中非常重要且必须解决的问题之一。

47、周跳的定义

是指在GPS全球定位系统技术的载波相位测量中,由于卫星信号的失锁而导致的整周计数的跳变或中断。

48、GPS定位方法的分类

(1)GPS测量定位方法按“定位模式”可分为:绝对定位(单点定位)、相对定位、差分定位(2)GPS测量定位方法按“定位时接收机天线的运动状态”可分为:

静态定位-天线相对于地固坐标系静止

动态定位-天线相对于地固坐标系运动

(3)GPS测量定位方法按“获得定位结果的时效”可分为:事后定位、实时定位

(4)GPS测量定位方法按“观测值类型”可分为:伪距测量、载波相位测量

50、网络RTK的定位原理是什么?

目前网络RTK技术的代表方法有:虚拟参考站法(Virtual Reference Station,简称VRS)、FKP等,其中虚拟参考站VRS技术最为成熟。网络RTK系统由若干个连续运行的GPS 基准站、计算中心、数据发布中心和移动站(用户——GPS接收机)组成。

在某一大区域(或城市)内,建立若干个(三个以上)连续运行的GPS基准站,根据这些GPS基准站的观测值(由于GPS基准站有长时间的观测数据,故点位坐标精度很高),建立区域内GPS主要误差模型(如电离层、对流层、卫星轨道等误差模型),系统运行时,将这些误差从基准站的观测值中减去,形成“无误差”的观测值,然后利用这些无误差的观测值和移动站(用户—单台GPS接收机)的观测值,经有效地组合,在移动站附近(几米到几十米)建立起一个虚拟参考站,移动站和虚拟参考站进行载波相位差分改正,实现实时RTK。

由于其差分改正是经多个基准站观测资料有效组合求出的,可有效地消除电离层、对流层和卫星轨道等误差,哪怕移动站远离基准站(100km以外),也能很快确定自己的模糊度,实现厘米级快速实时定位。

51、DOP值的定义?DOP值可分为哪几种?其中哪一个是最佳指示器?

DOP是Dilution of Precision的缩写,直译为“精度强弱度”,通常翻译为“相对误差”。具体含义是:由于观测成果的好坏与被测量的人造卫星和接收仪间的几何形状有关且影响甚大,所以计算上述所引起的误差量称为精度的强弱度。天空中卫星分布程度越好,定位精度越高。

Gdop:三维坐标与时间(即几何形状)精度强弱度;为纬度、经度、高程和时间等误差平方和的开根号值,所以: Gdop 的平方 = Pdop 的平方 + Tdop 的平方。

Hdop: 水平(即二维)坐标精度强弱度;为纬度和经度等误差平方和的开根号值。

Htdop: 水平坐标与时间精度强弱度;为纬度、经度和时间等误差平方和的开根号值,所以: Htdop 的平方 =Hdop 的平方 + Tdop 的平方。

Pdop: 位置精度强弱度;为纬度、经度和高程等误差平方和的开根号值,所以: Pdop 的平方 =Hdop 的平方 + Vdop 的平方。具体含义:归因于卫星的几何分布,天空中卫星分布程度越好,定位精度越高。

Tdop: 时间精度强弱度;为接收仪内时表偏移误差值。

Vdop: 垂直(即高程)坐标精度强弱度;为高程的误差值。

其中Pdop是最佳指示器

《GPS原理与应用》复习资料整理

第一章绪论 1.GPS:是接收人造卫星电波,准确求顶接收机自身位置的系统。 目前世界上有那些全球性的卫星导航系统?(俄罗斯GLONASS、欧洲Galileo、中国北斗、美国GPS) 欧空局的全球卫星定位系统的名称是什么? 2. GPS系统组成: (1)空间星座部分:24颗卫星提供星历和时间信息,发射伪距和载波信号,提供其他辅助信息。 (2)用户部分:接收并观测卫星信号,记录和处理数据,提供导航定位信息。 (3)地面控制部分:中心控制系统,实现时间同步,跟踪卫星进行定轨。【5个监测站、1个主控站、3个注入站】 3. GPS按接收机用途分为三类:导航型、测量型、授时型; 接收机由天线单元、机主机单元和电源组成。 4、精密工程测量采用那种类型的GPS接收机? 5、GPS接收机中采用的是铷钟、铯钟还是石英钟? 6.与传统测量方法相比,GPS系统特点: 1)全球性---全球范围连续覆盖;(4~12颗);2)全能性-—三维位置、时间、速度;3)全天侯 4)实时性----定位速度快;;5)连续性;6)高精度;7)抗干扰性能好,保密性好; 8)控制性强;9)观测站之间无需通视;10)提供三维坐标;11)操作简便。 7、gps有哪些新的应用领域 8、GPS在测量上的用途有那些? 9.常见GPS卫星信号接收机(例举几个著名的中外GPS生产厂商):Ashtech系列GPS接收机、Trimble(天宝)系列GPS接收机、 Leica(莱卡) 系列GPS接收机、中纬系列GPS接收机、南方系列GPS接收机、中海达系列GPS接收机 第二章 GPS定位的坐标系统与时间系统 1.天球:是指以地球质心M为中心,半径r为任意长的一个假想的球体。 黄道:即当地球绕太阳公转时,地球上观测者所见到太阳在天球上运动的轨迹称为黄道 黄赤交角:黄道平面与赤道平面的夹角ε称为黄赤交角,约为23.5° 春分点:当太阳在黄道上从天球南半球向北半球运行时,黄道与天球赤道的交点γ称为春分点。

GPS原理与应用 考试重点总结

名词解释: 天球:是以地球质心M为中心,半径r为任意长的一个假象的球体。 春分点:当太阳在黄道上从天球南半球向北半球运行时,黄道与天球赤道的交点γ。 大地经纬度:表示地面点在参考椭球面上的位置,用大地经度λ、大地纬度和大地高h表示。 天文经纬度:表示地面点在大地水准面上的位置,用天文经度和天文纬度表示。 黄道:地球公转的轨道面与天球相交的大圆,即当地球绕太阳公转时,地球上的观测者所见到的太阳在天球上的运动轨迹。黄道面与赤道面的夹角称为黄赤交角,约23.5°。 赤经:为过春分点的天球子午面与过天体的天球子午面之间的夹角。 赤纬:为原点至天体的连线与天球赤道面之间的夹角。 岁差:实际上地球接近于一个赤道隆起的椭球体,在日月和其它天体引力对地球隆起部分的作用下,地球在绕太阳运行时,自转轴方向不再保持不变,从而使春分点在黄道上产生缓慢西移,此现象在天文学上称为岁差。 章动:在太阳和其它行星引力的影响下,月球的运行轨道以及月地之间的距离在不断变化,北天极在天球上绕北黄极顺时针旋转的轨迹十分复杂。如果观测时的北天极称为瞬时北天极(或真北天极),相应的天球赤道和春分点称为瞬时天球赤道和瞬时春分点(或真天球赤道和真春分点)。则在日月引力等因素的影响下,瞬时北天极将绕瞬时平北天极产生旋转,轨迹大致为椭圆。这种现象称为章动。 极移:地球自转轴相对于地球体的位置不是固定的,地极点在地球表面上的位置随时间而变化的现象称为极移。 世界时:以平子夜为零时起算的格林尼治平太阳时称为世界时。 力学时:天文学中,天体的星历是根据天体动力学理论建立的运动方程而编算的,其中所采用的独立变量是时间参数T,这个数学变量T定义为力学时。 原子时:以物质内部原子运动的特征为基础的原子时系统。 协调时:以原子时秒长为基础,在时刻上尽量接近于世界时的一种折衷时间系统,称为世界协调时或协调时。 GPS时间系统:属于原子时系统,秒长与原子时相同,但与国际原子时的原点不同,即GPST 与IAT在任一瞬间均有一常量偏差。 GPS定位:GPS定位系统靠车载终端内置手机卡通过手机信号传输到后台来实现定位。指利用人造地球卫星确定测站点位置的技术。 GPS导航:利用GPS定位卫星,在全球范围内实时进行定位、导航的系统。 绝对定位:在地球协议坐标系中,确定观测站相对地球质心的位置。 相对定位:在地球协议坐标系中,确定观测站与地面某一参考点之间的相对位置。 动态定位:在定位过程中,接收机天线处于运动状态。 静态绝对定位:接收机安置在基线端点的接收机固定不动,通过观测,确定观测站相对地球质心的位置。 静态相对定位:接收机安置在基线端点的接收机固定不动,通过连续观测,取得充分的多余观测数据,确定观测站与地面某一参考点之间的相对位置。 优点:定位精度高;缺点:定位时间长。 差分动态定位:在已知坐标的点上安置一台GPS接收机(称为基准站),利用已知坐标和卫星星历计算出观测值的校正值,并通过无线电设备(称数据链)将校正值发送给运动中的GPS接收机(称为流动站),流动站应用接收到的校正值对自己的GPS观测值进行改正,以消除卫星钟差钟差、接收机钟差、大气电离层和对流层折射误差的影响。 整周未知数:是在全球定位系统技术的载波相位测量时,载波相位与基准相位之间相位差的

GPS原理及应用题目及答案

GPS原理及应用题目及答案 GPS原理及应用复习题目 一.名词解释 1二体问题:2真近点角、平近点角、偏近点角:3多路径效应:4无约束平差和约束平差5.章动6.异步观测7.接收机钟差8.周跳9.三维平差10.岁差11.同步观测12.卫星钟差13.整周未知数14.二维平差 二.填空题 1.GPS工作卫星的地面监控系统包括__________、__________、__________。 2.GPS系统由__________、__________、__________三大部分组成。 3.按照接收的载波频率,接收机可分为__________和__________接收机。 4.GPS卫星信号由、、三部分组成。 5.接收机由、、三部分组成。 6.GPS卫星信号中的测距码和数据码是通过技术调制到载波上的。 7.1973年12月,GPS系统经美国国防部批准由陆海空三军联合研制。自1974年以来其经历了、、三个阶段。 8.GPS卫星星座基本参数为:卫星数目为、卫星轨道面个数为、卫星平均地面高度约20200公里、轨道倾角为度。

9.GPS定位成果属于坐标系,而实用的测量成果往往属于某国的国家或地方坐标系,为了实现两坐标系之间的转换,如果采用七参数模型,则该七个参数分别为,如果要进行不同大地坐标系之间的换算,除了上述七个参数之外还应增加反映两个关于地球椭球形状与大小的参数,它们是和。 10.真春分点随地球自转轴的变化而不断运动,其运动轨迹十分复杂,为了便于研究,一般将其运动分解为长周期变化的和短周期变化的。 11.GPS广播星历参数共有16个,其中包括1个,6个对应参考时刻的参数和9个反映参数。 12.GNSS的英文全称是。 13.载体的三个姿态角是、、。 14、GPS星座由颗卫星组成,分布在个不同的轨道上,轨道之间相距°,轨道的倾角是°,在地球表面的任何地方都可以看见至少颗卫星,卫星距地面的高度是km。 15、GPS使用L1和L2两个载波发射信号,L1载波的频率是MHZ,波长 是cm,L2载波的频率是MHZ,波长是cm。 16、GPS卫星除了受到引力之外,还受到地球引力场摄动力、光压摄动力、大气阻力、摄动力等的摄动力的影响,因此卫星的运动实际上是。 16、GPS卫星星历有两种,一种是,另一种是。前者包含时间二

最新GPS原理与应用复习题及参考答案资料

GPS原理与应用复习参考 一、判断题(本大题共5小题,每小题1分,共5分)(请在答题纸上判断题答题区域作答) 1. ( V)对于GPS网的精度要求,主要取决于网的用途和定位技术所能达到的精度。精度指标通常是以相临点间弦长的标准差来表示。 2. ( X)GPS的测距码(C/A码和P码)是伪随机噪声码。 3. ( X )电离层延迟的大小与载波频率无关。 4. ( X)GPS定位直接获得的高程是似大地水准面上的正常高。 5. ( X )图形强度因子是一个直接影响定位精度、但又独立于观测值和其它误差之外的 一个量。其值恒大于1,最大值可达100,其大小随时间和测站位置而变化。在GPS测量中, 希望DOF越小越好。 二、判断题(本大题共5小题,每小题1分,共5分)(请在答题纸上判断题答题区域作答) 1. (X)GPS测得的站星之间的伪距就是指GPS卫星到地面测站之间的几何距离。 2. ( V ) C/A码的码长较短,易于捕获,但码元宽度较大,测距精度较低,所以C/A码又称为捕获码或粗码。 3. ( V) GPS的空间部分(卫星星座部分)由21颗工作卫星、3颗备用卫星组成,均匀分布在6个轨道上。 4. ( X ) GPS定位直接获得的高程是似大地水准面上的正常高。 5. ( X ) GPS静态定位之所以需要观测较长时间,其主要目的是为了削弱卫星星历误差的 影响。 三、填空题(本题共15空,每空1分,共15分)(请在答题纸上填空题答题区域作答) 1. 按照《规范》规定,我国GPS测量按其精度依次划分为AA A、B、CD E六级,其中 C级网的相邻点之间的平均距离为15?10km最大距离为40 km 。 2. GPS定位系统包括空间部分、地面控制部分和用户设备部分。 3. 从误差来源分析,GPS测量误差大体上可分为以下三类:与卫星有关的误差,与信号传播有关的误差和与接收设备有关的误差。 4. 美国国防部制图局(DMA于1984年发展了一种新的世界大地坐标系,称之为美国国防 部1984年世界大地坐标系,简称WGS-84 。 5. 三台或三台以上接收机同步观测所获得的基线向量构成的闭合环称为同步环。 6. 在定位工作中,可能由于卫星信号被暂时阻挡,或受到外界干扰影响,引起卫星跟踪的 暂时中断,使计数器无法累积计数,这种现象叫周跳。 7. 在接收机和卫星间求二次差,可消去两测站接收机的相对钟差改正。 8. 利用GPS进行定位有多种方式,如果就用户接收机天线所处的状态而言,定位方式分为 . 静态定位禾口动态定位;若按参考点的不同位置,又可分为单点定位和相对 定位。 9. GPS卫星信号是由载波、导航电文、和测距码三部分组成的。 10. 对流层延迟改正模型中的大气折射指数N与温度、气压、湿度等 因素有关。 11. 差分GPS按观测值的类型可分为伪距差分和相位差分。 12. 目前正在运行的全球卫星导航定位系统有GPS 和GLONASS 。我国组建的第一代卫星导航定位系统称为北斗卫星导航系统,欧盟计划组建的卫星导航定位系统称 为Galileo 系统。 13. 在接收机间求一次差后可消除卫星钟差参数,继续在卫星间求二次差后可消除接_

GPS原理及应用期末复习题 选择题

GPS原理及应用期末复习题 1在20世纪50年代我国建立的1954年北京坐标系,采用的是克拉索夫斯 基椭球元素,其长半径和扁率分别为( B )。 A、a=6378140、α=1/298.257 B、a=6378245、α=1/298.3 C、a=6378145、α=1/298.357 D、a=6377245、α=1/298.0 2.在使用GPS软件进行平差计算时,需要选择哪种投影方式(A)。 A、横轴墨卡托投影 B、高斯投影 C、等角圆锥投影 D、 等距圆锥投影 3.在进行GPS—RTK实时动态定位时,基准站放在未知点上,测区内仅有 两个已知点,( C )定位测量的精度最高。 A、两个已知点上 B、一个已知点高,一个已知点低 C、两个已知点和它们的连线上 D、两个已知点连线的精度 4.单频接收机只能接收经调制的L1 信号。但由于改正模型的不完善, 误差较大,所以单频接收机主要用于( A )的精密定位工作。 A、基线较短 B、基线较长 C、基线 ≥40km D、基线 ≥30km 5.GPS接收机天线的定向标志线应指向( D )。其中A与B级在顾及当 地磁偏角修正后,定向误差不应大于±5°。 A、正东 B、正西 C、正南 D、正北 6.GPS卫星信号取无线电波中L波段的两种不同频率的电磁波作为载波, 它们的频率和波长分别为( C ): A、 B、 C、 D、 7.GPS系统的空间部分由21颗工作卫星及3颗备用卫星组成,它们均匀分 布在( D )相对与赤道的倾角为55°的近似圆形轨道上,它们距地面 的平均高度为20200Km,运行周期为11小时58分。 A、3个 B、4个 C、5个 D、6个 8.在20世纪50年代我国建立的1954年北京坐标系是( C )坐标系。 A、 地心坐标系 B、 球面坐标系 C、 参心坐标系 D、 天球坐标系 9.我国在1978年以后建立了1980年国家大地坐标系,采用的是1975年国 际大地测量与地球物理联合会第十六届大会的推荐值,其长半径和扁率 分别为( A )。 A、a=6378140、α=1/298.257 B、a=6378245、α=1/298.3 C、a=6378145、α=1/298.357 D、a=6377245、α=1/298.0

GPS原理与应用复习总结

《GPS定位原理及应用》 第一章绪论 1.1 GPS卫星定位技术的发展 1.1.1 早期的卫星定位技术 1、无线电导航系统 罗兰--C:工作在100KHZ,由三个地面导航台组成,导航工作区域2000KM,一般精度200-300M。 Omega(奥米茄):工作在十几千赫。由八个地面导航台组成,可覆盖全球。精度几英里。 多卜勒系统:利用多卜勒频移原理,通过测量其频移得到运动物参数(地速和偏流角),推算出飞行器位置,属自备式航位推算系统。误差随航程增加而累加。 缺点:覆盖的工作区域小;电波传播受大气影响;定位精度不高 2、早期的卫星定位技术 卫星三角网: 以人造地球卫星作为空间观测目标,由地面观测站对其进行摄影测量,测定测站至卫星的方向,来确定地面点的位置的三角网。 卫星测距网: 用激光技术测定测站至卫星的距离作为观测值的网则称为卫星测距网。 20世纪60~70年代,美国国家大地测量局在英国和德国测绘部门协助下,建立了一个共45个点的全球卫星三角网,点位精度5米。 卫星三角网的缺点: 易受卫星可见条件和天气条件影响,费时费力,定位精度低。 1.1.2 子午卫星导航(多普勒定位)系统及其缺陷 多普勒频移: 多普勒效应是为纪念Christian Doppler而命名的,他于1842年首先提出了这一理论。 他认为电磁波频率在电磁源移向观察者时变高,而在波源远离观察者时变低。因此可利用频率的变化多少来确定距离的变化量。 多普勒效应的一个常被使用的例子是火车,当火车接近观察者时,其汽鸣声会比平常更刺耳。你可以在火车经过时听出刺耳声的变化。同样的情况还有:警车的警报声和赛车的发动机声。 子午卫星导航系统(NNSS): 将卫星作为空间动态已知点,通过在测站上接受子午卫星发射的无线电信号,利用多普勒定位技术,进行测速、定位的卫星导航系统。 子午卫星导航系统的优点: 经济快速、精度均匀、不受天气和时间的限制,且可获得测站的三维地心坐标。 子午卫星导航系统的缺点: 由于卫星数量少,故不能实时定位、定位时间长、定位精度也低。 1958年,美国为解决北极星核潜艇在深海航行和执行军事任务而需要精确定位的问题,开始研制军用导航卫星,命名为“子午仪计划”。1960年4月,美国发射了世界第一颗子午导航卫星,传统的无线电导航系统从此被这种新的导航方式取代。美国1964年建成子午导航卫星系统,主要由美国海军使用,到1967年开始正式向民用开放。由于该系统卫星数目较小(5-6颗),运行高度较低(平均1000KM),从地面站观测到卫星的时间隔较长(平均1.5h),因而它无法提供连续的实时三维导航,而且精度较低。单点定位精度约为30—40米,每次定位约需8—10分钟。而各测站观测了公共的17次合格的卫星通过时,联测定位的精度才能达到0.5米左右。子午导航卫星系统是低轨道导航卫星,它集中了远程无线电导航台全球覆盖和近程无线电导航台定位精度高的优点,仅用4颗卫星组成的太空导航星座就能提供全天候全球导航覆盖和周期性二维(经纬度)定位能力,使全球用户统一于地心坐标系进行高精度定位,使导航技术产生了革命性突破。 70年代中期,我国利用引进的多普勒接收机进行了西沙群岛的大地测量基准联测,国家测绘总局和总参测绘局联合测设了全国卫星多普勒大地网,石油和地质勘探部门也在西北地区测设了卫星多普勒定位网。

浅谈GPS原理及其应用

浅谈GPS原理及其应用 随着科技和制造业的进步,众多科技含量较高的产品被越来越广泛地应用在生活中,卫星导航定位系统就是一个很好的应用实例,其中以美国的GPS系统应用最为普遍,常见的如:车载GPS导航仪、智能手机中的电子地图导航功能等。在本人的教学工作中,多次遇到学生询问于此相关的问题,本文就GPS的原理及应用进行简述。 1.卫星导航定位系统含义及概况 定位,顾名思义就是确定某一个目标的位置,就是要搞明白“我在哪里”的问题。导航,就是对某一目标(汽车或者飞机等)运动时的连续定位,就是搞明白“我走了哪些路”,或者“我将要走哪条路”。随着航天、通讯等科技的发展,人造卫星也被用来定位和导航,其能够提供全球性的,全天候的,高精度、实时的导航定位服务,以及授时服务。 全球卫星导航系统有好几种,美国的GPS 、俄罗斯的GLONASS、我国的Compass(北斗)、欧洲的伽利略(Galileo)系统,可用卫星数目达到100颗以上[1]。其中在全球范围内应用最成熟、最广泛的就是美国的GPS系统。GPS系统始于1973年的美国国防部批准的“导航卫星定时和测距/全球定位系统”,简称GPS(即Global Positioning System,全球定位系统),被誉为人类在20世纪仅次于计算机之后的最为重大的发明。 2.GPS系统的基本定位原理 GPS系统的基本配置是24颗卫星构成,卫星位于6个地心轨道上,每个轨道有4颗卫星,每个轨道接近于圆形,与赤道面的倾斜夹角为55°,沿赤道以60°间隔均匀分布[2],形成了对地球的网络包围,图1表述了GPS卫星的星座分布。轨道的半径约为26600km,也就是高度大约离地面20200km,轨道的周期是半个恒星日,约11.976个小时。理论上,在地球表面的绝大多数地点都能观测到的有效卫星颗数≥4颗。而4颗或者更多的GPS卫星就能够确定每天24小时内地球表面上任何地点观测者(观测设备)的位置了。如图2所示。 图2 GPS定位示意图 每一颗GPS卫星都携带有铯原子钟和(或)铷原子钟,为发射信号提供高精度时间信息的,GPS卫星在工作时,以一定的频率(两个频率,1575.42MHz 和1227.6MHz)向地球发射无线电波信号,其报文的主要信息是该电波信号发出时刻的时间信息,用户接收机无源工作(即只接收信号),接收能观测到GPS卫星的电波信号,并标记出收到该电波信号的接收时刻,算出该电波从发射到被接收的传播时间,已知电波是以光速传播的,就可以用传播时间来计算出到接收机到GPS卫星的距离。 在以地心为坐标原点的WGS-84地心坐标系三维空间中,如果能够知道到达不在同一条直线上的3颗卫星的距离,那么就可以确定该接收机在地球附近所在的位置。在一段时间内连续观测,就可以得出接收机的经纬度和高度变化情况,于是就得出了接收机移动的方向和速度了。由于GPS定位是依靠时间差来实现距离计算的,所以必须需要第4颗卫星给接收装置提供时钟修正信息,使接收机时钟与卫星时钟同步。 实现定位之后,就可以在应用设备上记录目标移动时所经过的路径,并且可以经过估计和计算,对某预定地点提供导航服务。

GPS原理与应用题库1001021

GPS原理与应用 1.选择题10 1.()年10月4日,世界上第一颗人造地球卫星发射成功,标志着人类进入 了空间技术的新时代。 1961 1957 1972 1947 2.美国海军导航卫星系统是美国第一代卫星导航系统,由于该系统卫星轨道 都通过地球极点,故也称()卫星系统。 子午 GPS GLONASS NAVSAT 3.GPS系统的空间部分由21颗工作卫星及3颗备用卫星组成,它们均匀分布 在()个相对与赤道的倾角为55°的近似圆形轨道上。 3 6 4 8 4..GPS工作卫星的主体呈圆柱形,整体在轨重量为843.68㎏,它的设计寿命 为()年,事实上均能超过该设计寿命而正常工作。 10 15 7.5 9

5..GPS定位是一种被动定位,必须建立高稳定的频率标准。因此每颗卫星上都 必须安装高精确度的时钟。当有1×10- 9s的时间误差时,将引起()㎝的距离误差。 100 30 80 120 6..GPS定位的实质就是根据高速运动的卫星瞬间位置作为已知的起算数据,采 用空间距离()交会的方法,确定待定点的空间位置。 后方 前方 侧方 方向线 7..当地球自转360°时,卫星绕地球运行两圈,环绕地球运行一圈的时间为 11小时58分。卫星在天空中的可见时间约为()。 7小时 8小时 5小时 6小时 8.在卫星大地测量中常用的坐标系是()。 地心坐标系 参心坐标系 9.现在,我国使用的大地坐标系除1954年北京坐标系外还使用() 坐标系。 WGS-84 1980年国家大地 10.我国大地坐标系的原点设在()。 山东省青岛市

陕西省泾阳县 11..我国采用()区的区时作为统一的标准时间,称为北京时间。 东8 东9 12..计量原子时的时钟称为原子钟,常用的有铯原子钟、铷原子钟和氢原子钟三 种,国际上是以()原子钟为基准的。 铯 铷 13.协调世界时的秒长采用()的秒长,时刻采用世界时的时刻。所以严格地 讲,这不是一种时间系统,而是一种使用方法。 历书时 原子时 14..卫星钟采用的是GPS时,它是由主控站按照美国海军天文台(USNO)的协 调世界时(UTC)进行调整的。在()年1月6日零时对准,不随闰秒增加。 1980 1985 15..1884年在美国华盛顿召开的国际会议决定采用一种分区统一时刻,把全球 按经度划分为()个时区,每个时区的经度差为15 。 36 24 16..当GPS定位确定了测站点的大地高H后,可按h=H-N求出该点的正高h, 式中N为该点的WGS-84大地水准面()。 差距 偏差 17.GPS工作卫星的地面监测部分由一个主控站, ()个注入站和五个监测站组 成。 三

GPS原理及应用题目及答案

GPS原理及应用复习题目 一.名词解释 1二体问题:2真近点角、平近点角、偏近点角:3多路径效应:4无约束平差和约束平差5.章动6.异步观测7.接收机钟差8.周跳9.三维平差10.岁差11.同步观测12.卫星钟差13.整周未知数14.二维平差 二.填空题 1.GPS工作卫星的地面监控系统包括__________ 、__________ 、__________ 。 2.GPS系统由__________ 、__________ 、__________ 三大部分组成。 3.按照接收的载波频率,接收机可分为__________ 和__________接收机。 4.GPS卫星信号由、、三部分组成。 5.接收机由、、三部分组成。 6.GPS卫星信号中的测距码和数据码是通过技术调制到载波上的。 7. 1973年12月,GPS系统经美国国防部批准由陆海空三军联合研制。自1974年以来其经历了、、三个阶段。 8.GPS 卫星星座基本参数为:卫星数目为、卫星轨道面个数为、卫星平均地面高度约20200公里、轨道倾角为度。 9.GPS定位成果属于坐标系,而实用的测量成果往往属于某国的国家或地方坐标系,为了实现两坐标系之间的转换,如果采用七参数模型,则该七个参数分别为,如果要进行不同大地坐标系之间的换算,除了上述七个参数之外还应增加反映两个关于地球椭球形状与大小的参数,它们是和。 10.真春分点随地球自转轴的变化而不断运动,其运动轨迹十分复杂,为了便于研究,一般将其运动分解为长周期变化的和短周期变化的。 11.GPS广播星历参数共有16个,其中包括1个,6个对应参考时刻的参数和9个反映参数。 12.GNSS的英文全称是。 13.载体的三个姿态角是、、。 14、GPS星座由颗卫星组成,分布在个不同的轨道上,轨道之间相距°,轨道的倾角是°,在地球表面的任何地方都可以看见至少颗卫星,卫星距地面的高度是km。 15、GPS使用L1和L2两个载波发射信号,L1载波的频率是MHZ,波长 是cm,L2 载波的频率是MHZ,波长是cm。 16、GPS卫星除了受到引力之外,还受到地球引力场摄动力、光压摄动力、大气阻力、摄动力等的摄动力的影响,因此卫星的运动实际上是。

GPS原理与应用复习资料、课后思考题

1、坐标转换需要那几个参数? 七参数布尔莎模型:即X平移,Y平移,Z平移,X旋转(WX),Y旋转(WY),Z 旋转(WY),尺度变化(DM)。若得七参数就需要在一个地区提供3个以上的公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z),可以向地方测绘局获取。 2、子午面、黄道、天球赤道面、天轴、春分点、升交点、升交点赤径几大参数的含义? 天球:天文学等领域中,天球是一个想象的旋转的球体,理论上具有无限大的半径,与地球同心。天空中所有的物体都想象成是在天球上。与地球相对应,它有天赤道,天极。 子午面:与地球自转轴平行,或包含地球椭球体短轴的平面。是量度经度的起始面或终止面,通过物点和光轴的截面称为子午面。轴上物点有无数个子午面,而轴外物点只有一个子午面。与子午面垂直相交的面称为弧矢面。 黄道:地球绕太阳公转的轨道平面与天球相交的大圆。由于地球的公转运动受到其他行星和月球等天体的引力作用,黄道面在空间的位置产生不规则的连续变化。但在变化过程中,瞬时轨道平面总是通过太阳中心。这种变化可以用一种很缓慢的长期运动再迭加一些短周期变化来表示。 天球赤道面:天球赤道是把我们的天空想象成一个密闭的球,将我们地球的赤道投射到这个天球上.天赤道有无限的直径和周长. 天轴:将地轴无限延长,所得到的直线叫天轴,当然,天轴也是一根假想的轴。天轴与天球的交点就叫天极,和地球上北极所对应的那一点叫北天极,或天球北极;和地球上南极对应的那一点叫南天极,也称天球南极. 春分点:从地球上看,太阳沿黄道逆时针运动,黄道和赤道在天球上存在相距180°的两个交点,其中太阳沿黄道从天赤道以南向北通过天赤道的那一点,称为春分点,与春分点相隔180°的另一点,称为秋分点,冬至后,太阳从南向北移动,在春分那一天通过这一点。太阳分别在每年的春分(3月21日前后)和秋分(9月23日前后)通过春分点和秋分点。 升交点:卫星自南向北运动,卫星轨道上升段和赤道面的交点 升交点赤径:含地轴和春分点的子午面与含地轴和升交点的子午面之间的交角 3、岁差、章动的含义 岁差:地轴绕着一条通过地球中心而又垂直于黄道面的轴线的缓慢圆锥运动,周期为26000年,由太阳、月球和其他行星对地球赤道隆起物的吸引力所造成,结果是春分点逐渐向西移动。 章动:由于月球、太阳和各大行星与地球之间的相对位置存在周期性变化,因此作用在地球赤道隆起部分的力矩也在发生变化,地月系质心绕日公转的轨道面也存在周期性的摄动,因此,在岁差上的基础上还存在各种大小和周期各不相同的微小的周期性变化。 4、参心坐标系、地心坐标系的定义及差异 参心坐标系:是以参考椭球几何中心为原点的大地坐标系;通常分为:参心空间直角坐标系(以X,Y,Z为其坐标元素)和参心大地坐标系(以B,L,H为其坐标元素)参心坐标系是在参考椭球内建立的O-XYZ坐标系,原点O为参考椭球的几何中心,X轴与赤道面和首子午面的交线重合,向东为正。Z轴与旋转椭球的短轴重合,向北为正。Y轴与XZ平面垂直构成右手系。 地心坐标系:以地球质心为原点建立的空间直角坐标系,或以球心与地球质心重合的地球椭球面为基准面所建立的大地坐标系,通常分为地心空间直角坐标系(以x,y,z为其坐标元素)和地心大地坐标系(以B,L,H为其坐标元素)。地心坐标系是在大地体内建立的O-XYZ坐标系。原点O设在大地体的质量中心,用相互垂直的X,Y,Z三个轴来表示,X

GPS原理与应用复习试题解析

GPS原理与应用复习题 GPS测量试卷A卷 一、填空(每空0.5分,共10分) 1、GPS系统包括三大部分:空间部分—GPS卫星星座;地面控制部分—地面监控系统;用户部分—GPS接收机。 2、GPS系统的空间部分由21颗工作卫星及3颗备用卫星组成,它们均匀分布在6个近似圆形轨道上。 3、GPS工作卫星的地面监控系统包括一个主控站、三个注入站和五个监测站。 4、GPS卫星位置采用WGS-84大地坐标系。 5、GPS系统中卫星钟和接收机钟均采用稳定而连续的GPS时间系统。 6、GPS卫星星历分为预报星历(广播星历)和后处理星历(精密星历)。 7、GPS接收机依据其用途可分为:导航型接收机、测地(量)型接收机和授时型接收机。 8、在GPS定位工作中,由于某种原因,如卫星信号被暂时阻挡,或受到外界干扰影响,引起卫星跟踪的暂时中断,使计数器无法累积计数,这种现象称为整周跳变(周跳)。 9、根据不同的用途,GPS网的图形布设通常有:点连式、边连式、网连式和边点混合连接四种基本方式。选择什么样的组网,取决于工程所要求的精度、野外条件及GPS接收机台数等因素。 二、名词解释(每题3分,共18分) 1、伪距:就是由卫星发射的测距码信号到达GPS接收机的传播时间乘以光速所得出的量侧距离。由于卫星钟、接收机钟的误差以及信号经过电离层和对流层的延迟,量侧距离的距离与卫星到接收机的几何距离有一定的差值,因此,称量侧距离的伪距。 2、GPS相对定位:是至少用两台GPS接收机,同步观测相同的GPS卫星,确定两台接收机天线之间的相对位置。 3、观测时段:测站上开始接收卫星信号到观测停止,连续工作的时间段称为观测时段,简称时段。 4、同步观测环:三台或三台以上接收机同步观测获得的基线向量所构成的闭合环。 5、后处理星历:一些国家某些部门,根据各自建立的卫星跟踪占所获得的对GPS 卫星的精密观测资料,应用与确定广播星历相似的方法而计算的卫星星历。由于这种星历是在事后向用户提供的在其观测时间内的精密轨道信息,因此称为后处理星历。 6、静态定位:如果在定位时,接收机的天线在跟踪GPS卫星过程中,位置处于固定不动的静止状态,这种定位方式称为静态定位。 三、简答(每题6分,共36分) 1、简述GPS系统的特点。 答:①定位精度高;(1分)②观测时间短;(1分)③测站间无需通视;(1分)④可提供三维坐标;(1分)⑤操作简便;(0.5分)⑥全天候作业;(1分)⑦功

GPS原理与应用复习题及参考答案分析

GPS原理与应用复习参考 一、判断题(本大题共5小题,每小题1分,共5分)(请在答题纸上判断题答题区域作答) 1.(√)对于GPS网的精度要求,主要取决于网的用途和定位技术所能达到的精度。精度指标通常是以相临点间弦长的标准差来表示。 2.(╳)GPS的测距码(C/A码和P码)是伪随机噪声码。 3.(╳)电离层延迟的大小与载波频率无关。 4.(╳)GPS定位直接获得的高程是似大地水准面上的正常高。 5.(╳)图形强度因子是一个直接影响定位精度、但又独立于观测值和其它误差之外的一个量。其值恒大于1,最大值可达 100,其大小随时间和测站位置而变化。在GPS测量中,希望DOP越小越好。 二、判断题(本大题共5小题,每小题1分,共5分)(请在答题纸上判断题答题区域作答) 1.(╳)GPS测得的站星之间的伪距就是指GPS卫星到地面测站之间的几何距离。 2.(√)C/A码的码长较短,易于捕获,但码元宽度较大,测距精度较低,所以C/A码又称为捕获码或粗码。 3.(√)GPS的空间部分(卫星星座部分)由21颗工作卫星、3颗备用卫星组成,均匀分布在6个轨道上。 4.(╳)GPS定位直接获得的高程是似大地水准面上的正常高。 5.(╳)GPS静态定位之所以需要观测较长时间,其主要目的是为了削弱卫星星历误差的影响。 三、填空题(本题共15空,每空1分,共15分)(请在答题纸上填空题答题区域作答) 1. 按照《规范》规定,我国GPS测量按其精度依次划分为AA、A、B、C、D、E六级,其中C级网的相邻点之间的平均距离为15~10km,最大距离为 40 km。 2. GPS定位系统包括空间部分、地面控制部分和用户设备部分。 3.从误差来源分析,GPS测量误差大体上可分为以下三类:与卫星有关的误差,与信号传播有关的误差和与接收设备有关的误差。 4. 美国国防部制图局(DMA)于1984年发展了一种新的世界大地坐标系,称之为美国国防部1984年世界大地坐标系,简称 WGS-84 。 5. 三台或三台以上接收机同步观测所获得的基线向量构成的闭合环称为同步环。 6. 在定位工作中,可能由于卫星信号被暂时阻挡,或受到外界干扰影响,引起卫星跟踪的暂时中断,使计数器无法累积计数,这种现象叫周跳。 7. 在接收机和卫星间求二次差,可消去两测站接收机的相对钟差改正。 8. 利用GPS进行定位有多种方式,如果就用户接收机天线所处的状态而言,定位方式分为静态定位和动态定位;若按参考点的不同位置,又可分为单点定位和相对定位。 9.GPS卫星信号是由载波、导航电文、和测距码三部分组成的。 10.对流层延迟改正模型中的大气折射指数N与温度、气压、湿度等因素有关。 11.差分GPS按观测值的类型可分为伪距差分和相位差分。 12.目前正在运行的全球卫星导航定位系统有 GPS 和 GLONASS 。我国组建的第一代卫星导航定位系统称为北斗卫星导航系统,欧盟计划组建的卫星导航定位系统称为 Galileo 系统。 13.在接收机间求一次差后可消除卫星钟差参数,继续在卫星间求二次差后可消除接收机间的相对钟差参数,再在历元间求三次差后可消除双差整周模糊度参数。

GPS原理与应用 选择题

1.在20世纪50年代我国建立的1954年北京坐标系是( C )坐标系。 A、地心坐标系 B、球面坐标系 C、参心坐标系 D、天球坐标系 2.我国在1978年以后建立了1980年国家大地坐标系,采用的是1975年国际大地测量与地球物理联合会第十六届大会的推荐值,其长半径和扁率分别为( A )。 A、a=6378140、α=1/298.257 B、a=6378245、α=1/298.3 C、a=6378145、α=1/298.357 D、a=6377245、α=1/298.0 3.我国西起东经72°,东至东经135°,共跨有( D )个时区,我国采用东8区的区时作为统一的标准时间。称作北京时间。 A、2 B、3 C、4 D、5 4.双频接收机可以同时接收L 1和 L 2 信号,利用双频技术可以消除或减弱 ( C )对观测量的影响,所以定位精度较高,基线长度不受限制,所以作业效率较高。 A、对流层折射 B、多路径误差 C、电离层折射 D、相对论效应 5.GPS卫星信号取无线电波中L波段的两种不同频率的电磁波作为载波, 在载波 2 L上调制有( A )。 A、P码和数据码 B、C/A码、P码和数据码 C、C/A和数据码 D、C/A码、P码 6.在定位工作中,可能由于卫星信号被暂时阻挡,或受到外界干扰影响,引起卫星跟踪的暂时中断,使计数器无法累积计数,这种现象叫( A )。 A、整周跳变 B、相对论效应 C、地球潮汐 D、负荷潮 7.我国自行建立第一代卫星导航定位系统“北斗导航系统”是全天候、全天时提供卫星导航信息的区域导航系统,它由( B )组成了完整的卫星导航定位系统。 A、两颗工作卫星 B、两颗工作卫星和一颗备份星 C、三颗工作卫星 D、三颗工作卫星和一颗备份星 8.卫星钟采用的是GPS 时,它是由主控站按照美国海军天文台(USNO)的( D )进行调整的。在1980年1月6日零时对准,不随闰秒增加。 A、世界时(UT0) B、世界时(UT1) C、世界时(UT2) D、协调世界时(UTC) 9.在进行GPS—RTK实时动态定位时,需要计算在开阔地带流动站工作的最远距离,已知TRIMMRKⅡ(UHF)数据链无线电发射机天线的高度为9m,流动站天线的高度为2m,则流动站工作的最远距离为( A )。 A、18.72m B、16.72m C、18.61m D、16.61m 10.基准站GPS接收机与TRIMMRKⅡ(UHF)数据链无线电发射机之间的数据传输波特率为( D )。 A、4800 B、9600 C、19200 D、38400 1.()年10月4日,世界上第一颗人造地球卫星发射成功,标志着人类进入 了空间技术的新时代。 1961 1957 1972 1947 2.美国海军导航卫星系统是美国第一代卫星导航系统,由于该系统卫星轨道 都通过地球极点,故也称()卫星系统。 子GPS GLONASS NAVSAT

GPS原理及应用期末试题B及答案

《GPS原理及应用》期末考试B卷试题 一、填空(每空2分,共40分) 1.按照GPS系统的设计方案,GPS定位系统应包括 _______部分、________部分和 _________部分。 2.在使用GPS软件进行平差计算时,需要选择 _______投影方式 3.从误差来源分析,GPS测量误差大体上可分为以下三类:______ ,________和 ________。 4.根据不同的用途,GPS网的图形布设通常有_______ 式、_______ 式、网连及边点混合连接四种基本方式。选择什么方式组网,取决于工程所要求的精度、野外条件及GPS接收机台数等因素。 5.VDOP代表 ____________________________________________ 6.当地球自转360°时,卫星绕地球运行两圈,环绕地球运行一圈的时间为________小时58分。地面的观测者每天可提前4min见到同一颗卫星,可见时间约为_________ 小时。这样,观测者至少能观测到4颗卫星,最多可观测到11颗卫星。 7.利用GPS进行定位有多种方式,如果就用户接收机天线所处的状态而言,定位方式分为 _______定位和 ______定位;若按参考点的不同位置,又可分为__________定位和 _________定位。 8.GPS定位的实质就是根据高速运动的卫星瞬间位置作为已知的起算数据,采取____________ 的方法,确定待定点的空间位置。 9.GPS信号接收机,按用途的不同,可分为 __________型、_______ 和__________ 等三种。 二、名词解释(每小题4分,共20分) 1.GPS全球定位系统

差分GPS原理及应用

卫星定位导航 实验报告 题目:差分GPS原理及应用 学院:信息与电气工程学院 专业: 班级: 姓名: 学号: 2014年10月29日

一、 GPS技术前景 由于GPS技术所具有的全天候、高精度和自动测量的特点,作为先进的测量手段和新的生产力,已经融入了国民经济建设、国防建设和社会发展的各个应用领域。随着冷战结束和全球经济的蓬勃发展,美国政府宣布2000年至2006年期间,在保证美国国家安全不受威胁的前提下,取消SA政策,GPS民用信号精度在全球范围内得到改善,利用C/A码进行单点定位的精度由100米提高到10米,这将进一步推动GPS技术的应用,提高生产力、作业效率、科学水平以及人们的生活质量,刺激GPS市场的增长。据有关专家预测,在美国,单单是汽车GPS导航系统,2000年后的市场将达到30亿美元,而在中国,汽车导航的市场也将达到50亿元人民币。可见,GPS技术市场的应用前景非常可观。 二、差分GPS基本原理 1. 伪距差分 伪距差分是指采用测距码测距,在基准站上(已知点)上,通过“已知距离”(测站坐标和卫星坐标反算的距离)与伪距观测值比较,确定距离改正数后传送给用户,用户据此对观测伪距进行改正,然后用改正后伪距观测值解算测站坐标。各个卫星的距离改正数是不同的,因为距离改正数中包含了卫星坐标误差的因素,因此只有与基准站同步观测的卫星,才可以得到距离改正。 伪距差分是目前应用广泛的一种差分定位技术。由于伪距差分可提供单颗卫星的距离改正数,因此用户站可选其中任意4颗相同卫星的伪距改正数进行改正,而不必要求两站观测的卫星完全相同。伪距改正数是直接在WGS-84坐标系上进行的,是一种直接改正数,不必先变换为当地坐标,定位精度较高,且使用方便。由于伪距差分定位依赖于两站公共误差的抵消来提高定位精度,误差抵消的程度决定了精度的高低。而误差的公共性在很大程度依赖于两站距离,随着两站距离的增加,其误差公共性逐渐减弱,用户站离基准站的距离越大,伪距差分后的剩余误差越大,定位精度越低。 2. 位置差分 基本原理与伪距差分相同,所不同的是基准站传送的是坐标改正数而已。位置差分的优点是需要传输的差分改正数较少,计算方法较简单,任何一种GPS接收机均可改装成这种差分系统。设已知基准站的精密坐标(x0,y0,z0),可求坐标改正数: △X = X*-X0 △Y = Y*-Y0 △Z = Z*-Z0 用数据链发送出去,用户接收机接收后改正: Xu = Xu*+△X Yu = Yu*+△Y Zu = Zu*+△Z

《GPS原理与应用》复习(有答案)

《全球定位系统原理与应用》复习与思考 1、了解美国60年代初期研制的子午卫星导航系统组成。 1)卫星星座:由6颗独立轨道的极轨卫星组成 (i=90°,T=107min,H=1075km) 2)地面设有:4个卫星跟踪站,1个计算中心,1个控制中心,2个注入站,海军天文台(负责卫星钟差,钟频改正) 2、了解美国90年代初期建成全球定位系统(GPS)的系统组成。 3、了解我国的北斗一号导航系统的组成,定位精度如何。 定位精度:平面:±20m 垂直:±10m 4、GPS卫星的测距码(C/A码)如何产生有何作用? 产生:它是由两个10级反馈移位寄存器产生 作用:识别卫星,锁定信号,测量距离,解扩D码,捕获P码

5、掌握二进数列的模二和或者波形积的运算法则及其简单运算。 模二和: 波形积:运算例子: 1001110010 ←(A) ) ⊕ 010******* ←(B) 1101001011 ←(C) ③运算规律:()()()C B A= ⊕()()()B A C= ⊕()()()A B C= ⊕ 6、认知和掌握两个结构相同m序列模二和后,在码相同步以及码相不同步时的 自相关系数学表达的差异。 7、记忆卫星轨道开普勒六根数为的名称及代号。 轨道半长径的平方根(m)/轨道偏心率/历元t oe 的轨道倾角(弧度)/ 历元t oe 的升交点准经度(弧度)/近地点角距(弧度)/ 历元t oe 的平近点角(弧度) 8、导航型GPS接收机可分为哪几种类型? 船载型,车载型,机载型,星载型 9、测地型GPS接收机可分为哪几种类型? 单站差分型,局域差分型,广域差分型10、了解重建载波信号的方法和原理。

GPS定位原理及应用

《GPS定位原理及应用》授课教案 第一章绪论 1.1 GPS卫星定位技术的发展 1.1.1 早期的卫星定位技术 1、无线电导航系统 1)罗兰--C:工作在100KHZ,由三个地面导航台组成,导航工作区域2000KM,一般精度200-300M。 2)Omega(奥米茄):工作在十几千赫。由八个地面导航台组成,可覆盖全球。精度几 英里。 3)多卜勒系统:利用多卜勒频移原理,通过测量其频移得到运动物参数(地速和偏流 角),推算出飞行器位置,属自备式航位推算系统。误差随航程增加而累加。 缺点:覆盖的工作区域小;电波传播受大气影响;定位精度不高 2、早期的卫星定位技术 卫星三角网: 以人造地球卫星作为空间观测目标,由地面观测站对其进行摄影测量,测定测站至卫星的方向,来确定地面点的位置的三角网。 卫星测距网: 用激光技术测定测站至卫星的距离作为观测值的网则称为卫星测距网。 20世纪60~70年代,美国国家测量局在英国和德国测绘部门协助下,建立了一个共45个点的全球卫星三角网,点位精度5米。 卫星三角网的缺点: 易受卫星可见条件和天气条件影响,费时费力,定位精度低。 1.1.2 子午卫星导航(多普勒定位)系统及其缺陷 多普勒频移: 多普勒效应是为纪念Christian Doppler而命名的,他于1842年首先提出了这一理论。 他认为电磁波频率在电磁源移向观察者时变高,而在波源远离观察者时变低。因此可利用频率的变化多少来确定距离的变化量。 多普勒效应的一个常被使用的例子是火车,当火车接近观察者时,其汽鸣声会比平常更刺耳。你可以在火车经过时听出刺耳声的变化。同样的情况还有:警车的警报声和赛车的发动机声。 子午卫星导航系统(NNSS): 将卫星作为空间动态已知点,通过在测站上接受子午卫星发射的无线电信号,利用多普勒定位技术,进行测速、定位的卫星导航系统。 子午卫星导航系统的优点: 经济快速、精度均匀、不受天气和时间的限制,且可获得测站的三维地心坐标。 子午卫星导航系统的缺点: 由于卫星数量少,故不能实时定位、定位时间长、定位精度也低。 1958年,美国为解决北极星核潜艇在深海航行和执行军事任务而需要精确定位的问题,开始研制军用导航卫星,命名为“子午仪计划”。1960年4月,美国发射了世界第一颗子午导航卫星,传统的无线电导航系统从此被这种新的导航方式取代。美国1964年建成子午导航卫星系统,主要由美国海军使用,到1967年开始正式向民用开放。由于该系统卫星数目较小(5-6颗),运行高度较低(平均1000KM),从地面站观测到卫星的时间隔较长(平均1.5h),因而它无法提供连续的实时三维导航,而且精度较低。单点定位精度约为30—40米,每次定位约需8—10分钟。而各测站观测了公共的17次合格的卫星通过时,联测定位

相关主题
文本预览
相关文档 最新文档