当前位置:文档之家› 中间轴式变速器课程设计

中间轴式变速器课程设计

中间轴式变速器课程设计
中间轴式变速器课程设计

第一章变速器传动机构布置方案

1.1变速器传动方案的选择与分析

机械式变速器具有结构简单、传动效率高、制造成本底和工作可靠等优点,故在不同形式的汽车上得到广泛应用。变速器传动方案分析与选择机械式变速器传动机构布置方案主要有两种:两轴式变速器和中间轴式变速器。

其中两轴式变速器多用于发动机前置前轮驱动的汽车上。与中间轴式变速器相比,它具有轴和轴承数少,结构简单、轮廓尺寸小、易布置等优点。此外,各中间档因只经一对齿轮传递动,故传动效率高,同时噪声小。但两轴式变速器不能设置直接档,所以在工作时齿轮和轴承均承载,工作噪声增大且易损坏,受结构限制其一档速比不能设计的很大。其特点是:变速器输出轴与主减速器主动齿轮做成一体,发动机纵置时直接输出动力。

而中间轴式变速器多用于发动机前置后轮驱动汽车和发动机后置后轮驱动的汽车上。其特点是:变速器一轴后端与常啮合齿轮做成一体绝大多数方案的第二轴与一轴在同一条直线上,经啮合套将它们连接后可得到直接档,使用直接档变速器齿轮和轴承及中间轴不承载,此时噪声低,齿轮、轴承的磨损减少。

对不同类型的汽车,具有不同的传动系档位数,其原因在于它们的使用条件不同、对整车性能要求不同、汽车本身的比功率不同[5]。而传动系的档位数与汽车的动力性、燃油经济性有着密切的联系。就动力性而言,档位数多,增加了发动机发挥最大功率附近高功率的机会,提高了汽车的加速和爬坡能力。就燃油经济性而言,档位数多,增加了发动机在低燃油消耗率区下作的能力,降低了油耗。从而能提高汽车生产率,降低运输成木。不过,增加档数会使变速器机构复杂和质量增加,轴向尺寸增大、成本提高、操纵复杂。

综上所述,由于此次设计的汽车为:中间轴式五档(五档为直接档)商用车

1.2 倒档方案的确定

倒档布置选择方案适用于全部齿轮均为常啮合的齿轮,换挡轻便。如下图

1.3换挡操纵装置方案的确定

倒档设置在变速器左侧或右侧,在结构上均能实现,不同之处是挂到当时驾驶员移动变速杆的方向改变了,为防止无挂倒档,一般在挂倒档时设有一个挂到当时克服弹簧所产生的力,来提醒驾驶员本次设计选的变速器档杆换挡位置与顺序如下图:

1.4变速器总传动方案的确定

由以上的内容可以基本设计出档位布置,如下图:

1-一轴常啮合齿轮 2-中间轴常啮合齿轮 3-二轴四挡齿轮 4-中间轴四挡齿轮

5-二轴三挡齿轮 6-中间轴三挡齿轮 7-二周二挡齿轮 8-中间轴二挡齿轮

9-二轴一挡齿轮 10-中间轴一挡齿轮 11-二轴倒挡齿轮 12-中间轴倒挡齿轮

13-倒挡中间齿轮。

第二章 变速器的设计与计算

2.1汽车基本参数的确定 商用车(中间轴式) 最高车速(km/h) 95 总质量(kg ) 4000 额定功率(kW) 62.5 最大功率转速(r/min) 3350 最大转矩(N ?m) 196 最大转矩转速(r/min) 1850 轮胎 6.50R20 2.2主要参数的选择和计算 2.2.1挡数的确定

不同类型的汽车的档数也不是相同的,主要决定于汽车的类型 燃油经济性 总质量等等。轿车轿车变速器传动比变化范围较小,过去常采用三个或四个挡位。但近年来为了提高燃油经济性多采用五个挡。轻型货车变速器总质量在3.5t 以下多用四档,为了降低油耗经常也会增加一个挡位总质量在3.5t~10t 多用五档变速器;大于10t 的汽车用六个或者个更多挡位的变速器。 本次设计汽车为商用车 总质量为4t 所以档数初选为五个挡位 2.2.2. 传动比范围

变速器传动比范围是指变速器最高档与最低档传动比的比值。最高档通常是直接档,传动比为1.0;有的变速器最高档是超速档,传动比为0.7~0.8。影响最低档传动比选取的因素有:发动机的最大转矩和最低稳定转速所要求的汽车最大爬坡能力、驱动轮与路面间的附着力、主减速比和驱动轮的滚动半径以及所要求达到的最低稳定行驶车速等。目前乘用车的传动比范围在3.0~4.5之间,总质量轻些的商用车在5.0~8.0之间,其它商用车则更大。 本设计最高档传动比为1。

2.2.

3.变速器各档传动比的确定

1)确定主减速器传动比的

发动机转速与汽车行驶速度之间的关系式为[12]:

377

.0i i rn

u g a

(3.1)

式中:

a u ——汽车行驶速度(km/h ); n ——发动机转速(r/min ); r ——车轮滚动半径(m )

; g i ——变速器传动比; 0i ——主减速器传动比。

已知:最高车速max a u =max a v =95 km/h ;最高档为超速档,传动比g i =0.78;车轮滚动半径由所选用的轮胎规格 6.50R20得到r =420(mm);发动机转速n =p n =3350(r/min )

;由公式(3.1)得到主减速器传动比计算公式: 58.595

110423350377.0377.02

0=????==-a g u i nr i

2)最抵档传动比计算

按最大爬坡度设计,满足最大通过能力条件,即用一档通过要求的最大坡道角max α坡道时,驱动力应大于或等于此时的滚动阻力和上坡阻力(加速阻力为零,空气阻力忽略不计)

[13]

。用公式表示如下:

max max 0max sin cos ααηG Gf r

i i T t

g e +≥

(3.2)

式中:

G ——车辆总重量(N);

f ——坡道面滚动阻力系数(对沥青路面μ=0.01~0.02);

max e T ——发动机最大扭矩(N ·m); 0i ——主减速器传动比;

g i ——变速器传动比; t η ——为传动效率(96%)

; R ——车轮滚动半径;

max α——最大爬坡度(商用车要求能爬上30%的坡,大约 7.16)

由公式(3.2)得: t

e g i T r

G G i ηααμ0max max max 1)sin cos (+≥

(3.3)

已知:m=4000kg ;015.0=f ; 7.16max =α;r=0.42m ;196max =e T N ·m ;

58.50=i ;g=9.8m/s 2

;88.0=t η,把以上数据代入(3.3)式:

73,496

.058.519642.0)7.16sin 8.940007.16cos 015.08.94000(1=?????+???≥ g i

满足不产生滑转条件。即用一档发出最大驱动力时,驱动轮不产生滑转现象。公式表示如下:

?ηG r

i i T t

g e ≤10max

t

e g i T r

G i η?0max 1≤

(3.4)

式中:

G ——驱动轮的地面法向反力,g m G 17.0=(满载时轴荷分配75%)

; ? ——驱动轮与地面间的附着系数;对干燥凝土或沥青路面?可取0.5~0.6之间。

已知:前轮轴荷13001=m kg ;?取0.6,把数据代入(3.4)式得:

06.796

.058.519642

.06.075.08.940001≈??????≤

g i

所以,一档转动比的选择范围是:

06.773.41≤≤g i

初选一档传动比为6。 3)变速器各档速比

按等比级数分配其它各档传动比,即:

q i i i i i i i i ====5

4433221 565.116

4451===i i q

564

.1565.1449.2449.2565.1834.3834.3565.10.6342312=========

q i i q i i q i i

2.2.4.中心距的选择

中间轴式变速器初选中心距可根据经验公式计算[14]:

31m a x g e A i T K A η= (3.5)

式中:

A ——变速器中心距(mm );

A K ——中心距系数,商用车A K =8.6~9.6; max e T ——发动机最大输出转距为196(N·

m ); 1i ——变速器一档传动比为6;

g η ——变速器传动效率,取96%。

=A (8.6~9.6)396.06196???=(8.6-9.6)?10.41=89.548~99.936mm

轿车变速器的中心距在86~97mm 范围内变化。 也可以由发动机最大转矩来确定

3max e A T K A =

式中:

A ——变速器中心距(mm );

A K ——中心距系数,商用车A K =16~19; max e T ——发动机最大输出转距为196(N·

m ); =A (16~19)3196?=(17-19)?5.838=98.749~110.927mm

综上所述 初取A =100mm 。

2.2.5.变速器的外形尺寸

变速器的横向外形尺寸,可以根据齿轮直径以及倒档中间齿轮和换档机构的布置初步确定。影响变速器壳体轴向尺寸的因素有档数、换档机构形式以及齿轮形式。

乘用车变速器壳体的轴向尺寸可参考下列公式选用:

300~270100)0.3~7.2()0.3~7.2(=?==A L mm

初选长度为285mm 。

2.2.6.齿轮参数的选择 1、模数

选取齿轮模数时一般要遵守的原则是:为了减少噪声应合理减小模数,同时增加齿宽;为使质量小些,应该增加模数,同时减少齿宽;从工艺方面考虑,各档齿轮应该选用一种模数;从强度方面考虑,各档齿轮应有不同的模数。对于轿车,减少工作噪声较为重要,因此模数应选得小些;对于货车,减小质量比减小噪声更重要,因此模数应选得大些。

2、压力角α

压力角较小时,重合度较大,传动平稳,噪声较低;压力角较大时,可提高轮齿的抗弯强度和表面接触强度。

对于轿车,为了降低噪声,应选用14.5°、15°、16°、16.5°等小些的压力角。对货车,为提高齿轮强度,应选用22.5°或25°等大些的压力角[15]。

国家规定的标准压力角为20°,所以普遍采用的压力角为20°。啮合套或同步器的压力角有20°、25°、30°等,普遍采用30°压力角。

本变速器为了加工方便,故全部选用标准压力角20°。

3、螺旋角β

齿轮的螺旋角对齿轮工作噪声、轮齿的强度和轴向力有影响。选用大些的螺旋角时,使齿轮啮合的重合度增加,因而工作平稳、噪声降低。

试验证明:随着螺旋角的增大,齿的强度相应提高,但当螺旋角大于30°时,其抗弯强度骤然下降,而接触强度仍继续上升。因此,从提高低档齿轮的抗弯强度出发,并不希望用过大的螺旋角;而从提高高档齿轮的接触强度着眼,应当选用较大的螺旋角。

本设计初选螺旋角全部为25°。 4、齿宽b

齿宽对变速器的轴向尺寸、质量、齿轮工作平稳性、齿轮强度和齿轮工作时的受力均匀程度等均有影响。

考虑到尽可能缩短变速器的轴向尺寸和减小质量,应该选用较小的齿宽。另一方面,齿宽减小使斜齿轮传动平稳的优点被削弱,此时虽然可以用增加齿轮螺旋角的方法给予补偿,但这时轴承承受的轴向力增大,使其寿命降低。齿宽较小又会使齿轮的工作应力增加。选用较大的齿宽,工作中会因轴的变形导致齿轮倾斜,使齿轮沿齿宽方向受力不均匀造成偏载,导致承载能力降低,并在齿宽方向磨损不均匀。

通常根据齿轮模数()n m m 的大小来选定齿宽: 斜齿n c m k b =,c k 取为6.0~8.5,取7.0

280.47=?==n c m k b mm

直齿m k b c =,c k 为齿宽系数,取为4.5~8.0,取7.0,

280.47=?==n c m k b mm

采用啮合套或同步器换挡时,其接合齿的工作宽度初选时可取为2~4mm ,取4mm 。

5、齿顶高系数

齿顶高系数对重合度、轮齿强度、工作噪声、轮齿相对滑动速度、轮齿根切和齿顶厚度等有影响。若齿顶高系数小,则齿轮重合度小,工作噪声大;但因轮齿受到的弯矩减小,轮齿的弯曲应力也减少。因此,从前因齿轮加工精度不高,并认为轮齿上受到的载荷集中齿顶上,所以曾采用过齿顶高系数为0.75~0.80的短齿制齿轮。

在齿轮加工精度提高以后,包括我国在内,规定齿顶高系数取为1.00。为了

增加齿轮啮合的重合度,降低噪声和提高齿根强度,有些变速器采用齿顶高系数大与1.00的细高齿。

本设计取为1.00。

2.2.7.各挡齿轮齿数的分配及齿轮变位计算

在初选中心距,齿轮模数和螺旋角以后,可根据变速器的挡数,传动比和传动方案来分配各挡齿轮的齿数。一、二、三、四、五挡选用斜齿轮,倒挡选用直齿轮。

1、确定一挡齿轮的齿数

中间轴一挡齿轮齿数,货车可在12~17之间选用,最小为12~14,取10Z =14,一挡齿轮为斜齿轮。

一挡传动比为10

19

21g Z Z Z Z i =

(1.4) 为了求9Z ,10Z 的齿数,先求其齿数和h Z ,

斜齿n h m A Z β

cos 2=

(1.5) =

4

25cos 1002?

? =45.3取整为46

即9Z =h Z -10Z =46-14=32 2、对中心距A 进行修正

因为计算齿数和h Z 后,经过取整数使中心距有了变化,所以应根据取定的

h Z 和齿轮变位系数重新计算中心距A ,再以修正后的中心距A 作为各档齿轮齿数分配的依据。

β

cos 2m A

n

h

Z =

=

?

+?cos25232144)

(=101.5mm 取整为A=102mm 。

对一挡齿轮进行角度变位: 分度圆压力角

1cos /tan tan βααn t =

∴o

t 01.22=α

端面啮合角,t α

t t A

A ααcos cos ,

,

=

=01.22cos 1025.101° 28.214

32

109===z z U ,α=22.19°

查变位系数线图得: ∑n ξ=0.31 09.0-10

=n ξ 4.09=n ξ

中心变动系数 n

n m A A 0-=λ125

.045.101102=-=

齿顶降低系数

n σ=∑ξ-n λ185.0125.031.0=-=

计算β精确值:A=10

n

cos 2m

βh

Z βo=25.5o

一挡齿轮参数:

分度圆直径 199c o s /βn m z d ==32×4/cos25.5=141.9mm 11010cos /βn m z d ==14×4/cos25.5=62.08mm

齿顶高 ()n n o a m f h σξ-+=99=()4185.04.00.1?-+=4.86mm

()n n o a m f h σξ-+=1010=()4185.009.0-0.1?-=3.62mm

齿根高 ()n o f m c f h 99ξ-+==()44.025.01?-+=3.4mm ()n o f m c f h 1010ξ-+==()409.025.00.1?++=5.36mm 齿全高 ()n n o m c f h σ-+=2()4185.025.00.12?++?=9.74mm 齿顶圆直径 9992a a h d d +==141.9+2×4.86 =151.62mm 1010102a a h d d +==62.08+2×3.62=69.32mm 齿根圆直径 9992f f h d d -== 3.42141.9?-=135.1mm 1010102f f h d d -== 5.36262.08?-=51.36mm 当量齿数 1399c o s βZ Z n =

=5.25cos 32

3=43.54

13

1010cos βZ Z n =

=5

.25cos 14

3=19.05 2、确定常啮合传动齿轮副的齿数

由式(1.4)求出常啮合传动齿轮的传动比

9

10112Z Z i Z Z ==3214

6?=2.625 (2.6)

常啮合传动齿轮的中心距与一挡齿轮的中心距相等,即 ()0

21cos 2βZ Z m A n +=

(2.7) n

m A Z Z 021cos 2β=

+=5.35

.25cos 1022?=52.61

由式(2.6)、(2.7)得1Z =14.51,2Z =38.1取整为1Z =15,2Z =38,则:

101921Z Z Z Z i =

=14

1532

38??=5.79 对常啮合齿轮进行角度变位: 理论中心距 ()0

21cos 2βZ Z m A n o +=

=()

5.25cos 238155.3+?=102.83mm

端面啮合角 tan t α=

cos tan βα

=0.398 t α=21.98

啮合角 t ,cos cos ααA

A o t =

=

98.21cos 10283

.102=0.935 ,t α=20.8 变位系数之和 ()()α

ααξtan 2,21t t inv inv z z -+=

=-0.48

01=ξ.255 73.02-=ξ 中心距变动系数 n

n m A A 0-=

λ=

237.05.383

.102102-=- 齿顶降低系数 n σ=∑ξ-n λ=-0.243 分度圆直径 0

11cos βn m z d =

=5.25cos 5.315?=58.20mm 022cos βn m z d =

=5

.25cos 5.338?=147.45mm 齿顶高 ()n n o a m f h σξ-+=11=()5.3243.025.00.1?++=5.23mm ()n n o a m f h σξ-+=22=()5.3243.073.00.1?+-=1.79mm 齿根高 ()n o f m c f h 11ξ-+==()5.325.025.00.1?-+=3.5mm ()n o f m c f h 22ξ-+==()5.373.025.00.1?++=6.93mm 齿全高 ()n n o m c f h σ-+=2=()5.3243.025.00.12?++?=8.73mm 齿顶圆直径 1112a a h d d +==58.20+2×5.23=68.66mm 2222a a h d d +==147.45+2×1.79=151.03mm 齿根圆直径 1112f f h d d -==58.20-2×3.5=51.20 mm 2222f f h d d -==147.45-2×6.93=133.59mm

当量齿数 03

11cos βz z n =

=5.25cos 15

3=20.41 0322cos βz z n =

=5

.25cos 38

3=51.7

3.确定二挡啮合传动齿轮副的齿数

齿轮的模数为3.5,螺旋角2β与常啮合齿轮的0β不同时,

8

17

22Z Z Z Z i =

(3.8) 21287Z Z i Z Z ==3815

834.3?=1.513

()2

87cos 2βZ Z m A n +=

(3.9)

此外,从抵消或减少中间轴上的轴向力出发,还必须满足下列关系式

())1(tan tan 8

7212

20Z Z Z Z Z ++=ββ (3.10) 由式(3.8)、(3.9)、(3.10)得2β=o 51,h Z =56,取7Z =34,8Z =22

81722Z Z Z Z i =

=22

1534

38??=3.91 对二挡齿轮进行角度变位:

理论中心距 ()2

87cos 2βZ Z m A n o +=

=()

15cos 222345.3+=101.45mm

端面啮合角 tan t α=

2

cos tan βα

=0.376 t α=20.72

啮合角 t ,cos cos ααA

A o t =

=

72.20cos 10245

.101=0.93 ,t α=21.98 变位系数之和 ()()α

ααξtan 2,87t t inv inv z z -+=

=0.37

07=ξ.31 06.08-=ξ 中心距变动系数 n

n m A A 0-=

λ=

16.05.345

.101102=- 齿顶降低系数 n σ=∑ξ-n λ=0.21

分度圆直径 277cos /βn m z d ==15cos /5.334?=123.188mm 288cos /βn m z d ==15cos /5.322?=79.71mm 齿顶高 ()n n o a m f h σξ-+=77=()5.321.031.00.1?-+=3.85mm ()n n o a m f h σξ-+=88=()5.321.006.00.1?-+=2.975mm 齿根高 ()n o f m c f h 77ξ-+==()5.331.025.00.1?-+=3.29mm ()n o f m c f h 88ξ-+==()5.306.025.00.1?-+=4.16mm 齿全高 ()n n o m c f h σ-+=2=()5.301.025.00.12?-+?=7.84mm 齿顶圆直径 7772a a h d d +==123.188+2×3.85=130.89mm 8882a a h d d +==79.71+2×2.975=85.66mm 齿根圆直径 7772f f h d d -==123.188-2×3.29=116.6mm 8882f f h d d -==79.71-2×4.16=71.39mm 当量齿数 2377cos βz z n =

=15cos 34

3=37.73

23

88cos βz z n =

=15

cos 22

3=24.42 4.确定三挡啮合传动齿轮副的齿数

三挡齿轮为斜齿轮,齿轮的模数为 3.5,螺旋角3β与常啮合齿轮的0β不同时,

2

1365Z Z

i Z Z = =0.967 (3.11)

()3

65cos 2βZ Z m A n +=

(3.12) 此外,从抵消或减少中间轴上的轴向力出发,还必须满足下列关系式

???? ?

?++=

652

12

301tan tan z z z z z ββ =1.41 (3.13)

由式(3.11)、(3.12)、(3.13)得3β=o 8.81,5Z =27,6Z =28

61523Z Z Z Z i =

=28

1527

38??=2.443 对三挡齿轮进行角度变为:

理论中心距 ()3

65cos 2βZ Z m A n o +=

=()

8.18cos 228275.3+=101.74mm 端面啮合角 tan t α=

3

cos tan βα

=0.38 t α=21.05

啮合角 t ,cos cos ααA

A o t =

=

05.21cos 10274

.101=0.937 ,t α=20.42 变位系数之和 ()()α

ααξtan 2,65t t inv inv z z -+=

=0

05-=ξ.11 11.06=ξ 中心距变动系数 n

n m A A 0-=

λ=

07.05.374

.1.1102=- 齿顶降低系数 n σ=∑ξ-n λ=-0.07

分度圆直径 355cos /βn m z d ==8.18cos /5.327?=99.89mm 366cos /βn m z d ==8.18cos /5.328?=103.59mm 齿顶高 ()n n o a m f h σξ-+=55=()5.307.011.00.1?+-=3.36mm ()n n o a m f h σξ-+=66=()5.307.011.00.1?++=4.13mm

齿根高 ()n o f m c f h 55ξ-+==()5.311.025.00.1?++=4.76mm ()n o f m c f h 66ξ-+==()5.311.025.00.1?-+=3.99mm 齿全高 ()n n o m c f h σ-+=2=()5.307.025.00.12?++?=8.12mm 齿顶圆直径 5552a a h d d +==99.89+2×3.36=104.61mm 6662a a h d d +==103.59+2×4.13=111.85mm 齿根圆直径 5552f f h d d -==99.89-2×4.76=90.37mm 6662f f h d d -==103.59-2×3.99=95.61mm 当量齿数 33

55cos βz z n =

=8.18cos 27

3=31.84 3366cos βz z n =

=8

.18cos 28

3=33.02

(3)四挡齿轮为斜齿轮,螺旋角4β与常啮合齿轮的0β不同时,

21443Z Z

i Z Z ==0.617 (3.14) ()4

43cos 2βZ Z m A n +=

(3.15) ???? ?

?++=

432

12

401tan tan z z z z z ββ=1.16 (3.16)

由(3.14)、(3.15)、(3.16)得4β=o 4.22,3Z =21,4Z =33,则:

41324Z Z Z Z i =

=33

152138??=1.612 对四挡齿轮进行角度变位: 理论中心距 ()4

43cos 2βZ Z m A n o +=

=()

4.22cos 23321

5.3+=102.27mm 端面啮合角 tan t α=

4

cos tan βα

=0.39 t α=21.30

啮合角 t ,cos cos ααA

A o t =

=

30.21cos 10227

.102=0.94 ,t α=20.1 变位系数之和 ()()α

ααξtan 2,43t t inv inv z z -+=

=0.08

03-=ξ.22 30.04=ξ 中心距变动系数 n

n m A A 0-=

λ=

07.05.324

.102102-=- 齿顶降低系数 n σ=∑ξ-n λ=0.15

分度圆直径 433cos /βn m z d ==4.22cos /5.321?=79.55mm 444cos /βn m z d ==4.22cos /5.333?=125mm 齿顶高 ()n n o a m f h σξ-+=33=()5.315.022.00.1?--=2.205mm ()n n o a m f h σξ-+=44=()5.315.03.00.1?-+=4.025mm 齿根高 ()n o f m c f h 33ξ-+==()5.322.025.00.1?++=5.145mm ()n o f m c f h 44ξ-+==()5.330.025.00.1?-+=3.325mm 齿全高 ()n n o m c f h σ-+=2=()5.315.025.00.12?-+?=7.35mm 齿顶圆直径 3332a a h d d +==79.55+2×2.205=83.96mm 4442a a h d d +==125+2×4.025=133.05mm 齿根圆直径 3332f f h d d -==79.55-2×5.145=69.26mm 4442f f h d d -==125-2×3.325=118.35mm 当量齿数 4333cos βz z n =

=4.22cos 213=26.58

43

44cos βz z n =

=4

.22cos 33

3=41.77

5、确定倒挡齿轮齿数

倒挡齿轮选用的模数与一挡相同,倒挡齿轮13Z 的齿数一般在21~23之间,初选12Z 后,可计算出中间轴与倒挡轴的中心距,A 。初选13Z =22,12Z =15,则:

()121321Z Z m A ,+=

=()221542

1

+??=74mm 为保证倒挡齿轮的啮合和不产生运动干涉,齿轮12和11的齿顶圆之间应保

持有0.5mm 以上的间隙,则齿轮11的齿顶圆直径11e D 应为

A D

D e e =++2

221112 121211--=e e D A D

=2×102-4×(15+2)-4 =132mm

()21111+=Z m D e

21111-=

m

D Z e =4135

-2=31.75mm

Z 11取31

为了保证齿轮11和13的齿顶圆之间应保持有0.5mm 以上的间隙,取11Z 为31

计算倒挡轴和第二轴的中心距A ''

()2

1113,,z z m A +=

=()

231224+?=106mm

计算倒挡传动比

1311121312z z z z z z i ?

?=

倒=22

1515322238????=5.4

对齿轮进行变为:

466.115

221213===

z z U U ·

=

454.122

311311==z z ,α=20°

查变位系数线图得: ∑n ξ=0

1.013

=n ξ 1.0-12=n ξ 1.011=n ξ

中心变动系数

n

n m A A 0

-=

λ=0 齿顶降低系数

n σ=∑ξ-n λ=0

一挡齿轮参数:

分度圆直径 n m z d 1111==124mm n m z d 1212==60mm n m z d 1313==88 mm

齿顶高 ()n n o a m f h σξ-+=1111=4.1mm ()n n o a m f h σξ-+=1212=3.6mm ()n n o a m f h σξ-+=1313=4.4mm 齿根高 ()n o f m c f h 1111ξ-+==4.1mm ()n o f m c f h 1212ξ-+==4.1mm ()n o f m c f h 1313ξ-+==4.1 齿全高 ()n n o m c f h σ-+=2=9.74mm 齿顶圆直径 1111112a a h d d +==132mm 1212122a a h d d +==68mm 1313132a a h d d +==96mm 齿根圆直径 1111112h d d f -==104.73mm 1212122f f h d d -==41.02mm 1313132f f h d d -==78.8 当量齿数 11n Z =31

12n Z =15 13n Z =22

本节首先根据所学汽车理论的知识计算出主减速器的传动比,然后计算出变速器的各挡传动比;接着确定齿轮的参数,如齿轮的模数、压力角、螺旋角、齿宽、齿顶高系数;介绍了齿轮变位系数的选择原则,并根据各挡传动比计算各+.挡齿轮的齿数,根据齿数重新计算各挡传动比,同时对各挡齿轮进行变位。

2.3变速器齿轮的校核 2.

3.1.齿轮材料的选择

速器齿轮的损坏形式主要有:轮齿这段、齿面疲劳剥落、移动换挡轮齿端部破坏以及齿面胶合。所以变速器齿轮必须进行校核:

1、满足工作条件的要求 不同的工作条件,对齿轮传动有不同的要求,故对齿轮材料亦有不同的要求。但是对于一般动力传输齿轮,要求其材料具有足够的强度和耐磨性,而且齿面硬,齿芯软。

2、合理选择材料配对

如对硬度≤350HBS 的软齿面齿轮,为使两轮寿命接近,小齿轮材料硬度应略高于大齿轮,且使两轮硬度差在30~50HBS 左右。为提高抗胶合性能,大、小轮应采用不同钢号材料。

3、考虑加工工艺及热处理工艺

变速器齿轮渗碳层深度推荐采用下列值:

5.3≤法m 时渗碳层深度0.8~1.2 5.3≥法m 时渗碳层深度0.9~1.3 5≥法m 时渗碳层深度1.0~1.3

表面硬度HRC58~63;心部硬度HRC33~48

对于氰化齿轮,氰化层深度不应小于0.2;表面硬度HRC48~53[12]。

对于大模数的重型汽车变速器齿轮,可采用25CrMnM O ,20CrNiM O ,12Cr3A 等钢材,这些低碳合金钢都需随后的渗碳、淬火处理,以提高表面硬度,细化材料晶面粒[13]。

2.3.2.各轴的转矩计算

发动机最大扭矩为196N .m ,齿轮传动效率99%,离合器传动效率99%,轴承传动效率98%。

Ι轴 1T =承离ηηmax e T =196×99%×98%=190.16N .m

中间轴 2T =121-i T 齿承ηη=176.576×0.98×0.99×38/15=467.38N .m Ⅱ轴 一挡109231-=i T T 齿承ηη=467.38×0.98×0.99×32/14=1036.45N .m

变速器设计课程设计说明书

变速器设计说明书 课程名称: 基于整车匹配的变速器总体及整车动力性计算院(部):机电学院 专业:车辆工程 班级:车辆101 学生姓名: 学号: 指导老师: 设计时限:2013.7.1-2013.7.21

目录 1概述 (1) 2基于整车性能匹配的变速器的设计 (2) 2.1变速器总体尺寸的确定及变速器机构形式的选择 (2) 2.2变速器档位及各档传动比等各项参数的总体设计 (2) 2.3在满足中心距,传动比,轴向力平衡的条件下确定个档位齿轮的参数 (3) 2.3.1确定第一档齿轮传动比 (3) 2.3.3确定常啮合齿轮传动比 (4) 2.3.4确定第二档 (5) 2.3.5确定第三档 (6) 2.3.6确定第四档 (6) 2.3.7确定第五档 (7) 2.3.8确定倒挡 (7) 3 对整车的动力性进行计算 (9) 3.1计算最高车速 (9) 3.2最大爬坡度 (9) 3.3最大加速度 (9) 4 采用面向对象的程序设计语言进行程序设计 (10) 4.1程序框图 (10) 4.2程序运行图 (11) 4.3发动机外特性曲线 (12) 4.4驱动力与行驶阻力图 (13) 4.5动力特性图 (14) 4.6加速度曲线图 (15) 4.7爬坡度图 (16) 4.8 加速度倒数曲线 (17) 5 总结 (18) 6 参考文献 (19)

1概述 本课程设计是在完成基础课和大部分专业课学习后的一个集中实践教学环节,是应用已学到的理论知识来解决实际工程问题的一次训练,并为毕业设计奠定基础。 本设计将会使用到《汽车构造》,《汽车理论》,《汽车设计》等参考文献,在整个过程中将要定位变速器的结构,齿轮的布置以及各项齿轮的参数,如齿数,轴距等参数。 第二个阶段就是用vb编程带入计算值绘制汽车行驶力与阻力平衡图,动力特性图,加速度倒数曲线。 1:培养具有汽车初步设计能力。通过思想,原则和方法体现出来的。 2:复习汽车构造,汽车理论,汽车设计以及相关课程进行必要的复习。 3:学习使用vb编程软件。 4:处理各齿轮相互之间轴向力平衡的问题。 5:要求熟练操作office等办公软件,处理排版,字体等内容。

二级减速器(机械课程设计)(含总结)

机械设计课程设计 : 班级: 学号: 指导教师: 成绩:

日期:2011 年6 月 目录 1. 设计目的 (2) 2. 设计方案 (3) 3. 电机选择 (5) 4. 装置运动动力参数计算 (7) 5.带传动设计 (9) 6.齿轮设计 (18) 7.轴类零件设计 (28) 8.轴承的寿命计算 (31) 9.键连接的校核 (32) 10.润滑及密封类型选择 (33) 11.减速器附件设计 (33) 12.心得体会 (34) 13.参考文献 (35)

1. 设计目的 机械设计课程是培养学生具有机械设计能力的技术基础课。课程设计则是机械设计课程的实践性教学环节,同时也是高等工科院校大多数专业学生第一次全面的设计能力训练,其目的是: (1)通过课程设计实践,树立正确的设计思想,增强创新意识,培养综合运用机械设计课程和其他先修课程的理论与实际知识去分析和解决机械设计问题的能力。 (2)学习机械设计的一般方法,掌握机械设计的一般规律。 (3)通过制定设计方案,合理选择传动机构和零件类型,正确计算零件工作能力,确定尺寸和掌握机械零件,以较全面的考虑制造工艺,使用和维护要求,之后进行结构设计,达到了解和掌握机械零件,机械传动装置或简单机械的设计过程和方法。 (4)学习进行机械设计基础技能的训练,例如:计算,绘图,查阅设计资料和手册,运用标准和规等。 2. 设计方案及要求 据所给题目:设计一带式输送机的传动装置(两级展开式圆柱直齿轮减速器)方案图如下:

1—输送带 2—电动机 3—V带传动 4—减速器 技术与条件说明: 1)传动装置的使用寿命预定为8年每年按350天计算,每天16小时计算; 2)工作情况:单向运输,载荷平稳,室工作,有粉尘,环境温度不超过35度; 3)电动机的电源为三相交流电,电压为380/220伏; 4)运动要求:输送带运动速度误差不超过%5;滚筒传动效率 0.96; 5)检修周期:半年小修,两年中修,四年大修。 设计要求 1)减速器装配图1; 2)零件图2(低速级齿轮,低速级轴);

二级同轴式圆柱齿轮减速器课程设计说明书

机械设计说明书 设计人:白涛 学号:2008071602 指导老师:杨恩霞

目录 设计任务书 (3) 传动方案的拟定及说明 (4) 电动机的选择 (4) 计算传动装置的运动和动力参数 (5) 传动件的设计计算 (5) 轴的设计计算 (12) 滚动轴承的选择及计算 (17) 键联接的选择及校核计算 (19) 连轴器的选择 (19) 减速器附件的选择 (20) 润滑与密封 (21) 设计小结 (21) 参考资料目录 (21)

机械设计课程设计任务书 题目:设计一用于螺旋输送机驱动装置的同轴式二级圆柱齿轮减速器 一.总体布置简图 1—电动机;2—联轴器;3—齿轮减速器;4—带式运输机;5—鼓轮;6—联轴器 二.工作情况: 载荷平稳、两班制工作运送、单向旋转

三. 原始数 螺旋轴转矩T (N ·m ):430 螺旋轴转速n (r/min ):120 螺旋输送机效率(%):0.92 使用年限(年):10 工作制度(小时/班):8 检修间隔(年):2 四. 设计内容 1. 电动机的选择与运动参数计算; 2. 斜齿轮传动设计计算 3. 轴的设计 4. 滚动轴承的选择 5. 键和连轴器的选择与校核; 6. 装配图、零件图的绘制 7. 设计计算说明书的编写 五. 设计任务 1. 减速器总装配图一张 2. 齿轮、轴零件图各一张 3. 设计说明书的编写 (一)传动方案的拟定及说明 由题目所知传动机构类型为:同轴式二级圆柱齿轮减速器。故只要对本传动机构进行分析论证。 本传动机构的特点是:减速器的轴向尺寸较大,中间轴较长,刚度较差,当两个大齿轮侵油深度较深时,高速轴齿轮的承载能力不能充分发挥。常用于输入轴和输出轴同轴线的场合。 (二)电动机的选择 1.电动机类型和结构的选择 因为本传动的工作状况是:载荷平稳、单向旋转。所以选用常用的封闭式Y (IP44)系列的电动机。 2.电动机容量的选择 1) 工作机所需功率P w =Tn /9550,其中n=120r/min ,T=430N ·m , 得P w =5.4kW 2) 电动机的输出功率 Pd =Pw/η η=42 34221 ηηηη=0.904

轻型客车四档中间轴式变速器设计

汽车设计课程设计计算说明书题目:轻型客车四档中间轴式变速器设计院别:xxxxxx 专业:xxxxx 班级:xxxxxxxx 姓名:xxxxxxxxxxx 学号:xxxxxxxxxxxxxxxxx 指导教师:xxxxxxxxxxxxxx 二零一五年一月十九日

一、变速器的功用与组成 ----------------------------------------------------------------- - 4 - 1.变速器的组成------------------------------------------------------------------------ - 4 - 二、变速器的设计要求与任务 ----------------------------------------------------------- - 5 - 1.变速器的设计要求 ----------------------------------------------------------------- - 5 - 2.变速器的设计任务 ----------------------------------------------------------------- - 5 - 三、变速器齿轮的设计 -------------------------------------------------------------------- - 6 - 1.确定一挡传动比 -------------------------------------------------------------------- - 6 - 2.各挡传动比的确定 ----------------------------------------------------------------- - 7 - 3.确定中心距--------------------------------------------------------------------------- - 8 - 4.初选齿轮参数------------------------------------------------------------------------ - 9 - 5.各挡齿数分配----------------------------------------------------------------------- - 11 - 四、变速器的设计计算 ------------------------------------------------------------------- - 16 - 1.轮齿强度的计算 ------------------------------------------------------------------- - 16 - 2中间轴的强度校核 ------------------------------------------------------------------- 20- 五、结论-------------------------------------------------------------------------------------- - 27 - 参考文献-------------------------------------------------------------------------------------- - 28 - 摘要 现代汽车除了装有性能优良的发动机外还应该有性能优异的传动系与之匹配才能将汽车的性能淋漓尽致的发挥出来,因此汽车变速器的设计显得尤为重要。变速器在发动机和汽车之间主要起着匹配作用,通过改变变速器的传动比,可以使发动机在最有利的工况范围内工作。 本次设计的是轻型客车变速器设计。它的布置方案采用四档中间轴式、同步器换挡,并对倒挡齿轮和拨叉进行合理布置,前进挡采用圆柱斜齿轮、倒档采用圆柱直齿轮。两轴式布置形式缩短了变速器轴向尺寸,在保证挡数不变的情况下,减少齿轮数目,从而使变速器结构更加紧凑。 首先利用已知参数确定变速器各挡传动比、中心矩,然后确定齿轮的模数、压力角、齿宽等参数。由中心矩确定箱体的长度、高度和中间轴及二轴的轴径,然后对中间轴和各挡齿轮进行校核,验证各部件选取的可靠性。最后绘制装配图及零件图。

二级变速器设计机械设计课程设计设计说明

二级变速器设计机械设计课程设计设计说明

机械设计课程设计 设计说明书 设计题目二级变速器设计

目录 一、设计任务书 (3) 二、传动方案拟定 (4) 三、电动机的选择 (4) 四、传动装置的运动和动力参数计算 (6) 五、高速级齿轮传动计算 (7) 六、低速级齿轮传动计算 (12) 七、齿轮传动参数表 (18) 八、轴的结构设计 (18) 九、轴的校核计算 (19) 十、滚动轴承的选择与计算 (23) 十一、键联接选择及校核 (24) 十二、联轴器的选择与校核 (25) 十三、减速器附件的选择 (26) 十四、润滑与密封 (28) 十五、设计小结 (29) 十六、参考资料 (29)

一.设计题目: 原始数据: 数据编号10 运送带工作拉力F/N 2500 运输带工作速度v/(m/s) 0.9 卷筒直径D/mm 300 1.工作条件:两班制,连续单向运转,载荷较平稳,空载启动,室内工作,有粉

尘; 2.使用期:使用期10年; 3.检修期:3年大修; 4.动力来源:电力,三相交流电,电压380/220V; 5.运输带速度允许误差:±5%; 6.制造条件及生产批量:中等规模机械厂制造,小批量生产。 设计要求 1.完成减速器装配图一张(A0或A1)。 2.绘制轴、齿轮零件图各一张。 3.编写设计计算说明书一份。 二. 电动机设计步骤 1. 传动装置总体设计方案 本组设计数据: 第十组数据:运送带工作拉力F/N 2500 。 运输带工作速度v/(m/s) 0.9 , 卷筒直径D/mm 300 。 1.外传动机构为联轴器传动。 2.减速器为二级同轴式圆柱齿轮减速器。 3.该方案的优缺点:瞬时传动比恒定、工作平稳、传动准确可靠,径向尺寸小,结构紧凑,重量轻,节约材料。轴向尺寸大,要求两级传动中心距相同。减速器横向尺寸较小,两大吃论浸油深度可以大致相同。但减速器轴向尺寸及重量较大;高级齿轮的承载能力不能充分利用;中间轴承润滑困难;中间轴较长,刚度差;

变速器课程设计

目录 一、机械式变速器的概述及其方案的确定 (2) 1、变速器的功用和要求 (2) 2、变速器传动方案及简图 (2) 3、倒档的布置方案 (3) 二、变速器主要参数的选择与主要零件的设计 (4) 1、变速器的主要参数选择 (4) 2、齿轮参数 (5) 3、各档传动比及其齿轮齿数的确定 (6) 4、轮的受力和强度校核 (8) 三、轴和轴承的设计与校核 (12) 1、轴的工艺要求 (12) 2、轴的设计 (12) 3、轴的校核 (13) 4、轴承的选择和校核 (17)

一 . 机械式变速器的概述及其方案的确定 (一)变速器的功用和要求 变速器的功用是根据汽车在不同的行驶条件下提出的要求,改变发动机的扭 矩和转速,使汽车具有适合的牵引力和速度,并同时保持发动机在最有利的工况 范围内工作。为保证汽车倒车以及使发动机和传动系能够分离,变速器具有倒档和空档。在有动力输出需要时,还应有功率输出装置。 对变速器的主要要求是: 1.应保证汽车具有高的动力性和经济性指标。在汽车整体设计时,根据汽 车载重量、发动机参数及汽车使用要求,选择合理的变速器档数及传动比,来满足这一要求。 2.工作可靠,操纵轻便。汽车在行驶过程中,变速器内不应有自动跳档、乱档、换档冲击等现象的发生。为减轻驾驶员的疲劳强度,提高行驶安全性,操 纵轻便的要求日益显得重要,这可通过采用同步器和预选气动换档或自动、半自动换档来实现。 3.重量轻、体积小。影响这一指标的主要参数是变速器的中心距。选用优质 钢材,采用合理的热处理,设计合适的齿形,提高齿轮精度以及选用圆锥滚柱轴承可以减小中心距。 4.传动效率高。为减小齿轮的啮合损失,应有直接档。提高零件的制造精 度和安装质量,采用适当的润滑油都可以提高传动效率。 噪声小。采用斜齿轮传动及选择合理的变位系数,提高制造精度和安装刚性可减 小齿轮的噪声。 (二)变速器传动方案及简图 下图 a 所示方案,除一,倒档用直齿滑动齿轮换档外,其余各档为常啮合 齿轮传动。下图b、c、d 所示方案的各前进档,均用常啮合齿轮传动;下图d 所示方案中的倒档和超速档安装在位于变速器后部的副箱体内,这样布置除可以提高轴的刚度,减少齿轮磨损和降低工作噪声外,还可以在不需要超速档的条件下,很容易形成一个只有四个前进档的变速器。

变速器换挡叉的工艺设计

课程设计说明书题目变速器换挡叉的工艺设计 目录 机械自造工艺及夹具课程设计任务书 (3) 序言 (4) 零件的分析 (4)

零件的工艺分析 (4) 确定生产类型 (4) 确定毛坯 (5) 工艺规程设计 (5) 选择定位基准 (5) 制定工艺路线 (5) 机械加工余量、工序尺寸及公差的确定 (6) 夹具设计 (16) 问题提出 (16) 夹具设计 (16) 参考文献 (17) 机械制造工艺及夹具课程设计任务书

设计题目:制定变速器换挡叉的加工工艺,设计钻φ15 及2-M6孔的钻床夹具 设计要求:中批量生产手动夹紧通用工艺装备 设计时间:2009.6 设计内容:1、熟悉零件图; 2、绘制零件图(一张); 3、绘制毛坯图(一张); 4、编写工艺过程卡片和工序卡片; 5、绘制夹具总装图; 6、绘制夹具零件图; 7、说明书 2009年06月 序言 机械制造装备设计课程设计是我们在学完了大学的全部基础课,专业基础课以及专业课后进行的。这是我们在进行毕业设计之前对所学的各科课程一次深入的综合性总复习,也是一次理论联系实际的训练。因此,他在我们的大学四年生活中占有重要的地位。 就我个人而言,我希望通过这次课程设计对自己未来将从事的工作进一步适应性的训练,希望自己在设计中能锻炼自己的分析问题、解决问题、查资料的能力,为以后的工作打下良好的基础。

由于能力有限,设计尚有很多不足之处,希望各位老师给予指导。 零件的分析 题目所给的零件是变速器换档叉。它位于汽车的变速机构上,主要起换档作用。一.零件的工艺分析 零件的材料为35钢,,为此以下是变速器换档叉需要加工的表面以及加工表面之间的位置要求: 1、孔Φ15.8以及与此孔相通的、M10螺纹孔。 2、上下U型口及其两端面 3、换档叉底面、下U型口两端面与孔Φ15.8中心线的垂直度误差为0.15mm。 由上面分析可知,可以粗加工Φ15的孔,然后以此作为基准采用专用夹具进行加工,并且保证位置精度要求。再根据各加工方法的经济精度及机床所能达到的位置精度,选择以孔为基准加工的面作为孔加工的精基准。最后,以精加工的孔为基准加工其他所有的面。此变速器换档叉零件没有复杂的加工曲面,所以根据上述技术要求采用常规的加工工艺均可保证。 二、确定生产类型 已知此换档叉零件的生产纲领为5000件/年,零件的质量是2.26Kg/个,查《机械制造工艺设计简明手册》第2页表1.1-2,可确定该换档叉生产类型为中批生产,所以初步确定工艺安排为:加工过程划分阶段;工序适当集中;加工设备以通用设备为主,大量采用专用工装。 三、确定毛坯 1、确定毛坯种类: 零件材料为35钢。考虑零件在机床运行过程中所受冲击不大,零件结构又比较简单,生产类型为中批生产,故采用模锻件作为毛坯。查《机械制造工艺设计简明手册》第41页表2.2-5,选用锻件尺寸公差等级为CT-12。 工艺规程设计 (一)选择定位基准: 1 粗基准的选择:以零件的圆柱面为主要的定位粗基准 2 精基准的选择:考虑要保证零件的加工精度和装夹准确方便,依据“基准重合”原 则和“基准统一”原则,以

二级减速器 课程设计 轴的设计

轴的设计 图1传动系统的总轮廓图 一、轴的材料选择及最小直径估算 根据工作条件,小齿轮的直径较小(),采用齿轮轴结构, 选用45钢,正火,硬度HB=。 按扭转强度法进行最小直径估算,即初算轴径,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 值由表26—3确定:=112 1、高速轴最小直径的确定 由,因高速轴最小直径处安装联 轴器,设有一个键槽。则,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机 轴径不得相差太大,否则难以选择合适的联轴器,取,为

电动机轴直径,由前以选电动机查表6-166:, ,综合考虑各因素,取。 2、中间轴最小直径的确定 ,因中间轴最小直径处安装滚动 轴承,取为标准值。 3、低速轴最小直径的确定 ,因低速轴最小直径处安装联轴 器,设有一键槽,则,参 见联轴器的选择,查表6-96,就近取联轴器孔径的标准值。 二、轴的结构设计 1、高速轴的结构设计 图2 (1)、各轴段的直径的确定 :最小直径,安装联轴器 :密封处轴段,根据联轴器轴向定位要求,以及密封圈的标准查表6-85(采用毡圈密封), :滚动轴承处轴段,,滚动轴承选取30208。 :过渡轴段,取 :滚动轴承处轴段

(2)、各轴段长度的确定 :由联轴器长度查表6-96得,,取 :由箱体结构、轴承端盖、装配关系确定 :由滚动轴承确定 :由装配关系及箱体结构等确定 :由滚动轴承、挡油盘及装配关系确定 :由小齿轮宽度确定,取 2、中间轴的结构设计 图3 (1)、各轴段的直径的确定 :最小直径,滚动轴承处轴段,,滚动轴承选30206 :低速级小齿轮轴段 :轴环,根据齿轮的轴向定位要求 :高速级大齿轮轴段 :滚动轴承处轴段 (2)、各轴段长度的确定 :由滚动轴承、装配关系确定 :由低速级小齿轮的毂孔宽度确定 :轴环宽度 :由高速级大齿轮的毂孔宽度确定

变速器设计说明书

电动汽车变速器课程 设计 说 明 书 学院名称:机电工程学院 专业班级:机械XXXX班 学号: 0806XXXXXX 学生姓名: XXXXXX 指导老师:陈敏

电动汽车变速器设计---课程设计任务书 电动汽车变速器是有效改善牵引电动机扭矩范围的重要传动部件,通过加设变速器,可实现高转速电机和减速器的有机结合,使电动机保持在高效率工作范围类,减轻电动机和动力电池组的负荷,实现电动汽车的轻量化设计。电动汽车机械变速机构类型有多种,如轮毂电机减速器,驱动桥变速差速器等。本课程设计的变速器要求是一单级变速器,并具有空挡和倒档机制。要求通过学习掌握电动汽车变速器的原理,结构和设计知识,用所给的基本设计参数确定变速器的传动比,并进行电动汽车变速器的结构设计,绘制主要的零部件图纸,写出内容详细的设计说明书。 设计时间: 2010年秋季学期的19-20周。 1.基本设计参数: 1.电动机额定转速:2500r/min 2.电动机恒转矩区转矩: 200 Nm 3.车辆主减速比:1.0 4.电动机额定转速时车辆速度:60 km/h 5.车轮规格:205/55 R16 2.设计计算要求: 1.根据基本设计参数进行电动汽车变速器主要参数的选择与计算; 2.进行电动汽车变速器的结构设计与计算。 3.完成内容: 1.装配图1张; 2.零件图2张; 3.设计计算说明书1份。 1) 封面; 2) 课程设计任务书; 3) 目录; 4) 中英文摘要; 5) 正文; 6 ) 参考文献。 4.主要参考文献: [1]陈家瑞.汽车构造(第三版下)[M].北京:机械工业出版社,2009,6. [2]刘惟信.汽车设计[M].北京:清华大学出版社,2001,7. [3]康龙云.新能源汽车与电力电子技术[M].北京:机械工业出版社,2010,10.

西华大学 二级减速器课程设计说明书

课程设计说明书 课程名称:机械设计课程设计课程代码: 题目:二级斜齿圆柱齿轮减速器学生姓名:张伟荣 学号: 3120130316205 年级/专业/班: 13级机电2班 学院(直属系) :机械工程学院 指导教师:杜强

机械设计课程设计任务书 学院名称:机械工程学院专业:机械电子工程年级:2013级 学生姓名: 张伟荣学号: 3120130106205 指导教师: 杜强 一、设计题目带式运输机的减速传动装置设计 二、主要内容 ⑴决定传动装置的总体设计方案; ⑵选择电动机,计算传动装置的运动和动力参数; ⑶传动零件以及轴的设计计算;轴承、联接件、润滑密封和联轴器的选择及校验计算; ⑷机体结构及其附件的设计; ⑸绘制装配图及零件图;编写计算说明书并进行设计答辩。 三、具体要求 ⑴原始数据:运输带线速度v = 1.76 (m/s) 运输带牵引力F = 2700 (N) 驱动滚筒直径D = 470 (mm) ⑵工作条件: ①使用期5年,双班制工作,单向传动; ②载荷有轻微振动; ③运送煤、盐、砂、矿石等松散物品。 四、完成后应上交的材料 ⑴机械设计课程设计计算说明书; ⑵减速器装配图一张; ⑶轴类零件图一张; ⑷齿轮零件图一张。

五、推荐参考资料 ⑴西华大学机械工程与自动化学院机械基础教学部编.机械设计课程设计指导 书,2006 ⑵秦小屿.机械设计基础(第二版).成都:西南交大出版社,2012 指导教师杜强签名日期 2015 年 6 月 25日 系主任审核日期 2015 年 6 月 25 日

目录 一.传动方案的拟定……………………………………………………………………… 二.电动机的选择及传动装置的运动和动力参数计算………………………………… 三.传动零件的设计计算…………………………………………………………… 四.轴的结构设计及强度计算…………………………………………………………… 五.滚动轴承的选择与寿命计算…………………………………………………………… 六.键的强度计算…………………………………………………………… 七.联轴器的选择…………………………………………………………… 八.减速器机体结构设计及附件设计……………………………………………………………总结………………………………………………………………………………………… 参考文献……………………………………………………………………………………

汽车变速器设计——课程设计

汽车变速器设计——课程设计

汽车设计课程设计 题目:汽车变速器设计 设计题目、要求及任务是: 金杯牌SY6474轻型客车变速器设计(4+1)档 设计参数有: =173 N·m ; 发动机: M emax 车速:V =110 Km/h ; max 额定转速:n=4000 r/min ; =0.35 m ; 车轮滚动半径:R 汽车总质量:2470 Kg ; 爬坡度:32﹪; =5.375 ; 主减速比:i 驱动轮上法向反作用力:F =1181 Kg ; Z 设计要求:采用中间轴式,全同步器换档,要进行齿轮参数设计计算,对一档齿轮的接触强度、弯曲应力进行校核计算。

目录 目录 (3) 第一章变速器的功用和要求 (4) 第二章变速器的方案论证 (5) 第一节变速器类型选择及传动方案设计 (5) 一、结构工艺性 (5) 二、变速器的径向尺寸 (5) 三、变速器齿轮的寿命 (5) 四、变速器的传动效率 (5) 第二节变速器传动机构的分析 (5) 一、换档结构形式的选择 (5) 二、倒档的形式及布置方案 (6) 第三节变速器操纵机构方案分析 (7) 一、变速器操纵机构的功用 (7) 二、设计变速器操纵机构时,应该满足以下 基本要求 (7) 三、换档位置 (8) 第三章变速器设计计算 (9) 第一节变速器主要参数的选择 (9) 一、轴的直径 (9) 二. 传动比的选择 (9)

三、中心矩A (10) 四、齿轮参数选择 (10) 第二节齿轮的强度校核 (15) 一、齿轮的损坏形式 (15) 二、齿轮强度校核 (16) 参考文献 (19) 第一章变速器的功用和要求 现代汽车上广泛采用活塞式内燃机作为动力源,其转矩和转速变化范围较小,而复杂的使用条件则要求汽车的牵引力和车速能在相当大的范围内变化。为了解决这一矛盾,在传动系中设置了变速器。根据汽车在不同的行驶条件下提出的要求,改变发动机的扭矩和转速,使汽车具有合适的牵引力和速度,并同时保持发动机在最有利的工况范围内工作。此外,为保证汽车倒车及使发动机和传动系能够分离,变速器应具有倒档和空档。一般的,变速器设有倒档和空档,以使在不改变发动机旋转方向的情况下,汽车能够倒退行驶和空档滑行、或停车时发动机和传动系能保持分离。在有动力输出需要时,还应有功率输出装置。 为保证变速器具有良好的工作性能,达到使用要求,所以变速器的设计必须要满足以下的使用条件: (一)应该合理的选择变速器的档数和传动比,使汽车具有良好的动力性和经济性; (二)工作可靠,操纵轻便。汽车行驶过程中,变速器内不应有跳档、乱档、换档等冲击等现象发生。此外,为减轻驾驶员劳动强度,提高行驶安全性操纵轻便性的要求日益突出。——可通过同步器或气动换档,自动、半自动换档来实现; (三)传动效力高; (四)结构紧凑,尽量做到质量轻、体积小、制造成本底。 (五)噪音小、为了减少齿轮的啮合损失,应设有直接档,此外,还有合理的齿轮型式以及结构参数,提高其制造和安装精度; 它的功用: (一)改变传动比,扩大驱动轮转矩和转速的变化范围,以适应经常变化的行驶条件,如起步、加速、上坡等,同时使发动机在有利的工况下工作; (二)在发动机旋转方向不变的前提下,使汽车能倒退行驶;

课程设计货车变速器zxx

课程设计-货车变速器-zxx

————————————————————————————————作者:————————————————————————————————日期:

设计说明书 题目:货车机械变速器 学号: 姓名:

变速器的设计计算 1.1 变速器的选择 变速器的种类很多,按前进档位的不同可分为三、四、五和多档变速器,根据轴的型式的不同,又有固定轴式和旋转轴式(常配合行星齿轮传动)两类。固定轴式又有两轴式、中间轴式、双中间轴式和多中间轴式变速器。固定轴式应用广泛,其中两轴式变速器多用于发动机前置前轮驱动的汽车上,中间轴式变速器多用于发动机前置后轮驱动的汽车上。旋转轴式主要用于液力机械式变速器。 2-1-1 中间轴式变速器 从结构外形看中间轴式变速器有三根轴:一轴和二轴在一条中心线上。将它们连接即为直接档,此时,齿轮、轴承不承受载荷而只传递转矩,故而传动效率高,而且摩损小,寿命长,噪音也较小。而在其他档位上,经过两对连续齿轮传动,传动效率稍低。由于本设计中的汽车为重型货车,且档位多,传动比大,故本设计采用这种型式。 2-1-2 变速器齿轮型式 变速器中的齿轮一般只有两种:直尺圆柱齿轮和斜齿圆柱齿轮。直齿圆柱齿轮多用为滑动式,故使用在一档和倒档的较多,它们的结构简单,制造容易。但是在换档时齿轮端部产生冲击,噪声很大,从而加剧端部磨损,使齿轮的寿命降低,而且由于噪声大,容易造成驾驶员的疲劳。斜齿圆柱齿轮传动平稳,噪声很小,磨损小,寿命长。唯一的缺点是工作时有轴向力的产生,而且结构复杂,这个缺点可以在进行轴的载荷计算时予以平衡。 通过比较两种型式齿轮的优缺点,本设计中,倒档采用直齿圆柱齿轮,这是考虑到倒档的使用率较低,综合衡量经济性和便利性而定的,其余各档全部采用斜齿圆柱齿轮传动,这样充分发挥其传动平稳,噪声小等优点。 2-1-3变速器的换档结构 变速器的换档机构形式有以下几种:直齿滑动齿轮、啮合套和同步器换档。 (1) 直齿滑动齿轮换档该结构形式制造容易,结构简单。但缺点较多:汽车行驶时各档齿轮有不同的角速度,因此用轴向滑动直齿齿轮的方式换档,会在轮齿端面产生冲击,并伴随有噪声。这使齿轮端部磨损加剧并过早损坏,造成汽车

二级减速器机械课程设计含总结

机械设计课程设计 姓名: 班级: 学号: 指导教师: 成绩: 日期:2011 年6 月

目录 1. 设计目的 (2) 2. 设计方案 (3) 3. 电机选择 (5) 4. 装置运动动力参数计算 (7) 5.带传动设计 (9) 6.齿轮设计 (18) 7.轴类零件设计 (28) 8.轴承的寿命计算 (31) 9.键连接的校核 (32) 10.润滑及密封类型选择 (33) 11.减速器附件设计 (33) 12.心得体会 (34) 13.参考文献 (35)

1. 设计目的 机械设计课程是培养学生具有机械设计能力的技术基础课。课程设计则是机械设计课程的实践性教学环节,同时也是高等工科院校大多数专业学生第一次全面的设计能力训练,其目的是: (1)通过课程设计实践,树立正确的设计思想,增强创新意识,培养综合运用机械设计课程和其他先修课程的理论与实际知识去分析和解决机械设计问题的能力。 (2)学习机械设计的一般方法,掌握机械设计的一般规律。 (3)通过制定设计方案,合理选择传动机构和零件类型,正确计算零件工作能力,确定尺寸和掌握机械零件,以较全面的考虑制造工艺,使用和维护要求,之后进行结构设计,达到了解和掌握机械零件,机械传动装置或简单机械的设计过程和方法。 (4)学习进行机械设计基础技能的训练,例如:计算,绘图,查阅设计资料和手册,运用标准和规范等。 2. 设计方案及要求 据所给题目:设计一带式输送机的传动装置(两级展开式圆柱直齿轮减速器)方案图如下:

技术与条件说明: 1)传动装置的使用寿命预定为 8年每年按350天计算, 每天16小时计算; 2)工作情况:单向运输,载荷平稳,室内工作,有粉尘,环境温度不超过35度; 3)电动机的电源为三相交流电,电压为380/220伏; 4)运动要求:输送带运动速度误差不超过%5;滚筒传动效率0.96; 5)检修周期:半年小修,两年中修,四年大修。 设计要求 1)减速器装配图1张; 2)零件图2张(低速级齿轮,低速级轴); 3)设计计算说明书一份,按指导老师的要求书写 1—输送带 2—电动机 3—V 带传动 4—减速器 5—联轴器

二级减速器课程设计完整版

目录 1. 设计任务............................................... 2. 传动系统方案的拟定..................................... 3. 电动机的选择........................................... 3.1选择电动机的结构和类型.................................... 3.2传动比的分配............................................. 3.3传动系统的运动和动力参数计算............................... 4. 减速器齿轮传动的设计计算............................... 4.1高速级斜齿圆柱齿轮传动的设计计算............................ 4.2低速级直齿圆柱齿轮传动的设计计算............................ 5. 减速器轴及轴承装置的设计............................... 5.1轴的设计................................................ 5.2键的选择与校核........................................... 5.3轴承的的选择与寿命校核.................................... 6. 箱体的设计............................................. 6.1箱体附件................................................ 6.2铸件减速器机体结构尺寸计算表............................... 7. 润滑和密封............................................. 7.1润滑方式选择............................................. 7.2密封方式选择............................................. 参考资料目录..............................................

变速器课程设计说明书

课程设计说明书 题目:机械变速器 传动机构设计 学生姓名:潘东 学号: 20080711 系部名称:汽车与交通工程学院 专业班级:车辆工程B08-1班 指导教师:李涵武王永梅 职称:教授讲师 二○一一年十二月二十六日

目录 第一章基本数据选择 (01) 1.1设计初始数据 (01) 1.1.1变速器各挡传动比的确定 (02) 1.1.2中心距 (03) 1.2齿轮参数 (04) 1.3各挡齿轮齿数的分配 (05) 第二章齿轮校核 (17) 2.1齿轮材料的选择原则 (17) 2.2计算各轴的转矩 (18) 2.3齿轮强度计算 (18) 2.3.1齿轮弯曲强度计算 (18) 2.3.2齿轮接触应力 (22) 2.4计算各挡齿轮的受力 (23) 第三章轴及轴上支撑件的校核 (24) 3.2轴的强度计算 (26) 3.2.1初选轴的直径 (29) 3.2.2轴的强度校核 (30) 3.3轴承及轴承校核 (32) 3.3.1一轴轴承校核 (36) 3.3.2中间轴轴承校核 (38)

第一章 数据计算 1.1设计初始数据:(方案二) 学号:24 最高车速:max a U =94+2×(24-25)=92Km/h 发动机功率:max e P =124+(24-25)=123KW 转矩:max e T =560+5×(24-25)=555Nm 总质量:m a =9410+50×(24-25)=9360Kg 转矩转速:n T=1400+50×(24-20)=1200r/min 车轮:9.00-20 r ≈R=(9×2+20)/2=19×25.4=482.6mm 1.1.1 变速器各挡传动比的确定 初选传动比: 设五挡为直接挡,则5g i =1 max a U = 0.377 max i i r n g p 式中:max a U —最高车速 p n —发动机最大功率转速 r —车轮半径 m a x g i —变速器最大传动比 0i —主减速器传动比 p n / T n =1.4~2.0 即p n =(1.4~2.0)×1200=1680~2400r/min max e T =9549× p e n P max α (式中α=1.1~1.3,取α=1.2) 所以,p n =9549×(1.1~1.3) ×123/555=2327.89~2751.14r/min 取p n =2500r/min

最新二级减速器课程设计书

目录 1 2 3 一课程设计书 2 4 5 6 二设计要求2 7 8 三设计步骤2 9 10 1. 传动装置总体设计方案 3 11 2. 电动机的选择 4 12 3. 确定传动装置的总传动比和分配传动比 5 13 4. 计算传动装置的运动和动力参数 5 14 5. 设计V带和带轮 6 15 6. 齿轮的设计 8 16 7. 滚动轴承和传动轴的设计 19 17 8. 键联接设计 26 18 9. 箱体结构的设计 27 19 10.润滑密封设计 30 1

20 11.联轴器设计 30 21 四设计小结31 22 23 五参考资料32 24 25 26 27 28 29 一. 课程设计书 30 设计课题: 31 设计一用于带式运输机上的两级展开式圆柱齿轮减速器.运输机连续单向运转,载荷变化不大,空载起动,卷筒效率为0.96(包括其支承轴承效率的损失),减速 32 33 器小批量生产,使用期限8年(300天/年),两班制工作,运输容许速度误差为5%,车间有三相交流,电压380/220V 34 35 表一: 2

36 二. 设计要求 37 1.减速器装配图一张(A1)。 38 2.CAD绘制轴、齿轮零件图各一张(A3)。39 3.设计说明书一份。 40 三. 设计步骤 41 42 1. 传动装置总体设计方案 2. 电动机的选择 43 44 3. 确定传动装置的总传动比和分配传动比45 4. 计算传动装置的运动和动力参数 46 5. 设计V带和带轮 47 6. 齿轮的设计 3

48 7. 滚动轴承和传动轴的设计 49 8. 键联接设计 50 9. 箱体结构设计 51 10. 润滑密封设计 52 11. 联轴器设计 53 54 1.传动装置总体设计方案: 55 56 1. 组成:传动装置由电机、减速器、工作机组成。 57 2. 特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均匀, 58 要求轴有较大的刚度。 59 3. 确定传动方案:考虑到电机转速高,传动功率大,将V带设置在高速 级。 60 61 其传动方案如下: 4

二级齿轮减速器的完整课程设计

机械设计减速器设计说明书 系别: 专业: 学生姓名: 学号: 指导教师: 职称:

目录 第一部分设计任务书 (4) 第二部分传动装置总体设计方案 (5) 第三部分电动机的选择 (5) 3.1 电动机的选择 (5) 3.2 确定传动装置的总传动比和分配传动比 (6) 第四部分计算传动装置的运动和动力参数 (7) 第五部分齿轮传动的设计 (8) 5.1 高速级齿轮传动的设计计算 (8) 5.2 低速级齿轮传动的设计计算 (15) 第六部分传动轴和传动轴承及联轴器的设计 (23) 6.1 输入轴的设计 (23) 6.2 中间轴的设计 (27) 6.3 输出轴的设计 (33) 第七部分键联接的选择及校核计算 (40) 7.1 输入轴键选择与校核 (40) 7.2 中间轴键选择与校核 (40) 7.3 输出轴键选择与校核 (40) 第八部分轴承的选择及校核计算 (41) 8.1 输入轴的轴承计算与校核 (41) 8.2 中间轴的轴承计算与校核 (42)

8.3 输出轴的轴承计算与校核 (42) 第九部分联轴器的选择 (43) 9.1 输入轴处联轴器 (43) 9.2 输出轴处联轴器 (44) 第十部分减速器的润滑和密封 (44) 10.1 减速器的润滑 (44) 10.2 减速器的密封 (45) 第十一部分减速器附件及箱体主要结构尺寸 (46) 设计小结 (48) 参考文献 (49)

第一部分设计任务书 一、初始数据 设计展开式二级斜齿圆柱齿轮减速器,初始数据F = 2700N,V = 1.95m/s,D = 380mm,设计年限(寿命):5年,每天工作班制(8小时/班):1班制,每年工作天数:300天,三相交流电源,电压380/220V。 二. 设计步骤 1. 传动装置总体设计方案 2. 电动机的选择 3. 确定传动装置的总传动比和分配传动比 4. 计算传动装置的运动和动力参数 5. 齿轮的设计 6. 滚动轴承和传动轴的设计 7. 键联接设计 8. 箱体结构设计 9. 润滑密封设计 10. 联轴器设计

二级减速器课程设计说明书

1 设计任务书 1.1设计数据及要求 表1-1设计数据 序号 F(N) D(mm) V(m/s) 年产量 工作环境 载荷特性 最短工 作年限 传动 方案 7 1920 265 0.82 大批 车间 平稳冲击 十年二班 如图1-1 1.2传动装置简图 图1-1 传动方案简图 1.3设计需完成的工作量 (1) 减速器装配图1张(A1) (2) 零件工作图1张(减速器箱盖、减速器箱座-A2);2张(输出轴-A3;输出轴齿轮-A3) (3) 设计说明书1份(A4纸) 2 传动方案的分析 一个好的传动方案,除了首先应满足机器的功能要求外,还应当工作可靠、结构简单、尺寸紧凑、传动效率高、成本低廉以及使用维护方便。要完全满足这些要求是困难的。在拟定传动方案和对多种方案进行比较时,应根据机器的具体情况综合考虑,选择能保证主要要求的较合理的

传动方案。 现以《课程设计》P3的图2-1所示带式输送机的四种传动方案为例进行分析。方案a 制造成本低,但宽度尺寸大,带的寿命短,而且不宜在恶劣环境中工 作。方案b 结构紧凑,环境适应性好,但传动效率低,不适于连续长期工作,且制造成本高。方案c 工作可靠、传动效率高、维护方便、环境适应性好,但宽度较大。方案d 具有方案c 的优点,而且尺寸较小,但制造成本较高。 上诉四种方案各有特点,应当根据带式输送机具体工作条件和要求选定。若该设备是在一般环境中连续工作,对结构尺寸也无特别要求,则方案c a 、均为可选方案。对于方案c 若将电动机布置在减速器另一侧,其宽度尺寸得以缩小。故选c 方案,并将其电动机布置在减速器另一侧。 3 电动机的选择 3.1电动机类型和结构型式 工业上一般用三相交流电动机,无特殊要求一般选用三相交流异步电动机。最常用的电动机是Y 系列笼型三相异步交流电动机。其效率高、工作可靠、结构简单、维护方便、价格低,适用于不易燃、不易爆,无腐蚀性气体和无特殊要求的场合。此处根据用途选用Y 系列三相异步电动机 3.2选择电动机容量 3.2.1工作机所需功率w P 卷筒3轴所需功率: 1000Fv P W = =1000 82 .01920?=574.1 kw 卷筒轴转速: min /13.5914 .326582 .0100060100060r D v n w =???=?= π 3.2.2电动机的输出功率d P 考虑传动装置的功率耗损,电动机输出功率为 η w d P P = 传动装置的总效率:

相关主题
文本预览
相关文档 最新文档