当前位置:文档之家› 碳化硅MOS器件电学特性研究

碳化硅MOS器件电学特性研究

碳化硅MOS器件电学特性研究
碳化硅MOS器件电学特性研究

西安电子科技大学

硕士学位论文

碳化硅MOS器件电学特性研究

姓名:丁瑞雪

申请学位级别:硕士

专业:微电子学与固体电子学指导教师:杨银堂

20060101

4碳化硅MOS器件电学特性研究

火工艺的迁移率提高了4倍,而且击穿电压为930V[151。图1.1给出-f2A1992年开始功率SiCMOSFET的发展历程“6】,从图中可以看出,SiCMOSFET在高温、高频,大功率器件应用方面有着良好的发展前景。

199219941996199820002002

Year

图i.i功率SiCMOSFET的发展历程

(DMOS为双注入MOSFET、UMOS为纵向MOSFET、L为横向MOSFET)然而SiCMOSFET要成为高温、大功率和抗辐射的主流器件,以替代SiMOS器件,还相差甚远,还有许多问题需要解决:包括如何改善栅氧化层界面质量(即选择合适的氧化方式和工艺),降低漏源串联电阻(提高离子注入源漏激活和高温退火,降低欧姆接触电阻,最好控制在10。6Q.cm2或更低)等。同其它SiC器件遇到的问题类似,仍然需要对其关键工艺进行摸索和研究,以更大发挥其应用优势。

总的来说,虽然目前碳化硅材料、器件以及集成电路技术已获得巨大的进展,但与人们所预期的碳化硅的各种优越性能相比,其潜力远未实现。只有进一步解决碳化硅材料和器件工艺的一些关键问题,碳化硅的潜在优势才能得到真正发挥。首先碳化硅的单晶生长技术需要进一步提高,使晶片的尺寸更大、缺陷密度更低,更加完善外延掺杂技术和厚度控制技术,从而为制造高质量的碳化硅器件提供优质的原材料。离子注入技术是工艺流程中实现碳化硅器件选择性掺杂的唯一有效的方法,如何更好的消除注入后的品格损伤,激活杂质原子一直是一个有待解决的课题。对于碳化硅MOS器件,Si02.SiC界面和界面附近的界面陷阱电荷和氧化物固定电荷都比普通的硅MOS器件高很多,它们严重地影响着器件的各项特性。研究碳化硅器件的界面电荷分布和其与器件特性的相关性也是一个重要课题,两改进现有的工艺方法,提高si02一SiC界面质量则是当务之急。另外制造高质量的

碳化硅的性能

碳化硅的性能及定义 天然的碳化硅很少,工业上使用的为人工合成原料,俗称金刚砂,是一种典型的共价键结合的化合物。碳化硅是耐火材料领域中最常用的非氧化物耐火原料之一。 (1)碳化硅的性质 碳化硅主要有两种结晶形态:b-SiC和a-SiC。b-SiC为面心立方闪锌矿型结构,晶格常数a=0.4359nm。a-SiC是SiC的高温型结构,属六方晶系,它存在着许多变体。碳化硅的折射率非常高,在普通光线下为 2.6767~2.6480.各种晶型的碳化硅的 密度接近,a-SiC 一般为3.217g/cm3, b-SiC为3.215g/cm3.纯碳化硅是无色透明的,工业SiC由于含有游离Fe、Si、C等杂质而成浅绿色或黑色。绿碳化硅和黑碳化硅的硬度在常温和高温下基本相同。SiC热膨胀系数不大,在25~1400C平 均热膨胀系数为4.5 X10-6/C。碳化硅具有很高的热导率,500 E时为64.4W/ (m ? K)。常温下SiC是一种半导体。碳化硅的基本性质列于下表。

碳化硅具有耐高温、耐磨、抗冲刷、耐腐蚀和质量轻的特点。碳化硅在高温下的氧化是其损害的主要原因。 (2)碳化硅的合成 ①碳化硅的冶炼方法合成碳化硅所用的原料主要是以SiO2为主要成分的脉石 英或石英砂与以C为主要成分的石油焦,低档次的碳化硅可用地灰分的无烟煤为原料。辅助原料为木屑和食盐。 碳化硅有黑、绿两种。冶炼绿碳化硅时要求硅质原料中SiO2含量尽可能咼,杂 质含量尽量低。生产黑碳化硅时,硅质原料中的SiO2可稍低些。对石油焦的要 求是固定碳含量尽可能高,灰分含量小于1.2%,挥发分小于12.0%,石油焦的粒度通常在2mm或 1.5mm以下。木屑用于调整炉料的透气性能,通常的加入量为3% ~5% (体积)。食盐仅在冶炼绿碳化硅时使用。 硅质原料与石油焦在2000~2500C的电阻炉内通过以下反应生成碳化硅: SiO2+3SSiC+2COT -526.09Kj CO通过炉料排出。加入食盐可与 Fe、Al等杂质生成氯化物而挥发掉。木屑使物料形成多孔烧结体,便于CO气体排出。 碳化硅形成的特点是不通过液相,其过程如下:约从1700C开始,硅质原料由 砂粒变为熔体,进而变为蒸汽(白烟);SiO2熔体和蒸汽钻进碳质材料的气孔,渗入碳的颗粒,发生生成Sic的反应;温度升高至1700~1900C时,生成b-SiC ; 温度进一步升高至1900~2000C时,细小的b-SiC转变为a-SiC,a-SiC晶粒逐 渐长大和密实;炉温再升至2500E左右,SiC开始分解变为硅蒸汽和石墨。 大规模生产碳化硅所用的方法有艾奇逊法和ESK法。

电学元件伏安特性研究修订稿

电学元件伏安特性研究内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

中国石油大学(华东)现代远程教育 实验报告 课程名称:大学物理(二) 实验名称: 实验形式:在线模拟+现场实践 提交形式:提交书面实验报告 学生姓名:史玉龙学号: 年级专业层次: 16秋计算机应用技术网络秋高起专 学习中心: 提交时间: 2017 年 5 月 22 日

1.测定线性电阻的伏安特性 本实验在实验板上进行。分立元件R=200Ω和R=2000Ω普通电阻作为被测元件,并按图1-5接好线路。经检查无误后,先将直流稳压电源的输出电压旋钮逆时针旋转,确保打开直流稳压电源后的输出电压在0V左右,然后再打开电源的开关。依次调 节直流稳压电源的输出电压为表1-1中所列数值。并将相对应的电流值记录在表中。 2.测量半导体二极管的伏安特性 (1)正向特性 将稳压电源的输出电压调到 2V后,关闭电源开关,按图1-6 接好线路。经检查无误后,开启稳压电源。调节电位器W,使电压表 读数分别为表1-2中数值,并将相对应的电流表读数记于表1-2中。为了便于作图,在曲线弯曲部分可适当多取几个测量点。 3.测定小灯泡灯丝的伏安特性本实验采用低压小灯泡作为 测试对象。 按图1-8接好电路,并将直 流稳压电源的输出电压调到0V左右。经检查无误后,打开直流稳 压电源开关。依次调节电源输出 电压为表1-4所列数值。并将相 对应的电流值记录在表1-4中。 注意在打开电源开关前一定先将 电压调节旋钮逆时针调到电压最 小的位置。 图1-5 测量线性电阻伏安特性 图1-6 测量半导体二极管的正向 伏安特性 图1-7 测量小灯泡灯丝的伏安特

实验四__电阻元件伏安特性的测定

实验四电阻元件伏安特性的测定 【实验简介】 电阻是电学中常用的物理量。利用欧姆定律测导体电阻的方法称为“伏安法”。 为了研究材料的导电性,通常作出其伏安特性曲线,了解它的电压和电阻的关系。伏安特性曲线是直线的元件称为“线性元件”,伏安特性曲线不是直线的元件称为“非线性元件”。这两种元件的电阻都可以用伏安法测量。但是,由于测量时电表被引入测量电路,电表内阻必然会影响测量结果,因而应考虑对测量结果进行必要的修正,以减小系统误差。 【实验目的】 1、了解电学实验常用仪器的规格、性能,学习它们的使用方法。 2、学习电学实验的基本操作规程和连接电路的一般方法。 3、掌握电阻元件伏安特性的测量方法,用伏安法测电阻。 4、了解系统误差的修正方法,学会作图法处理实验数据。 【实验仪器和用具】 直流稳压电源,直流电压表,直流电流表,滑线变阻器,电阻元件盒(一个百欧,一约千欧,一个二极管),导线10根。 【实验原理】 1、伏安特性曲线 实验中常用的线绕电阻、碳膜电阻和金属膜电阻等,它们都具有以下共同特性,即加在该电阻上的电压与通过其上的电流总是成正比例的变化(忽略电流热效应对阻值的影响)。若以纵坐标表示电流,横坐标表示电压,电流与电压的关系如图4-2(a)所示。具有这种特性的电阻元件成为“线性电阻元件”。 2、非线性电阻 如果电阻电阻元件两端的电流、电压关系为曲线,则这类电阻元件称为“非线性电阻元件”(如热敏电阻、二极管等)。这种元件的特点是电阻随加在它两端的电压改变而改变如图4-2(b)所示。一般均用伏安特性曲线来反映非线性电阻元件的特性。 3、伏安法测电阻 欧姆定律告诉我们,通过一段电路的电流,与这段电路两端的电压成正比,与这段电路

实验一 电路元件的伏安特性

实验一电路元件的伏安特性 一、实验目的 1、研究电阻元件和直流电源的伏安特性及其测定方法。 2、学习直流仪表设备的使用方法。 二、原理及说明 任何一个二端元件的特性可用该元件上的端电压U与通过该元件的电流I 之间的函数关系U=f (I)来表示,即用U-I平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。 1、独立电源和电阻的伏安特性用电压表、电流表测定,称为伏安法(伏安表法)。伏安表法原理简单,测量方便,同时适用于非线性元件伏安特性测量。 图1-1 + - 图1-2 2、理想电压源的内部电阻值Rs为零,其端电压Us ( t )是确定的时间函数,与流过电源的电流大小无关。如果Us ( t )不随时间变化(即为常数),则该电压源称为直流理想电压源Us, 其伏安特性曲线如图1-1中曲线a所示。实际电源的

伏安特性曲线如图1-1中曲线b所示,它可以用一个理想电压源Us和电阻Rs 相串联的电路模型来表示(图1-2)。显然Rs越大,图1-1中的角θ也越大,其正切的绝对值代表实际电源的内阻Rs。 3、理想电流源向负载提供的电流Is ( t )是确定的时间函数,与电源的端电压大小无关。如果Is ( t )不随时间变化(即为常数),则该电流源为直流理想电流源Is,其伏安特性如图1-3中曲线a所示。实际电源的伏安特性如图1-3中曲线b所示,它可以用一个理想电流源Is和电导Gs相并联的电路模型来显示,(图1-4)。显然,Gs越大,图1-3中的θ角也越大,其正切的绝对值代表实际的电导值Gs。 图1-3 + - 图1-4 4、电阻元件的特性可以用该元件两端的电压U与流过的电流I的关系来表征。即满足于欧姆定律: U R= I 在U-I坐标平面上,线性电阻的特性曲线是一条通过原点的直线。该直线的斜率等于该元件的电阻值(以电流为横坐标)。如图1-5中a所示。 5、非线性电阻元件的电压、电流关系,不能用欧姆定律来表示,它的伏安特性一般为一曲线。 ①半导体二极管是非线性电阻元件,正向压降很小(一般的锗管约为0.2~ 0.3V,硅管约为0.5~0.7V),正向电流随正向电压增加而急骤上升;其反向电流随电压增加很小,可视为零。可见,二极管具有单向导电性,其特性如图1-5中c曲线所示。 ②白炽灯在工作时灯丝处于高温状态,其灯丝电阻随着温度的升高而增大,

碳化硅MOSFET性能优势

碳化硅MOSFET性能优势碳化硅功率器件近年来越来越广泛应用于工业领域,受到大家的喜爱,不断地推陈出新,碳化硅MOSFET性能特点介绍如下: 1、SiC器件的结构和特征 Si材料中,越是高耐压器件其单位面积的导通电阻就越大(通常以耐压值的大概2-2.5次方的比例增加),因此600V 以上的电压中主要采用IGBT(绝缘栅极双极型晶体管)。IGBT 通过电导率调制,向漂移层内注入作为少数载流子的空穴,因此导通电阻比MOSFET还要小,但是同时由于少数载流子的积聚,在关断时会产生尾电流,从而造成极大的开关损耗。 SiC器件漂移层的阻抗比Si器件低,不需要进行电导率调制就能够以高频器件结构的MOSFET实现高耐压和低阻抗。而且MOSFET原理上不产生尾电流,所以用SiC MOSFET替代IGBT 时,能够明显地减少开关损耗,并且实现散热部件的小型化。另外,SiC MOSFET能够在IGBT不能工作的高频条件下驱动,从而也可以实现被动器件的小型化。与600V~1200V的Si MOSFET相比,SiC MOSFET的优势在于芯片面积小(可以实现小型封装),而且体二极管的恢复损耗非常小。 2、SiC Mosfet的导通电阻 SiC的绝缘击穿场强是Si的10倍,所以能够以低阻抗、

薄厚度的漂移层实现高耐压。因此,在相同的耐压值的情况下,SiC可以得到标准化导通电阻(单位面积导通电阻)更低的器件。例如900V时,SiC‐MOSFET的芯片尺寸只需要Si ‐MOSFET的35分之1、SJ‐MOSFET的10分之1,就可以实现相同的导通电阻。不仅能够以小封装实现低导通电阻,而且能够使门极电荷量Qg、结电容也变小。目前SiC器件能够以很低的导通电阻轻松实现1700V以上的耐压。因此,没有必要再采用IGBT这种双极型器件结构(导通电阻变低,则开关速度变慢),就可以实现低导通电阻、高耐压、快速开关等各优点兼备的器件。 3、Vd-Id特性 SiC‐MOSFET与IGBT不同,不存在开启电压,所以从小电流到大电流的宽电流范围内都能够实现低导通损耗。而Si MOSFET在150℃时导通电阻上升为室温条件下的2倍以上,与Si MOSFET不同,SiC MOSFET的上升率比较低,因此易于热设计,且高温下的导通电阻也很低。 4、驱动门极电压和导通电阻 SiC‐MOSFET的漂移层阻抗比Si MOSFET低,但是另一方面,按照现在的技术水平,SiC MOSFET的MOS沟道部分的迁移率比较低,所以沟道部的阻抗比Si器件要高。因此,越高的门极电压,可以得到越低的导通电阻(Vgs=20V以上则逐渐饱和)。如果使用一般IGBT和Si MOSFET使用的驱动电

材料的电学性能测试

材料科学实验讲义 (一级实验指导书) 东华大学材料科学与工程中心实验室汇编 2009年7月

一、实验目的 按照导电性能区分,不同种类的材料都可以分为导体、半导体和绝缘体三大类。区分标准一般以106Ω?cm和1012Ω?cm为基准,电阻率低于106Ω?cm称为导体,高于1012Ω?cm称为绝缘体,介于两者之间的称为半导体。然而,在实际中材料导电性的区分又往往随应用领域的不同而不同,材料导电性能的界定是十分模糊的。就高分子材料而言,通常是以电阻率1012Ω?cm为界限,在此界限以上的通常称为绝缘体的高分子材料,电阻率小于106Ω?cm称为导电高分子材料,电阻率为106 ~1012Ω?cm常称为抗静电高分子。通常高分子材料都是优良的绝缘材料。 通过本实验应达到以下目的: 1、了解高分子材料的导电原理,掌握实验操作技能。 2、测定高分子材料的电阻并计算电阻率。 3、分析工艺条件与测试条件对电阻的影响。 二、实验原理 1、电阻与电阻率 材料的电阻可分为体积电阻(R v)与表面电阻(R s),相应的存在体积电阻率与表面电阻率。 体积电阻:在试样的相对两表面上放置的两电极间所加直流电压与流过两个电极之间的稳态电流之商;该电流不包括沿材料表面的电流。在两电极间可能形成的极化忽略不计。 体积电阻率:在绝缘材料里面的直流电场强度与稳态电流密度之商,即单位体积内的体积电阻。 表面电阻:在试样的某一表面上两电极间所加电压与经过一定时间后流过两电极间的电流之商;该电流主要为流过试样表层的电流,也包括一部分流过试样体积的电流成分。在两电极间可能形成的极化忽略不计。 表面电阻率:在绝缘材料的表面层的直流电场强度与线电流密度之商,即单位面积内的表面电阻。 体积电阻和表面电阻的试验都受下列因素影响:施加电压的大小和时间;电极的性质和尺寸;在试样处理和测试过程中周围大气条件和试样的温度、湿度。高阻测量一般可以利用欧姆定律来实现,即R=V/I。如果一直稳定通过电阻的电流,那么测出电阻两端的电压,就可以算出R的值。同样,给被测电阻施加一个已知电压,测出流过电阻的电流,也可以算出R的值。问题是R值很大时,用恒流测压法,被测电压V=RI将很大。若I=1μA,R=1012Ω,要测的电压V=106V。用加压测流法,V是已知的,要测的电流I=V/R将很小。因为处理弱电流难度相对小些,我们采用加压测流法,主要误差来源是微弱电流的测量。 2、导电高分子材料的分类

碳化硅性能与碳化硅生产工艺

碳化硅性能与碳化硅生产工艺 天然的碳化硅很少,工业上使用的为人工合成原料,俗称金刚砂,是一种典型的共价键结合的化合物。碳化硅是耐火材料领域中最常用的非氧化物耐火原料之一。 (1)碳化硅的性质: 碳化硅主要有两种结晶形态:b-SiC 和 a-SiC。b-SiC 为面心立方闪锌矿型结构,晶格常 数 a=0.4359nm。a-SiC 是 SiC 的高温型结构,属六方晶系,它存在着许多变体。 碳化硅的折射率非常高,在普通光线下为 2.6767~2.6480.各种晶型的碳化硅的密度接近, a-SiC 一般为3.217g/cm3,b-SiC 为 3.215g/cm3.纯碳化硅是无色透明的,工业 SiC 由于含有游离 Fe、Si、C 等杂质而成浅绿色或黑色。绿碳化硅和黑碳化硅的硬度在常温和高温下基本相同。SiC 热膨胀系数不大,在25~1400℃平均热膨胀系数为 4.5×10-6/℃。碳化硅具有很高的热导率,500℃时为 64.4W/ (m·K)。常温下SiC 是一种半导体。 碳化硅具有耐高温、耐磨、抗冲刷、耐腐蚀和质量轻的特点。碳化硅在高温下的氧化是其损害的主要原因。 (2)碳化硅的合成: ①碳化硅的冶炼方法,合成碳化硅所用的原料主要是以 SiO2 为主要成分的脉石低档次的碳化硅可用低灰分的无烟煤为原料。辅助原料为木屑和食盐。 碳化硅有黑、绿两种。冶炼绿碳化硅时要求硅质原料中 SiO2 含量尽可能高,杂质含量尽量低。生产黑碳化硅时,硅质原料中的 SiO2 可稍低些。对石油焦的要求是固定碳含量尽可能高,灰分含量小于 1.2%,挥发分小于 12.0%,石油焦的粒度通常在 2mm 或 1.5mm 以下。木屑用于调整炉料的透气性能,通常的加入量为 3% ~5%(体积)。食盐仅在冶炼绿碳化硅时使用。 硅质原料与石油焦在 2000~2500℃的电阻炉内通过以下反应生成碳化 硅:SiO2+3C→SiC+2CO↑-526.09Kj CO 通过炉料排出。加入食盐可与 Fe、Al 等杂质生成氯化物而挥发掉。木屑使物料形成多孔烧结体,便于CO 气体排出。 碳化硅形成的特点是不通过液相,其过程如下:约从 1700℃开始,硅质原料由砂粒变为熔体,进而变为蒸汽(白烟);SiO2 熔体和蒸汽钻进碳质材料的气孔,渗入碳的颗粒,发生生成 Sic 的反应;温度升高至1700~1900℃时,生成 b-SiC;温度进一步升高至 1900~2000℃时,细小的 b-SiC 转变为 a-SiC,a-SiC 晶粒逐渐长大和密实;炉温再升至 2500℃左右,SiC 开始分解变为硅蒸汽和石墨。 大规模生产碳化硅所用的方法有艾奇逊法和ESK 法。 艾奇逊法:传统的艾奇逊法电阻炉的外形像一个长方形的槽子,它是有耐火砖砌成的炉床。两组电极穿过炉墙深入炉床之中,专用的石墨粉炉芯体配置在电极之间,提供一条导电通道,

《电学元件伏安特性的测量》实验报告附页

《电学元件伏安特性的测量》实验报告 (数据附页) 一、半定量观察分压电路的调节特点 变阻器R=470Ω 二、用两种线路测电阻的对比研究 电流表准确度等级1.5,量程I m =5mA,R I =8.38±0.13Ω 电压表准确度等级1.5,量程U m =0.75V,R V =2.52±0.04kΩ; 量程U m =3V,R V =10.02±0.15kΩ

三、测定半导体二极管正反向伏安特性 由于正向二极管的电阻很小,采用外接法的数据;反向电阻很大,采用内接法的数据。 四、戴维南定理的实验验证 1.将9V电源的输出端接到四端网络的输入端上,组成一个有源二端网络,求出等效 电动势E e 和等效内阻R e 。(外接法)

取第二组和第七组数据计算得到: E e =2.15V R e =319.5Ω 由作图可得: E e =2.3V R e =352.8Ω 2. 用原电路和等效电路分别加在相同负载上,测量外电路的电压和电流值。 3. 理论计算。 % 6.17% 7.10.30034.2951.14917.19932.6162 12132 12321的相对误差为 的相对误差为与实验值比较e e e e R E R R R R R R V R R ER E V E R R R Ω =++ ==+= =Ω=Ω=Ω= 4.讨论。 等效电动势的误差不是很大,而等效电阻却很大。原因是多方面的。但我认为最大的原因应该是作图本身。所有数据的点都集中在一个很小的区域,点很难描精确,直线的绘制也显得过于粗糙,人为的误差很大。 如果对数据进行拟合,可以得到I=-3.298U+6.836,于是得到E e =2.07V ,R e =303.2Ω,前者误差为11.5%,后者误差为1.1%,效果比直接读图好,因为消除了读图时人为的误差。 另外一点,仪表读数也是造成误差大的一个原因。比如电流表没有完全指向0,电压表不足一格的部分读得很不准等等。

碳化硅/环氧树脂复合材料的制备及性能研究

碳化硅/环氧树脂复合材料的制备及性能研究 分别采用固化剂D230、9035、acamine 2636与环氧树脂E51混合,然后分别与用硅烷偶联剂(KH550、KH560、A171)处理的碳化硅颗粒混合,采用浇注法制备了碳化硅/环氧树脂复合材料。以材料的弯曲强度为评价方法,研究了3种不同固化剂构成的环氧树脂体系以及3种硅烷偶联剂对碳化硅/环氧树脂复合材料性能的影响,以及复合材料弯曲强度与材料中环氧树脂含量的关系。结果表明,3种固化剂中以D230、9035制备的材料性能为好;采用KH550、KH560处理碳化硅颗粒后的材料性能比不处理或采用A171处理碳化硅颗粒后的材料性能为好。随着复合材料中环氧树脂相含量的增加复合材料的弯曲强度下降。 标签:环氧树脂;碳化硅;复合材料 1 前言 环氧树脂是一种常用的具有良好使用性、价廉的热固性高分子材料,但也具有耐摩擦磨损性能和导热性能较差的缺点,通常需要与其他无机填料复合才能获得良好的耐磨损性能和导热性能[1]。碳化硅(SiC)具有高强度、高硬度、耐磨、耐腐蚀、抗氧化、高热导率、良好的高温稳定性、低的线胀系数、强的耐化学腐蚀性等优点[2]。将碳化硅颗粒(包括纳米颗粒)和环氧树脂混合后固化成型,制备碳化硅/环氧树脂复合材料,可以制备耐磨损材料和导热材料[3~5]。 浇注法制备颗粒填充的环氧树脂复合材料具有操作简单,改变模具可制成各种形状部件的优点。本研究采用价格相对便宜且易得的普通碳化硅颗粒、3种固化剂和环氧树脂,用浇注法制备了碳化硅/环氧树脂复合材料。系统研究了固化剂、硅烷偶联剂对碳化硅颗粒的表面处理对复合材料弯曲性能的影响,以及碳化硅/环氧树脂复合材料弯曲性能与环氧树脂相含量的关系。 2 实验部分 2.1 主要原料 环氧树脂(E-51),天津天豪达化工有限公司;固化剂acamine 2636,美国空气产品公司;固化剂9035,苏州亨思特实业有限公司;固化剂D230,美国亨斯迈公司;偶联剂KH 550、KH560,辽宁盖州市恒达化工有限责任公司;偶联剂A171,美国联碳公司;促进剂K54,韩国金井公司;黑碳化硅颗粒(12#、60#、90#、320#),市售。 2.2 碳化硅/环氧树脂复合材料的制备 在容器中加入乙醇和偶联剂,配成偶联剂质量分数为5%的溶液。加入碳化硅颗粒浸泡30 min,过滤后将碳化硅在120 ℃干燥30 min。

实验一 电路元件伏安特性的测试

实验一电路元件伏安特性的测试 一、实验目的 1.学会识别常用电路元件的方法 2.掌握线性电阻、非线性电阻元件伏安特性的测试方法 3.熟悉实验台上直流电工仪表和设备的使用方法 二、原理说明 电路元件的特性一般可用该元件上的端电压U 与通过该元件的电流I 之间的函数关系I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。电阻元件是电路中最常见的元件,有线性电阻和非线性电阻之分。实际电路中很少是仅由电源和线性电阻构成的“电平移动”电路,而非线性器件却常常有着广泛的使用,例如非线性元件二极管具有单向导电性,可以把交流信号变换成直流量,在电路中起着整流作用。 万用表的欧姆档只能在某一特定的U和I下测出对应的电阻值,因而不能测出非线性电阻的伏安特性。一般是用含源电路“在线”状态下测量元件的端电压和对应的电流值,进而由公式R=U/I求测电阻值。 1.线性电阻器的伏安特性符合欧姆定律U=RI,其阻值不随电压或电流值的变化而变化,伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示,该直线的斜率等于该电阻器的电阻值。 图1-1 元件的伏安特性 2.白炽灯可以视为一种电阻元件,其灯丝电阻随着温度的升高而增大。一般灯泡的“冷电阻”与“热电阻”的阻值可以相差几倍至十几倍。通过白炽灯的电流越大,其温度越高,阻值也越大,即对一组变化的电压值和对应的电流值,所得U/I不是一个常数,所以它的伏安特性是非线性的,如图1-1(b)所示。 3.半导体二极管也是一种非线性电阻元件,其伏安特性如图1-1(c)所示。二极管的电阻值随电压或电流的大小、方向的改变而改变。它的正向压降很小(一般锗管约为0.2~0.3V,硅管约为0.5~0.7V),正向电流随正向压降的升高而急剧上升,而反向电压从零一直增加到十几至几十伏时,其反向电

电阻伏安特性

实验19 电阻伏安特性及电源外特性的测量 一、实验目的 1. 学习测量线性和非线性电阻元件伏安特性的方法,并绘制其特性曲线; 2. 学习测量电源外特性的方法; 3. 掌握运用伏安法判定电阻元件类型的方法; 4. 学习使用直流电压表、电流表,掌握电压、电流的测量方法。 二、实验仪器 直流恒压源恒流源,数字万用表,各种电阻11只,白炽灯泡1只(12V/3W)及灯座,稳压二极管(2CW56),电位器(470/2W),短接桥和连接导线及九孔插件方板 三、实验原理 1. 电阻元件 (1)伏安特性 (a) 线性电阻的伏安特性曲线(b) 非线性电阻的伏安特性曲线 二端电阻元件的伏安特性是指元件的端电压与通过该元件电流之间的函数关系。通过一定的测量电路,用电压表、电流表可测定电阻元件的伏安特性,由测得的伏安特性可了解该元件的性质。通过测量得到元件伏安特性的方法称为伏安测量法(简称伏安法)。根据

测量所得数据,画出该电阻元件的伏安特性曲线。 (2)线性电阻元件 线性电阻元件的伏安特性满足欧姆定律。可表示为:U=IR ,其中R 为常量,它不随其电压或电流改变而改变,其伏安特性曲线是一条过坐标原点的直线,具有双向性。如图19-1(a )所示。 (3)非线性电阻元件 非线性电阻元件不遵循欧姆定律,它的阻值R 随着其电压或电流的改变而改变,其伏安特性是一条过坐标原点的曲线,如图19-1(b )所示。 (4)测量方法 在被测电阻元件上施加不同极性和幅值的电压,测量出流过该元件中的电流;或在被测电阻元件中通入不同方向和幅值的电流,测量该元件两端的电压,便得到被测电阻元件的伏安特性。 2. 直流电压源 (1)直流电压源 理想的直流电压源输出固定幅值的电压,而它的输出电流大小取决于它所连接的外电路。因此它的外特性曲线是平行于电流轴的直线,如图19-2(a )中实线所示。实际电压源的外特性曲线如图19-2(a )虚线所示,在线性工作区它可以用一个理想电压源Us 和内电阻Rs 相串联的电路模型来表示,如图19-2(b )所示。图19-2(a )中角θ越大,说明实际电压源内阻Rs 值越大。实际电压源的电压U 和电流I 的关系式为: I R U U S S ?-= (19-1) (2)测量方法 将电压源与一可调负载电阻串联,改变负载电阻R 2的阻值,测量出相应的电压源电

碳化硅特性

碳化硅特性 碳化硅是一种人工合成的碳化物,分子式为SiC。通常是由二氧化硅和碳在通电后200 0℃以上的高温下形成的。碳化硅理论密度是3.18g/cm3,其莫氏硬度仅次于金刚石,在9.2 -9.8之间,显微硬度3300kg/mm3,由于它具有高硬度、高耐磨性、高耐腐蚀性及较高的高温强度等特点,被用于各种耐磨、耐蚀和耐高温的机械零部件,是一种新型的工程陶瓷新材料。纯碳化硅是无色透明的结晶,工业碳化硅有无色、淡黄色、浅绿色、深绿色、浅蓝色、深蓝色乃至黑色的,透明程度依次降低。磨料行业把碳化硅按色泽分为黑色碳化硅和绿色碳化硅2类。其中无色的至深绿色的都归入绿色碳化硅类,浅兰色的至黑色的则归入黑色碳化硅类。黑色和绿色这2种碳化硅的机械性能略有不同,绿色碳化硅较脆,制成的磨具富于自锐性;黑碳化硅较韧。 碳化硅结晶结构是一种典型的共价键结合的化合物,自然界几乎不存在。碳化硅晶格的基本结构单元是相互穿插的SiC4和CSi4四面体。四面体共边形成平面层,并以顶点与下一叠层四面体相连形成三维结构。SiC具有α和β两种晶型。β-SiC的晶体结构为立方晶系,Si和C分别组成面心立方晶格;α-SiC存在着4H、15R和6H等100余种多型体,其中,6H多型体为工业应用上最为普遍的一种。α-SiC是高温稳定型,β-SiC是低温稳定型。β-SiC在2100~2400℃可转变为α-SiC,β-SiC可在1450℃左右温度下由简单的硅和碳混合物制得。在温度低于1600℃时,SiC以β-SiC形式存在。当高于1600℃时,β-SiC 缓慢转变成α-SiC的各种多型体。4H-SiC在2000℃左右容易生成;15R和6H多型体均需在2100℃以上的高温才易生成;对于6H-SiC,即使温度超过2200℃,也是非常稳定的。常见的SiC多形体列于下表:

电学元件伏安特性的研究

实验一 电学元件伏安特性的研究 不同电学元件的伏安特性曲线不同,由此可以知道电学元件的导电特性,从而了解它们在电路中的作用。 [实验目的] 1.了解电阻及二极管的伏安特性 2.掌握用伏安法测量时的接线方法 3.了解分压器和电表的正确使用方法 [实验仪器] 直流稳压电源、滑线变阻器、毫安表(微 安表)、电压表、换向开关、待测电阻、二极管 [实验原理] 1.电学元件的伏安特性 在某一电学元件两端加上直流电压,在元件 内就会有电流通过,通过元件的电流与端电压 之间的关系称为电学元件的伏安特性。一般以 电压为横坐标和电流为纵坐标作出元件的电压 电流关系曲线,称为该元件的伏安特性曲线。 对于碳膜电阻、金属膜电阻、线绕电阻等电学元件,在通常情况下,通过元件的电流与加在元件两端的电压成正比关系变化,即其伏安特性曲线为一直线。这类元件称为线性元件,如图4-2-1-1所示。至于半导体二极管、稳压管等元件,通过元件的电流与加在元件两 端的电压不成线性关系变化,其伏安特性为一 曲线。这类元件称为非线性元件,如图4-2-1-2 所示。 2.二极管简介 2AP 型的二极管是由P 型锗和N 型锗组成 的半导体二极管。二极管的正向与反向特性曲 线与符号如图4-2-1-3所示。二极管的伏安特 性包括正向特性、反向特性和反向击穿特性 ⑴二极管的主要参数:(交流环境)(整流用) 最大整流电流am I :二极管长期工作时所 允许的最大正向平均电流。当流经二极管的最 大电流大于此值时,二极管会因发热而损坏。 最高反向工作电压RM U : 保证二极管不 被击穿所允许施加的最大反向电压。 最大反向电流:二极管加上最高反向电压 时反向电流。该值愈小,说明二极管的单向导 电性愈好。 ⑵二极管的单向导电性 PN 结处加正向电压时,PN 结处于导通状态,此时的电

电路元件的伏安特性

课程名称电路原理实验日期 实验名称电路元件伏安特性的测定成绩 实验目的: 1. 掌握几种元件的伏安特性的测试方法; 2. 掌握实际电压源和电流源的使用调节方法; 3. 学习常用电工仪表和设备的使用方法。 实验条件: 机房七,Multisim 仿真平台。 实验内容及步骤: (1)测定线性电阻的伏安特性 按图1-2接线,依次调节稳压电源的输出电压为原始数据为表 1 —1中数值,并测相应的电流值记入表中。 图1-2

_|_V1 ::: 二 10& (2) 测定理想电压源的伏安特性 直流稳压电源,其内阻很小,作为理想的电压源。按图 1 —3线路接好后,接通 晶体管稳压电源,调节输出电压 Us=10v ,再调节可变电阻R L ,使直流电流表读数分 别为表1 —4中数据,将相应的电压数据写入表 1 —3中。 200 0 R L 图1-3 (t (3) 测定实际电源内阻及伏安特性 晶体管直流稳压电源和一个 51欧的电阻串联,作为一个实际电压源。按图 1— 4 0.020 一 WV-」 ::::::: DC 1e-&032 R2:: 丄⑷] 二 10 V 10.000 DC U2 0.0 0 UT ; I ; DC 10MC-■ mA

接线,当负载R L开路时调节稳压电源的输出电压U=10V,再调节负载,当电流表的数据分别为表1-1~表1-3中的数值时,将相应的电压、电流数值写入表1-3中,并计算相应的功率值。 图1-4 数据记录: 表1-2 理想电压源的伏安特性 表1-3实际电压源伏安特性

实验总结: 通过本次实验,我学会了用Multisim仿真平台测定电路元件的伏安特性。并且,在连接电路时一定要注意电压表和电流表的正负极,使之正确的接入电路中。否者,电表的读数可能会出现负值。在进行电压源伏安特性的研究中,我们可以看到当电阻R L小于51 Q时电阻的功率随着电阻的增大而增大,当R L大于51Q时,功率随着电阻的增大而减小。因此,我们可以知道当R L等于51Q时,电源的输出功率达到最大。实验思考: 用电压表和电流表测量元件的伏安特性时,电压表可接在电流表之 前或之后,两者对测量误差有何影响? 答:电流表内接,电流测量准确,电压测的是元件和电流表共同的电压,所以会较实际偏大。使得测量的电阻偏大。电流表外接的话,电压表测量准确,电流表测的是电压表和元件并联电路的电流,较实际偏大,根据公式算出结果电阻偏小。

电路元件伏安特性的测量

实验一:电路元件伏安特性的测量 一、实验目的 1. 掌握线性、非线性电阻元件及电源的概念。 2.学习线性电阻和非线性电阻伏安特性的测试方法。 3.学习直流电压表、直流电流表及直流稳压电源等设备的使用方法。 二、实验仪器 电路分析实验箱、数字万用表、直流电流表、直流电压表、二极管、稳压二极管、电阻 三、实验原理 1、数字万用表的构成及使用方法 数字万用表一般由二部分构成,一部分是被测量电路转换为直流电压信号,我们称为转换器,另一部分是直流数字电压表。 直流数字电压表构成了万用表的核心部分,主要由模-数转换器和显示器组成。可用于测量交直流电压和电流、电阻、电容、二极管正向压降及电路通断,具有数据保持和睡眠功能。 2、整体结构 1)交直流电压测量 (1)将红表笔插入VQ插孔,黑表笔插入COM插孔。 (2)将功能开关置于V量程档。 将测试表笔并联在被测元件两端 2)交直流电流测量 (1)将红表笔插入mA或A插孔,黑表笔插入COM插孔。(2)将功能开关置A量程。 (3)表笔串联接入到待测负载回路里。 3)电阻测量 (1)将红表笔插入VQ插孔,黑表笔插入COM插孔。 (2)将功能开关置于Q量程。 (3)将测试表笔并接到待测电阻.上 4)二极管和蜂鸣通断测量 (1)将红表笔插入VQ插孔,黑色表笔插入”COM”插孔。(2)将功能开关置于二极管和蜂鸣 通断测量档位。 (3)如将红表笔连接到待测-二极管的正极,黑表笔连接到待测二极管的负极,则LCD.上的 读数为二极管正向压降的近似值。 将表笔连接到待测线路的两端,若被测线路两端之间的电阻大于700,认为电路断路;被测线路两端之间的电阻≤100,认为电路良.好导通,蜂鸣器连续声响;如被测两端之间的电阻在10~700之间,蜂鸣器可能响,也可能不响。同时LCD显示被测线路两端的电阻值。

碳化硅陶瓷的性能与应用

碳化硅陶瓷的性能与应用 李 缨1 黄凤萍2 梁振海1 (1咸阳陶瓷研究设计院 陕西咸阳 712000) (2陕西科技大学化工学院 西安 710021) 摘 要 详细的介绍了碳化硅原料的生产,碳化硅陶瓷的抗氧化、耐酸碱等化学性能,微观结构、色泽、热膨胀和导热系数、硬度、韧性等物理性能。并阐述了3种常用碳化硅陶瓷的致密化技术以及碳化硅在耐火材料、军事、航空航天、钢铁、电气和电工等工业部门的应用以及优越的性能和未来的应用前景。 关键词 碳化硅 陶瓷 性能 应用 碳化硅是一种人造材料,只是在人工合成碳化硅之后,才证实陨石中及地壳上偶然存在碳化硅,碳化硅的分子式为SiC,分子量为40.07,质量百分组成为70. 045的硅与29.955的碳,碳化硅的密度为3.16~3.2g 。由于碳化硅陶瓷具有诸多优异的性能,近年来被广泛应用于航空航天、机械工业、电子等各个领域,市场前景广阔,因此,研究其性能与应用具有十分重要的意义。 1 碳化硅粉体的制备 碳化硅粉体的制备方法较多,有最古老的阿奇逊合成法(Acheson),也有近十几年发展起来的激光法和有机前驱体法,以下介绍的是典型的Acheson碳化硅合成方法[1]。 该方法是采用碳热还原过程将SiO2与C反应生成SiC,反应式如下: SiO2+3C SiC+2C O 二氧化硅原料的可选用熔融石英砂或破碎过的石英岩,碳可用石墨、石油焦或无灰无烟煤制取,加入NaCl和木屑作为添加剂,一般在2000~2400℃的电弧炉中反应合成。 整个反应炉由可移动的耐火砖组成,长10~20m,宽与高3~4m,可容纳400t石墨电极,放在两端,通电后产生高温。由于反应过程中整个电弧炉很大,温度场的分布不均匀,中心温度远高于炉壁温度,因此造成在碳化硅的合成炉生成带中产物的不均匀,并常有不纯物质,核芯部位的产物是纯的绿色碳化硅,向外杂质较多,一般杂质为铁、铝、碳等,因此颜色呈黑色。此方法生产的SiC再经分拣与粉碎后分级成不同粒径的颗粒。根据颜色与纯度来区别,则可分为绿色SiC与黑色SiC。根据颗粒大小来分,又可分为不同细度颗粒的碳化硅。采用该方法生产的也可称为高温法碳化硅,它的相为α-SiC。用此方法生产的碳化硅如果要用到陶瓷生产中,还需经过粉碎与提纯处理,达到所需的纯度与粒度后方能使用。 2 碳化硅的化学性质 碳化硅的化学稳定性与其氧化特性有密切关系[2]。碳化硅本身很容易氧化,但它氧化之后形成了一层二氧化硅薄膜,氧化进程逐步被阻碍。在空气中,碳化硅于800℃时就开始氧化,但很缓慢;随着温度升高,则氧化速度急速加快。碳化硅的氧化速率,在氧气中比在空气中快1.6倍;氧化速率的速度随着时间推移而减慢。如果以时间推移对氧化的数量描图,可以得到典型的抛物线图形.这反映出二氧化硅保护层对碳化硅氧化速率的阻碍作用。 氧化时,若同时存在着能将二氧化硅薄膜移去或使之破裂的物质,则碳化硅就易被进一步氧化。例如:铁、锰等金属有几种化合价,其氧化物能将碳化硅氧化,并且又能与二氧化硅生成低熔点化合物,能侵蚀碳化硅。例如,FeO在1300℃、MnO在1360℃能侵蚀碳化硅;而Ca O、MgO在1000℃就能侵蚀碳化硅。

电路元件伏安特性的测量(实验报告答案)

电路元件伏安特性的测量(实验报告答案) 一、实验目的 1.学习测量电阻元件伏安特性的方法; 2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法; 3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。 二、实验原理 在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式 I=f(U)来表示,即用 I -U 平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图 1-1(a)所示。该直线的斜率只由电阻元件的电阻值R 决定,其阻值 R 为常数,与元件两端的电压 U 和通过该元件的电流I 无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R 不是常数,即在不同的电压作用下,电阻值是不同的。常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图 1-1(b)、(c)、(d)所示。在图 1-1 中, U >0的部分为正向特性,U<0 的部分为反向特性。

绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压 U 作用下,测量出相应的电流 I ,然后逐点绘制出伏安特性曲线 I = f ( U ),根据伏安特性曲线便可计算出电阻元件的阻值。 三、实验设备与器件 1.直流稳压电源 1 台 2.直流电压表 1 块 3.直流电流表 1 块 4.万用表 1 块 5.白炽灯泡 1 只 6. 二极管 1 只 7.稳压二极管 1 只 8.电阻元件 2 只 四、实验内容 1.测定线性电阻的伏安特性 五、实验预习 1. 实验注意事项 (1)测量时,可调直流稳压电源的输出电压由 0 缓慢逐渐增加,应时刻注意电压表和电流表,不能超过规定值。

电阻元件伏安特性的测定

电阻元件伏安特性的测定 一、引言 电阻是电学中最常用到的物理量之一,我们有很多方法可以测量电子组件的电阻,采用补偿原理的方法称为补偿法测电阻,利用欧姆定律来求导体电阻的方法称为伏安法,其中,伏安法是测量电阻的基本方法之一。为了研究元件的导电性,我们通常测量出其两端电压与通过它的电流之间的关系,然后作出其伏安特性曲线,根据曲线的走势来判断元件的特性。伏安特性曲线是直线的元件称为线性元件,不是直线的元件称为非线性元件,这两种元件的电阻都可以用伏安法来测量。采用伏安法测电阻,有两种接线方式,即电压表的外接和内接(或称为电流表的内接和外接)。不论采取那种方式,由于电表本身有一定的内阻,测量时电表被引入电路,必然会对测量结果有一定的影响,因此,我们在测量过程中必须对测量结果进行必要的修正,以减小误差。 二、实验内容 本实验包含测量金属膜的伏安特性和测量小灯泡的伏安特性两个实验,其中,测量金属膜的伏安特性又分为电压表外接和电压表内接两种方式。 三、实验原理 当一个电子元件接入电路构成闭合回路,其两端的电压与通过它的电流的比值即为该条件下电子组件的电阻。若电子元件两端的电压与通过它的电流成固定的正比例,则其伏安特性曲线为一条直线,这类元件称为线性元件;而当电子元件两端的电压与通过它的电流不成固定的正比例时,其伏安 特性曲线是一条曲线,这类元件称为非线性元件。 般金属导体的电阻是线性电阻,其伏安特性曲线是一条直线。 电阻是电子元件的重要特性,在电学实验中我们经常要测量其大小。在要求不是很精确的条件

下,我们可以采用伏安法测电阻,即测出被测元件两端的电压U 和通过它的电流I,然后运用欧姆定律R=U/I ”即可求得被测元件的电阻R。同时,我们也可以运用作图法,作出其伏安特性曲线,从曲线上求得电阻的阻值。伏安特性曲线是直线的电阻称为线性电阻,否则则为非线性电阻。非线性电阻的阻值是不确定的,只有通过作图法才能反映其特性。 用伏安法测电阻,原理和操作都很简单,但由于电表有一定的内阻,必然就会给实验带来一定的误差。伏安法测电阻的电路连接方式有电压表的内接和外接两种方式。 在电压表内接法中,电流表测出的电流值I 是通过电阻和电压表的电流之和,即 I=I X + I V,因此,R=U X/|=U X/(I X+I V)=R X/(1+R X/R V)。可见,这种条件下,电压表的内阻对实验有一定的影响,运用电压表内接法,会导致测量值比真实值要小。 在电压表外接法中,电压表测出的电压值U 包含了电流表两端的电压,即 U=U mA+U x,因此,R=U/I X=(U X+U mA)/I X=R X +R mA (其中,U X为电阻两端的真实电压,R X为电阻的真实值,R mA为电流表的内阻,R为测量值)。可见,电流表的内阻对实验结果有一定的影响,运用电压表外接法,会导致测量值比真实值要大,而其差值正好是电流表的内阻。 上述两种伏安法测电阻的电路连接方式,都会给实验结果带来一定的系统误差,为了减小上述误差,我们可以根据被测电阻的大小与电表内阻的大小来选择合适的电路连接方式。当:R x〈〈R V 且R x〉R mA 时,选择电压表的内接法;R x〉〉R mA 且R x〈R V 时,选择电压表的外接法;R X >> R mA且R X << RV时,两种接法均可。

碳化硅性能指标及市场价格

碳化硅性能指标及市场价格分析 摘要:国家环保政策的严格实施,碳化硅的市场格局将重新形成,给开发相关产品带来了机遇,文章对碳化硅的产品性能指标及市场价格进行了介绍。 1 前言 碳化硅又称碳硅石,在当代C、N、B等非氧化物高技术耐火原料中,碳化硅应用广泛,可以称为金钢砂或耐火砂。由二氧化硅和碳在通电后2000℃以上的高温下形成的,碳化硅理论密度是3.18克每立方厘米,其莫氏硬度仅次于金刚石,在9.2-9.8之间,显微硬度3300千克每立方毫米,由于它具有高硬度、高耐磨性、高耐腐蚀性及较高的高温强度等特点,被用于各种耐磨、耐蚀和耐高温的机械零部件,是一种新型的工程陶瓷新材料。 碳化硅是一种人工合成的碳化物,分子式为SiC;常用的碳化硅磨料有两种不同的晶体,一种是绿碳化硅,含SiC 97%以上,主要用于磨硬质含金工具;另一种是黑碳化硅,有金属光泽,含SiC 95%以上,强度比绿碳化硅大,但硬度较低,主要用于磨铸铁和非金属材料。 黑碳化硅是以石英砂,石油焦和优质硅石为主要原料,通过电阻炉高温冶炼而成;其硬度介于刚玉和金刚石之间,机械强度高于刚玉,性脆而锋利。绿碳化硅是以石油焦和优质硅石为主要原料,添加食盐作为添加剂,通过电阻炉高温冶炼而成,其硬度介于刚玉和金刚石之间,机械强度高于刚玉。 2 不同品种碳化硅理化指标 3 产品性能分析 元丰碳化硅具有化学性能稳定、导热系数高、热膨胀系数小、耐磨性能好耐腐蚀、耐高温、强度大、导热性能良好、抗冲击等特性。用碳化硅制成的高级耐火材料,耐热震、体积小、重量轻而强度高,节能效果好。 绿碳化硅呈绿色或蓝绿色,呈半透明状,六方晶形,硬度高,切削能力较强,化学性质稳定,导热性好;纯度高、性脆,用它制成的磨具,适于加工硬度高、脆性大的材料;广泛用于消磨铜、铝、宝石、光学玻璃、陶瓷等硬合金、金属及硬而脆的非金属材料;微粉还可以用作陶瓷材料等。 黑色碳化硅呈黑色或蓝黑色,硬度要比玻璃硬的多,能当玻璃刀使用。绿碳化硅制造方法同黑色碳化硅,但采用的原材料纯度要求较高,也在电阻炉中2200°C左右的高温下形成,其Sic含量较黑色为高,物理性能与黑色碳化硅相近,但性能略较黑色为脆,也具有较好的导热性与半导体特性。黑碳化硅韧性比绿碳

相关主题
文本预览
相关文档 最新文档