当前位置:文档之家› 离心泵与往复泵的结构、功能机应用对比分析

离心泵与往复泵的结构、功能机应用对比分析

离心泵与往复泵的结构、功能机应用对比分析
离心泵与往复泵的结构、功能机应用对比分析

往复泵和离心泵的功能、性能及应用的对比阐述

摘要:通过对《石油工程流体机械》课程的学习,本文对往复泵和离心泵的功能、性能及应用进行了对比分析,加深了对两种泵的理解,为今后在设计工作中更好的应用打下了良好的基础。

关键词:往复泵离心泵排出端阀门流量

1 往复泵和离心泵的结构、工作原理及性能

1.1 往复泵的结构、工作原理及性能

1.1.1 往复泵的结构

往复泵主要由两大部分组成,即往复泵的动力端(驱动端)和液力端(水力端)。

(1). 动力端主要由输入轴、输出轴(主轴)、曲柄、连杆、十字头(十字头为动力端与液力端的分界点)等总成组成。

(2). 液力端主要由由液缸、活塞、活塞杆、吸排阀室(阀箱)、吸排阀、吸排管线等总成组成。

1.1.2 往复泵的工作原理

(1).活塞由电动的曲柄连杆机构带动,把曲柄的旋转运动变为活塞的往复运动;或直接由蒸汽机驱动,使活塞做往复运动;

(2).当活塞从右向左运动时,泵缸内形成低压,排出阀受排出管内液体的压力而关闭;吸入阀受缸内低压的作用而打开,储罐内液体被吸入缸内;

(3).当活塞从左向右运动时,由于缸内液体压力增加,吸入阀关闭,排出阀打开向外排液。

由此可见,往复泵是依靠活塞的往复运动直接以压力能的形式向液体提供能量的。

1.1.3 往复泵的性能特点

(1) 效率高而且高效区宽。

(2) 能达到很高压力,压力变化几乎不影响流量,因而能提供恒定的流量。

(3) 具有自吸能力,可输送液、气混合物,特殊设计的还能输送泥浆、混凝土等。

(4) 流量和压力有较大的脉动,特别是单作用泵,由于活塞运动的加速度和液体排出的间断性,脉动更大。通常需要在排出管路上(有时还在吸入管路上)设置空气室使流量比较均匀。采用双作用泵和多缸泵还可显著地改善流量的不均匀性。

(5) 速度低,尺寸大,结构较离心泵复杂,需要有专门的泵阀,制造成本和安装费用都较高。活塞泵主要用于给水,手动活塞泵是一种应用较广的家庭生活水泵。柱塞泵用于提供高压液源,如水压机的高压水供给,它和活塞泵都可作为石油矿场的钻井泥浆泵、抽油泵。隔膜泵特别适合于输送有剧毒、放射性、腐蚀性的液体、贵重液体和含有磨砾性固体的液体。隔膜泵和柱塞泵还可当作计量泵使用。

1.2 往复泵的结构、工作原理及性能

1.2.1 离心泵的结构

离心泵的基本构造是由六部分组成的,分别是:叶轮,泵体,泵轴,轴承,密封环,填料函。下面分别对各组成部分的主要作用进行介绍:

(1)叶轮

叶轮是离心泵的核心部分,它转速高输出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。叶轮上的内外表面要求光滑,以减少水流的摩擦损失。

(2)泵体

泵体也称泵壳,它是水泵的主体。起到支撑固定作用,并与安装轴承的托架相连接。(3)泵轴

泵轴的作用是借联轴器和电动机相连接,将电动机的转距传给叶轮,所以它是传递机械能的主要部件。

(4)轴承

轴承是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。滚动轴承使用牛油作为润滑剂,加油要适当,一般为2/3~3/4的体积,太多会发热,太少又有响声并发热。

密封环:又称减漏环。叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低

压区,影响泵的出水量,效率降低;间隙过小会造成叶轮与泵壳摩擦产生磨损。为了增加回流阻力减少内漏,延缓叶轮和泵壳的使用寿命,在泵壳内缘和叶轮外缘结合处装有密封环,密封的间隙保持在0.25~1.10mm之间为宜。

(5)填料函

填料函主要由填料、水封环、填料筒、填料压盖、水封管组成。填料函的作用主要是为了封闭泵壳与泵轴之间的空隙,不让泵内的水流到外面来也不让外面的空气进入到泵内。始终保持水泵内的真空。当泵轴与填料摩擦产生热量,就要靠水封管注水到水封圈内使填料冷却,保持水泵的正常运行。所以在水泵的运行巡回检查过程中对填料函的检查时特别要注意:在运行600个小时左右就要对填料进行更换。

1.2.2 离心泵的工作原理

离心泵的主要过流部件有吸水室、叶轮和压水室。吸水室位于叶轮的前面,其作用是把液体引向叶轮,有直锥形、弯管形和螺旋形三种形式。叶轮是泵的最重要的工作元件,是过流部件的心脏,叶轮由盖板和中间的叶片组成。压水室主要有螺旋形水室、导叶和空间导叶三种形式,另外还有一种环形压水室,主要用于泥浆泵、污水泵等抽送悬浮的泵。其作用是将叶轮中流出的液体收集起来,并送往压力管路或下一级叶轮的输入口中。在将液体送住压力管路或下一级叶轮前,消除液流的旋转运动,把液流有这部分旋转动能转化成压能。同时降低液流的流速,以减小压力管路中的水力损失或适合下一级叶轮吸入口的要求。在螺旋形压出室的未端,一般还装上一个扩散段,用来进一步将液流的动能转化为压能。

离心泵工作之前,先将泵内充满液体,然后启动离心泵,泵轴带动叶轮一起做高速旋转运动,迫使预先充灌在叶片间的液体旋转,在惯性离心力的作用下,液体自叶轮中心向外周作径向运动。液体在流经叶轮的运动过程获得了能量,静压能增高,流速增大。当液体离开叶轮进入泵壳后,由于壳内流道逐渐扩大而减速,部分动能转化为静压能,最后沿切向流入排出管路。所以蜗形泵壳不仅是汇集由叶轮流出液体的部件,而且又是一个转能装置。当液体自叶轮中心甩向外周的同时,叶轮中心形成低压区,在贮槽液面与叶轮中心总势能差的作用下,致使液体被吸进叶轮中心。依靠叶轮的不断运转,液体便连续地被吸入和排出。液体在离心泵中获得的机械能量最终表现为静压能的提高。

1.2.3 离心泵的性能特点

(1)离心泵功率与效率

泵在运转过程中由于存在种种损失,使泵的实际(有效)压头和流量均较理论值为低,而输入泵的功率较理论值为高,设

H______ 泵的有效压头,即单位量液体在重力场中从泵获得的能量,m;

Q ______ 泵的实际流量,m3/s;

ρ ______ 液体密度,kg/ m3;

Ne______ 泵的有效功率,即单位时间内液体从泵处获得的机械能,W。

有效功率可写成Ne = QHρg

由电机输入离心泵的功率称为泵的轴功率,以N表示。有效功率与轴功率之比定义为泵的总效率η,即

η=Ne/N

(2)泵内损失

离心泵内的各种损失有:

1)容积损失

由于泵的泄漏所造成的损失称为容积损失。无容积损失时泵的功率与有容积损失时泵的功率之比称为泵的容积效率ηv。

2)水力损失

流体流过叶轮、泵壳时,流速大小和方向的改变以及逆压强梯度的存在引起了环流和旋涡,造成了能量损失,这种损失称为水力损失。额定流量下离心泵的水力效率ηh一般为0.8到0.9。

3)机械损失

高速转动的叶轮与液体间的摩擦以及轴承、轴封等处的机械摩擦造成的损失称为机械损失。机械效率ηM一般为0.96到0.99。

2 泵启动时对排出端阀门的闭合要求

2.1往复泵在开启前必须开启排出端阀门

往复泵在开启前必须开启排出端阀门,具体原因如下:从原理上讲,往复泵是容积式泵的一种,它是靠在泵缸内作往复运动的活塞或柱塞来改变工作室的容积,从而达到吸入和排出液体的。只要柱塞力和工作室强度足够大,从理论上说泵的压力就可无限高(不考虑泄露)。而实际上柱塞力(由动力机提供)和工作室强度(由材料和结构决定)总是有限的,

因此如果压力不断升高,结果不是动力机烧毁就是工作室破坏。所以泵启动前,必须把管路上的排出阀门全部打开,不允许排出管路堵塞,以免造成设备或人身伤亡事故;同时为了保证安全,在泵的排出管路上还必须设置安全阀,以保证排出压力不高于它的额定值。这也就是我们通常说的,往复泵开式启动。

2.2离心泵在开启前必须开启排出端阀门

离心泵在开启前必须关闭排出端阀门。其原因是离心泵是靠叶轮离心力形成真空的吸力把水提起,所以,离心泵启动时,必须先把闸阀关闭,灌水。水位超过叶轮部位以上,排出离心泵中的空气,才可启动。启动后,叶轮周围形成真空,把水向上吸,其闸阀可自动打开,把水提起。因此,必须先闭闸阀。

3.排出端阀门的调节对泵流量的影响

3.1排出端阀门的调节不能实现往复泵的流量的调节

往复泵的理论流量是由单位时间内活塞扫过的体积决定的,而与管路的特性无关,故往复泵的流量不能通过调节排出端阀门来实现。但往复泵有以下流量调节方法:1)旁路阀调节:泵的送液量不变,只是让部分被压出的液体返回贮池,使主管中的流量发生变化。显然这种调节方法很不经济,只适用于流量变化幅度较小的经常性调节;

2)改变曲柄转速:因电动机是通过减速装置与往复泵相连的,所以改变减速装置的传动比可以很方便地改变曲柄转速,从而改变活塞往复运动的频率,达到调节流量的目的;

3)改变活塞行程:改变活塞往复运动的距离。

3.2离心泵的流量可以通过排出端阀门的调节来实现

离心泵的流量可以通过调节排出端阀门来调节,因为一定的泵在一定转速下所产生的扬程有一限定值。工作点流量和轴功率取决于与泵连接的装置系统的情况(位差、压力差和管路损失),扬程随流量而改变。

4. 往复泵和离心泵在石油矿场的实际应用

4.1 往复泵在石油矿场上的应用

石油矿场中应用比较广泛的往复泵的一种是泥浆泵。在钻进过程中,必须将泥浆从地面的泥浆罐,通过地面高压管汇,立管,水龙带,将泥浆送到钻杆中,再次过程中则需要泥浆泵为泥浆的循环提供动力,以实现通过泥浆来完成清洗钻头和洗井的目的。

泥浆泵性能的两个主要参数为排量和压力。

排量:排量以每分钟排出若干升计算,它与钻孔直径及所要求的冲洗液自孔底上返速度有关,即孔径越大,所需排量越大。要求冲洗液的上返速度能够把钻头切削下来的岩屑﹑岩粉及时冲离孔底,并可靠地携带到地表。地质岩心钻探时,一般上返速度在0.4~1.0米/分左右。

压力:泵的压力大小取决于钻孔的深浅,冲洗液所经过的通道的阻力以及所输送冲洗液的性质等。钻孔越深,管路阻力越大,需要的压力越高。随著钻孔直径、深度的变化,要求泵的排量也能随时加以调节。在泵的机构中设有变速箱或以液压马达调节其速度,以达到改变排量的目的。为了准确掌握泵的压力和排量的变化﹐泥浆泵上要安装流量计和压力表,随时使钻探人员了解泵的运转情况,同时通过压力变化判别孔内状况是否正常以预防孔内事故的发生。

4.2 离心泵在石油矿场上的应用

离心泵在石油矿场中应比较广泛的是砂泵和水泵。其主要的应用是给油田钻机的循环固控系统配套,为除砂器、除泥器、混料器等提供具有一定排量和压力的钻井液,作为灌注泵给三缸泵灌注钻井液,以保证这些设备高效工作。常用的砂泵和水泵系列为SB 系列,该系列泵设计精确,具有材质运用合理、工作效率高、使用寿命长等特点。并采用组合式密封结构设计,严格的铸造工艺以及新型专利技术的应用,确保了该系列泵在现场使用过程中,性能稳定,故障率低等优势。由于井场作业的砂泵虽然是离心泵,但其输送的钻井液是一种含有大量固相颗粒和各种化学添加剂的悬浮液,因此除要考虑一般离心泵的轴向力、密封等问题外,还必须考虑磨损、冲击和腐蚀等问题。SB 系列砂泵在设计中则解决了这些问题,其叶轮和泵壳形式符合两相流的运动规律,因此在很大程度上降低了磨损和腐蚀问题。

5 结论

通过对本课程的学习和总结,使我受益匪浅。一是通过往复泵和离心泵异同点的学习总结,对其结构、工作原理及性能有了更清晰的认识。二是更加明确了排出端阀门对泵的启动和泵的流量的影响,这些知识的学习将在以后的工作中也起到很好的指导作用。

水泵性能参数

水泵性能参数 单级单吸管道泵 产品型GD型号: 产品报 价: GD管道泵,GD型管道泵,单级管道泵一般供输送温度低于80?c无腐蚀性的清水或产品特物理、化学性质类似清水的液体。如果过流部件用不习惯制造,则可输送奶类、点: 饮料、酱油等卫生液体。 点击放大 GD型单级单吸管道泵的详细资料: GD管道泵,GD型管道泵,单级管道泵 GD型管道泵产品概述 GD型管道泵是立式单级管道泵,可以直接安装在管道中直接进行加压。泵的出入口在同一水平方向上,并成180?,泵主要由泵体、泵盖、叶轮、轴、机械密封等零件组成。

口径100mm及以下的泵与电动机共轴,叶轮直接装在电动机上,轴向力由电动机轴承承受。泵的支撑方式分无支承脚与有支承脚两种。 口径125mm及以上泵,泵轴与电动机分开,泵轴由中间轴承体轴承支承。电动机轴套入泵轴内。整机有底座支承,轴封采用机械密封。 泵由电动机直接驱动,从电动机端部看,泵为顺时针方向旋转。 GD型管道泵一般供输送温度低于80?c无腐蚀性的清水或物理、化学性质类似清水的液体。如果过流部件用不习惯制造,则可输送奶类、饮料、酱油等卫生液体。 GD管道泵轻便灵活,使用时可以直接将泵安装在水平管道中,小型泵还可以安装在竖直管道中运行。根据具体情况可以单台工作,也可多台串联或并联运行,适合工业系统中途加压、城市高层建筑给水及空调循环水输送使用。 GD型管道泵的性能范围:流量Q为6-200m3/h;扬程H为13-78m。 型号意义:列GD150-315A GD—管道离心泵 150—泵出入口直径(mm) 315—叶轮名义直径(mm) A—泵叶轮外径第一次切削。 GD型管道泵性能参数表 流量必需汽扬程转速配用功率重量 Capacity 效率蚀余量型号 Head Speed Motor Weight Efficiency (NPSH)r Type 米转/分千瓦千克米/时升/秒 (%) 米 (m) (r/min) (kW) (kg) (m/h) (l/s) (m) 4 1.11 15. 5 42 2.6 GD32-120 6 1.67 13 2800 0.55 45 3.2 15 7.2 2 11 43.5 4.2

立式管道离心泵型号定义及结构图

立式管道离心泵型号定义及结构图 上海阳光泵业作为国内一家著名的集研制、开发、生产、销售、服务于一体的大型多元化企业,上海阳光泵业制造有限公司一直坚持“以质量求生存、以品质求发展”的宗旨为广大客户提供优质服务!同时,上海阳光泵业一直专注于自身实力的提升以及对产品质量的严格把关,为此,目前不但拥有国内最高水准的水泵性能测试中心、完善的一体化服务体系、经验丰富的水泵专家,同时经过多年的发展,产品以优越的性能、精良的品质、良好的服务口碑获得各项专业认证证书和客户认可。经过团队的不懈努力,上海阳光泵业在国内水泵行业已经取得了很大成就。这样一家诚信为本、责任重于天的水泵行业佼佼者,对于水泵的维修、保养等各大方面都有自己独特的方法,下面就一起来看看吧! 一、ISG立式管道离心泵产品概述: ISG立式管道离心泵,是本单位科技人员联合国内水泵专家选用优秀水力模型,采用IS型离心泵之性能参数,在一般立式泵的基础上进行巧妙组合设计而成。同时根据使用温度、介质等不同在ISG型基础上派出适用热水、 高温、腐蚀性化工泵、油泵。该系列产品具有高效节能、噪音低、性能可靠等优点。 二、ISG立式管道离心泵产品特点: 1、泵为立式结构,进出口口径相同,且位于同一中心线上,可象阀门一样安装于管路之中,外形紧凑美观,占 地面积小,建筑投入低,如加上防护罩则可置于户外使用。 2、叶轮直接安装在电机的加长轴上,轴向尺寸短,结构紧凑,泵与电机轴承配置合理,能有效地平衡泵运转产 生的径向和轴向负荷,从而保证了泵的运行平稳,振动小、噪音低。 3、轴封采用机械密封或机械密封组合,采用进口钛合金密封环、中型耐高温机械密封和采用硬质合金材质,耐 磨密封,能有效地延长机械密封的使用寿命。 4、安装检修方便,无需拆动管道路系统,只要卸下泵联体座螺母即可抽出全部转子部件。 5、可根据使用要求即流量和扬程的需要采用泵的串、并联运行方式。 6、可根据管路布置的要求采用泵的竖式和横式安装单级离心泵。 三、ISG立式管道离心泵工作条件:

双吸中开离心泵结构特点及工作原理

双吸中开离心泵结构特点及工作原理 单级双吸离心泵工作原理简单的用白话文说:入口液体同时进入叶轮中心区域,高速旋转的叶轮在离心力的作用将液体甩出,叶轮中心就形成低压区,入口液体在大气压作用下,源源不断的流向低压区,即进入叶轮中心后又被甩出的循环过程。 S/SH 型泵是单级、双吸、泵壳水平中开式离心泵。供输送清水及物理化学性质类似于水的液体,介质温度80℃,若连端轴承通以冷却水,介质温度可达130℃,改变叶轮、密封、轴封的材料,可以汲送含有泥沙的浑水,泵的轴承一般采用软填料,如有特殊订货要求,也可装机械密封。该泵适合用于工厂、矿山、城市、电站的给排水,农田排涝灌溉和大型水利工程。 SH/S/SA 双吸中开离心泵故障及排除方法:

SH/S/SA双吸中开离心泵结构图: S、SH型单级双吸泵的吸入口与吐出口均在水泵轴心线下方,水平方向与轴线成垂直位置、泵壳.中开,检修时无需拆卸进水,排出管路及电动机(或其他原动机)从联轴器向泵的方向看去,水泵均为逆吋针方向旋转。如根据用户特殊订货需要也可改为顺吋针旋转。 S、SH型单级双吸泵的主要另件有:泵体、泵盖、叶轮、轴、双吸密封环、轴套、轴承等。除轴的材料为优质碳素钢外,其馀多为铸铁制成。 泵体与泵盖构成叶轮的工作室,在进出水法兰上制有安装真空表和压力表的管螺孔,进出水法兰的下部制有放水的管螺孔。 叶轮经过静平衡校验,用轴套和两侧的轴套螺母固定,其轴向位置可以通过轴套螺母进行调整,叶轮的轴向力利用其叶片的对称布置达到平衡,可能还有一些剩馀轴向力则同轴端的轴承承受。 泵轴由两个单列向心球轴承支承,轴承装在泵体两端的轴承体内,用黄油润滑,双吸密封环用以减少水泵压水室的水漏回吸水室。 水泵通过联轴器由电动机直接传动。 轴封为软填料密封,为了冷却润滑密封腔和防止空气漏入泵内,在填料之间有水封环,水泵工作时小量高压水通过水封管流入填料腔起水封作用。 SH/S/SA双吸中开离心泵装配,拆卸,安装: 装配与拆卸 1 、装配转子部件:依次将叶轮、轴套、轴套螺母、填料套、填料环、填料压盖,挡水圈、轴承部件装在泵轴上,并套上双吸密封环,然后装上联轴器。 2、将转子部件装在泵体上,调整叶轮的轴向位暈到两侧双吸密封环的中间加以固定,将轴承体压盖同固定螺钉紧固。

离心泵的性能参数与特性曲线

离心泵的性能参数与特性曲线泵的性能及相互之间的关系是选泵和进行流量调节的依据。离心泵的主要性能参数有流量、压头、效率、轴功率等。它们之间的关系常用特性曲线来表示。特性曲线是在一定转速下,用20℃清水在常压下实验测得的。 (一)离心泵的性能参数 1、流量 离心泵的流量是指单位时间内排到管路系统的液体体积,一般用Q表示,常用单位为l/s、m3/s或m3/h等。离心泵的流量与泵的结构、尺寸和转速有关。 2、压头(扬程) 离心泵的压头是指离心泵对单位重量(1N)液体所提供的有效能量,一般用H表示,单位为J/N或m。压头的影响因素在前节已作过介绍。 3、效率 离心泵在实际运转中,由于存在各种能量损失,致使泵的实际(有效)压头和流量均低于理论值,而输入泵的功率比理论值为高。反映能量损失大小的参数称为效率。 离心泵的能量损失包括以下三项,即 (1)容积损失即泄漏造成的损失,无容积损失时泵的功率与有容积损失时泵的功率之比称为容积效率ηv。闭式叶轮的容积效率值在0.85~0.95。 (2)水力损失由于液体流经叶片、蜗壳的沿程阻力,流道面积和方向变化的局部阻力,以及叶轮通道中的环流和旋涡等因素造成的能量损失。这种损失可用水力效率ηh来反映。额定流量下,液体的流动方向恰与叶片的入口角相一致,这时损失最小,水力效率最高,其值在0.8~0.9的范围。 (3)机械效率由于高速旋转的叶轮表面与液体之间摩擦,泵轴在轴承、轴封等处的机械摩擦造成的能量损失。机械损失可用机械效率ηm来反映,其值在0.96~0.99之间。离心泵的总效率由上述三部分构成,即 η=ηvηhηm(2-14) 离心泵的效率与泵的类型、尺寸、加工精度、液体流量和性质等因素有关。通常,小泵效率为50~70%,而大型泵可达90%。 4、轴功率N 由电机输入泵轴的功率称为泵的轴功率,单位为W或kW。离心泵的有效功率是指液体在单位时间内从叶轮获得的能量,则有 Ne = HgQρ(2-15) 式中 Ne------离心泵的有效功率,W; Q--------离心泵的实际流量,m3/s; H--------离心泵的有效压头,m。 由于泵内存在上述的三项能量损失,轴功率必大于有效功率,即 (2-16) 式中 N ----轴功率,kW。 (二)离心泵的特性曲线 离心泵压头H、轴功率N及效率η均随流量Q而变,它们之间的关系可用泵的特性曲线或离心泵工作性能曲线表示。在离心泵出厂前由泵的制造厂测定出H-Q、N-Q、η-Q

水泵的参数及性能

水泵的参数及性能 水泵的主要参数 水泵参数是指泵工作性能的主要技术数据,包括流量、扬程、转速、效率和比转数等。 1、流量(Q) 泵的流量是指单位时间内所排出的液体的数量。通常泵的流量用体积计算,以Q表示,单位为米3/时(m3/h)、米3/秒(m3/s)、升/秒(1/s),也可用重量计,以G表示,单位为吨/时(t/h)、吨/秒(t/s)、千克/秒(kg/s)。 G与Q的关系: G=r×Q r-液体重度(千克/米3) 因水的重量近似1000千克/米3,故 1升/秒=3.6米3/时=3.6吨/时 2、扬程(H) 泵的扬程是指单位重量的液体通过泵所增加的能量。以H表示,实质上就是水泵能够扬水的高度,又叫总扬程或全扬程。单位为米液柱高度,习惯上省去“液柱”,以米(m)表示。 泵的总扬程由吸水扬程与出水扬程两部分组成,因此 总扬程=吸水扬程=出水扬程 但由于水流经过管路时受到各种阻力而减少了泵的吸水扬程和出水扬程,因此 吸水扬程=实际吸水扬程+吸水损失扬程 出水扬程=实际出水扬程+出水损失扬程 损失扬程=吸水损失扬程+出水损失扬程 总扬程=实际扬程+损失扬程 由于水泵铭牌上标明的扬程是上述水泵的总扬程,因此不能误认为铭牌上的扬程是实际扬程数值,水泵的实际扬程都比水泵铭牌上的扬程数值小。因此在确

定水泵扬程时,这一点要特别注意。否则,如果只按实际扬程来确定水泵的扬程,订购来的水泵扬程就低了,那可能会降低水泵的效率,甚至打不上水来。损失扬程与管路上的水管和附件种类(低阀、闸阀、逆止阀、直管、弯管)、数量、水管内径、管长、水管内壁粗糙程度以及水泵流量等都有密切关系,这一点在管路设计和选配水管和附件时也应注意。 3、允许吸上真空高度(Hs) 允许吸上真空高度是指真空表读数吸水扬程,也就是泵的吸水扬程(简称泵的吸程),包括实际吸水扬程与吸水损失扬程之和。以Hs表示,单位为米(m)。 允许吸上真空高度是安装水泵高度的重要参数,安装水泵时,应使水泵的吸水扬程小于允许吸上真空高度值,否则安装过高,就吸不上水或生产气蚀现象。如生产气蚀,不仅水泵性能变坏,而且也可能使叶轮损坏。 4、转速(n) 转速是指泵叶轮每分钟的转数,以n表示,单位为转/分(r/min)。每台泵都有一定的转速,不能随意提高或降低,这个固定的转素称为额定转速,水泵铭牌上标定的转速即为额定转速。如泵运转超过额定转速,不但会引起动力机超载或转不动,而且泵的零部件也容易损坏;转速降低,泵的效率就会降低,影响水泵的正常工作。 5、比转数(ns) 在前述水泵型号中,有些型号的组成部分有比转数这个参数。比转数与转速是两个概念,水泵的比转数,简称比速,常用符号为ns。水泵的比转数是指一个假想的所谓标准水泵叶轮的转数,这个假想的水泵与真实水泵的叶轮各部分都几何相似,而在消耗功率为0.735千瓦、扬程为1米、流量为0.075立方米/秒时所具有的转数。叶轮形状相同或相似的水泵比转数相同,叶轮形状不相同或不相似的水泵比转数不相同。如轴流泵比转数比混流泵大,混流泵比转数也是反映水泵特性的综合性指标。此外,要注意比转数大的水泵,其转速不一定高;比转数小的,转速不一定低。大流量、低扬程的水泵,比转数大,反之则小。一般比转数较低的离心泵,其流量小、扬程高;而比转数较高的轴流泵,其流量大、扬程低。 6、功率

离心泵知识,性能参数及特性曲线(参考模板)

离心泵知识、性能参数与特性曲线要正确地选择和使用离心泵,就必需了解泵的性能和它们之间的相互关系。离心泵的主要性能参数有流量、压头、轴功率、效率等。离心泵性能间的关系通常用特性曲线来表示。 一、离心泵的概念:水泵是把原动机的机械能转换成抽送液体能量的机器。来增加液体的位能、压能、动能。原动机通过泵轴带动叶轮旋转,对液体作功,使其能量增加,从而使需要数量的液体,由吸入口经水泵的过流部件输送到要求的高处或要求压力的地方。 二、离心泵的基本构造 离心泵的基本构造是由六部分组成的,分别是:叶轮,吸液室,泵壳,转轴,托架,轴承及轴承箱,密封装置,基础台板等。 1、叶轮是离心泵的核心部分,它转速高输出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。叶轮上

的的内外表面要求光滑,以减少水流的摩擦损失。 2、泵壳,它是水泵的主体。起到支撑固定作用,并与安装轴承的托架相连接。 3、转轴的作用是借联轴器和电动机相连接,将电动机的转距传给叶轮,所以它是传递机械能的主要部件。 4、轴承是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。轴承的依托为轴承箱。滚动轴承使用牛油作为润滑剂加油要适当一般为2/3~3/4的体积太多会发热,太少又有响声并发热!滑动轴承使用的是透明油作润滑剂的,加油到油位线。太多油要沿泵轴渗出,不利于散热;太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度最高在85度一般运行在60度左右,如果高了就要查找原因(是否有杂质,油质是否发黑,是否进水)并及时处理! 5、密封装置。叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低!间隙过小会造成叶轮与泵壳摩擦产生磨损。为了增加回流阻力减少内漏,延缓叶轮和泵壳的所使用寿命,在泵壳内缘和叶轮外援结合处装有密封装置,密封的间隙保持在0.25~1.10mm之间为宜。

离心泵的结构原理

1、什么是泵? 泵是输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体,使液体能量增加。 泵主要用来输送水、油、酸碱液、乳化液、悬乳液和液态金属等液体,也可输送液、气混合物及含悬浮固体物的液体。 泵通常可按工作原理分为容积式泵、动力式泵和其他类型泵三类。除按工作原理分类外,还可按其他方法分类和命名。如,按驱动方法可分为电动泵和水轮泵等;按结构可分为单级泵和多级泵;按用途可分为锅炉给水泵和计量泵等;按输送液体的性质可分为水泵、油泵和泥浆泵等。 泵的各个性能参数之间存在着一定的相互依赖变化关系,可以画成曲线来表示,称为泵的特性曲线,每一台泵都有自己特定的特性曲线。 2、泵的分类依据是什么? 泵的种类繁多,按工作原理可分为:①动力式泵,又叫叶轮式泵或叶片式泵,依靠旋转的叶轮对液体的动力作用,把能量连续地传递给液体,使液体的动能(为主)和压力能增加,随后通过压出室将动能转换为压力能,又可分为离心泵、轴流泵、部分流泵和旋涡泵等。②容积式泵,依靠包容液体的密封工作空间容积的周期性变化,把能量周期性地传递给液体,使液体的压力增加至将液体强行排出,根据工作元件的运动形式又可分为往复泵和回转泵。③其他类型的泵,以其他形式传递能量。如射流泵依靠高速喷射的工作流体将需输送的流体吸入泵后混合,进行动量交换以传递能量;水锤泵利用制动时流动中的部分水被升到一定高度传递能量;电磁泵是使通电的液态金属在电磁力作用下产生流动而实现输送。另外,泵也可按输送液体的性质、驱动方法、结构、用途等进行分类。 3、泵的基本参数有哪些? 表征泵主要性能的基本参数有以下几个: 1、流量Q 流量是泵在单位时间内输送出去的液体量(体积或质量)。 体积流量用Q表示,单位是:m3/s,m3/h,l/s等。 质量流量用Q m表示,单位是:t/h,kg/s等。 质量流量和体积流量的关系为: Q m=ρQ 式中ρ——液体的密度(kg/m3,t/m3),常温清水ρ=1000kg/m3。

离心泵的构造、工作原理以及它的特征曲线

泵在自来水生产流水线上被广泛应用,品种规格繁多。对它的分类方法也各不相同,按其工作原理可以分为三大类:叶片式水泵,容积式水泵,其他类型水泵。在我厂生产中大部分使用的是单级双吸式离心泵,是叶片泵的一种,由于这种泵的工作是靠叶轮高速旋转时叶片拨动液体旋转,使液体获得离心力而完成水泵的输水过程所以这种泵称为离心泵。 离心泵的应用是很广泛的,在国民经济的许多部门要用到它。在给水系统中几乎是不可缺少的一种设备,如若把自来水管网当作人身的血管系统,那么离心泵就是压送血液的心脏。由于离心泵是一种重要的设备,而且它的运转要消耗大量的动力!为了合理,经济的选择和使用水泵,以保证水厂供水,就必须对离心泵的工作原理和基本性能等方面有所了解。 一、离心泵的基本构造是由六部分组成的 离心泵的基本构造是由六部分组成的分别是叶轮,泵体,泵轴,轴承,密封环,填料函。 1、叶轮是离心泵的核心部分,它转速高出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。叶轮上的内外表面要求光滑,以减少水流的摩擦损失。 2、泵体也称泵壳,它是水泵的主体。起到支撑固定作用,并与安装轴承的托架相连接。

3、泵轴的作用是借联轴器和电动机相连接,将电动机的转距传给叶轮,所以它是传递机械能的主要部件。 4、轴承是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。滚动轴承使用牛油作为润滑剂加油要适当一般为2/3~3/4的体积太多会发热,太少又有响声并发热!滑动轴承使用的是透明油作润滑剂的,加油到油位线。太多油要沿泵轴渗出并且漂贱,太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度最高在85度一般运行在60度左右,如果高了就要查找原因(是否有杂质,油质是否发黑,是否进水)并及时处理! 5、密封环又称减漏环。叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低!间隙过小会造成叶轮与泵壳摩擦产生磨损。为了增加回流阻力减少内漏,延缓叶轮和泵壳的所使用寿命,在泵壳内缘和叶轮外援结合处装有密封环,密封的间隙保持在0.25~1.10mm之间为宜。 6、填料函主要由填料,水封环,填料筒,填料压盖,水封管组成。填料函的作用主要是为了封闭泵壳与泵轴之间的空隙,不让泵内的水流不流到外面来也不让外面的空气进入到泵内。始终保持水泵内的真空!当泵轴与填料摩擦产生热量就要靠水封管住水到水封圈内使填料冷却!保持水泵的正常运行。所以在水泵的运行巡回检查过程中对填料函的检查是特别要注意!在运行600个小时左右就要对填料进行更换。

离心泵的基本构造是由六部分组成的

一、离心泵的基本构造是由六部分组成的 离心泵的基本构造是由六部分组成的分别是叶轮,泵体,泵轴,轴承,密封环,填料函。1、叶轮是离心泵的核心部分,它转速高出力大,叶轮上的叶片又起到主要作用,叶轮在装配前 要通过静平衡实验。叶轮上的内外表面要求光滑,以减少水流的摩擦损失。 2、泵体也称泵壳,它是水泵的主体。起到支撑固定作用,并与安装轴承的托架相连接。 3、泵轴的作用是借联轴器和电动机相连接,将电动机的转距传给叶轮,所以它是传递机械能的 主要部件。 4、轴承是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。滚动轴承使用牛油作为润滑剂加油要适当一般为2/3~3/4的体积太多会发热,太少又有响声并发热!滑动轴承使用的是透明油作润滑剂的,加油到油位线。太多油要沿泵轴渗出并且漂贱,太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度最高在85度一般运行在60度左右,如果高了就要查找原因(是否有杂质,油质是否发黑,是否进水)并及时处理! 5、密封环又称减漏环。叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低!间隙过小会造成叶轮与泵壳摩擦产生磨损。为了增加回流阻力减少内漏,延缓叶轮和泵壳的所使用寿命,在泵壳内缘和叶轮外援结合处装有密封环,密封的间 隙保持在0.25~1.10mm之间为宜。 6、填料函主要由填料,水封环,填料筒,填料压盖,水封管组成。填料函的作用主要是为了封闭泵壳与泵轴之间的空隙,不让泵内的水流不流到外面来也不让外面的空气进入到泵内。始终保持水泵内的真空!当泵轴与填料摩擦产生热量就要靠水封管住水到水封圈内使填料冷却!保持水泵的正常运行。所以在水泵的运行巡回检查过程中对填料函的检查是特别要注意!在运行600 个小时左右就要对填料进行更换。 二、离心泵的过流部件 离心泵的过流部件有:吸入室,叶轮,压出室三个部分。叶轮室是离心泵的核心,也是流部件的核心。泵通过叶轮对液体的作功,使其能量增加。叶轮按液体流出的方向分为三类:(1)径流式叶轮(离心式叶轮)液体是沿着与轴线垂直的方向流出叶轮。 (2)斜流式叶轮(混流式叶轮)液体是沿着轴线倾斜的方向流出叶轮。 (3)轴流式叶轮液体流动的方向与轴线平行的。 叶轮按吸入的方式分为二类: (1)单吸叶轮(即叶轮从一侧吸入液体)。

离心泵的工作原理

1、离心泵的工作原理 离心泵依靠旋转叶轮对液体的作用把原动机的机械能传递给液体。由于作用液体从叶轮进口流向出口的过程中,其速度能和压力能都得到增加,被叶轮排出的液体经过压出室,大部分速度能转换成压力能,然后沿排出管路输送出去,这时,叶轮进口处因液体的排出而形成真空或低压,吸入口液体池中的液体在液面压力(大气压)的作用下,被压入叶轮的进口,于是,旋转着的叶轮就连续不断地吸入和排出液体。 2、容积泵的工作原理(回转式) 动力通过轴传给齿轮,一对同步齿轮带动泵叶作同步反向旋转运动,使进口区产生真口,降介质吸入,随泵叶的转动,将介质送往出口,继续转动,出口腔容积变小,产生压力(出口高压区)将介质输出。由于容积泵转数较低、自吸能力较强、流动性能较差的高粘介质,有充分时间和速度充满空穴,所以,该类型泵适用于高粘介质。泵内部密封面。内泻较小,所以泵的效率较高,可达 70 %以上,同时可以达到高压输送介质,并且对粘度较小的介质也有良好的适应性。 3、离心泵的分类及各自的特点 离心泵按其结构形式分为:立式泵和卧式泵,立式泵的特点为:占地面积少,建筑投入小,安装方便,缺点为:重心高,不适合无固定底脚场合运行。卧式泵特点:适用场合广泛,重心低,稳定性好,缺点为:占地面积大,建筑投入大,体积大,重量重。 4、容积泵的分类及特点 容积式泵分为往复式和回转式二大类,回转式容积泵与往复式容积泵相比,回转式泵没有吸、排液阀,不会向往复泵那样,因高粘度液体对阀门的正常工作有影响,泵效随粘度提高而快速降低。而且在输送液体粘度提高时,泵转数的下降比往复泵小,因而,在输送高粘度液体或液体粘度变化较大时,采用回转式溶剂泵比采用往复式容积泵更为适宜。回转式容积泵分:齿轮泵、旋转活塞泵、螺杆泵、和滑片泵等几类。具有转数低、效率高、自吸能力强、运转平稳、部分泵可预热等特点,广泛用于高粘介质的输送。缺点:占地面积大,建筑投入大,体积大,重量重。 5、泵的流量以及与重量的换算 泵在单位时间内,实际输送液体的体积称为泵的流量,流量用 Q 表示,计量单位:立方米 / 小时(m3/h),升 / 秒(l/s), L/s= 3.6 m3 /h= 0.06 m3 /min= 60L /min G=Q ρG 为重量ρ为液体比重例:某台泵流量 80m3/h ,介质的比重ρ为 780 公斤 / 立方米。输送介质时每小时重量 G:G=Qρ=80 × 780(m3/h · kg/ m3)= 62400kg 6、泵的压力、扬程、转速及表示形式以及其换算公式 压力的全称为泵的全压力,是指泵的排出压力和泵的吸入压力之差。泵的压力用 P 表示,单位?? Mpa (兆帕) 扬程是指单位重量液体流经泵以后能量的增加值,即液体在泵出口和进口的水头之差通常用字母 H 表示。单位为米(m), H=P/ ρ。如 P 为 1kg /cm2,则 H= (lkg/cm2)/(1000kg/m3) H=(1kg/cm3)/(1000公斤/m3)=(10000公斤/m2)/1000 公斤 /m3= 10m 1Mpa= 10kg /cm2, H=(P2-P1)/ρ(P2= 出口压力 P1= 进口压力) 比例关系:Q 1/Q 2 =r 1 /r 2 H 1 /H 2 =(r 1 /r 2 )2 7、泵的效率及计算方法 泵的效率指泵的有效功率和轴功率之比。η=Pe/P 泵的功率通常指输入功率,即原动机传到泵轴上的功率,故又称轴功率,用 P 表示。有效功率又称为输出功率即:泵的扬程和质量流量及重力加速度的乘积。 Pe=ρgQH (W)或 Pe= γQH/1000 (KW) ρ:泵输送液体的密度(kg/m3) γ:泵输送液体的重度γ = ρg (N/m3) g:重力加速度(m/s) 质量流量 Qm= ρQ(t/h 或 kg/s) 8、什么叫汽蚀余量?什么叫吸程?各自计量单位表示字母? 泵在工作时液体在叶轮的进口处因一定真空压力下会产生气体,汽化的气泡在液体质点的撞击运动下,对叶轮等金属表面产生剥蚀,从而破坏叶轮等金属,此时真空压力叫汽化压

泵与风机的基本性能参数

1.泵与风机的基本性能参数。 2. 离心式叶轮按出口安装角β2y的大小可分为三种型式。 3、泵与风机的损失主要。 4、离心式泵结构的主要部件。 5、轴流式通风机的主要部件。 1.泵与风机的性能曲线主要包括()。 A扬程与流量、B轴功率与流量、C效率与流量。 2.泵与风机管路系统能头由()项组成。 A流体位能的增加值、B流体压能的增加值、C各项损失的总和。 3、通风机性能试验需要测量的数据()。 A压强、B流量、C功率、D、转速、E 温度。 4、火力发电厂常用的叶片泵() A给水泵、B循环水泵、C 凝结水泵、D 灰渣泵。 5、泵与风机非变速调节的方式。() A节流调节、B分流调节、C前导叶调节、E 动叶调节。 1.简述离心式泵与风机的工作原理 2. 影响泵与风机运行工况点变化的因素 3、泵与风机串并联的目的 4、比转速有哪些用途 1.有一单吸单级小型卧式离心泵,流量q v=68m3/h,NPSH c=2m,从封闭容器中抽送温度400C的清水,容器中液面压强为,吸入管路总的流动损失Σh w=,试求该泵的允许几何安装高度是多少(水在400C时的密度为992kg/m3。对应的饱和蒸汽压强7374Pa。)

2.有一输送冷水的离心泵,当转速为1450r/min时,流量q v=s,扬程H=70m,此时所需的轴功率P sh=1100KW,容积效率ηv=,机械效率ηm=,求流动效率为多少(已知水的密度ρ=1000kg/m3)。 1、试分析启动后水泵不输水(或风机不输风)的原因及解决措施 2.试分析泵与风机产生振动的原因 1、液力偶合器的主要部件,变速调节特点,性能特性参数,在火力电厂中的优点

离心泵的工作原理,离心泵的结构特点

离心泵的工作原理,离心泵的结构特点 在启动前,要先使液体从漏斗将泵壳与吸入管路内灌满。当叶轮飞快旋转时,叶轮内的液体在叶轮内叶片的推动下也跟着旋转起来,从而使液体获得了离心力,并沿着叶片流道从叶轮的中心往外运动,然后从叶片的端部被甩出进入泵壳内的蜗室或扩散管(或导轮)。当液体流到扩散管时,由于液流的断面积渐渐扩大,流速减慢,将一部分动能转化为静能头,使压力上升,最后从排出管压出。与此同时,在叶轮中心由于液体被甩出产生了局部真空,因而吸液池内的液体在液面压力作用下就从吸入管源源不断地被吸入泵内。叶轮连续旋转,将液体不断地由吸液池送往高位槽或压力容器。图1-13所示为离心泵的工作原理示意图。图1-14所示为用雨天雨伞旋转甩出伞面上的水来演示离心泵的工作原理。 离心泵的工作原理 离心泵工作原理示意图

离心泵工作原理演示 离心泵能输送液体是依靠高速旋转的叶轮使液体受到离心力的作用,故名为离心泵。图1-15所示为离心泵装置,离心泵进出管线上的管路附件,对泵的正常操作作用很大,底阀是一个止回阀,它的作用是保证启动前往泵内灌的液体不会由吸入管流走。滤网则可防止吸液池内的杂物进入管道或泵壳造成堵塞。离心泵启动时,若泵体和吸入管内没有液体,它是没有抽吸液体的能力的,因为它的吸人口和排出口是相通的,叶轮中无液体而只有空气时,由于空气的密度比液体的密度小得多,不论叶轮怎样高速旋转,叶轮进口都不能达到吸液所需要的真空度,即产生的离心力就很小,因而在叶轮中心区所形成的低压不足以将吸液池(贮槽)内的液体吸人泵内,而不能吸液。这种由于泵内存有空气造成离心泵不能吸液的现象称为气缚现象,如图1-16所示。因此,离心泵在启动前必须将泵体和吸人管内灌满液体或抽出空气。

离心泵主要参数

离心泵主要參數: 一、流量Q(m3/h或m3/s) 离心泵的流量即为离心泵的送液能力,是指单位时间内泵所输送的液体体积。 泵的流量取决于泵的结构尺寸(主要为叶轮的直径与叶片的宽度)和转速等。操作时,泵实际所能输送的液体量还与管路阻力及所需压力有关。 二、扬程H(m) 离心泵的扬程又称为泵的压头,是指单体重量流体经泵所获得的能量。 泵的扬程大小取决于泵的结构(如叶轮直径的大小,叶片的弯曲情况等、转速。目前对泵的压头尚不能从理论上作出精确的计算,一般用实验方法测定。 泵的扬程可同实验测定,即在泵进口处装一真空表,出口处装一压力表,若不计两表截面上的动能差(即Δu2/2g=0),不计两表截面间的能量损失(即∑f1-2=0),则泵的扬程可用下式计算 注意以下两点: (1)式中p2为泵出口处压力表的读数(Pa);p1为泵进口处真空表的读数(负表压值,Pa)。 (2) 注意区分离心泵的扬程(压头)和升扬高度两个不同的概念。 扬程是指单位重量流体经泵后获得的能量。在一管路系统中两截面间(包括泵)列出柏努利方程式并整理可得 式中H为扬程,而升扬高度仅指Δz一项。 例2-1现测定一台离心泵的扬程。工质为20℃清水,测得流量为60m /h时,泵进口真空表读数为-0.02Mpa,出口压力表读数为0.47Mpa(表压),已知两表间垂直距离为0.45m若泵的吸入管与压出管管径相同,试计算该泵的扬程。 解由式

查20℃, h =0.45m p =0.47Mpa=4.7*10 Pa p =-0.02Mpa=-2*10 Pa H=0.45+ =50.5m 三、效率 泵在输送液体过程中,轴功率大于排送到管道中的液体从叶轮处获得的功率,因为容积损失、水力损失物机械损失都要消耗掉一部分功率,而离心泵的效率即反映泵对外加能量的利用程度。 泵的效率值与泵的类型、大小、结构、制造精度和输送液体的性质有关。大型泵效率值高些,小型泵效率值低些。 四、轴功率N(W或kW) 泵的轴功率即泵轴所需功率,其值可依泵的有效功率Ne和效率η计算,即 (kW)

IH型化工离心泵结构图及操作

IH型化工离心泵结构图及操作 一、IH型化工离心泵的结构特点: 泵盖通过止口固定在中间支架上,然后通过泵体与中间支架止口的联接把泵盖夹紧在中间,泵体是轴向吸入,径向排出,脚支承式,可直接固定在底座上。悬架部件通过止口固定固定在中间支架上,并用悬架支架支撑在底座上。为拆卸方便,设计了加长联轴器,检修时可以不拆卸进出口联接管路,泵体和电动机。只需拆下联轴器的中间联接件,即可退出转子部件进行检修。这是国际上通用的一种结构形式。 IH型化工离心泵的旋转方向: 泵通过加长联轴器由电动机直接驱动,从电动机端看,按顺时针方向旋转。 IH型化工离心泵的轴封型式: 填料密封:泵盖内设有填料函,采用软填料密封,填料函内可通入有一定压力的水,供密封冷却,润滑、清洗用。 机械密封:单端面机械密封和双端面机械密封两种型式,密封腔内通入一定压力的水,冲洗磨擦两端面,同时起冷却作用。 泵的密封型式采用填料密封或机械密封,由用户根据需要适用,同时根据需要允许采用适合于ISO3069规定的密封空腔尺寸和其他结构的轴封型式,如带波纹管的机械密封和付叶轮密封等等。 IH型化工泵输送介质温度为-20℃~105℃,需要时采用双端面密封冷却装置,可输送介质温度为20℃~+280℃。适用于化工、石油、冶金、电力、造纸、食品、制药、环保、废水处理和合成纤维等行业用于输送各种腐蚀的或不允许污染的类似于水的介质。 二、IH型化工离心泵拆卸与装配

拆卸: 由于采用了加长联轴器,拆卸泵时,不必拆卸进、出口管路,泵体和电机,只需拆下加长联轴器中的中间联轴器,即可拆出转子部件,进行维修、保养。 1、拆下泵体上的泄液管堵和悬架体上的放油管堵,放净泵内液体和悬架体内的润滑油。(注:如泵上还有另外附加管路亦应拆下)。 2、拆开泵体与中间支架的联结、并将中间支架、悬架部件和泵盖等全部转子部件从泵体中一起退出。 3、拆下,叶轮螺母、取下叶轮和键。 4、将泵盖连同轴套、机械密封端盖和稞械密封等部件一起从轴上退出。注意勿使轴套相对于泵盖等发生滑动,然后再拆下机械密封端盖,将机械密封连同轴套一起取下,再将轴套和机械密封拆开。 如果密封采用填料,则可从泵盖中直接拆下轴套,再顺次拆下填料压盖,填料和填料环等。 如果密封采用特殊结构,应注意不同的拆卸方法。 5、拆下中间支架与悬架支架。 6、拆下泵联轴器和键。 7、拆下悬架体两端的防尘盘和轴承的前、后盖,再将轴连同轴承一起从悬架体内取下。 8、从泵轴上拆下轴承。 装配 与拆卸程序相反进行。 起动、运行和停止

离心泵的结构

第二节离心泵的结构 任何离心泵均由吸入机构、导流机构、过流、密封、平衡、支承及辅助机构等部件组成。其中吸机构和导流机构组成泵壳部分;过流部件的轴、叶轮、轴套以及其它大部分套装轴上的零件组成了泵的转子部分,另外平衡轴向力的机构和机械密封组件等也装在轴上。 一、泵壳 1.泵壳的作用 1)将液体均匀地导入叶轮,并收集从叶轮高速流出的液体,送入下一叶轮或导向出口。 2)实现能量的转换,变动能为压力能。 2.泵壳的形式 (1)蜗形泵壳 通过螺线形流道(如图1-11)使液流平缓地降低流速,以使大部分动能转为压能,同时起导向作用。 (2)有导轮的分段泵壳 用于分段式多级泵。液流通过靠近叶轮外缘的导轮(如图1-12)改变流向。导轮的流道入口应尽量保持使液流方向与叶轮甩出方向一致,以避免因冲击而引起的能量损失,但工况改变时,有时还是不可避免的。液体流经导轮同样起降速增压和导向作用。 (3)两种泵壳特点的比较 蜗形泵一般多用于单级泵及水平中开式的多级泵;而具有导轮的分段泵壳则都在多级泵。两种泵壳特点比较见表1-3。泵壳的材质取决于输送介质的温度、压力和介质的腐蚀性。 表1-3 两种泵壳特点比较 二、转子部分 转子是一组合部件。它由轴、叶轮、轴套等组成,是产生离心力和能量的旋转主体。密封部件、平衡装置等也都套装在轴上,是离心泵的关键部分。 1.叶轮 叶轮是离心泵的主要零件。叶轮主要由轮盖、叶片、轮毂等组成(图1-13)。在前后轮盖与叶片之间形成流道,叶轮在轴的带动下旋转,产生离心力,液体由叶轮中心轴进入,由外缘排出,完成液体的吸入与排出。叶轮的形式按进水方式可分为单吸和又吸两种。 2.转轴 转轴的作用是传递原动机的动力及带动叶轮旋转,并支承轴上各零部件的重量。 3.轴套 轴套套装在轴上,一般是圆柱形。轴套有两种:一种是装在叶轮与叶轮之间,主要起固定叶轮的作用;另一种是装有轴两头密封处,防止轴磨损,起保护轴的作用。 4.轴与叶轮的装配方法 轴与叶轮的装配方法有两种:一是悬臂式,把叶轮固定在轴的一端,并通过键或叶轮与轴的螺纹连接来传递扭矩。这种方式主要用于小型泵。为使键在传递扭矩时不发生叶轮的轴

离心泵性能实验报告(带数据处理)

实验三、离心泵性能实验姓名:杨梦瑶学号:1110700056 实验日期:2014年6月6日 同组人:陈艳月黄燕霞刘洋覃雪徐超张骏捷曹梦珺左佳灵 预习问题: 1.什么是离心泵的特性曲线?为什么要测定离心泵的特性曲线? 答:离心泵的特性曲线:泵的He、P、η与Q V的关系曲线,它反映了泵的基本性能。要测定离心泵的特性曲线是为了得到离心泵最佳工作条件,即合适的流量范围。 2.为什么离心泵的扬程会随流量变化? 答:当转速变大时,,沿叶轮切线速度会增大,当流量变大时,沿叶轮法向速度会变大,所以根据伯努力方程,泵的扬程: H=(u22- u12)/2g + (p2- p1) / ρg + (z2- z1) +H f 沿叶轮切线速度变大,扬程变大。反之,亦然。 3.泵吸入端液面应与泵入口位置有什么相对关系? 答:其相对关系由汽蚀余量决定,低饱和蒸气压时,泵入口位置低于吸入端液面,流体可以凭借势能差吸入泵内;高饱和蒸气压时,相反。但是两种情况下入口位置均应低于允许安装高度,为避免发生汽蚀和气缚现象。 4.实验中的哪些量是根据实验条件恒定的?哪些是每次测试都会变化,需要记录的?哪些 是需要最后计算得出的? 答:恒定的量是:泵、流体、装置; 每次测试需要记录的是:水温度、出口表压、入口表压、电机功率; 需要计算得出的:扬程、轴功率、效率、需要能量。 一、实验目的: 1.了解离心泵的构造,熟悉离心泵的操作方法及有关测量仪表的使用方法。 2.熟练运用柏努利方程。 3.学习离心泵特性曲线的测定方法,掌握离心泵的性能测定及其图示方法。 4.了解应用计算机进行数据处理的一般方法。 二、装置流程图: 图5 离心泵性能实验装置流程图

离心泵的结构和工作原理

水泵在我们的生活中起到了很好的作用,比如给高层供水,很多人想了解离心泵是怎么工作的,这个就要从离心泵的机构来讲了。 离心泵顾名思义,通过旋转叶轮产生的离心力带动流体,从而实现流体运输。离心泵应用广泛,具有体积小、操作简单、使用寿命长等优点,是流程系统中最常见、不可缺少的一类设备。 叶轮是离心泵的做功零件,离心泵依靠叶轮高速旋转使液体做功,实现液体输送。叶轮一般由轮毂、叶片和盖板三部分组成,根据结构不同可以分为以下三种: 闭式叶轮的两侧均有盖板,叶片位于盖板之间。它效率最高、应用最广,适用于不含固体颗粒及纤维的清洁液体,如淡水和海水。 半开式叶轮的叶轮入口处是开放的,只有一块后盖板。它适用于输送易于沉淀或含固体悬浮物的液体。 开式叶轮的两侧均没有盖板,它的结构十分简单,叶片通过筋板连接在轮毂上,制造也较为容易,但效率较低,通常适用于需输送含有大量固体悬浮物或纤

维的场景,如污水处理系统。 离心泵根据流体流出叶轮的方向可以分为径流、轴流和混流。径流离心泵的泵压力完全由离心力产生,它是工业应用中最常见的泵之一。其出口处的流体与泵轴垂直,因此能充分利用离心力,是许多高压、大流量应用的理想选择。轴流离心泵用于低压、大流量应用,几乎没有径向力施加在流体上,但泵内的一部分流体仍然会沿径向作离心运动,因此也属于离心泵。 离心泵也可以根据叶轮数的不同进行分类,如单级离心泵就是只有一个叶轮的离心泵。图中是一个多级离心泵,它具有五个叶轮,因此也叫五级离心泵。 离心泵的叶轮数和扬程成正比,这是因为串联的多个叶轮,可以分段进行吸水和压水,从而提升泵的总扬程。多级泵的优点是可以用于矿山排水、城市工厂供水等高扬程、大流量工况应用,相对地,它在设计、使用、维护上也有更高的技术要求。 离心泵根据叶轮进水方式的不同,可以分为单吸式泵和双吸式泵。单吸式泵即只在叶轮一侧有进水口,流体在轴向上被吸入,并向上径向吐出。双吸式泵可以看作两个单吸泵的组合,但多了一个密封腔,因此成本较高。双吸泵的优点是运行平稳,不容易产生汽蚀,可以用于大流量高扬程场合。当泵的流量要求很高时,使用双吸泵可以显著降低泵的转速要求,提高容积效率。 如果说大家发现家里供水不是很好或者水泵出问题了,建议先找专业人咨询一下,看一下怎么处理。四川凯扬立方供水设备有限公司是一家多年从事水泵、水处理、水箱及变频式供水等生活、消防给水产品的安装、设计、制造及营销服务的专业公司,公司生产的不锈钢水箱畅销省内外。

立式单级单吸离心泵特点及结构

立式单级单吸离心泵特点及结构 一、立式单级单吸离心泵产品概述: 立式单级单吸离心泵,是在ISG技术的基础上,自行研究开发的新一代节能、环保立式离心泵。该系列泵性能优、可靠性高、寿命长、结构合理、外形美观。 二、立式单级单吸离心泵产品特点: 1、泵为立式结构,进出口口径相同,且位于同一中心线上,可象阀门一样安装于管路之中,外形紧凑美观,占地面积小,建筑投入低,如加上防护罩则可置于户外使用。 2、叶轮直接安装在电机的加长轴上,轴向尺寸短,结构紧凑,泵与电机轴承配置合理,能有效地平衡泵运转产生的径向和轴向负荷,从而保证了泵的运行平稳,振动小、噪音低。 3、轴封采用机械密封或机械密封组合,采用进口钛合金密封环、中型耐高温机械密封和采用硬质合金材质,耐磨密封,能有效地延长机械密封的使用寿命。 4、安装检修方便,无需拆动管道路系统,只要卸下泵联体座螺母即可抽出全部转子部件。 5、可根据使用要求即流量和扬程的需要采用泵的串、并联运行方式。 6、可根据管路布置的要求采用泵的竖式和横式安装。 三、立式单级单吸离心泵工作条件: 1、吸入压力≤1.0MPa,或泵系统最高工作压力≤1.6MPa,即泵吸入口压力+泵扬程≤1.6MPa,泵静压试验压力为2.5MPa,订货时请注明系统工作压力。泵系统工作压力大于1.6MPa时应在订货时另行提出,以便在制造时泵的过流部分和联接部分采用铸钢材料。 2、环境温度<40℃,相对湿度<95%。

3、所输送介质中固体颗粒体积含量不超过单位体积的0.1%,粒度<0.2mm。 注:如使用介质为带有细小颗粒,采用耐磨式机械密封。 四、立式单级单吸离心泵型号定义:

离心泵特性曲线实验报告(学习类别)

化工原理实验报告 实验名称:离心泵特性曲线实验报告姓名:张克川 专业:化学工程与工艺(石油炼制)班级:化工11203 学号:201202681

离心泵特性曲线实验报告 一、实验目的 1.了解离心泵的结构与特征,熟悉离心泵的使用。 2.测定离心泵在恒定转速下的特征曲线,并确定离心泵的最佳工作范围。 3.熟悉孔板流量计的构造与性能以及安装方法。 变化的规律。 4.测量孔板流量计的孔流系数C岁雷诺数R e 5.测量管路特性曲线。 二、基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H、功率N及效率η与泵的流量Q之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。 2.1扬程H的测定与计算 取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程:z1+++H=z2+++ (1-1) 由于两截面间的管子较短,通常可忽略阻力项,速度平方差也很小,故也可忽略,则有 H=(z1-z2)+=H1+H2(表值)+H3 (1-2) 由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。 2.2轴功率N的测量与计算 N=N电k(w) (1-3) 其中,N电为电功率表显示值,k代表电机传动效率,可取0.90 2.3效率η的计算 泵的效率η是泵的有效功率Ne与轴功率N的比值。有效功率Ne是单位时间内流体经过泵时所获得的实际功率,轴功率N是单位时间内泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。泵的有效功率Ne可用下式计算:

相关主题
文本预览
相关文档 最新文档