当前位置:文档之家› 高中物理竞赛热学模拟试题及答案

高中物理竞赛热学模拟试题及答案

高中物理竞赛热学模拟试题及答案
高中物理竞赛热学模拟试题及答案

高中物理竞赛练习7 热学一08

高中物理竞赛练习7 热学一08.5 1.证明理想气体的压强p = k n ε32,其中n 为单位体积内的分子数,k ε是气体分子的平均动能. 2.已知地球和太阳的半径分别为R 1=6×106m 、R 2=7× 108m ,地球与太阳的距离d =1.5×1011m .若地球与太阳均可视为黑体,试估算太阳表面温度. 3.如图所示,两根金属棒A 、B 尺寸相同,A 的导热系数是B 的两倍,用它们来导热,设高温端和低温端温度恒定,求将A 、B 并联使用与串联使用的能流之比.设棒侧面是绝热的. 4.估算地球大气总质量M 和总分子数N . 5.一卡诺机在温度为27℃和127℃两个热源之间运转.(1)若在正循环中,该机从高温热源吸热1.2×103 cal , 则将向低温热源放热多少?对外作功多少?(2)若使该机反向运转(致冷机),当从低温热源吸热1.2×103cal 热量,则将向高温热源放热多少?外界作功多少? 6.一定质量的单原子理想气体在一密闭容器中等压膨胀到体积为原来的1.5倍,然后又被压缩,体积和压强均减为1/3,且过程中压强与体积始终成正比,比例系数不变,在此压缩过程中气体向外放热Q o ,压缩后气体重新等压膨胀到原体积(气体在第一次等压膨胀前的状态),为使气体等容回到上面提到的原状态(第一次膨胀前的状态),需要传递给气体的热量Q 1是多少?

7.1 moI单原子理想气体初始温度为T o,分别通过等压和绝热(即不吸热也不放热)两种方式使其膨胀,且膨胀后末体积相等.如果已知两过程末状态气体的压强相比为1.5,求在此两过程中气体所做的功之和. 8.如图所示,两块铅直的玻璃板部分浸入水中,两板平行,间距d=0.5 mm,由于水的表面张力的缘故,水沿板上升一定的高度h,取水的表面张力系数σ =7.3×10-2N·m-1,求h的大小. 9.内径均匀的U形玻璃管,左端封闭,右端开口,注入水银后;左管封闭的气体被一小段长为h1=3.0cm 的术银柱分成m和n两段.在27℃时,L m=20 cm,L n=10 cm,且右管内水银面与n气柱下表面相平,如图所示.现设法使n上升与m气柱合在一起,并将U形管加热到127℃,试求m和n气柱混合后的压强和长度.(p o=75cmHg) 10.在密度为ρ=7.8 g·cm-3的钢针表面上涂一薄层不能被水润湿的油以后,再把它轻轻地横放在水的表面,为了使针在0℃时不掉落水中,不考虑浮力,问该钢针的直径最大为多少? 11.已知水的表面张力系数为σ1=7.26×10-2N·m-1,酒精的表面张力系数为σ2=2.2×10-2N·m-1.由两个内径相等的滴管滴出相同质量的水和酒精,求两者的液滴数之比.

高中物理竞赛讲义全套(免费)

目录 中学生全国物理竞赛章程 (2) 全国中学生物理竞赛内容提要全国中学生物理竞赛内容提要 (5) 专题一力物体的平衡 (10) 专题二直线运动 (12) 专题三牛顿运动定律 (13) 专题四曲线运动 (16) 专题五万有引力定律 (18) 专题六动量 (19) 专题七机械能 (21) 专题八振动和波 (23) 专题九热、功和物态变化 (25) 专题十固体、液体和气体的性质 (27) 专题十一电场 (29) 专题十二恒定电流 (31) 专题十三磁场………………………………………………………………………… 33 专题十四电磁感应 (35) 专题十五几何光学 (37) 专题十六物理光学原子物理 (40)

中学生全国物理竞赛章程 第一章总则 第一条全国中学生物理竞赛(对外可以称中国物理奥林匹克,英文名为Chinese Physic Olympiad,缩写为CPhO)是在中国科协领导下,由中国物理学会主办,各省、自治区、直辖市自愿参加的群众性的课外学科竞赛活动,这项活动得到国家教育委员会基础教育司的正式批准。竞赛的目的是促使中学生提高学习物理的主动性和兴趣,改进学习方法,增强学习能力;帮助学校开展多样化的物理课外活动,活跃学习空气;发现具有突出才能的青少年,以便更好地对他们进行培养。第二条全国中学生物理竞赛要贯彻“教育要面向现代化、面向世界、面向未来”的精神,竞赛内容的深度和广度可以比中学物理教学大纲和教材有所提高和扩展。 第三条参加全国中学生物理竞赛者主要是在物理学习方面比较优秀的学生,竞赛应坚持学生自愿参加的原则.竞赛活动主要应在课余时间进行,不要搞层层选拔,不要影响学校正常的教学秩序。 第四条学生参加竞赛主要依靠学生平时的课内外学习和个人努力,学校和教师不要为了准备参加竞赛而临时突击,不要组织“集训队”或搞“题海战术”,以免影响学生的正常学习和身体健康。学生在物理竞赛中的成绩只反映学生个人在这次活动中所表现出来的水平,不应当以此来衡量和评价学校的工作和教师的教学水平。 第二章组织领导 第五条全国中学生物理竞赛由中国物理学会全国中学生物理竞赛委员会(以下简称全国竞赛委员会)统一领导。全国竞赛委员会由主任1人、副主任和委员若干人组成。主任和副主任由中国物理学会常务理事会委任。委员的产生办法如下: 1.参加竞赛的省、自治区、直辖市各推选委员1人; 2.承办本届和下届决赛的省。自治区、直辖市各推选委员3人。 3.由中国物理学会根据需要聘请若干人任特邀委员。 在全国竞赛委员会全体会议闭会期间由主任和副主任组成常务委员会,行使全国竞赛委员会职权。 第六条在全国竞赛委员会领导下,设立命题小组、组织委员会和竞赛办公室等工作机构。命题小组成员由全国竞赛委员会聘请专家和高等院校教师担任。组

全国中学生物理竞赛真题汇编热学

全国中学生物理竞赛真题汇编---热学 1.(19Y4) 四、(20分)如图预19-4所示,三个绝热的、容积相同的球状容器A 、B 、C ,用带有阀门K 1、K 2的绝热细管连通,相邻两球球心的高度差 1.00m h =.初始时,阀门是关闭的,A 中装有1mol 的氦(He ),B 中装有1mol 的氪(Kr ),C 中装有lmol 的氙(Xe ),三者的温度和压强都相同.气体均可视为理想气体.现打开阀门K 1、K 2,三种气体相互混合,最终每一种气体在整个容器中均匀分布,三个容器中气体的温度相同.求气体温度的改变量.已知三种气体的摩尔质量分别为 31He 4.00310kg mol μ--=?? 在体积不变时,这三种气体任何一种每摩尔温度升高1K ,所吸收的热量均为 3/2R ,R 为普适气体常量. 2.(20Y3)(20分)在野外施工中,需要使质量m =4.20 kg 的铝合金构件升温;除了保温瓶中尚存有温度t =90.0oC 的1.200kg 的热水外,无其他热源。试提出一个操作方案,能利用这些热水使构件从温度t 0=10.0oC 升温到66.0oC 以上(含66.0oC),并通过计算验证你的方案. 已知铝合金的比热容c =0.880×103J ·(k g·oC)-1 , 水的比热容c = 4.20×103J ·(kg ·oC)-1 ,不计向周围环境散失的热量. 3.(22Y6)(25分)如图所示。两根位于同一水平面内的平行的直长金属导轨,处于恒定磁场中。 磁场方向与导轨所在平面垂直.一质量为m 的均匀导体细杆,放在导轨上,并与导轨垂 直,可沿导轨无摩擦地滑动,细杆与导轨的电阻均可忽略不计.导轨的左端与一根阻值为 尺0的电阻丝相连,电阻丝置于一绝热容器中,电阻丝的热容量不计.容器与一水平放置的开口细管相通,细管内有一截面为S 的小液柱(质量不计),液柱将l mol 气体(可视为理想气体)封闭在容器中.已知温度升高1 K 时,该气体的内能的增加量为5R /2(R 为普适气体常量),大气压强为po ,现令细杆沿导轨方向以初速V 0向右运动,试求达到平衡时细管中液柱的位移. 4.(16F1)20分)一汽缸的初始体积为0V ,其中盛有2mol 的空气和少量的水(水的体积可以忽略)。平衡时气体的总压强是3.0atm ,经做等温膨胀后使其体积加倍,在膨胀结束时,其中的水刚好全部消失,此时的总压强为2.0atm 。若让其继续作等温膨胀,使体积再次加倍。试计算此时: 1.汽缸中气体的温度; 2.汽缸中水蒸气的摩尔数; 3.汽缸中气体的总压强。 假定空气和水蒸气均可以当作理想气体处理。 5.(17F1)在一大水银槽中竖直插有一根玻璃管,管上端封闭,下端开口.已知槽中水银液面以上的那部分玻璃管 的长度l=76cm,管内封闭有n=1.0×10-3 mol的空气,保持水银槽与玻璃管都不动而设法使玻璃管内空气的温度缓慢地降低10℃,问在此过程中管内空气放出的热量为多少?已知管外大气的压强为76cmHg,每摩尔空 气的内能U=CVT,其中T为绝对温度,常量CV=20.5J·(mol·K)-1 ,普适气体常量R=8.31J·(m ol·K)-1 31Kr 83.810kg mol μ--=??31Xe 131.310kg mol μ--=??

高中物理竞赛教程15-温度和气体分子运动论

高中物理竞赛热学教程 第五讲机械振动和机械波 第一讲 温度和气体分子运动论 第一讲 温度和气体分子运动论 §1。1 温度 1.1.1、平衡态、状态参量 温度是表示物体冷热程度的物理量。凡是跟温度有关的现象均称为热现象。热现象是自然界中的一种普遍现象。 热学是研究热现象规律的科学。热学研究的对象都是由大量分子组成的宏观物体,称为热力学系统或简称系统。在不受外界影响的条件下,系统的宏观性质不再随时间变化的状态称为平衡态,否则就称为非平衡态。可见系统平衡态的改变依赖于外界影响(作功、传热)。 系统处于平衡态,所有宏观物理都具有确定的值,我们就可以选择其中几个物理量来描述平衡态,这几个量称为状态参量。P 、V 、T 就是气体的状态参量。 气体的体积V 是指盛放气体的容器的容积,国际单位制中,体积的单位是m 3 。 1m 3 =103L=106 cm 3 气体的压强P 是气体作用在容器的单位面积器壁上的平均压力,单位是p a 。 1atm=76cmHg=1.013?105 p a 1mmHg=133.3p a 1.1.2、 温标 温度的数值表示法称为温标。建立温标的三要素是: 1、选择某种物质的一个随温度改变发生单调显著变化的属性来标志温度,制作温度计。例如液体温度计T(V)、电阻温度计T(R)、气体温度计T(P)、T(V)等等。这种选用某种测温物质的某一测温属性建立的温标称为经验温标。 2、规定固定点,即选定某一易于复现的特定平衡态指定其温度值。1954年以前,规定冰点为0℃,汽点为100℃,其间等分100份,从而构成旧摄氏温标。1954年以后,国际上选定水的三相点为基本固定点,温度值规定为273.16K 。这样0℃与冰点,100℃与汽点不再严格相等,百分温标的概念已被废弃。 3、规定测温属性随温度变化的函数关系。如果某种温标(例如气体温度计)选定为线性关系,由于不同物质的同一属性或者同一物质的不同属性随温度变化的函数关系不会相同,因而其它的温标就会出现非线性的函数关系。 1.1.3、理想气体温标 定容气体温度计是利用其测温泡内气体压强的大小来标志温度的高低的。 T(P)=αP α是比例系数,对水的三相点有 T 3= αP 3=273.16K P 3是273.16K 时定容测温泡内气体的压强。于是 T(P)=273.16K 3P P (1) 同样,对于定压气体温度计有 T(V)=273.16K 3V V (2) 3V 是273.16K 时定压测温泡内气体的体积。 用不同温度计测量同一物体的温度,除固定点外,其值并不相等。对于气体温度计也有)()(V T P T ≠。但是当测温泡内气体的压强趋于零时,所有气体温度计,无论用什么气体,无论是定容式的还是定压式的,所测温度值的差别消失而趋于一个共同的极限值,这个极限值就是理想气体温标的值,单位为K ,定义式为 T=lim 0 →p T(V)=lim 0 →p T(P) =273.16K lim →p 3V V =273.16K lim 0→p 3P P (3) 1.1.4、热力学温标 理想气体温标虽与气体个性无关,但它依赖于气体共性即理想气体的性质。利用气体温度计通过实验与外推相结合的方法可以实现理想气体温标。但其测温范围有限(1K ~1000℃),T <1K ,气体早都已液化,理想气体温标也就失去意义。 国际上规定热力学温标为基本温标,它完全不依赖于任何测温物质的性质,能在整个测温范围内采用,具有“绝对”的意义,有时称它为绝对温度。在理想气体温标适用的范围内,热力学温标与理想气体温标是一致的,因而可以不去区分它们,统一用T(K)表示。 国际上还规定摄氏温标由热力学温标导出。其关系式是: t=T-273.15o (4) 这样,新摄氏温标也与测温物质性质无关,能在整个测温范围内使用。目前已达到的最低温度为5?108 -K , 但是绝对零度是不可能达到的。 例1、定义温标t *与测温参量X 之间的关系式为t * =ln(kX),k 为常数 试求:(1)设X 为定容稀薄气体的压强,并假定水的三相点 16.273*3=T ,试确定t *与热力学温标之间的关系。(2)在温标t * 中,冰点和汽点各为多少度;(3)在温标t * 中,是否存在零度? 解:(1)设在水三相点时,X 之值是3X ,则有273.16o =In(kX 3)将K 值代入温标t * 定义式,有 3316.273*16.273X X In X X e In t +=? ???? ?= (2) 热力学温标可采用理想气体温标定义式,X 是定容气体温度计测温泡中稀薄气体压强。故有 30 lim 16.273X X K T x →= (3) 因测温物质是定容稀薄气体,故满足X →0的要求,因而(2)式可写成 ) lim ln(16.273lim 30 *X X t x x →→+= (4) 16.27316.273*T In t += 这是温标* t 与温标T 之间关系式。 (2)在热力学温标中,冰点K T i 15.273=,汽点K T s 15.373=。在温标* t 中其值分别为 16.27316.27315 .27316.273*=+=In t 47.27315.27315 .37316.273*=+=In t (3)在温标*t 中是否存在零度?令* t =0,有 K e T 116.27316.273<<=- 低于1K 任何气体都早已液化了,这种温标中* t =0的温度是没有物理意义的。 §1-2 气体实验定律 1.2.1、玻意耳定律

高中物理竞赛热学公式整合知识分享

高中物理竞赛热学公 式整合

高中物理竞赛热学公式整合 第一章 热力学平衡态和气体物态方程 1> pV TR ν= ——理想气体物态方程 8.314R =11??J mol kg -- 2> 222213 x y z v v v v === ——分子的速度分布 3> 213 p nmv = 23 k p nE = ——理想气体的压强公式 4> 32 k E kT = ——分子运动的能量公式 231.3810A R k N -==?1?J K - 5> p nkT = ——阿伏伽德罗定律 6> 12i p p p p =++???+ ——道尔顿分压定律 第二章 气体分子的统计分布律 1> 23/2224()2mv kT dN m v e dv N kT ππ-= ——麦克斯韦速率分布律 2> P v =——最概然速率 v =——平均速率 r v == ——方均根速率 3> /0P E kT n n e -= ——玻尔兹曼分布律 /0 mgz kT n n e -= ——气体分子在重力场中按高度的分布律

4> 0Mgz RT z p p e -= ——等温气压公式 0ln z p RT z Mg p = 5> 1(2)2 E t r s kT =++ ——分子的平均总能量(能量按自由度均分定理) 6> 1(2)2 m U t r s RT M =++ ——理想气体的内能 1(2)2 m U t r s R T M ?=++? 7> ,1(2)2 V m C t r s R =++ ——理想气体的摩尔定容热容 第三章 略 第四章 热力学第一定律 1> A pdV δ= ——元功的表达(系统对外界所做的) 2> 2 1V V A pdV =? ——系统对外界所做的功 3> 21U U Q A '-=+ 或 21U U Q A -=- ——热力学第一定律(积分形式) dU Q A δδ'=+ 或 dU Q A δδ=- ——热力学第一定律(微分形式) 4> ()U U T = ——焦耳定律 5> 0lim T Q Q C T dT δ?→?==? ——热容 ()V V U C T ?=? ——定容热容 ()()[]p p p Q U pV C dT T δ?+==? ——定压热容 6> ,()V V m V C u C T ν?==? ——气体摩尔定容热容 ,()()p m p m p C u pV C T ν?+= =? ——气体摩尔定压热容 U u ν =

27高中物理竞赛热学习题2整理

高中物理竞赛热学习题 热学2 姓名: 班级: 成绩: 1. 如图所示,一摩尔理想气体,由压强与体积关系的p-V 图中的状态A 出发,经过一缓慢的直线过程到达状态B ,已知状态B 的压强与状态A 的压强之比为1/2 ,若要使整个过程的最终结果是气体从外界吸收了热量,则状态B 与状态A 的体积之比应满足什么条件?已知此理想气体每摩尔的内能为 23RT ,R 为普适气体常量,T 为热力学温度. 2.有一气缸,除底部外都是绝热的,上面是一个不计重力的活塞,中间是一块固定的导热隔板,把气缸分隔成相等的两部分A 和B ,上、下各有1mol 氮气(52 U RT = ),现由底部慢慢地将350J 热量传送给缸内气体,求 (1)A 、B 内气体的温度各改变了多少? (2)它们各吸收了多少热量。 3. 使1mol 理想气体实行如图所示循环。求这过程气体做的总功。仅用T 1,T 2和常数R 表示。 (在1-2过程,12P T α= )

4.如图所示,绝热的活塞S 把一定质量的稀薄气体(可视为理想气体)密封在水平放置的绝热气缸内.活塞可在气缸内无摩擦地滑动.气缸左端的电热丝可通弱电流对气缸内气体十分缓慢地加热.气缸处在大气中,大气压强为p0.初始时,气体的体积为V0、压强为p0.已知1 摩尔该气体温度升高1K 时其内能的增量为一已知恒量。,求以下两种过程中电热丝传给气体的热量Q1与Q2之比. 1 .从初始状态出发,保持活塞S 位置固定,在电热丝中通以弱电流,并持续一段时间,然后停止通电,待气体达到热平衡时,测得气体的压强为p1 . 2 .仍从初始状态出发,让活塞处在自由状态,在电热丝中通以弱电流,也持续一段时间,然后停止通电,最后测得气体的体积为V 2 . 5. 图示为圆柱形气缸,气缸壁绝热,气缸的右端有一小孔和大气相通,大气的压强为p0。用一热容量可忽略的导热隔板N和一绝热活塞M将气缸分为A、B、C三室,隔板与气缸固连,活塞相对气缸可以无摩擦地移动但不漏气,气缸的左端A室中有一电加热器Ω。已知在A、B室中均盛有1摩尔同种理想气体,电加热器加热前,系统处于平衡状态,A、B两室中气体的温度均为T0,A、B、C三室的体积均为V0。现通过电加热器对A室中气体缓慢加热,若提供的总热量为Q0,试求B室中气体末态体积和A室中气体的末态温度。设A、B 两室中气体1摩尔的内能 5 2 U RT 。R为普适恒量,T为热力学温度。

高中物理竞赛辅导习题热学部分..

高中物理竞赛热学部分题选 1.一个老式的电保险丝,由连接在两个端纽之间的一根细而均匀的导线构成。导线按斯特藩定律从其表面散热。斯特藩定律指出:辐射功率P 跟辐射体表面积S 以及一个与温度有关的函数成正比,即 () ,4 4外辐T T S P -∞ 试说明为什么用保险丝时并不需要准确的长度。 解:设l 为保险丝长度,r 为其半径,P 为输至整个保险丝上的功率。若P 增大,保险丝的温度将上升, 直到输入的电功率等于辐射的功率。 所以当P 超过某一值max P 时,在一定的时间内,保险丝将烧毁,而 ( ) ,2144 max l r c T T kS P ??=-=π外熔 式中k 为一常数,S 为表面积,1c 为一常数。 由于P=I 2R ,假设保险丝的电阻R 比它所保护的线路电阻小很多,则I 不依赖于R ,而 ρρ ,S l R =为 常数,2 r S π=为保险丝的横截面积。 ,/22 r l I P πρ= 当rl c r l I 22 2/=时(这里2c 为另一常数),保险丝将熔化。 .3 22 r c I = 可见,保险丝的熔断电流不依赖于长度,仅与其粗细程度(半径r)有关。 2.有两根长度均为50cm 的金属丝A 和B 牢固地焊在一起,另两端固定在牢固的支架上(如图21-3)。 其线胀系数分别为αA =1.1×10-5/℃,αB =1.9×10-5/℃,倔强系数分别为K A =2×106N/m ,K B =1×106 N/m ;金属丝A 受到450N 的拉力时就会被拉断,金属丝B 受到520N 的拉力时才断,假定支架的间距不随温度改变。问:温度由+30°C 下降至-20°C 时,会出现什么情况?(A 、B 丝都不断呢,还是A 断或者B 断呢,还是两丝都断呢?)不计金属丝的重量,在温度为30°C 时它们被拉直但张力为零。 解:金属A 和B 从自由状态降温,当温度降低t ?时的总缩短为 t l l l l B A B A ?+=?+?=?0)(αα (1) 而在-20°C 时,若金属丝中的拉力为F ,则根据胡克定律,A 、B 的伸长量分别为F/K A 和F/K B , 所以 l K E K E B A ?=+ (2) t l K K F B A B A ?+-? ??? ??+0)(11αα (3) 所以 N K K t l F B A B A 50011)(0=+?+=αα 因为N F 450>,所以温度下降到-20°C 前A 丝即被拉断。A 丝断后。F=0,即使温度再下降很多,B 丝也不会断。 3.长江大桥的钢梁是一端固定,另一端自由的。这是为什么?如果在-10℃时把两端都固定起来,当温度升高到40℃时,钢梁所承担的胁强(压强)是多少?(钢的线胀系数为12×10-6/℃,弹性模量为2.0×105N/mm 2,g=10m/s 2) 解:长1m 、横截面积为1mm 2的杆,受到10N 拉力后伸长的量,叫伸长系数,用a 来表示,而它的倒数叫弹性模量E ,./1a E =当杆长为L 0m ,拉力为F ,S 为横截面积(单位为mm 2),则有伸长量

高中物理竞赛讲义-热力学第一定律

热力学第一定律 一、热力学第一定律 理想气体从一个状态缓慢变化到另一个状态的过程(准静态过程)中,做功和热传递会导致气体内能发生变化。 二、理想气体的内能 由于理想气体不考虑分子间作用力,因此没有分子势能,因此内能即为分子的总动能 由压强的表达式23p n ε= 和p nkT =,可得:32 kT ε=。注意ε的物理意义,ε是分子的平均平动动能。 1、对于单原子分子,总能量即平动动能 (3个自由度)32 kT ε= 总 2、对于双原子分子,总能量包括平动动能、转动动能(5个自由度)52 kT ε=总 3、对于多原子分子,总能量包括平动动能、转动动能(6个自由度)62kT ε=总 因此可得对应气理想体的内能: 1、单原子分子组成的理想气体,内能3322 A U NN kT NRT = = 2、双原子分子组成的理想气体,内能5522 A U NN kT NRT == 3、多原子分子组成的理想气体,内能6622A U NN kT NRT == 三、外力对气体做功的计算 1、恒力(恒压)做功 W F l pS l p V =-?=-?=-? 2、变力(变压)做功(微元法) i i i W W p V = ?=-?∑∑ 四、热量传递的计算 1、对于固体和液体: 一般来说体积变化可以忽略: Q cm T =? 其中,c 为比热:1kg 的物质,升温1°C 吸收的热量 2、对于气体: (1)如果体积不变,所有热量都用来改变温度: V Q Nc T =? 其中,c V 为摩尔定容比热:1mol 的物质,保持体积不变,升温1°C 吸收的热量 (2)如果压强不变,根据状态方程,温度变化,体积随之变化。因此,一部分热量都用来改变温度,另一部分用来做功:

高中物理竞赛十年复赛真题-热学(含答案)

十年真题-热学(复赛) 1.(34届复赛7)如气体压强-体积图所示,摩尔数为ν的双原子理想气体构成的系统经历一正循环过程(正循环指沿图中箭头所示的循环),其中自A 到B 为直线过程,自B 到A 为等温过程.双原子理想气体的定容摩尔热容为52 R , R 为气体常量. (1)求直线AB 过程中的最高温度; (2)求直线AB 过程中气体的摩尔热容量随气体体积变 化的关系式,说明气体在直线AB 过程各段体积范围内 是吸热过程还是放热过程,确定吸热和放热过程发生转 变时的温度T c ; (3)求整个直线AB 过程中所吸收的净热量和一个正循 环过程中气体对外所作的净功. 解析:(1)直线AB 过程中任一平衡态气体的压强p 和体积V 满足方程p -p 0p 0-p 02=V -V 02V 02 -V 0 此即 p =32p 0-p 0V 0 V ① 根据理想气体状态方程有:pV =νRT ② 由①②式得: T =1νR ????-p 0V 0V 2+32p 0V =-p 0νR ????V -34V 02+9p 0V 016νR ③ 由③式知,当V =34 V 0时, ④ 气体达到直线AB 过程中的最高温度为:T max =9p 0V 016νR ⑤ (2)由直线AB 过程的摩尔热容C m 的定义有:dQ =νC m dT ⑥ 由热力学第一定律有: dU =dQ -pdV ⑦ 由理想气体内能公式和题给数据有:dU =νC V dT =ν52 RdT ⑧ 由①⑥⑦⑧式得:C m =C V +p νdV dT =52R +????32 p 0-p 0V 0V 1νdV dT ⑨ 由③式两边微分得:dV dT =2νRV 0p 0(3V 0-4V ) ⑩ 由⑩式带入⑨式得:C m =21V 0-24V 3V 0-4V R 2 ? 由⑥⑩?式得,直线AB 过程中, 在V 从V 02增大到3V 04的过程中,C m >0,dV dT >0,故dQ dV >0,吸热 ? 在V 从3V 04增大到21V 024的过程中,C m <0,dV dT <0,故dQ dV >0,吸热 ? 在V 从21V 024增大到V 0的过程中,C m >0,dV dT <0,故dQ dV <0,放热 ?

高中物理竞赛热学公式整合

高中物理竞赛热学公式整合 第一章 热力学平衡态和气体物态方程 1> pV TR ν= ——理想气体物态方程 8.314R =11??J mol kg -- 2> 222213 x y z v v v v === ——分子的速度分布 3> 213 p nmv = 23 k p n E = ——理想气体的压强公式 4> 32k E kT = ——分子运动的能量公式 231.3810A R k N -==?1?J K - 5> p nkT = ——阿伏伽德罗定律 6> 12i p p p p =++???+ ——道尔顿分压定律 第二章 气体分子的统计分布律 1> 23/2224()2mv kT dN m v e dv N kT ππ-= ——麦克斯韦速率分布律 2> P v = ——最概然速率 v =——平均速率 r v ==——方均根速率 3> /0 P E kT n n e -= ——玻尔兹曼分布律 /0m g z k T n n e -= ——气体分子在重力场中按高度的分布律 4> 0Mgz RT z p p e -= ——等温气压公式 0ln z p RT z Mg p =

5> 1(2)2 E t r s kT = ++ ——分子的平均总能量(能量按自由度均分定理) 6> 1(2)2 m U t r s RT M =++ ——理想气体的内能 1(2)2 m U t r s R T M ?=++? 7> ,1(2)2V m C t r s R =++ ——理想气体的摩尔定容热容 第三章 略 第四章 热力学第一定律 1> A pdV δ= ——元功的表达(系统对外界所做的) 2> 2 1V V A pdV =? ——系统对外界所做的功 3> 21U U Q A '-=+ 或 21U U Q A -=- ——热力学第一定律(积分形式) d U Q A δδ'=+ 或 dU Q A δδ=- ——热力学第一定律(微分形式) 4> ()U U T = ——焦耳定律 5> 0lim T Q Q C T dT δ?→?==? ——热容 ()V V U C T ?=? ——定容热容 ()()[]p p p Q U pV C dT T δ?+==? ——定压热容 6> ,()V V m V C u C T ν?==? ——气体摩尔定容热容 ,()()p m p m p C u pV C T ν?+= =? ——气体摩尔定压热容 U u ν = 7> ——理想气体的摩尔热容 8> ,,p m V m C C R =+ ——迈耶公式

高中物理竞赛辅导讲义-8.2热力学第一定律

8.2热力学第一定律 一、热力学第一定律 理想气体从一个状态缓慢变化到另一个状态的过程(准静态过程)中,做功和热传递会导致气体内能发生变化。 二、理想气体的内能 由于理想气体不考虑分子间作用力,因此没有分子势能,因此内能即为分子的总动能 由压强的表达式23p n ε= 和p nkT =,可得:32 kT ε=。注意ε的物理意义,ε是分子的平均平动动能。 1、对于单原子分子,总能量即平动动能 (3个自由度)32 kT ε= 总 2、对于双原子分子,总能量包括平动动能、转动动能(5个自由度)52 kT ε=总 3、对于多原子分子,总能量包括平动动能、转动动能(6个自由度)62kT ε=总 因此可得对应气理想体的内能: 1、单原子分子组成的理想气体,内能3322 A U NN kT NRT = = 2、双原子分子组成的理想气体,内能5522 A U NN kT NRT == 3、多原子分子组成的理想气体,内能6622A U NN kT NRT == 三、外力对气体做功的计算 1、恒力(恒压)做功 W F l pS l p V =-?=-?=-? 2、变力(变压)做功(微元法) i i i W W p V = ?=-?∑∑ 四、热量传递的计算 1、对于固体和液体: 一般来说体积变化可以忽略: Q cm T =? 其中,c 为比热:1kg 的物质,升温1°C 吸收的热量 2、对于气体: (1)如果体积不变,所有热量都用来改变温度: V Q Nc T =? 其中,c V 为摩尔定容比热:1mol 的物质,保持体积不变,升温1°C 吸收的热量 (2)如果压强不变,根据状态方程,温度变化,体积随之变化。因此,一部分热量都用来改变温度,另一部分用来做功:

最新高中物理竞赛讲义(完整版)

最新高中物理竞赛讲义 (完整版) 目录 最新高中物理竞赛讲义(完整版) (1) 第0 部分绪言 (5) 一、高中物理奥赛概况 (5)

二、知识体系 (6) 第一部分力&物体的平衡 (7) 第一讲力的处理 (7) 第二讲物体的平衡 ............................. 1...0.. 第三讲习题课 ................................. 1..1... 第四讲摩擦角及其它........................... 1...7..第二部分牛顿运动定律 ............................ 2..2.. 第一讲牛顿三定律 ............................. 2...2.. 第二讲牛顿定律的应用 ......................... 2..3.. 第二讲配套例题选讲........................... 3...7..第三部分运动学 ................................. 3...7... 第一讲基本知识介绍 .......................... 3..7.. 第二讲运动的合成与分解、相对运动 ............. 4..0 第四部分曲线运动万有引力 ....................... 4...4. 第一讲基本知识介绍........................... 4...4.. 第二讲重要模型与专题 ......................... 4..7.. 第三讲典型例题解析............................. 5...9..第五部分动量和能量 ............................... 5...9.. 第一讲基本知识介绍............................. 5...9.. 第二讲重要模型与专题.......................... 6..3.. 第三讲典型例题解析............................. 8...3..第六部分振动和波 ................................. 8..3...

重点高中物理竞赛热学

高中物理竞赛——热学 一.分子动理论 1、物质是由大量分子组成的(注意分子体积和分子所占据空间的区别) 对于分子(单原子分子)间距的计算,气体和液体可直接用3分子占据的空间,对固体,则与分子的空间排列(晶体的点阵)有关。 【例题1】如图6-1所示,食盐(N a Cl )的晶体是由钠离子(图中的白色圆点表示)和氯离子(图中的黑色圆点表示)组成的,离子键两两垂直且键长相等。已知食盐的摩尔质量为58.5×10-3 kg/mol ,密度为2.2×103kg/m 3,阿伏加德罗常数为6.0×1023mol -1,求食盐晶体中两个距离最近的钠离子中心之间的距离。 【解说】题意所求即图中任意一个小立方块的变长(设为a )的2倍,所以求a 成为本题的焦点。 由于一摩尔的氯化钠含有N A 个氯化钠分子,事实上也含有2N A 个钠离子(或氯离子),所以每个钠离子占据空间为v= A m ol N 2V 而由图不难看出,一个离子占据的空间就是小立方体的体积a 3, 即a 3= A m ol N 2V =A m ol N 2/M ρ,最后,邻近钠离子之间的距离l= 2 a 【答案】3.97×10-10m 。 〖思考〗本题还有没有其它思路? 〖答案〗每个离子都被八个小立方体均分,故一个小立方体含有8 1×8个离子=2 1分子,所 以…(此法普遍适用于空间点阵比较复杂的晶体结构。) 2、物质内的分子永不停息地作无规则运动 固体分子在平衡位置附近做微小振动(振幅数量级为0.1A 0 ),少数可以脱离平衡位置运动。液体分子的运动则可以用“长时间的定居(振动)和短时间的迁移”来概括,这是由于液体分子间距较固体大的结果。气体分子基本“居无定所”,不停地迁移(常温下,速率数量级为102m/s )。 无论是振动还是迁移,都具备两个特点:a 、偶然无序(杂乱无章)和统计有序(分子数比率和速率对应一定的规律——如麦克斯韦速率分布函数,如图6-2气体分子的三种速率。最可几速率v P :f(v)=N N ?(其中ΔN 表 示v 到v+Δv 内分子数,N 表示分子总数)极大时的速率,v P = μRT 2=m kT 2;平均速率v :所有分子速率的算术平均值,v = πμ RT 8= m kT 8π;方均根速率2 v :与分子平均动能密切相关的一个 速率,2 v = μ RT 3= m kT 3〔其中R 为普适气体恒量,R=8.31J/(mol.K)。k 为玻耳兹曼常量, k= A N R =1.38×10-23J/K 〕

高中物理竞赛初级讲义 热学绝热过程 热机原理

第4讲 绝热过程 热机原理 一、理想气体的绝热过程 气体始终不与外界交换热量的过程称之为绝热过程,即dQ =0。根据热力学第一定律,可得pV g =C . 其中g = C p C V 称为绝热系数,对于自由度为i 的理想气体,g =i +2i 。 二、循环过程 1.系统经历一系列的状态变化过程又回到初始状态,这样的周而复始的变化过程称为循环过程。 2.热机和热机效率 正循环:在p -V 图上按顺时针方向进行的循环过程;热机:工作物质作正循环的机器。定义热机效率:122 111||||||1Q Q Q W Q Q Q η-===- 物理竞赛线上1对1辅导答疑 Q 。q :3429866816 3.制冷机和制冷系数

逆循环:在p -V 图上按逆时针方向进行的循环过程;制冷机:工作物质作逆循环的机器。定义制冷系数:2212||Q Q e W Q Q ==- 三、卡诺循环 卡诺循环是在两个温度恒定的热源之间工作的循环过程。如下图所示,在理想气体卡诺循环的p -V 图上,曲线ab 和cd 表示温度为1T 和2T 的两条等温线,曲 线bc 和da 是两条绝热线。卡诺热机的效 率 122111 1Q Q T W Q Q T η-===- 致冷系数,即2212Q Q e W Q Q = =-,对卡诺致冷机而言,212 T e T T =-。 物理竞赛线上1对1辅导答疑 Q 。q :3429866816 四、卡诺定理 可逆过程: 不可逆过程: 卡诺定理指出:

(1)在同样高温(温度为1T )和低温(温度为2T )之间工作的一切可逆机,不论用什么工作物,效率都等于)1(1 2T T -。 (2)在同样高低温度热源之间工作的一切不可逆机的效率,不可能高于可逆机,即η'≤1 2 1T T -。 物理竞赛线上1对1辅导答疑 Q 。q :3429866816

高中物理竞赛热学讲义——饱和汽和未饱和汽

饱和汽和未饱和汽 固体、液体和气体是通常存在的三种物质状态。在一定条件下,这三种物质状态可以相互转化,即发生物态变化,在初中我们学过一些物态变化的知识,这一章复习这方面的知识,同时学习一些新知识。 一、物态变化 熔化和凝固物质从固态变成液态叫做熔化,从液态变成固态叫做凝固。晶体物质和非晶体物质在熔化和凝固时情况是不同的。晶体有一定的熔化温度——熔点,非晶体没有一定的熔点。物质在熔化时要吸收热量,在凝固时要放出热量。 在晶体中,微粒排列成有规则的空间点阵,维持这种规则排列的是微粒之间的相互作用;微粒的热运动不足以克服这种相互作用,微粒一般只能在平衡位置附近做无规则的振动。给晶体加热时,晶体从外界得到能量,微粒的热运动加剧。达到一定的温度时,一部分微粒具有了足够的动能,能够克服微粒间的作用力,离开平衡位置。这时晶体的点阵结构被破坏,晶体开始熔化。在熔化过程中,外界供给晶体的能量,全部用来破坏晶体的点阵结构,增加分子间的势能,所以温度不发生变化。凝固时,情况正好相反。微粒排列成点阵结构时,微粒间的势能减小,因此虽然放出能量,温度却保持不变,直到全部凝固成晶体。 非晶体的微观结构本来就跟液体类似,非晶体在熔化过程中不必为破坏点阵结构而消耗能量,所以温度不停地上升。 汽化和液化物质从液态变成气态叫做汽化,从气态变成液态叫做液化。汽化有两种方式:蒸发和沸腾。蒸发是在液体表面进行的汽化现象,沸腾是在液体表面和液体内部同时发生的汽化现象。增大气体的压强和降低气体的温度,可以使气体液化。物质在汽化时要吸收热量,液化时要放出热量。 液体中分子热运动的平均动能跟温度有关,但在任何温度下,总有一部分分子的动能比平均动能大。那些处在液体表面层附近的动能足够大的分子,能够挣脱周围分子的引力,飞出液面,形成蒸气(也常叫做汽),这就是蒸发。 液体温度越高,分子的平均动能就越大,具有足够大的动能因而能够飞出液面的分子也就越多。所以,温度越高,蒸发得越快。 液体的表面积越大,处在表面层中的分子就越多,能够从液面飞出的分子也就越多。所以,表面积越大,蒸发得越快。 飞出液面的分子如果停留在液面附近,由于分子的热运动,有的分子会撞到液面,被液体分子重新拉回到液体中去,这样蒸发就变慢了。如果设法把液面上形成的蒸气吹散,使汽分子不能回到液体中去,蒸发就可以加快。所以,蒸发的快慢还跟液面上气体流动的快慢有关系。气体流动得越快,蒸发得也越快。 在蒸发过程中,从液体中飞出的是动能较大的分子,这些分子飞出后,留在液体中的分子的平均动能减小,液体的温度要降低,因而液体蒸发有致冷作用。 二、饱和汽与饱和汽压 饱和汽与未饱和汽装在敞口容器里的液体,蒸发出来的汽分子能够分散到周围空间里去,所以过一段时间液体会全部蒸发完。盛在密闭容器里的液体,即使过很长时间,也不会蒸发完,这是什么原因呢?

最新高中物理竞赛讲义(超级完整版)

最新高中物理竞赛讲义 (完整版)

目录 最新高中物理竞赛讲义(完整版) (1) 第0部分绪言 (4) 一、高中物理奥赛概况 (4) 二、知识体系 (4) 第一部分力&物体的平衡 (5) 第一讲力的处理 (5) 第二讲物体的平衡 (7) 第三讲习题课 (8) 第四讲摩擦角及其它 (12) 第二部分牛顿运动定律 (14) 第一讲牛顿三定律 (14) 第二讲牛顿定律的应用 (15) 第二讲配套例题选讲 (23) 第三部分运动学 (23) 第一讲基本知识介绍 (23) 第二讲运动的合成与分解、相对运动 (25) 第四部分曲线运动万有引力 (27) 第一讲基本知识介绍 (27) 第二讲重要模型与专题 (29) 第三讲典型例题解析 (37) 第五部分动量和能量 (37) 第一讲基本知识介绍 (37) 第二讲重要模型与专题 (39) 第三讲典型例题解析 (52) 第六部分振动和波 (52) 第一讲基本知识介绍 (52) 第二讲重要模型与专题 (56) 第三讲典型例题解析 (65) 第七部分热学 (65) 一、分子动理论 (65) 二、热现象和基本热力学定律 (67) 三、理想气体 (69) 四、相变 (76) 五、固体和液体 (79) 第八部分静电场 (80) 第一讲基本知识介绍 (80)

第二讲重要模型与专题 (83) 第九部分稳恒电流 (94) 第一讲基本知识介绍 (94) 第二讲重要模型和专题 (97) 第十部分磁场 (106) 第一讲基本知识介绍 (106) 第二讲典型例题解析 (110) 第十一部分电磁感应 (116) 第一讲、基本定律 (116) 第二讲感生电动势 (119) 第三讲自感、互感及其它 (123) 第十二部分量子论 (126) 第一节黑体辐射 (126) 第二节光电效应 (129) 第三节波粒二象性 (135) 第四节测不准关系 (138)

高中物理竞赛十年预赛真题-热学(纯手打word版含答案)

十年真题-热学(预赛) 1.(34届预赛2)系统1和系统2质量相等,比热容分别为C 1和C 2,两系统接触后达到够 达到共同的温度T ,整个过程中与外界(两系统之外)无热交换.两系统初始温度T 1和T 2的关系为 A .T 1=C 2C 1(T -T 2)-T B .T 1= C 1C 2 (T -T 2)-T C .T 1=C 1C 2(T -T 2)+T D .T 1=C 2C 1 (T -T 2)+T 2.(31届预赛1)一线膨胀系数为α的正立方体物块,当膨胀量较小时,其体膨胀系数等于 A .α B .α1/3 C .α3 D .3α 3.(29届预赛1)下列说法中正确的是 A .水在0℃时密度最大 B .一个绝热容器中盛有气体,假设把气体中分子速率很大的如大于v A 的分子全部取走,则气体的温度会下降,此后气体中不再存在速率大于v A 的分子 C .杜瓦瓶的器壁是由两层玻璃制成的,两层玻璃之间抽成真空,抽成真空的主要作用是既可降低热传导,又可降低热辐射 D .图示为一绝热容器,中间有一隔板,隔板左边盛有温度为T 的理想气体,右边为真空.现抽掉隔板,则气体的最终温度仍为T 4.(28届预赛2)下面列出的一些说法中正确的是 A .在温度为20oC 和压强为1个大气压时,一定量的水蒸发为同温度的水蒸气,在此 过程中,它所吸收的热量等于其内能的增量. B .有人用水银和酒精制成两种温度计,他都把水的冰点定为0度,水的沸点定为100 度,并都把0刻度与100刻度之间均匀等分成同数量的刻度,若用这两种温度计去 测量同一环境的温度(大于0度小于100度)时,两者测得的温度数值必定相同. C .一定量的理想气体分别经过不同的过程后,压强都减小了,体积都增大了,则从每 个过程中气体与外界交换的总热量看,在有的过程中气体可能是吸收了热量,在有 的过程中气体可能是放出了热量,在有的过程中气体与外界交换的热量为零. D .地球表面一平方米所受的大气的压力,其大小等于这一平方米表面单位时间内受上 方作热运动的空气分子对它碰撞的冲量,加上这一平方米以上的大气的重量. 5.(27届预赛2)烧杯内盛有0℃的水,一块0℃的冰浮在水面上,水面正好在杯口处.最 后冰全部融化成0℃的水.在这过程中 A .无水溢出杯口,但最后水面下降了 B .有水溢出杯口,但最后水面仍在杯口处 C .无水溢出杯口,水面始终在杯口处 D .有水溢出杯口,但最后水面低于杯口 6.(27届预赛3)如图所示,a 和b 是绝热气缸中的两个活塞,它们把气缸分成甲和乙两部 分,两部分中都封有等量的理想气体.a 是导热的,其热容量可不计,与气缸壁固连.b 是绝热的,可在气缸内无摩擦滑动,但不漏气,其右方为大气.图中k 为加热用的电炉丝.开始时,系统处于平衡状态,两部分中气体的温度和压强皆相同.现接通电源,缓慢加热一段时间后停止加热,系统又达到新的平衡,则 A .甲、乙中气体的温度有可能不变 B .甲、乙中气体的压强都增加了 C .甲、乙中气体的内能的增加量相等 D .电炉丝放出的总热量等于甲、乙中气体增加内能的总和 7.(27届预赛4)一杯水放在炉上加热烧开后,水面上方有“白色气”;夏天一块冰放在桌 面上,冰的上方也有“白色气”. A .前者主要是由杯中水变来的“水的气态物质” B .前者主要是由杯中水变来的“水的液态物质” C .后者主要是由冰变来的“水的气态物质”

相关主题
文本预览
相关文档 最新文档