当前位置:文档之家› 雨水排水系统的水力计算

雨水排水系统的水力计算

第6章建筑屋面雨水排水系统

6.3 雨水排水系统的水力计算

屋面雨水排水系统雨水量的大小是设计计算雨水排水系统的依据,其值与该地暴雨强度q、汇水面积F以及径流系数ψ有关,屋面径流系数一般取ψ=0.9。

1.设计暴雨强度q

设计暴雨强度公式中有设计重现期P和屋面集水时间t两个参数。设计重现期应根据建筑物的重要程度、气象特征确定,一般性建筑物取2~5年,重要公共建筑物不小于10年。由于屋面面积较小,屋面集水时间应较短,因为我国推导暴雨强度公式实测降雨资料的最小时段为5min,所以屋面集水时间按5min计算。

2.汇水面积 F

屋面雨水汇水面积较小,一般按m2计。对于有一定坡度的屋面,汇水面积不按实际面积而是按水平投影面积计算。

考虑到大风作用下雨水倾斜降落的影响,高出屋面的侧墙,应附加其最大受雨面正投影的一半作为有效汇水面积计算。窗井、贴近高层建筑外墙的地下汽车库出入口坡道应附加其高出部分侧墙面积的二分之一。

同一汇水区内高出的侧墙多于一面时,按有效受水侧墙面积的1/2折算汇水面积。

雨水量可按以下两个公式计算:

3. 雨水量计算公式

10000Fqs Q ψ=(6-1)

3600Fqs Q ψ=(6-2)

式中 ψ ——径流系数,屋面取0.9;

Q ——屋面雨水设计流量,L/s ;

F ——屋面设计汇水面积,m 2;

q s ——当地降雨历时5min 时的暴雨强度, L/s ·104m 2;

h s ——当地降雨历时5min 时的小时降雨深度, mm/h ;

gh

Dh Q 2μπ= 雨水斗的泄流量与流动状态有关,重力流状态下,雨水斗的排水状况是自由堰流,通过雨水斗的泄流量与雨水斗进水口直径和斗前水深有关,可按环形溢流堰公式计算

1. 雨水斗泄流量

式中 Q ——通过雨水斗的泄流量, m 3 /s ; μ——雨水斗进水口的流量系数,取0.45;

D ——雨水斗进水口直径, m ;

h ——雨水斗进水口前水深, m 。

(6-3)

在半有压流和压力流状态下,排水管道内产生负压抽吸,所以通过雨水斗的泄流量与雨水斗出水口直径、雨水斗前水面至雨水斗出水口处的高度及雨水斗排水管中的负压有关:

)(242

P H g d Q +=μπ式中 Q ——雨水斗出水口泄流量, m 3 /s ;

μ——雨水斗出水口的流量系数,取0.95;

d ——雨水斗出水口内径, m ;

H ——雨水斗前水面至雨水出水口处的高度, m ;

P ——雨水斗排水管中的负压, m 。

(6-4)

各种类型雨水斗的最大泄流量可按表6-1选取。

雨水斗最大泄流量(L/s)表6-1

87式多斗排水系统中,一根悬吊管连接的87式雨水斗最多不超过4个,离立管最远端雨水斗的设计流量不得超过表中数值,其他各斗的设计流量依次比上游斗递增10%。

屋面天沟为明渠排水,天沟水流流速可按明渠均匀流公式计算

2. 天沟流量

21321I R n v =(6-5)

vw Q =(6-6)

式中Q——天沟排水流量( m3 /s);

v——流速( m3 /s);

n——天沟粗糙度系数,与天沟材料及施工情况有关,见表6.3.2;

I——天沟坡度,不小于0.003;

w——天沟过水断面积,(m2)

各种抹面天沟粗糙度系数表6-2

横管包括悬吊管、管道层的汇合管、埋地横干管和出户管,横管可以近似地按圆管均匀流计算:

3. 横管

21321I R n

v (6-7)

(6-8)

Q=vω 式中 Q ——排水流量( m 3 /s ); v ——管内流速(m /s),不小于0.75m/s ,埋地横干管出建筑外墙进入室外雨水检查井时,为避免冲刷,流速应小于1.8m /s 。

ω——管内过水断面积(m 2);

n——粗糙系数;塑料管取0.010,铸铁管取0.014,混凝土管取0.013;

R——水力半径(m),悬吊管按充满度h/D=0.8计算,横干管按满流计算;

I——水力坡度;重力流的水力坡度按管道敷设坡度计算,

金属管不小于0.01,塑料管不小于0.005;重力半有压流的水力坡

度与横管两端管内的压力差有关,按下式计算:

I/)

=

+

(?

h

L

h

(6-9)

式中

I——水力坡度;

h——横管两端管内的压力差,(mH

O),悬吊管按其末端(立管与

2

悬吊管连接处)的最大负压值计算,取0.5m,埋地横干管按其起端(立

管与埋地横干管连接处)的最大正压值计算,取1.0m;

△h——位置水头,(mH2O),悬吊管是指雨水斗顶面至悬吊管末端的几何高差(m),埋地横干管是指其两端的几何高差(m);

L——横管的长度(m)。:

将各个参数代入6-7和6-8式,计算出不同管径、不同坡度时非满流(h/D=0.8)横管(铸铁管、钢管、塑料管)和满流横管(混凝土管)的流速和最大泄流量,见附录6-1、附录6-2、附录6-3。

横管的管径根据各雨水斗流量之和确定,并宜保持管径不变。

重力流状态下雨水排水立管按水膜流计算

4. 立管

383561

7890d K Q p α-= 式中 Q ——立管排水流量,(L/s );

K p ——粗糙高度,(m ),塑料管取15×10-6 m ,铸铁管取25×10-5 m 。

α ——充水率,塑料管取0.3,铸铁管取0.35。

d ——管道计算内径(m )

(6-10)

重力流立管最大允许流量见附录6-4

重力半有压流系流状态下雨水排水立管按水塞流计算,

铸铁管充水率α=0.57~0.35,小管径取大值,大管径取小值。

重力半有压流系统除了重力作用外,还有负压抽吸作用,所

以,重力半有压流系统立管的排水能力大于重力流,其中,单斗

流系统立管的管径与雨水斗口径、悬吊管管径相同,多斗系统立

管管径根据立管设计排水量按表6-3确定。

重力半有压流立管的最大允许泄流量表6-3

2

212b R S -?≤ 压力流(虹吸式)系统的连接管、悬吊管、立管、埋地横干管都按满流设计,管道的沿程阻力损失按海森-威廉公式计算。 5. 压力流(虹吸式)

⑴沿程阻力损失计算

87.4

85.14

85.110893.2j

d C Q R ???=-(6-11)

式中 R ——单位长度的阻力损失,KPa /m ;

Q ——流量,L /min ; D j ——管道的计算内径,m, 内壁喷塑铸铁管塑膜厚度为0.005m 。

管件的局部阻力损失应按下式计算

C ——海森-威廉系数,塑料管:C =130,

内壁喷塑铸铁管:C =110,钢管C =120,铸铁管:C =100。

常用的内壁喷塑铸铁管水力计算表见附录6-5

⑵局部阻力损失计算

式中 h j ——管件的局部阻力损失KPa ;

v ——流速,m/s ;

ζ——管件局部阻力系数,见表6.3.4

(KPa) 2102

g v h j ξ=(6-12)

管件局部ξ系数表6-4

管路的局部阻力损失可以折算成等效长度,按沿程水头损失估算

⑶ 阻力损失估算

式中

L 0——等效长度,m;

L ——设计长度,m ; k ——考虑管件阻力引入的系数:钢管、铸铁管k =1.2~1.4,塑料管k =

1.4~1.6

(6-13)

L 0=k L

计算管路单位等效长度的阻力损失可按下式计算

(Kpa/m) 81.9000L H L E R ==式中 R 0——计算管路单位等效长度的阻力损失,Kpa/m ;

E ——系统可以利用的最大压力,Kpa ;

H ——雨水斗顶面至雨水排出口的几何高差,m;

L 0——计算管路等效长度,m 。

悬吊管单位等效长度的阻力损失按下式计算

(6-14)

① 计算管路阻力损失估算

② 悬吊管阻力损失估算

式中 R X0——悬吊管单位等效长度的阻力损失,Kpa/m ;

P max ——最大允许负压值,Kpa ;

H ——雨水斗顶面至雨水排出口的几何高差,m;

L 0——悬吊管等效长度,m 。

⑷ 管内压力

XO XO L P R max (6-15)

由于雨水在管道内流动过程中的水头损失不断增加,横向管道的位置水头变化微小,而立管内的位置水头增加很大,

建筑给水排水工程习题及答案

建筑给水排水工程习题 一、选择 1、当资料不全时,建筑物内的生活用水低位水池有效容积按哪一条计算是正确的?(A) A 按最高日用水量的20%~25%确定 B 按最高日用水量的35%~40%确定 C 按平均日用水量确定 D 按平均日用水量的60%确定 2、在装设备通透性吊顶的场所,喷头应布置在_____;系统的喷水强度应按_____确定。(C) A 吊顶下常规系统设计基本参数1.3倍 B 吊顶下常规系统设计基本参数 C 顶板下常规系统设计基本参数1.3倍 D 顶板下常规系统设计基本参数 3、下列哪一个情况排水系统应设环形通气管?(B) A 连接4个及4个以上卫生器具的横支管。 B 连接4个及4个以上卫生器具的横支管的长度大于12m的排水横支管。 C连接7个及7个以上大便器具的污水横支管。 D 对卫生、噪音要求较高的建筑物内不设环形通气管,仅设器具通气管。 4、给水管网的压力高于配水点允许的最高使用压力是应设减压设施。采用比例式减压阀的减压不宜大于____。(B) A 2 :1 B 3 :1 C 5 :1 D 6 :1 5、某建筑物内的生活给水系统,当卫生器具给水配水处的静水压力超过规定值时,宜采用何种措施?(A) A 减压限流 B 排气阀 C 水泵多功能控制阀 D 水锤吸纳器 6、某中水站利用城市污水处理厂二级处理出水为中水水源是,请回答下列四组中水处理工艺流程中哪组工艺流程合理?(D) A r r r 中水水源格栅间调节池物化、生化深度处理池中水 u u u u u u u u u u r r 中水水源格栅间调节池物化、生化深度处理池消毒池中水 B r r r r u u u u u u u u u u r r C u u r u u r u u r 中水水源格栅间调节池预处理池中水 u u u u u u u u u u r r 中水水源调节池物化、生化深度处理池消毒池中水 D r r r u u u u u u u u u u r r 注:城市污水处理厂二级处理出水水质已达《污水综合排放标准》,只需经调节池后采用生化或物化结合的深度处理,在经消毒即可作中水使用。 7、在设计自动喷水灭火系统时,配水管道的工作压力不应大于____;湿式系统、干式系统的喷水头动作后应由____直接连锁自动启动供水泵。(B) A 1.2 MPa 火灾报警信号 B 1.2 MPa 压力开关 C 0.4 MPa 火灾报警信号 D 0.4 MPa 压力开关 8、请指出正确的水泵吸水管的连接方式。(C) A 吸水管设在虹吸管段 B 吸水管向下坡向水泵 C 异径偏心大小头 D 同心异径管 9、下面关于自动喷水灭火系统管材及连接叙述中,哪一条是正确的?(C) A 系统管道的连接,应采用沟槽式连接件(卡箍),或法兰连接。

给水排水管道系统水力计算汇总

第三章给水排水管道系统水力计算基础 本章内容: 1、水头损失计算 2、无压圆管的水力计算 3、水力等效简化 本章难点:无压圆管的水力计算 第一节基本概念 一、管道内水流特征 进行水力计算前首先要进行流态的判别。判别流态的标准采用临界雷诺数Re k,临界雷诺数大都稳定在2000左右,当计算出的雷诺数Re小于2000时,一般为层流,当Re大于4000时,一般为紊流,当Re介于2000到4000之间时,水流状态不稳定,属于过渡流态。 对给水排水管道进行水力计算时,管道内流体流态均按紊流考虑 紊流流态又分为三个阻力特征区:紊流光滑区、紊流过渡区及紊流粗糙管区。 二、有压流与无压流 水体沿流程整个周界与固体壁面接触,而无自由液面,这种流动称为有压流或压力流。水体沿流程一部分周界与固体壁面接触,另一部分与空气接触,具有自由液面,这种流动称为无压流或重力流 给水管道基本上采用有压流输水方式,而排水管道大都采用无压流输水方式。 从水流断面形式看,在给水排水管道中采用圆管最多 三、恒定流与非恒定流 给水排水管道中水流的运动,由于用水量和排水量的经常性变化,均处于非恒定流状态,但是,非恒定流的水力计算特别复杂,在设计时,一般也只能按恒定流(又称稳定流)计算。 四、均匀流与非均匀流 液体质点流速的大小和方向沿流程不变的流动,称为均匀流;反之,液体质点流速的大小和方向沿流程变化的流动,称为非均匀流。从总体上看,给水排水管道中的水流不但多为非恒定流,且常为非均匀流,即水流参数往往随时间和空间变化。 对于满管流动,如果管道截面在一段距离内不变且不发生转弯,则管内流动为均匀流;而当管道在局部有交汇、转弯与变截面时,管内流动为非均匀流。均匀流的管道对水流的阻力沿程不变,水流的水头损失可以采用沿程水头损失公式进行计算;满管流的非均匀流动距离一般较短,采用局部水头损失公式进行计算。

排水工程(上册)课后答案及例题

第二章习题 1、某肉类联合加工厂每天宰杀活牲畜258T ,废水量标准8.2m 3/t 活畜,总变化系数1.8,三班制生产,每班8h,最大职工数860人,其中在高温及污染严重车间工作的职工占总数的40%,使用淋浴人数按85%计,其余60%的职工在一般车间工作,使用淋浴人数按30%计.工厂居住区面积9.5×104 ㎡,人口密度580人/104 ㎡,生活污水量标准160L/人·d,各种污水由管道汇集送至污水处理站,试计算该厂的最大时污水设计流量. 解: 该厂的最大时污水设计流量Q=Q 1 +Q 2 +Q 3 Q 1 =k·n·k z 24×3600 =160×9.5×585×1.824×3600 =18.525L/s Q 2 =A 1 B 1 K 1 +A 2 B 2 K 2 T×3600 +C 1 D 1 +C 2 D 2 3600 =860×60%×25×3.0+860×40%×35×2.58×3600 +860×60%×30%×40+860×40%×85%×60 3600 =2.39+6.59=8.98L/s Q 3 =m·M·k z T×3600 =258×8.2×1.8×103 3600×24 =44.08 L/s Q=Q 1 +Q 2 +Q 3 =18.525+8.98+44.08=72.59 L/s 2、下图为某工厂工业废水干管平面图。图上注明各废水排除口的位置,设计流量以及各设计管段的长度,检查井处的地面标高,排除口1的管底标高为218。9m,其余各排除口 的埋深均不得小于 1.6m 。该地区土壤无冰冻。要求列表进行干管的水力计算,并将计算结果标注在图上。 解:先进行干管的流量计算如下表:

(完整版)雨水部分的设计说明及设计计算

一、雨水部分的设计说明及设计计算 城市雨水管渠系统的布置与污水管道的布置相近,但也有自己的特点。雨水管渠规划布置的主要内容有:确定排水流域与排水方式,进行雨水的管渠的定线;确定雨水泵房、雨水调节池、于是排放口的位置。 3.1 雨水布管原则: 1.充分利用地形,就近排入水体。 规划雨水管线时,首先按照地形划分排水区域,进行管线布置。根据分散和直接的原则,尽量利用自然地形坡度,多采用正交式布置,以最短的距离重力流排入附近的河流、湖泊等会汇水区域。一般不设泵站。 2.根据街区及道路规划布置雨水管道。 通常应根据建筑物的分布、道路的布置以及街坊或小区内部的地形、出水口的位置等布置雨水管道,是街坊和小区内大部分雨水以最短的距离排入雨水管道。所以就需要对某一排水区域进行划分,使其汇水更加的方便和直接。 3.合理布置雨水口,保证路面雨水舒畅排除。 雨水口的布置应根据地形和汇水面积确定,以使雨水不至漫过路口。一般在道路交叉口的汇水点、低洼地段均应设置雨水口。 4.采用明渠与暗管相结合的方式。 在城市市区,建筑密度较大、交通频繁地区。应采用暗管排除雨水,尽管造价高,但是卫生情况好,养护方便,不影响交通;在城市郊区或建筑密度低、交通量小的地方可采用明渠,以节省工程费用。 5.出水口的位置。 当汇水水体离流域很近,水体的水位变化不大,洪水位低于流域地面标高,出水口的建筑费用不大时,宜采用分散出口,使雨水尽快排放,反之,则应该采用集中出口排放方式,本设计中采用分散出口排放。 6.调蓄水体的布置。 充分利用地形,选择适当的河湖水面作为调蓄池,以调节洪峰流量,减低沟道设计流量减少泵站的设计数量。 7.排洪沟的设置。 \

城市雨水量计算和雨水收水口设置方法

各级城市道路雨水量计算方法与雨水口设置 一、前言 当路面水不能迅速排泄时,路面会形成水膜而影响行车安全,因此须在道路汇水点、人行横道上游、沿街单位出入口上游、靠地面径流的街坊或庭院的出水口等处设置雨水口(道路低洼和易积水地段应根据需要适当增加雨水口),以及时排除路面雨水,确保在设计重现期内排水畅通、不积水;确保在超过设计重现 期时,退水快、积水时间短 二、迳流理论 2.1迳流产生过程[2] 一般而言,地面点在受雨过程中,首先被植物截留。在地面开始受雨时因地面干燥,渗水率较大,而降雨的起始雨率还小于入渗率,这时降雨被地面全部吸收。随着历时的增长,雨率大于入渗率后地面开始产生余水,当余水量积满洼地后,开始地面迳流,这时部分余水产生积水深度,部分余水产生迳流,在雨率增至最大时相应产生最大余水率,之后雨率逐渐递减,余水率亦渐减小,当雨率降至入渗率时,余水现象停止,但这时有地面积水存在,故仍然产生迳流,入渗率仍按地面入渗能力渗漏,直至地面积水消失,迳流才告终止,而后洼地积水逐渐渗完。渗完积水后,地面实际渗水率将按雨率渗漏,直至 雨终。见下图一。 对于道路路面而言,无植物截留,且迳流系数较一般地面大得多,因此余水历时、迳流历时、降雨总历时三者的起始点基本相同,累积入渗量极小,其曲线h可看成与x轴平行、接近x轴的一条曲线;再者由于路面相对平坦,死水曲线与累积 入渗量曲线h可近似看作重叠。 2.2流域汇流过程 图二中各条曲线t1,t2,……,tn为等流时线,每条等流时线上各点的雨水流至集水口a的时间是相等的,集流时间(t)是流域边缘线上的雨水流达a 点的时间。 在地面迳流开始后不久,a点所汇集的流量仅来自靠近a点的小块面积上的雨水,这时较远处的雨水仅流至中途,随着产生迳流和降雨时间的增长,在a 点汇集的流量中的汇流面积不断增加,当流域边缘上的雨水也流达a点时,这时全面积汇流,a点的流量达最大。因此,相应于流域集流时间的全面积迳流产生最大迳流量,又称极限强度法。全流域迳流在集流口出现的流量来自t时段

§3—5排水管道系统的水力计算

§3—5排水管道系统的水力计算 一、 排水定额: 两种:每人每日消耗水量 卫生器具为标准 排水当量:为便于计算,以污水盆的排水流量0.33升/秒作为当量,将其他卫生器具与其比值 1个排水当量=1.65给水当量 二、 排水设计流量: 1、 最大时排水量: P h d P KQ Q T Q Q == 用途:确定局部处理构筑物与污水提升泵使用 2、 设计秒流量: (1) 当量计算法: max 12.0q N q P u +=α 适用:住宅、集体宿舍、旅馆、医院、幼儿园、办公楼、学校 注意点:∑>i u q q ,取∑i q (2) 百分数计算法: b n q q p u 0∑= 适用:工业企业,公共浴室、洗衣房、公共食堂、实 验室、影剧院、体育馆等公共建筑 注意点:一个大便器的排水流量

三、 排水管道系统的水力计算 1、 排水横管水力计算: (1)横管水流特点:水流运动:非稳定流、非均匀流 卫生器具排放时:历时短、瞬间流量大、高流速 特点:冲击流——水跌——跌后段——逐渐衰减段 可以冲刷管段内沉积物及时带走。 (2)冲击流引起压力变化——抽吸与回压 ① 回压:B 点:突然放水时,水流呈八字向两方向流动,即g v 22增加(两侧空气压缩) A 、 C 存水弯水位上升,严重时造成地漏反冒 ② 抽吸:向立管输送中,水流因惯性抽吸真空,抽吸存水弯下降 ③ 措施:a 、10层以上采用底层横管单独排出 b 、底层横管放大一号或接表3——11保证立管距离 c 、单个卫生器具直接连接横管时,距立管≮3.0m (3)水力计算设计规定 1) 充满度 2)管道坡度 3)自清流速 4)最小管径 4、水力计算基本方法: wv q I R n v u ==21321 按以上公式编制水力计算表,查表3—22 、3—23

排水沟排水能力计算。复习过程

一、降雨强度计算 已知: 上海;设计重现期P=2年;设计降雨历时t=5分钟;径流系数=0.9 计算: 设计降雨强度q=((17.812+14.668×Lg(2))/((5+10.472)0.796))×1000/6=418.66升/秒?公顷。 二、FX100排水沟水力计算 1、已知: 水深=0.12米;沟宽=0.1米;粗糙系数n=0.001 ; 2、计算:

计算时将U形排水沟分为上部矩形和下部半圆形计算。 矩形部分:水深70mm ,底宽:100mm;计算过程:湿周=2×0.07+0.1=0.24m ;过流面积=0.1×0.07=0.007平米;水力半径= 0.007/0.24=0.0292m ;流速v=((0.02922/3)×(0.0010.5))/0.001=3m/s ;矩形天沟排水量Q=3×0.007×1000=21L/s。 半圆形部分:半径为50mm;计算过程:湿周=3.14×0.05=0.157m ;过流面积=0.5×3.14×0.05×0.05=0.0039平米;水力半径=0.0039/0.157=0.0248m ;流速v=((0.02482/3)×(0.0010.5))/0.001=2.69m/s ;半圆形天沟排水量Q=2.69×0.0039×1000= 10.49L/s 。 3、FX100排水沟排水能力=21+10.49=31.49L/s 4、FX100排水沟基本资料:

三、FX150排水沟水力计算 1、已知: 水深=0.21米;沟宽=0.15米;粗糙系数n=0.001 ; 2、计算: 计算时将U形排水沟分为上部矩形和下部半圆形计算。 矩形部分:水深135mm ,底宽:150mm;计算过程:湿周=2×0.135+0.15=0.42m ;过流面积=0.15×0.135=0.0203平米;水力半径=0.0203/0.42=0.0483m ;流速v=((0.04832/3)×(0.0010.5))/0.001

多层住宅水力计算例题

【例题】某5层住宅,层高3m,每层2户(分户型A与户型B)。其中户型A 二卫一厨,设低水箱坐式大便器、洗脸盆各2个,淋浴器、浴盆、洗涤盆、洗衣机水嘴各1个;户型B一卫一厨,设低水箱坐式大便器、洗脸盆、淋浴器、洗涤盆、洗衣机水嘴各1个。该住宅有局部热水供应。图1为该住宅卫生器具平面布置图,图2为给水系统轴测图,管材为内涂塑钢塑复合管。室外给水管网在引入管 =250kPa。试进行给水系统的水力计算。 连接点所能提供的最小压力H 图1 标准层卫生器具平面布置图图2 给水系统轴测图 【解】 ⒈根据给水系统轴测图,确定最不利配水点及计算管路 ⑴由图2看,A0或B0均有可能成为最不利配水点,经估算比较,初定A0点即淋浴器混合阀为系统最不利配水点,计算管路为 A0-A1-A2-A3-A4-A5-1-2-3-4-5-6。 。 ⑵引入管起点至最不利配水点位置高度所要求的静水压H 1 =[13.15-(-1.25)]×10=144kPa 根据图2,H 1 ⑶最不利配水点所需的最低工作压力H 4 根据表2.1.1淋浴器混合阀最低工作压力为0.05~0.10MPa,选取 =0.070MPa=70kPa H 4 ⒉计算各管段的设计秒流量 该工程为住宅建筑,设计秒流量采用概率法计算。 ⑴户型A(图2中给水管路A0-A1-A2-A3-A4-A5-1)设计秒流量计算 =280L/(人·d), ①根据表2.2.1,户型A为普通住宅III类,用水定额取q =2.5,每户按m=4人计。 用水时数T=24h,时变化系数取K h ②根据表2.1.1,求每户设置的卫生器具给水当量数Ng 坐便器冲洗水箱浮球阀 N=0.50×2=1.00 洗脸盆混合水嘴 N=0.50×2=1.00 淋浴器混合阀 N=0.75 浴盆混合水嘴 N=1.20 洗涤盆混合水嘴 N=1.00

给水排水管网系统自编练习题

重庆交通大学 《给水排水管网系统》 自编习题汇编 管网课程组 2014年8月

第一章给水系统概论 思考题 1. 由高地水库供水给城市,如按水源和供水方式考虑,应属于哪类给水系统? 2. 给水系统中投资最大的是那一部分,试行分析。 3. 给水系统是否必须包括取水构筑物、水处理构筑物、泵站、输水管和管网、调节构筑物等,哪种情况下可省去其中一部分设施? 4. 什么是统一给水、分质给水和分压给水,哪种系统是目前用得最多? 5. 水源对给水系统布置有哪些影响? 6. 工业给水有哪些系统,各适用于何种情况? 7. 工业用水量平衡图如何测定和绘制?水量平衡图起什么作用? 第二章设计用水量 思考题 1. 设计城市给水系统时应考虑哪些用水量? 2. 居住区生活用水量定额是按哪些条件制定的? 3. 影响生活用水量的主要因素有哪些? 4. 城市大小和消防流量的关系如何? 5. 怎样估计工业生产用水量? 6. 工业企业为什么要提高水的重复利用率? 7. 说明日变化系数和时变化系数的意义。它们的大小对设计流量有何影响? 8. 为什么城市越小,用水量变化越大?你认为还有哪些因素影响用水量变化系数? 习题 1. 某城最高日用水量为15万m3/d,每小时用水量变化如下表,求:(1)最高日最高时和平均时的流量,(2)绘制用水量变化曲线,(3)拟定二级泵站工作线,确定泵站的流量。 2. 位于一区的某城市,用水人口65万,求该城市的最高日居民生活用水量和综合生活用水量。 3. 位于一分区的某城镇现有8万人口,设计年限内预期发展到12万人。用水普及率以90%计,取居民生活用水定额为150L/(人?d),工业企业和公共建筑用水量,通过调查和实测,总用水量为Q2=13500m3/d,未预见水量和管网漏失水量取总用水量的20%,求最高日用水量。 第三章给水系统的工作情况 思考题 1. 如何确定有水塔和无水塔时的清水池调节容积? 2. 取用地表水源时,取水口、水处理构筑物、泵站和管网等按什么流量设计? 3. 清水池和水塔起什么作用?哪些情况下应设置水塔? 4. 有水塔和无水塔的管网,二级泵站的计算流量有何差别? 5. 无水塔和网前水塔时,二级泵站的扬程如何计算? 6. 对置水塔管网在最高用水时、消防时和转输时的水压线是怎样的?

雨水量的计算说明书

雨水量计算说明书 一、雨水量的计算 1.1 根据该城镇的暴雨强度公式为: 497.0) 724.3()y lg 625.01(078.992++=t T q 式中 q ——设计暴雨强度公式(ha s L ?/) y T ——设计重现期(a) t ——设计降雨历时(min ) 重现期:y T =1年, 降雨历时:t=t 1+mt 2。 式中 t 1——地面集水时间(min ), 取5~15min ; t 2 —— 管渠内雨水流行时间(min ); m —— 折减系数,暗管取2,明渠取1.2。 在该城镇中采用暗管排水,取m=2, t 1=10min 。 1.2 径流系数计算 根据规划的地区类别,采用区域综合径流系数。城市市区区域综合径流系数值0.5—0.8,在此城镇计算中C1-10取0.6,C11取0.4。 单位面积径流量: 497.020)724.3210(078.992++?=t C q W =497.02) 724.3210(078.9926.0++?t 497.021)724.3210(078.992++? =t C q W =497.02)724.3210(078.9924.0++?t

设计流量Q 为:0q A Q ?= 灌渠内雨水流行时间为:t 2=L/v 式中 L ——管长(m ) V ——雨水在管内的流速(m/s ) 坡降:L S h ?= 设计管内底标高的最小值为地面标高减去管道的最小覆土厚度加上管径,埋深为设计地面标高减去设计管底标高。 管径、流速、流量等的确定采用满流水力计算表。 二、雨水管网定线 2.1排水体制的选择 规划区排水设施不完善,无完整排水系统,雨污合流排放,未经处理就近排入水体。规划区防洪标准为20年一遇,片区内规划用地竖向高程均在20年一遇的洪水位线之上。 暴雨强度公式根据附录:福建各地暴雨强度公式选用。 管材采用钢筋混凝土管。 2.2管线定线原则: 充分利用地形,就近排入水体。 雨水管渠应尽量利用自然地形坡度布置,要以最短的距离靠重力流将雨水排入附近的池塘、河流、湖泊等水体中。在每一排水流域内,结合建筑物及雨水口分布,充分利用各排水流域内的自然地形,布置

(完整版)水力计算

室内热水供暖系统的水力计算 本章重点 ? 热水供热系统水力计算基本原理。 ? 重力循环热水供热系统水力计算基本原理。 ? 机械循环热水供热系统水力计算基本原理。 本章难点 ? 水力计算方法。 ? 最不利循环。 第一节热水供暖系统管路水力计算的基本原理 一、热水供暖系统管路水力计算的基本公式 当流体沿管道流动时,由于流体分子间及其与管壁间的摩擦,就要损失能量;而当流体流过管道的一些附件 ( 如阀门、弯头、三通、散热器等 ) 时,由于流动方向或速度的改变,产生局部旋涡和撞击,也要损失能量。前者称为沿程损失,后者称为局部损失。因此,热水供暖系统中计算管段的压力损失,可用下式表示: Δ P =Δ P y + Δ P i =R l + Δ P i Pa 〔 4 — 1 〕 式中Δ P ——计算管段的压力损失, Pa ;

Δ P y ——计算管段的沿程损失, Pa ; Δ P i ——计算管段的局部损失, Pa ; R ——每米管长的沿程损失, Pa / m ; l ——管段长度, m 。 在管路的水力计算中,通常把管路中水流量和管径都没有改变的一段管子称为一个计算管段。任何一个热水供暖系统的管路都是由许多串联或并联的计算管段组成的。 每米管长的沿程损失 ( 比摩阻 ) ,可用流体力学的达西.维斯巴赫公式进行计算 Pa/m ( 4 — 2 ) 式中一一管段的摩擦阻力系数; d ——管子内径, m ; ——热媒在管道内的流速, m / s ; 一热媒的密度, kg / m 3 。 在热水供暖系统中推荐使用的一些计算摩擦阻力系数值的公式如下: ( — ) 层流流动 当 Re < 2320 时,可按下式计算;

城给水管网水力计算程序及例题

给水排水管道工程 课程设计指导书 环境科学与工程学院

第一部分城市给水管网水力计算程序及习题 一、程序 #define M 18 #define N 6 #define ep 0.01 #include int sgn(double x); main() { int k, i,ko,q,p,flag=0; double h[M]; double l[]={?}; double D[]={?}; double Q[]={?}; int io[]={?}; int jo[]={?}; double f[N+1],r[N+1],dq[N+1]; for(k=0;k<=M-1;k++) { Q[k]=Q[k]*0.001; } for(k=0;k<=M-1;k++) { Q[k]=Q[k]*sgn(io[k]); } ko=0; loop: for(k=0;k<=M-1;k++) { h[k]=10.67*pow(fabs(Q[k]),1.852)*l[k]; h[k]=h[k]/(pow(100,1.852)*pow(D[k],4.87))*sgn(Q[k]); }

for(i=1;i<=N;i++) { f[i]=0;r[i]=0; dq[i]=0; for(k=0;k<=M-1;k++) { if(abs(io[k])!=i) goto map; f[i]=f[i]+h[k]; r[i]=r[i]+(h[k]/Q[k]); map: if( abs(jo[k])!=i) continue; f[i]=f[i]+h[k]*sgn(jo[i]); r[i]=r[i]+(h[k]/Q[k]); } dq[i]=-(f[i]/(r[i]*2)); } { if (fabs(f[N])<=ep) flag=1; } if (flag==1) goto like; for(k=0;k<=M-1;k++) { p=abs(io[k]);q=abs(jo[k]); Q[k]=Q[k]+dq[p]+(dq[q]*sgn(jo[k])); } ko=ko+1; if(flag==0) goto loop; like: printf("\n\n"); for(i=1;i<=N;i++) {printf("%f\n",f[i]);} printf("ep=%f\n",0.01); printf("n=%d,m=%d,ko=%d\n",N,M,ko); for(k=0;k<=M-1;k++) { printf("%d)",k+1);

住宅套内给水排水管道水力计算知识交流

住宅套内给水排水管道水力计算 专业--给排水常识2010-05-26 18:06:18 阅读21 评论0 字号:大中小订阅 1 入户管管径计算 《住宅建筑规范》[1]第5.1.4条规定:“卫生间应设置便器、洗浴器、洗面器等设施或预留位置;……。”这是现阶段住宅内卫生器具配置的最低要求,从《建筑给水排水设计规范》[2]中可知普通住宅Ⅱ、Ⅲ类符 合此项要求。 以普通住宅Ⅱ类为计算算例,表1-1为普通住宅Ⅱ类最高日生活用水定额及小时变化系数,表1-2为住宅常见卫生器具的给水额定流量、当量和连接管公称管径。表1-3为生活给水管道的水流流速要求值。 普通住宅Ⅱ类常见户型配置情况:所有户型配置均配置一间厨房,一套洗衣设施,以卫生间间数不同,分为一卫户(一间卫生间的户型)、二卫户(二间卫生间的户型)和三卫户(三间卫生间的户型)。表1-4 为常见户型卫生器具不同组合的当量数。 以PP-R管道和PAP管道作为典型管材进行水力计算。三通分水连接方式常用的建筑给水用无规共聚聚丙烯(PP-R)管道,当冷水管工作压力≤0.6MPa时,常选用S5系列,S5系列计算内径较大;分水器分水连接方式常用的铝塑复合(PAP)管道,铝塑复合(PAP)管道采用对接焊型,计算内径较小。表1-5为住宅常见户型入户管水力计算表。由表1-5可知,普通住宅Ⅱ类常见户型入户管公称管径应为DN25~DN32;如入户管管径采用小一级的,首先流速不满足规范要求,其次同样长度的入户管水头损失比满足流 速要求管径的水头损失大3倍左右。 表1-1 最高日生活用水定额及小时变化系数[2]

注:(1)流出水头[7] 是指给水时,为克服配水件内摩阻、冲击及流速变化等阻力而能放出的额定流量的 水头所需的静水压。 (2)最低工作压力[2] 是指在此压力下卫生器具基本上可以满足使用要求,它与额定流量无对应关系。 住宅入户管上水表的水头损失取0.010[2]~0.015MPa[4]。笔者以水表本层出户集中布置方式(水表距楼面1.0m),常见户型厨房、卫生间和阳台用水点为算例,根据管件采用三通分水或分水器分水的连接情况,经过管道、配件沿程和局部水头损失计算后,加上卫生器具的最低工作压力和水表的水头损失不同组合,表前最低工作压力在0.10~0.15MPa。对分水器集中配水连接方式水头损失较小,对应的表前最低工 作压力可采用较小的数值。 现代住宅给水支管设计常常只到水表后(或在室内预留一处接口),表前最低压力值的大小关系到住户将来装修后的正常用水,对于这一点应加以重视。同时必须指出,目前大部分水箱供水方式,水箱设置高度难以满足顶上1~3层表前最低工作压力(卫生器具的最低工作压力)的要求,这一点在设计时应特别注意。 3 排水横支管管径计算 排水横支管设计排水流量(通水能力)是按照重力流(不满流)进行计算,同管径的排水横支管设计排水流量远小于排水立管的设计排水流量。表3-1 为住宅常见卫生器具排水的流量、当量和排水(连接)管的 管径。 以常用的建筑排水硬聚氯乙烯(UPVC)管道(公称外径50~110mm)作为计算算例。表3-2为水力 计算参数、计算过程和计算结果。 表3-1卫生器具排水的流量、当量和排水管的管径[2]

排水工程考试题 (2)

一、填空题 1、为了使计算简便,我国《室外排水设计规范》建议折减系数的采用为:暗管m=2,明渠m=1.2。在陡坡地区,暗管的m=1.2~2。[第三章第2节] 2、设计流速是(与设计流量、设计充满度相应的水流平均速度)。 最小设计流速是保证(管道内不致发生淤积的流速)。 最大设计流速是保证(管道不被冲刷损坏的流速)。 3、管道的衔接方法:主要有(水面平接、管顶平接和管底平接)三种。 (第二章第四节) 4、城市污水总的设计流量是(居住区生活污水、工业企业生活污水和工业废水)设计流量三部分之和。 5、(1)按照来源的不同,污水可分为(生活污水)、(工业废水)和(降水)3类——第1章第1节 (2)生活污水总变化系数与平均流量间的关系式为Kz=(2.7/Q0.11)当Q<5L/S时,Kz=(2.3);Q>1000,Kz=(1.3)——第2章第2节 6、定线应遵循的主要原则是:(应尽可能地在管段较短和埋深较小的情况下,让最大局域的污水能自流排出)。(第二章第4节P39-40) 7、水面平接是使(上游管段终端)与(下游管段起端)在指定的(设计充满度)下的水面平接。 8、雨水设计流量Qs=qΨF,其中Ψ的含义是(地面径流系数) 9、在排水管道的接口中,水泥砂浆抹带口属于(刚性)接口 10、污水管道的最小设计流速为0.6m/s,雨水管道、合流管道的最小设计流速为0.75m/s,明渠的最小设计流速为0.4m/s。 11、城市污水是指排入城镇污水排水系统的(生活污水)和(工业废水) 12、污水管道水力计算的目的,在于合理的经济的选择管道(断面尺寸)、坡度和(埋深)。 13、雨水管道的最小管径为(300mm),相应的最小坡度为(0.003)雨水口连接管最小管径(200mm),最小坡度为(0.01). 14、排水系统的布置形式主要包括:(正交式分布,截流式分布,平行式分布,分区式分布,分散式分布,环绕式分布)。 15、排水的(收集、输送、处理和排放等设施)一定方式组合成的总体,称为排水系统。(第一章第1节) 16、金属管道的最大设计流速是(10)m/s,非金属的最大设计流速是(5)m/s。 17、管道平面图应包括(支管)(干管)(主干管)(泵站)(污水厂)(出水口)等的具体位置和资料。 二、名词解释 1、污水管道系统的定线:在城镇(地区)总平面图上确定污水管道的位置和走向)[第二章第4节] 2、极限强度理论:在雨水管道的设计中,采用的降雨历时t=汇水面积最远点的雨水流达集流点的集流时间τ0,此时暴雨强度、汇水面积都是相应的极限值,根据公式确定的流量应是最大值。这便是雨水管道设计的极限强度理论。 3、集水时间t:指雨水从汇水面积上最远点流到设计的管道断面所需时间 (第三章第二节) 4、城市污水:排入城镇污水排水系统的生活污水和工业废水。 5、(1)最小设计流速:保证管道内不致发生淤积的流速。

雨水口规范

雨水口设计应按《室外排水设计规范》(GB50014-2006)第 4.7 节雨水口有关规定。雨水口布置应根据地形及汇水面积确定,完全按道路长度均匀布置,不仅浪费投资,且不能收到预期的效益。对于低洼和易积水地段,雨水径流面积大,径流量较一般为多,如有植物落叶,容易造成雨水口的堵塞。为提高收水速度,需根据实际情况,雨水口可采用串联形式,但个数不宜超过 3 个。 当道路纵坡大于0.02 时,因纵坡大于横坡,雨水流人雨水口少,故沿途可少设或不设雨水口。坡段较短( 一般在300m 以内) 时,往往在道路低点处集中收水,较为经济合理。雨水口的形式和数量,应按汇水面积所产生的雨水流量、雨水口的泄水能力确定,其雨水口的泄水能力应大于雨水设计流量。 什么情况下设置单篦雨水口,什么情况下设置双篦雨水口? 1.通常单篦雨水口设于道路,而双篦雨水口设于广场地面; 2.平篦式单篦雨水口的泄水能力:20L/S 平篦式双篦雨水口的泄水能力:35L/S 平篦式多篦雨水口的泄水能力:15L/S(每篦) 根据地块的用地性质来判断将来有没有可能布置雨水口,再就是根据地形和地面种类来判断可能汇入道路上的雨水量,只考虑靠近道路的一小部分区域。在一般管道支架的设计中,我们通常选用的支架仅仅为固定架,支撑架或者限位架,并没有绝对的限值一说,但是对于热应力管道,通过应力计算后,允许在一定小范围内移动,这时候就需要定值限位架了,也就是按照应力计算结果,给出最大的允许移动距离,如果达到这个数值,支架就起到绝对限制作用。这是因为管道很少是单独一根的,尤其是对于热应力管道,通常是按照一个管系来进行考虑,如果主管道的热应力变形达到一定数值,会对支管产生非常大的应力,在应力计算的时候,会对此主管作出定值限制。 城市道路雨水量计算方法与雨水口设置的初步探讨 一、前言 当路面水不能迅速排泄时,路面会形成水膜而影响行车安全,因此须在道路汇水点、人行横道上游、沿街单位出入口上游、靠地面径流的街坊或庭院的出水口等处设置雨水口(道路低洼和易积水地段应根据需要适当增加雨水口),以及时排除路面雨水,确保在设计重现期内排水畅通、不积水;确保在超过设计重现期时,退水快、积水时间短 二、迳流理论 2.1 迳流产生过程[2] 一般而言,地面点在受雨过程中,首先被植物截留。在地面开始受雨时因地面干燥,渗水率较大,而降雨的起始雨率还小于入渗率,这时降雨被地面全部吸收。随着历时的增长,雨率大于入渗率后地面开始产生余水,当余水量积满洼地后,开始地面迳流,这时部分余水产生积水深度,部分余水产生迳流,在雨率增至最大时相应产生最大余水率,之后雨率逐渐递减,余水率亦渐减小,当雨率降至入渗率时,余水现象停止,但这时有地面积水存在,故仍然产生迳流,入渗率仍按地面入渗能力渗漏,直至地面积水消失,迳流见下图一。对于道路路面而言,无植物截留,且迳流系数较一般地面大得多,因此余水历时、迳流历时、降雨总历时三者的起始点基本相同,累积入渗量极小,其曲线h 可看成与x 轴平行、接近x 轴的一条曲线;再者由于路面相对平坦,死水曲线与累积入渗量曲线h 可近似看作重叠。 2.2 流域汇流过程图二中各条曲线t1,t2,……,tn 为等流时线,每条等流时线上各点的雨水流至集水口a 的时间是相等的,集流时间(t)是流域边缘线上的雨水流达 a 点的时间。在地面迳流开始后不久,a 点所汇集的流量仅来自靠近 a 点的小块面积上的雨水,这时较远处的雨水仅流至中途,随着产生迳流和降雨时间的增长,在 a 点汇集的流量中的汇流面积不断增加,当流域边缘上的雨水也流达 a 点时,这时全面积汇流,a 点的流量达最大。因此,相应于流域集流时间的全面积迳流产生最大迳流量,又称极限强度法。全流域迳流在集流口出现的流量来自t 时段内的降雨量。

排水工程(上册)课后答案及例题79321

精品文库 第二章习题 1、某肉类联合加工厂每天宰杀活牲畜 258T ,废水量标准 8.2m3/t 活畜 ,总变化系数 1.8,三 班制生产 ,每班 8h,最大职工数 860 人 ,其中在高温及污染严重车间工作的职工占总数的 40%, 使用淋浴人数按 85%计 ,其余 60%的职工在一般车间工作 ,使用淋浴人数按 30%计.工厂居住 区面积9 .5× 104 ㎡ ,人口密度 580 人 /104 ㎡ ,生活污水量标准 160L/人· d,各种污水由管道 汇集送至污水处理站 ,试计算该厂的最大时污水设计流量. 解: 该厂的最大时污水设计流量 Q=Q +Q 2 +Q 3 1 k ·n ·k z 160 ×9.5 ×585 ×1.8 Q 1 =24×3600 = 24×3600 =18.525L/s Q 2 A 1 B 1 K 1 +A 2 B 2 K 2 C 1 D 1 +C 2 D 2 860 ×60%×25×3.0+860 ×40%×35×2.5 = T ×3600 + 3600 = 8×3600 860 ×60%×30%×40+860 ×40%×85%×60 + 3600 =2.39+6.59=8.98L/s m ·M ·k z 258 ×8.2 ×1.8 ×103 Q 3 = T ×3600 = 3600 ×24 =44.08 L/s Q=Q 1 +Q 2 +Q 3 =18.525+8.98+44.08=72.59 L/s 2、下图为某工厂工业废水干管平面图。图上注明各废水排除口的位置,设计流量以及各 设计管段的长度,检查井处的地面标高,排除口 1 的管底标高为 218。 9m,其余各排除口 的埋深均不得小于 1.6m 。该地区土壤无冰冻。要求列表进行干管的水力计算,并将计算结果标注在图上。 解:先进行干管的流量计算如下表:

城市道路雨水口的布置计算

城市道路雨水口的布置计算 [摘要]雨水口的布置方式、疏密程度及采用型式直接影响该道路在降雨过程中的排放速度和积水程度。对城市道路雨水口间距进行科学计算,确定合理布置间距和采用型式,增加雨水排放速度,减少积水时间。 [关键词] 雨水口城市道路重现期泄水能力布置间距 [Abstract] the arrangement, the density and the type of a direct impact on the road during rainfall emission rate and degree of hydronephrosis. Scientific calculation of the city road gully spacing, determine the reasonable spacing and the type, increase the drainage speed, reduce the ponding time. [keyword] rain port city road return period flood spacing 1、引言 雨水口是用于收集路面雨水的构筑物,是城市道路的一个重要组成部分。路面雨水经过道路汇集后,经雨水口进入雨水管道,然后排向雨水泵站或城市内水域,完成道路内雨水的收集排放,保证道路的安全畅通,减少雨水对路面的破坏。一个区域的排水管道和雨水泵站的布置,决定了该区域的雨水排放效果,雨水口的布置,也直接影响该道路在降雨过程中的雨水收集效果和积水程度,最终影响了该区域道路的交通安全及路面结构的稳定。 平时的设计施工中,对雨水口的重视程度较小,仅作为次要的附属设置对待,凭鉴经验布置,最终导致雨水口成为道路排水系统的短板,影响了该区域的雨水收集和排放效果。 本文就雨水口的型式及布置间距进行计算,就其优缺点进行分析,寻找最优化的雨水口型式及布置间距。 2、雨水口型式选择 城市道路一般采用平箅式雨水口和立箅式雨水口,还有部分道路采用过水沟及路面边沟,鉴于目前城市内采用前两者较多,此次只比较平箅式雨水口和立箅式雨水口。 平篦式雨水口水流通畅,便于清淤,但暴雨时易被树枝等杂物堵,且位于路面内,容易损坏;立篦式不易堵,位于路面外,不宜损坏,但有的城市因逐年路面加高,使立篦断面减小而影响收水能力。一般道路纵坡较大(大于1%)时,宜选用平箅式雨水口,设计时,可根据城市内使用习惯选择。

给水排水管网系统课程设计例题

第1节设计任务及设计资料 一、设计任务 陕西关中地区A县城区给水管网初步设计 二、设计资料 1.本给水管网设计为陕西关中地区A县城区的给水系统,主要服务对象为县城 镇人口生活和工业生产用水; 2.城区建筑物按六层考虑。土壤冰冻深度在地面以下0.5m; 3.设计区2010年现状人口95800人,人口机械增长率为5‰,设计水平年为 2020年。供水普及率100%; 4.城区工业企业生产.生活用水,见“工业企业用水量资料”(如下)。城区居 民综合生活用水逐时变化见“用水量逐时变化表”(如下)。 工业企业生产生活用水资料 厂名 生产用水职工生活用水 日用水量 m3/d 逐时变 化情况 班制 总人 数 热车间 人数 每班淋浴 人数 污染 程度 A 厂3000 均匀 三班制 (6点起) 3000 600 600 一般 B 厂2500 均匀 二班制(7 点起) 1000 200 400 一般 C 厂1500 均匀 三班制 (7点起) 900 0 200 一般 合计 7000 注:企业内职工生活用水按均匀考虑,淋浴时间在下班后一小 时 综合生活用水逐时变化表 时间 占全天用 水量% 时间 占全天用 水量% 时间 占全天用 水量% 0 ~1 0.36 8 ~9 5.87 16 ~17 5.28 1 ~ 2 0.36 9 ~10 6.10 17 ~18 5.69 2 ~ 3 0.35 10 ~11 5.78 18 ~19 7.05 3 ~ 4 0.44 11 ~12 6.04 19 ~20 6.11 4 ~ 5 2.15 12 ~13 5.60 20 ~21 2.45 5 ~ 6 5.42 13 ~14 5.12 21 ~22 2.42 6 ~ 7 7.11 14 ~15 5.34 22 ~23 1.20 7 ~8 7.81 15 ~16 5.38 23 ~24 0.57 三、设计内容 1.水量计算; 2.管网定线与平面布置; 3.水力计算;

排水工程计算书

一、雨水管道水力计算 (一)、计算依据 1、《室外排水设计规范》(GB50014-2006); 2、《城市道路设计规范》(CJJ37-90); 3、《城市防洪工程设计规范》(GJJ50-92); 4、《给水排水设计手册》; 5、《曹溪东片区控制性详细规划》、《东山片区控制性详细规划-调整》及《龙岩市中心城区管线综合规划》进行汇水流域及雨水系统设计; 6、雨水汇水流域计算图(附图一)。 (二)、本工程雨水管除收集道路二侧地块的雨水外,主要转输闽大路、莲庄路、莲东南路、东环路以及其它规划支路的雨水或山洪水。 1、一般地段雨水管渠设计重现期:取2年。 2、防洪设计标准 根据龙岩市城市总体规划:龙岩市属于中等城市,城市等别为三等,并根据《曹溪东片区控制性详细规划》及《东山片区控制性详细规划-调整》:该地段溪(河)流防洪标准重现期为50年,山洪防洪标准重现期为15年,均可满足现行《城市防洪工程设计规范》,故排山洪管道按公路小流域公式重现期取15年进行设计,并按城市暴雨强度公式重现期取5年进行校核。 3、暴雨强度:采用福建省建设厅发布的《城市及部分县城暴雨强度公式》DBJ13-52-2003中的龙岩市暴雨强度公式: q=2399.136(1+0.471LgP)/(t+8.162)0.756 (L/s·ha) 式中:q------设计暴雨强度(L/s·ha); P------设计重现期(a); t-------设计降雨历时(min)。 4、设计降雨历时,按下公式计算: t=t1+mt2 (min) 式中:t------降雨历时(min); t1-----地面集水时间,一般采用5min; m-----折减系数,暗管折减系数m=2,明渠折减系数m=1.2; t2-----管渠内雨水流行时间(min)。 5、设计流量: Q=q×ψ×F (L/s) 式中:Q------雨水设计流量(L/s); ψ------径流系数,区内综合径流系数取0.65,公园绿地综合径流系数取0.2,

相关主题
文本预览
相关文档 最新文档