当前位置:文档之家› 动态最优化第6讲 变分法约束问题

动态最优化第6讲 变分法约束问题

等式约束最小二乘在“北斗”姿态测量中的应用

doi :10.3969/j.issn.1001-893x.2016.07.008引用格式:汪镱林,田增山.等式约束最小二乘在 北斗 姿态测量中的应用[J].电讯技术,2016,56(7):760-764.[WANG Yilin,TIAN Zengshan. Application of equality constrained least squares in BDS attitude determination[J].Telecommunication Engineering,2016,56(7):760-764.] 等式约束最小二乘在 北斗 姿态测量中的应用 * 汪镱林**,田增山 (重庆邮电大学移动通信技术重庆市重点实验室,重庆400065)摘 要:针对传统无约束的姿态测量中整周模糊度求解成功率不高的问题,提出利用等式约束快速求解整周模糊度的算法,并将其应用于 北斗 姿态测量三该算法充分利用基线的先验信息,在整周模糊度的求解过程中加入等式约束,同时利用拉格朗日乘子法求解约束整数最小二乘问题,提高了姿态测量中整周模糊度和姿态角的求解成功率三采用静态测试和动态测试验证该算法,结果表明在 北斗 单历元条件下,整周模糊度及姿态角的求解成功率提升30%左右三 关键词: 北斗 卫星导航定位系统;姿态测量;整周模糊度;等式约束;拉格朗日乘子 中图分类号:TN965;P228 文献标志码:A 文章编号:1001-893X (2016)07-0760-05 Application of Equality Constrained Least Squares in BDS Attitude Determination WANG Yilin,TIAN Zengshan (Chongqing Key Laboratory of Mobile Communications Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)Abstract :For the low success rate problem of ambiguity resolution in traditional unconstrained attitude de-termination,this paper proposes an algorithm that uses quadratic equality constraint to fast determine inte-ger ambiguity,and applies it to Beidou Navigation Satellite System(BDS)attitude determination.This algo-rithm makes full use of a priori information baseline,adds equality constraints in the process of solving the ambiguity,and takes advantage of the Lagrange multiplier method for solving constrained integer least squares problems,thus improving the success rates of integer ambiguity resolution and attitude angle resolu-tion.Static tests and dynamic tests validate that the algorithm can dramatically improve the success rates of integer ambiguity resolution and BDS attitude determination by about 30%under the condition of the BDS single epoch.Key words :Beidou navigation satellite system;attitude determination;integer ambiguity;equality constrain-ed;Lagrange multiplier 1 引 言 在 北斗 卫星导航定位系统中,高精度的载波 相位技术可以应用在高精度定位和姿态测量中,利 用载波相位进行高精度姿态测量的核心问题是整周模糊度的求解,尤其是在单历元的实时应用方面三整周模糊度求解方法有很多种,目前应用最为广泛的是最小二乘模糊度去相关平差(Least Squares Ambiguity Decorrelation Adjustment,LAMBDA )算四067四第56卷第7期2016年7月电讯技术Telecommunication Engineering Vol.56,No.7July,2016***收稿日期:2015-12-03;修回日期:2016-03-03 Received date :2015-12-03;Revised date :2016-03-03基金项目:重庆市基础与前沿研究计划项目(cstc2013jcyjA40032)Foundation Item :The Fundamental and Frontier Research Project of Chongqing (cstc2013jcyjA40032)通信作者:vixylin@https://www.doczj.com/doc/3910585765.html, Corresponding author :vixylin@https://www.doczj.com/doc/3910585765.html,

约束优化设计

行域 φ 内,选择一个初始点 X 然后确定一个可行 得一个目标函数有所改善的可行的新点 X 即完成了 第四章 约束优化设计 ● 概述 ● 约束坐标轮换法 ● 随机方向法 ● 罚函数法 概述 结构优化设计的问题,大多属于约束优化设计问题,其数学模型为: s .t . min f (x ) g u (x ) ≤ 0 h v (x ) = 0 x ∈ R n u = 1, 2,..., m v = 1, 2,..., p < n 根据求解方式的不同,可分为直接解法和间接解法两类。 直接解法是在仅满足不等式约束的可行设计区域内直接求出问题的约束最优解。属于 这类方法的有:随机实验法、随机方向搜索法、复合形法、可行方向法等。其基本思路: 在由 m 个不等式约束条件 gu(x )≤0 所确定的可 0 搜索方向 S ,且以适当的步长沿 S 方向进行搜索,取 1 一次迭代。以新点为起始点重复上述搜索过程,每次 均按如下的基本迭代格式进行计算: X k+1=X k +α k S k (k=0,1,2,..) 逐步趋向最优解, 直到满足终止准则才停止迭代。 直接解法的原理简单,方法实用,其特点是: 1) 由于整个过程在可行域内进行,因此,迭代计算 不论何时终止,都可以获得比初始点好的设计点。 2) 若目标函数为凸函数,可行域为凸集,则可获得全域最优解,否则,可能存在多个局 部最优解,当选择的初始点不同,而搜索到不同的局部最优解。 3) 要求可行域有界的非空集

φ(X,μ1,μ2)=F(X)+∑μ 1 G??g j X)??+∑μ2H??h k(X)?? a)可行域是凸集;b)可行域是非凸 集 间接解法 间接解法是将约束优化问题转化为一系列无约束优化问题来解的一种方法。由于间接解法可以选用已研究比较成熟的无约束优化方法,并且容易处理同时具有不等式约束和等式约束的问题。因而在机械优化设计得到广泛的应用。 间接解法中具有代表性的是惩罚函数法。将约束函数进行特殊的加权处理后,和目标函数 结合起来,构成一个新的目标函数,即将原约束优化问题转化为一个或一系列的无约束优 化问题。 m l j=1k=1 新目标函数 然后对新目标函数进行无约束极小化计算。 加权因子 间接法是结构优化设计中广泛使用的有效方法,其特点: 1)由于无约束优化方法的研究日趋成熟,为间接法提供可靠基础。这类算法的计算效率和数值计算的稳定性大有提高; 2)可以有效处理具有等式约束的约束优化问题; 3)目前存在的主要问题,选取加权因子较为困难,选取不当,不仅影响收敛速度和计算精度,甚至导致计算失败。

无约束优化方法程序

无约束优化方法---鲍威尔方法 本实验用鲍威尔方法求函数f(x)=(x1-5)2+(x2-6)2 的最优解。 一、简述鲍威尔法的基本原理 从任选的初始点x⑴o出发,先按坐标轮换法的搜索方向依次沿e1.e2.e3进行一维搜索,得各自方向的一维极小点x⑴ x⑵ x⑶.连接初始点xo⑴和最末一个一维极小点x3⑴,产生一个新的矢量 S1=x3⑴-xo⑴ 再沿此方向作一维搜索,得该方向上的一维极小点x⑴. 从xo⑴出发知道获得x⑴点的搜索过程称为一环。S1是该环中产生的一个新方向,称为新生方向。 接着,以第一环迭代的终点x⑴作为第二环迭代的起点xo⑵,即 Xo⑵←x⑴ 弃去第一环方向组中的第一个方向e1,将第一环新生方向S1补在最后,构成第二环的基本搜索方向组e2,e3,S1,依次沿这些方向求得一维极小点x1⑵,x2⑵,x3⑵.连接 Xo⑵与x3⑵,又得第二环的新生方向 S2=x3⑵-xo⑵ 沿S2作一维搜索所得的极小点x⑵即为第二环的最终迭代点 二、鲍威尔法的程序 #include "stdafx.h" /* 文件包含*/ #include

#include #include #define MAXN 10 #define sqr(x) ((x)*(x)) double xkk[MAXN],xk[MAXN],sk[MAXN]; int N,type,nt,et; //N--变量个数,type=0,1,2,3 nt,et--不等式、等式约束个数 double rk; double funt(double *x,double *g,double *h) { g[0]=x[0]; g[1]=x[1]-1; g[2]=11-x[0]-x[1]; return sqr(x[0]-8)+sqr(x[1]-8); } double F(double *x) { double f1,f2,ff,fx,g[MAXN],h[MAXN]; int i; fx=funt(x,g,h); f1=f2=0.0; if(type==0 || type==2)for(i=0; i1.0e-15)?1.0/g[i]:1.0e15;

matlab 最小二乘最优问题

最小二乘最优问题(转) 默认分类2009-05-21 14:56:33 阅读62 评论1 字号:大中小 1.约束线性最小二乘 有约束线性最小二乘的标准形式为 sub.to 其中:C、A、Aeq 为矩阵;d、b、beq、lb、ub、x 是向量。 在MA TLAB5.x 中,约束线性最小二乘用函数conls 求解。 函数lsqlin 格式x = lsqlin(C,d,A,b) %求在约束条件下,方程Cx = d 的最小二乘解x。 x = lsqlin(C,d,A,b,Aeq,beq) %Aeq、beq 满足等式约束,若没有不等式约束,则设A=[ ],b=[ ]。 x = lsqlin(C,d,A,b,Aeq,beq,lb,ub) %lb、ub 满足,若没有等式约束,则Aeq=[ ],beq=[ ]。 x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0) % x0 为初始解向量,若x 没有界,则lb=[ ],ub=[ ]。 x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,options) % options 为指定优化参 数 [x,resnorm] = lsqlin(...) % resnorm=norm(C*x-d)^2,即2-范数。 [x,resnorm,residual] = lsqlin(...) %residual=C*x-d,即残差。 [x,resnorm,residual,exitflag] = lsqlin(...) %exitflag 为终止迭代的条 件 [x,resnorm,residual,exitflag,output] = lsqlin(...) % output 表示输出

常用无约束最优化方法(一)

项目三 常用无约束最优化方法(一) [实验目的] 编写最速下降法、Newton 法(修正Newton 法)的程序。 [实验学时] 2学时 [实验准备] 1.掌握最速下降法的思想及迭代步骤。 2.掌握Newton 法的思想及迭代步骤; 3.掌握修正Newton 法的思想及迭代步骤。 [实验内容及步骤] 编程解决以下问题:【选作一个】 1.用最速下降法求 22120min ()25[22]0.01T f X x x X ε=+==,,,. 2.用Newton 法求 22121212min ()60104f X x x x x x x =--++-, 初始点 0[00]0.01T X ε==,,. 最速下降法 Matlab 程序: clc;clear; syms x1 x2; X=[x1,x2]; fx=X(1)^2+X(2)^2-4*X(1)-6*X(2)+17; fxd1=[diff(fx,x1) diff(fx,x2)]; x=[2 3]; g=0; e=0.0005; a=1; fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); step=0; while g>e step=step+1; dk=-fan; %点x(k)处的搜索步长

ak=((2*x(1)-4)*dk(1)+(2*x(2)-6)*dk(2))/(dk(1)*dk(2)-2*dk(1)^2-2*dk(2)^2); xu=x+ak*dk; x=xu; %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf(' x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); %计算目标函数点x(k+1)处一阶导数值 fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); end %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf('\n最速下降法\n结果:\n x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); c++程序 #include #include #include #include float goldena(float x[2],float p[2]) {float a; a=-1*(x[0]*p[0]+4*x[1]*p[1])/(p[0]*p[0]+4*p[1]*p[1]); return a; } void main() {float a=0,x[2],p[2],g[2]={0,0},e=0.001,t; int i=0; x[0]=1.0; x[1]=1.0;

matlab 无约束优化问题

实验八 无约束优化问题 一.实验目的 掌握应用matlab 求解无约束最优化问题的方法 二.实验原理及方法 1:标准形式: 元函数 为其中n R R f X f n R x n →∈:) (min 2.无约束优化问题的基本算法一.最速下降法(共轭梯度法)算法步骤:⑴ 给定初始点 n E X ∈0,允许误差0>ε,令k=0; ⑵ 计算() k X f ?; ⑶ 检验是否满足收敛性的判别准则: () ε≤?k X f , 若满足,则停止迭代,得点k X X ≈*,否则进行⑷; ⑷ 令() k k X f S -?=,从k X 出发,沿k S 进行一维搜索, 即求k λ使得: ()() k k k k k S X f S X f λλλ+=+≥0 min ; ⑸ 令k k k k S X X λ+=+1,k=k+1返回⑵. 最速下降法是一种最基本的算法,它在最优化方法中占有重要地位.最速下降法的优点是工作量小,存储变量较少,初始点要求不高;缺点是收敛慢,最速下降法适用于寻优过程的前期迭代或作为间插步骤,当接近极值点时,宜选用别种收敛快的算法..牛顿法算法步骤: (1) 选定初始点n E X ∈0,给定允许误差0>ε,令k=0; (2) 求()k X f ?,()() 1 2-?k X f ,检验:若() ε

无约束最优化问题及其Matlab求解

无约束最优化问题及其Matlab 求解 一、教学目标 1. 了解悟约束规划的基本算法最速下降法(共轭梯度法)的基本步骤 2. 掌握用Matlab 求解五约束的一元规划问题、多元规划问题、以及Matlab 求解过程中参数的设置。 3. 针对实际问题能列出其无约束规划方程并用Matlab 求解。 二、 教学手段 1. 用Flashmx 2004制作课件,并用数学软件Matlab 作辅助教学。 2. 采用教学手法上采取讲授为主、讲练结合的方法。 3. 上机实践操作。 三、 教学内容 (一)、求解无约束最优化问题的基本思想 标准形式: ★(借助课件说明过程) (二)、无约束优化问题的基本算法 1.最速下降法(共轭梯度法)算法步骤: ⑴ 给定初始点n E X ∈0,允许误差0>ε,令k=0; ⑵ 计算()k X f ?; ⑶ 检验是否满足收敛性的判别准则: ()ε≤?k X f , 若满足,则停止迭代,得点k X X ≈*,否则进行⑷; ⑷ 令()k k X f S -?=,从k X 出发,沿k S 进行一维搜索, 即求k λ使得: ()() k k k k k S X f S X f λλλ+=+≥0min ; ⑸ 令k k k k S X X λ+=+1,k=k+1返回⑵. 最速下降法是一种最基本的算法,它在最优化方法中占有重要地位.最速下降法的优点是工作量小,存储变量较少,初始点要求不高;缺点是收敛慢。 ★(借助课件说明过程,由于 算法 在实际中用推导过程比较枯燥,用课件显示搜索过程比较直观) 2. 采用Matlab 软件,利用最速下降法求解无约束优化问题 常用格式如下: (1)x= fminbnd (fun,x1,x2) (2)x= fminbnd (fun,x1,x2 ,options) (3)[x ,fval]= fminbnd (...) (4)[x ,fval ,exitflag]= fminbnd (...) (5)[x ,fval ,exitflag ,output]= fminbnd (...) 其中(3)、(4)、(5)的等式右边可选用(1)或(2)的等式右边。函数fminbnd ()X f n E X ∈min 其中 1:E E f n →

等式约束极值问题-外点罚函数法

重庆科技学院学生实验报告

附录function [x,minf] = minGeneralPF(f,x0,h,c1,p,var,eps) format long; if nargin == 6 eps = 1.0e-4; end k = 0; FE = 0; for i=1:length(h) FE = FE + (h(i))^2; end x1 = transpose(x0); x2 = inf; while 1 M = c1*p; FF = M*FE; SumF = f + FF; [x2,minf] = minNT(SumF,transpose(x1),var); if norm(x2 - x1)<=eps x = x2; break; else c1 = M; x1 = x2; end end minf = subs(f,var,x); format short; %牛顿法求解无约束最优化问题 function [x,minf] = minNT(f,x0,var,eps) format long; if nargin == 3 eps = 1.0e-6; end tol = 1; x0 = transpose(x0); gradf = jacobian(f,var);

jacf = jacobian(gradf,var); while tol>eps v = subs(gradf,var,x0); tol = norm(v); pv = subs(jacf,var,x0); p = -inv(pv)*transpose(v); p = double(p); x1 = x0 + p; x0 = x1; end x = x1; minf = subs(f,var,x); format short; >> syms x y; >> minGeneralPF(x^2+y^2,[1,1],y^2-1,1000,10,[x,y],0.0001) ans = 1.0000

约束优化设计

第四章 约束优化设计 ● 概述 ● 约束坐标轮换法 ● 随机方向法 ● 罚函数法 概述 结构优化设计的问题,大多属于约束优化设计问题,其数学模型为: 根据求解方式的不同,可分为直接解法和间接解法两类。 直接解法是在仅满足不等式约束的可行设计区域内直接求出问题的约束最优解。属于这类方法的有:随机实验法、随机方向搜索法、复合形法、可行方向法等。其基本思路: 在由m 个不等式约束条件g u (x )≤0所确定的可行域φ内,选择一个初始点0 X 然后确定一个可行搜索方向S ,且以适当的步长沿S 方向进行搜索,取得一个目标函数有所改善的可行的新点1 X 即完成了一次迭代。以新点为起始点重复上述搜索过程,每次均按如下的基本迭代格式进行计算: k+1k k k =+S (k=0,1,2,..)X X α逐步趋向最优解, 直到满足终止准则才停止迭代。 直接解法的原理简单,方法实用,其特点是: 1) 由于整个过程在可行域内进行,因此,迭代计算不论何时终止,都可以获得比初始点好 的设计点。 2) 若目标函数为凸函数,可行域为凸集,则可获得全域最优解,否则,可能存在多个局部 最优解,当选择的初始点不同,而搜索到不同的局部最优解。 3) 要求可行域有界的非空集 1,2,...,1,2,...,u m v p n ==

间接解法 间接解法是将约束优化问题转化为一系列无约束优化问题来解的一种方法。由于间接解法可以选用已研究比较成熟的无约束优化方法,并且容易处理同时具有不等式约束和等式约束的问题。因而在机械优化设计得到广泛的应用。 间接解法中具有代表性的是惩罚函数法。将约束函数进行特殊的加权处理后,和目标函数结合起来,构成一个新的目标函数,即将原约束优化问题转化为一个或一系列的无约束优化问题。 然后对新目标函数进行无约束极小化计算。 间接法是结构优化设计中广泛使用的有效方法,其特点: 1) 由于无约束优化方法的研究日趋成熟,为间接法提供可靠基础。这类算法的计算效率和 数值计算的稳定性大有提高; 2) 可以有效处理具有等式约束的约束优化问题; 3) 目前存在的主要问题,选取加权因子较为困难,选取不当,不仅影响收敛速度和计算精 度,甚至导致计算失败。 a) 可行域是凸集;b)可行域是非凸集 () ()()()121211 ,,m l j k j k X F X G g X H h X φμμμμ==??=++? ?????∑∑ 新目标函数 加权因子

一种带有等式约束的状态估计新算法_倪小平

一种带有等式约束的状态估计新算法 倪小平,张步涵 (华中科技大学电气与电子工程学院,武汉430074) 摘要:提出了一种新的带等式约束的状态估计算法,利用等式约束条件来修正加权最小二乘所得的状态量。利用这种算法能有效地利用系统中的一些虚拟零注入量测点数据,并且这种算法整体性不亚于拉格朗日多项式构造的等式约束算法,在增加很少计算量的情况下,达到提高状态估计结果精度的目的,保证了最小二乘状态估计的高效性,有利于状态估计的实时应用。关键词:状态估计;虚拟零注入量测;等式约束;拉格朗日多项式中图分类号:TM 732;TM 744 收稿日期:2001-03-25;修回日期:2001-07-17。 0 引言 随着调度自动化水平的不断提高,人们对状态估计的准确性和可靠性提出了更高的要求。通常情况下,一般采用提高量测系统的冗余度来提高状态估计结果的准确性[1]。这样做,一方面有违于量测系统经济性布置的要求,另一方面随着量测系统冗余度的增加,大大地降低了状态估计的效率(计算量一般随量测个数呈几何级数增加),不利于状态估计的实时性要求。其实,在电力系统中存在许多零注入节点,我们可以在这些节点虚拟一些零注入量测点来达到提高状态估计精度的要求[2,3]。在状态估计中,这种虚拟的零注入量是一种非常精确、可利用的量测类型,并且不必增加量测设备。它的加入可以极大地影响相关节点状态量的拟合趋势,加快算法的收敛速度,有较强的抵御相关量测的残差影响。但是,如何利用这些特殊的虚拟量测在牺牲较小估计效率的前提下来提高估计结果的精度,是一个值得探讨的问题。目前有几种处理办法:①通过提高其权系数来把它作为一种量测加以考虑[4],这种处理在一定程度上损失了虚拟零注入量测的精确性,并且增加了雅可比矩阵的维数,使得计算量增加。此外,由于虚拟量测大的权系数可能会造成系统病态,导致估计结果的不收敛。②通过拉格朗日多项式构造极值函数[2,3],然后导出迭代式。这种方法虽然在一定程度上保证了虚拟零注入量测的精确性,但是在计算过程中增加了过渡性变量λ,使得计算变量增加,增加了较大的计算量。当然,由于它的一些优点[5],现已被用于实时的状态估计中来解决一些等式约束问题。 本文提出了一个新的解决方法,在一定程度上能保证虚拟零注入量测的有效信息,另外也保证了状态估计的计算效率(不会增加太大的计算量)。 1 数学模型 1.1 带等式约束的目标函数 在给定网络接线、支路参数和量测系统的条件下,电力系统状态估计的非线性量测方程可表示为: z =h (x )+v (1) 式中 z 为m 维量测向量;h (x )为m 维量测函数向 量;x 为n 维状态变量向量;v 为m 维随机量 测误差向量,且有E (v )=0,E (v T v )=R ;R -1 为m ×m 维量测对角权矩阵;m 为量测个数;n 为系统状态量个数。 给定量测向量z 后,带等式约束的状态估计问题可表述为: min J (x )=[z -h (x )]T R -1 [z -h (x )](2)s.t. c (x )=0(3)式中 c (x )为l 维零注入功率等式约束函数向量, 通常l n 。1.2 不考虑等式约束的状态估计模型 当不考虑等式约束时,要使目标函数J (x )最小,则有: J (x ) x =0(4)根据式(4)可得估计迭代式为: Δx (k ) =(H T R -1 H )-1 H T R -1 Δz x (k +1)=x (k )+Δx (k )(5) 式中 H 为m ×n 阶雅可比矩阵,且H = h (x ) x ;Δz 为m 维计算残差列向量,且有Δz =z -h (x (k ) )。 42 2001年11月10日 N ov.10,2001

第三章 无约束最优化方法

第三章无约束最优化方法 本章内容及教学安排 第一节概述 第二节迭代终止原则 第三节常用的一维搜索方法 第四节梯度法 第五节牛顿法 第六节共轭方向法 第七节变尺度法 第八节坐标轮换法 第九节鲍威尔方法 第一节概述 优化问题可分为 无约束优化问题 有约束优化问题 无约束最优化问题求解基于古典极值理论的一种数值迭代方法,主要用来求解非线性规划问题 迭代法的基本思想:

所以迭代法要解决三个问题 1、如何选择搜索方向 2、如何确定步长

3、如何确定最优点(终止迭代) 第二节 迭代终止准则 1)1K K X X ε+-≤ 111/2 21K K K K n i i i X X X X ε++=??-=-≤???? ∑() 2) 11()()()() () K K K K K f X f X f X f X or f X ε ε ++-≤-≤ 3)(1)()K f X ε+?≤ 第三节 常用的一维搜索方法 本节主要解决的是如何确定最优步长的问题。 从初始点(0)X 出发,以一定的步长沿某一个方向,可以找到一个新的迭代点,其公式如下: (1)(0)00(2)(1)11(1)() K K k k X X S X X S X X S ααα+=+=+= + 现在假设K S 已经确定,需要确定的是步长k α,就把求多维目标函数的极小值这个多维算过程中,当起步点和方向问题,变成求一个变量即步长的最优值的一维问题了。即 (1)()min ()min ()min ()K K K k k f X f X S f αα+=+= 由此可见,最佳步长*K α由一维搜索方法来确定 求*k α,使得()()()()()()min K K K K f f X S αα=+→ 一、一维搜索区间的确定 区间[,]a b 应满足 ()(*)()f a f f b α><

无约束最优化直接方法和间接方

无约束最优化直接方法和间接方法的异同

无约束最优化直接方法和间接方法的异同一、什么是无约束最优化 最优化方法(也称做运筹学方法)是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的主要研究对象是各种有组织系统的管理问题及其生产经营活动。其的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为现代管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。 最优化问题分为无约束最优化和约束最优化问题,约束最优化问题是具有辅助函数和形态约束条件的优化问题,而无约束优化问题则没有任何限制条件。无约束最优化问题实际上是一个多元函数无条件极值问题。 虽然在工程实践中,大多数问题都是具有约束的优化问题,但是优化问题的处理上可以将有约束的优化问题转化为无约束最优化问题,然后按无约束方法进行处理。或者是将约束优化问题部分转化为无约束优化问题,在远离极值点和约束边界处按无优化约束来处理,在接近极值点或者约束边界时按照约束最优化问题处理。所以无约束优化问题的解法不仅是优化设计方法的基本组成部分,也是优化方法的基础。 无约束最优化方法大致分为两类:一类是使用导数的间接方法,即在计算过程中要用到目标函数的导数;另一类是直接方法,即只要用到目标函数值,不需要计算导数。这里我们比较这两类方法的异同。 二、无约束最优化方法 1. 使用导数的间接方法 1.1 最速下降法 函数的负梯度方向是函数值在该点下降最快的方向。将n维问题转化为一系列沿负梯度方向用一维搜索方法寻优的问题,利用负梯度作为搜索方向,故称

无约束最优化直接方法和间接方法的异同

无约束最优化直接方法和间接方法的异同一、什么是无约束最优化 最优化方法(也称做运筹学方法)是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的主要研究对象是各种有组织系统的管理问题及其生产经营活动。其的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为现代管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。 最优化问题分为无约束最优化和约束最优化问题,约束最优化问题是具有辅助函数和形态约束条件的优化问题,而无约束优化问题则没有任何限制条件。无约束最优化问题实际上是一个多元函数无条件极值问题。 虽然在工程实践中,大多数问题都是具有约束的优化问题,但是优化问题的处理上可以将有约束的优化问题转化为无约束最优化问题,然后按无约束方法进行处理。或者是将约束优化问题部分转化为无约束优化问题,在远离极值点和约束边界处按无优化约束来处理,在接近极值点或者约束边界时按照约束最优化问题处理。所以无约束优化问题的解法不仅是优化设计方法的基本组成部分,也是优化方法的基础。 无约束最优化方法大致分为两类:一类是使用导数的间接方法,即在计算过程中要用到目标函数的导数;另一类是直接方法,即只要用到目标函数值,不需要计算导数。这里我们比较这两类方法的异同。 二、无约束最优化方法 1. 使用导数的间接方法 1.1 最速下降法 函数的负梯度方向是函数值在该点下降最快的方向。将n维问题转化为一系列沿负梯度方向用一维搜索方法寻优的问题,利用负梯度作为搜索方向,故称最

单纯形法解决无约束优化问题

分数: ___________任课教师签字:___________ 课程作业 学年学期:2017——2018学年第二学期 课程名称:优化理论 作业名称:作业三 学生姓名: 学号: 提交时间:

一、问题重述 形如的min (x),x R n f ∈问题称为无约束优化问题,常用下降算法来解决这类问题。下降算法的关键在于步长和搜索方向的选取。步长的求取可以借助前面作业中提到的一维搜索等方法求取,而搜索方向算法可以分为两大类,解析法和直接法。 解析法借助了目标函数的导数进行搜索,这类算法搜索速度快、效率高,但是对目标函数的要求更为严格。常用的方法有最速下降法、Newton 法、共轭梯度法、拟Newton 法等。 直接法不使用导数,也不需要得到目标函数的明确解析式,只需要能够得到某些函数上的点即可。因此直接法的适用范围更广,但相应的收敛速度会较慢,计算量也会随着问题维数的增加而迅速增大。常用的方法有单纯形法、Powell 方向加速法以及Powell 改进算法。 本作业以直接法的Powell 法为例,解决具体的无约束优化问题,并对将Powell 方向加速法和Powell 改进算法解决结果进行对比。 二、算法原理 对于n 维正定二次函数(x)0.5T T f x Gx b x c =++,设011,,...(k n)k p p p -<关于G 共轭,0x 与1x 为任意不同点。分别从0x 与1x 出发,依次沿011,,...k p p p -作一维搜索。如果最后找到两个互不相同的极小点x a 与x b ,则x b a x -与011,,...k p p p -关于G 共轭。 Powell 方向加速法正是基于这一原理,每次迭代过程作n+1次一维搜索。第一次沿给定的n 个线性无关的方向011,,...n p p p -依次作一维搜索,之后沿由这一阶段的起点到第n 次搜索所得到的点的方向P 再做一次一维搜索,并把这次所得点作为下一阶段的起点,下一阶段的n 个搜索方向为011,,...,n p p p p -。以此直到找到最优解。 此算法是在迭代中逐次生成共轭方向,而共轭方向又是较好的搜索方向,所以称之为方向加速法。但是,此算法产生的n 个向量可能线性或近似线性相关,这时张不成n 维空间,可能得不到真正的极小点。因此,Powell 原始算法存在一定的缺陷。 Powell 改进算法虽然不再具有二次终止性,但克服了搜索方向的线性相关的不利情形,是解决无约束优化问题较有效的直接法之一。 本次作业一维搜索的过程是利用函数求导,求得最小值。经过试验发现,α是允许为负数的。否则最终寻优得到的极值点与实际结果存在很大的偏差,而且寻优的效率特别低下。

无约束最优化方法可变单纯形算法(simplex)Nelder-Mead

无约束最优化方法可变单纯形法(simplex)Nelder-Mead 可爱的馒头 本程序是用C++编写的,从编写的算例来看,应该是没有问题的。所采用的原理和步骤是参考华南理工大学出版社蒋金山等编写的最 优化计算方法第8章第三节可变单纯形法。欢迎各位批评指正。 #include #include #include int i,j; double d[3][100]={{0,1,0,0},{0,0,1,0},{0,0,0,1}},f[100];//d[][]为单纯形的顶点,本算例中未知数个数为3,则顶点个数为4 double g,h,l,q,s=1,t=2,u=0.5,v=0.0001,y=0;//s为反射系数,t为扩展系数,u为压缩系数,v为允许误差 int o,F,r,D,e,lj=0,N=4;//N为顶点的个数,o为最大值点的位置,F为最小值点的位置,r为次大值点的位置 void function1(int e)//求解函数f[e] { f[e]=(d[0][e]-3)*(d[0][e]-3)+2*(d[1][e]+2)*(d[1][e]+2)+(d[2][e]-4)*(d[2][e]-4);//函数为f=(x1-3)^2+2(x2+2)^2+(x3-4)^2,求其最小值 } void function2() { while((++lj)<100)//最大迭代次数 { for(i=0,g=f[i];if[i+1]) { h=f[i+1];F=i+1; } else if(i==0) F=i; } for(i=0,l=f[i];i

无约束优化方法(最速下降法_牛顿法)

第四章 无约束优化方法 ——最速下降法,牛顿型方法 概述 在求解目标函数的极小值的过程中,若对设计变量的取值范围不加限制,则称这 种最优化问题为无约束优化问题。尽管对于机械的优化设计问题,多数是有约束的, 无约束最优化方法仍然是最优化设计的基本组成部分。因为约束最优化问题可以通过 对约束条件的处理,转化为无约束最优化问题来求解。 为什么要研究无约束优化问题? (1)有些实际问题,其数学模型本身就是一个无约束优化问题。 (2)通过熟悉它的解法可以为研究约束优化问题打下良好的基础。 (3)约束优化问题的求解可以通过一系列无约束优化方法来达到。 所以无约束优化问题的解法是优化设计方法的基本组成部分,也是优化方法的基础。 根据构成搜索方向所使用的信息性质的不同,无约束优化方法可以分为两类。 一:间接法——要使用导数的无约束优化方法,如梯度法、(阻尼)牛顿法、变尺度 法、共轭梯度法等。 二:直接法——只利用目标函数值的无约束优化问题,如坐标轮换法、鲍威尔法单纯 形法等。 无约束优化问题的一般形式可描述为: 求n 维设计变量 []12T n n X x x x R =∈L 使目标函数 ()min f X ? 目前已研究出很多种无约束优化方法,它们的主要不同点在于构造搜索方向上的差别。 无约束优化问题的求解: 1、解析法 可以利用无约束优化问题的极值条件求得。即将求目标函数的极值问题变成求方 程 0)(min *=X f

的解。也就是求X*使其满足 解上述方程组,求得驻点后,再根据极值点所需满足的充分条件来判定是否为极小值 点。但上式是一个含有n个未知量,n个方程的方程组,在实际问题中一般是非线性 的,很难用解析法求解,要用数值计算的方法。由第二章的讲述我们知道,优化问题 的一般解法是数值迭代的方法。因此,与其用数值方法求解非线性方程组,还不如用 数值迭代的方法直接求解无约束极值问题。 2、数值方法 数值迭代法的基本思想是从一个初始点) 0(X 出发,按照一个可行的搜索方向)0(d ρ搜索,确定最佳的步长0α使函数值沿)0(d ρ方向下降最大,得到)1(X 点。依此一步一步地重复数值计算,最终达到最优点。优化计算所采用的基本迭代公式为 ),2,1,0()()()1(Λρ=+=+k d X X K K K K α (4.2) 在上式中, ()K d r 是第是 k+1 次搜索或迭代方向,称为搜索方向(迭代方向)。 由上面的迭代公式可以看出,采用数值法进行迭代求优时,需要确定初始点)(k X 、搜索方向)(k d ρ和迭代步长K α,称为优化方法迭代算法的三要素。第三章我们已经讨论了如何在搜索方向)(k d ρ上确定最优步长K α的方法,本章我们将讨论如何确定搜索方向)(k d ρ。 最常用的数值方法是搜索方法,其基本思想如下图所示: 0)(0)(0)(*2*1*=??=??=??n x X f x X f x X f M

相关主题
文本预览
相关文档 最新文档