当前位置:文档之家› 两千兆高速数据采集电路设计

两千兆高速数据采集电路设计

两千兆高速数据采集电路设计
两千兆高速数据采集电路设计

技术创新

电子设计

您的论文得到两院院士关注

两千兆高速数据采集电路设计

The Design of an 2GSPS High Speed Data Acquizition System

(中国石油大学北京)

桑泉柯式镇钱步仁

SANG Quan KE Shi-zhen QIAN Bu-ren

摘要:本文采用美国国家半导体公司的高速双通道模数转换器(ADC08D1000),以及Altera 公司CycloneII 系列的FPGA (EP2C70F896C8)实现对双路信号的高速采样,每片ADC 通过交叉采样对每路信号的采样率达到2GSPS 。本文着重介绍电路的设计,以及PCB 制版过程当中的技巧问题。关键词:高速采集;LVDS;阻抗匹配;电源分割中图分类号:TP274+.2文献标识码:B

Abstract:In this paper,a high speed dual ADC(ADC08D1000)produced by National Semiconductor and an FPGA (EP2C70F896C8)in CycloneII series of Altera are used to sampling two signals in the same time ,and each converter is interleaved to increased the sample rate up to 2GSPS.Here our emphases are on some tips on design of the cirsuit and PCB board.Key words:High speed acuizition;LVDS;Impedance matching;Spliting on power board

文章编号:1008-0570(2010)04-2-0191-02

1高速ADC 芯片ADC08D1000

ADC08D1000是美国国家半导体公司(National Semiconduc -

tor)于近年推出的双通道、

低功耗高速采样芯片,具有8位分辨率,单通道最高采样率达到1.3GHz 。双通道可以同时对两路信号同时采样,也可以同一信号进行交叉采样,这时采样率可以高达2GHz 。器件使用单一的1.9V 电压供电,整个器件的典型功率

消耗仅1.6W 。

当输入信号为500MHz,采样率为1GHz 的时,其独特的设计结构可以保证获得7.4位的有效采样位数,而位出错率仅只10-18。

ADC08D1000的输出数据采用了低电压差分传输信号(Low-Voltage Differential Signaling)。LVDS 的摆幅很小,典型值仅为350mA,这样一方面降低了系统的功率消耗,另外也使得高速的信号传输成为可能,并且由于高速差分先的成对出现,使得信号的完整性更好,当然,这个也需要适当的布线才能完成。在芯片当中每个通道有两路8位信号输出总线,这样,当每片ADC 对一路信号进行交叉采样后,共有4条信号输出总线将数据输出,即此时的数据输出速率为500MHz,通过这样的降速,使得接收器件的选择范围更大,也使避免使用专门的LVDS 接收器成为可能。

在本系统当中使用Altera 公司的CycloneII 系列的FPGA 接收采样数据,这是处于对产品成本和性能的综合考虑而来的。CycloneII 系列的FPGA 的LVDS 信号的接收速率达到805Mbps,发送可以达到640Mbps,完全可以满足接收ADC 的信号要求。另外在本设计当中,使用了两片ADC,要求对两路ADC 进行同时操作,即对ADC 采样开始时间、采样数据多少要保持一致,所以尽量使用一片控制芯片,能同时接收两片ADC 信号的输出采样数据,并且可以对两路ADC 进行控制。由于ADC 芯片输出为4条8位总线输出数据,这样每片ADC 的输出数据共有32对LVDS 线,同时ADC 芯片的输出数据的随路时钟信号

(DCLK)以及数据溢出标志位(OVR)同样是采用LVDS 信号,那么每片上面共有34对LVDS 线,所以要求FPGA 有接收68对LVDS 数据的能力,同时考虑到FPGA 的引脚的分配和全局时钟的位置安排,本系统选取了EP2C70F896C8作为数据接收及其他芯片的控制芯片。

2硬件电路设计

2.1ADC 外围电路设计

ADC 芯片的外围电路如下图所示:

对于输入被采样信号来说,使用差分信号要比单端信号更加可靠,如果经过前端放大电路后仍是单端信号,那么可以使用平衡-不平衡变压器(例如ADTL2-18)。

ADC 的控制方式有两种,一种是将控制一脚的电平直接处于高电位或者低电位,这种方式可以使用ADC 的大部分功能,但是不可更改;另外一种方式是基于SPI 口的扩展模式,在这种模式下可以使用ADC 的全部功能,本设计就使用了这种方式,在这种方式下,需要对控制信号的电平进行适当的分压,如图所示上图所示。

Rext 引脚必须外接一个高精度的3.3K 的电阻,可以降低偏

桑泉:硕士研究生

技术创新

移误差和线性误差,能够给内部参考电压提供标准值。

另外ADC的Vcmo引脚需要特别注意,当被采样信号为交

流信号时,可以直接接地,但是当输入为直流信号的时候,就要将

其与时钟调理电路相连接,这个对输入信号的质量关系很大。本

系统中输入信号是交流信号,所以可以直接接地,当然如果不是

很确定的情况下,可以安排跳线。

2.2LVDS数据设计

ADC的信号输出都是采用LVDS方式,LVDS是美国国家

半导体公司于1994年推出的一种信号传输模式,它是一种标

准,在降低功耗的同时提高了信号的传输速率,传输的数据可以

从几百Mbps到2Gbps。对于LVDS的布线来说,最重要的就是

布线的长度控制问题,在同一对LVDS信号线中,两条信号线的

长度最好一致,而不同的线对之间,其长度也尽量保持一致,在本

系统中LVDS上面的速率为500MHz,线对的长度差异最好控制

在100mils以内。LVDS的这个要求表明,在实际的布线当中,必

定会出现蛇形线,通过简单的数学计算,控制蛇形线弯度的大小

和间距,完全可以实现LVDS线对的长度一致关系。在本系统当

中,128根LVDS线的长度均控制在5999mils到6001mils之间。

具体可见下图:

在图中仅是其中的一路ADC信号数据,另外一路与此大致

相同,只是布局方形不一样。LVDS线可以采用微带线和带状线

两种情况,区别就是在表层的时候速度会更快,大约是在内层的

1.5倍,不过由于是500MHz情况下,速度不是特别高,内外都影

响不是很大,本系统中是在板子的顶层布线。

在同一对LVDS线当中,对于不同的绕向来说,外沿线总是

要长于内沿的,所以必然会产生差别,在下图中显示了怎样进行

同一对LVDS线的微调,如图:

在图中,W为线宽,S为线间距,上图所示,如果要进行微调,

那么蛇形线的最高幅度不能超过线宽的两倍,而间隔必须大禹

三倍的线宽,在应用了这样的调节以后,线的长度完全可以控制

的很小。

LVDS的另外一个重要问题就是阻抗匹配,由于LVDS信号

在终端本设计中线宽和线间距都是4mils,线的厚度为1Oz(即

35μm),当板材的电介质系数可以稳定在4.5-4.55的情况下,要

想匹配100欧姆的差分阻抗,通过使用Si9000计算可以得出板

层的厚度也应该控制在4mils。由于在本设计的FPGA内部没有

匹配电阻,所以在接近FPGA的引脚处增加了100欧姆的电阻,

因为FPGA采用的是BGA封装,引脚间距1mm。建议采用较小

封装的贴片电阻,如0201封装。

2.3电源设计

在本设计当中,用到了多种电源,其中有给ADC供电的

1.9V电源(为保证ADC工作效果,必须用给每片ADC单独供

电)、2.5V电压(LVDS线)、1.2V电压(FPGA核电压)、3.3V(FPGA

配置、JTAG及其他CMOS信号)、1.8V电压(ADC控制信号)、3V

电压(时钟产生芯片供电),这样在BGA封装的FPGA下面将产

生多种电压,仅靠一个电源层难以实现,有条件的可以采用两层

电源层来实现,当然这样成本会提高,本设计当中用的6层板,所

以仅有一个电源层,另外对于个别信号,可以在信号层铺铜的办

法来解决。

另外,如果将电源层设计成为内电层的话,那么必须对电源

层进行区域分割,此时必须注意到,再分割的时候各种过孔,不能

跨越分割线,也就是说分割线必须绕过过孔而不能与之相交,这

样的方法在FPGA这样多种电源同时存在的情况下比较难于

实现,或者说比较复杂。在本设计当中,采用的是将电源层设计

成为信号层,再在该信号层中铺铜的办法来实现的,在铺铜的同

时指定与之相连接的网络名称,这样与铜层具有相同网络名称

的网络都相互连接起来,而不相同的网络名称则自动的与之分

开。并且如果有所更改,可以让该区域的铜层重新铺铜,就可以

完成相应的修改,而不用再重新进行电源层分割。本设计FPGA

下面的分层如下所示:

3总结

本文主要介绍了高速ADC芯片ADC08D1000在数据采集

系统当中的应用,着重讨论了在线路设计过程当中遇到的问题

和难点,并给予相应的解决办法。在本设计当中,使用了双路

ADC对信号的同步采样,并且在器件选型和经济成本方面进行

了综合考虑。在高速线路的设计当中还有很多值得注意的地方

需要设计者给予充分的重视,只有综合考虑成本和功效才能设

计出符合项目需求的,具有实际应用价值的产品。

(下转第126页)

技术创新0.2~20kHz的信号。与其它采用方法相比,由于采用了FPGA作

为控制单元,使得电路的设计复杂度降低。采用模拟开关元件实

现的程控放大器和滤波器精度高,而且实现的电路噪声小,具有

良好的稳定性。满足了设计的基本要求,并且具有电路简单、控

制方便、成本低廉等优点。从测量结果来看,截止频率步进在5

kHz~20kHz时,系统的指标精度较高,具有一定的实用价值。

本文作者创新点:设计了基于FPGA实现滤波器控制,并实

现对控制参数参数的设置和显示功能,并进行了性能测试,成本

较低、实用性较强。

参考文献

[1]张成鹤,王平.用MAX264设计通用有源滤波器

[2]秦曾煌.电工学[M].北京:电子工业出版社,1990.

[3]徐欣,孙广富,卢启中.基于FPGA的嵌入式系统设计,

https://www.doczj.com/doc/387106482.html,.

[4]曾新民,曾天剑.运算放大器应用手册[M].北京:电子工业出

版社,1990.

[5]童诗白,华成英.模拟电子技术基础[M].北京:高等教育出版

社,2000.

[6]朴现磊,熊继军,沈三民.基于FPGA的高速数据采集系统的设

计.微计算机信息,2008,1-2:209-211。

作者简介:潘秀琴,(1971-),女,汉族,中央民族大学信息工程学院副

教授,主要从事数字系统设计、模式识别与信号处理等方面研究。

Biography:PAN Xiu-qin(1971-),female,associate professor,

college of information anf engineering the primiry researching

field:digital system design,pattern recognition and signal

processing et al.

(100081北京中央民族大学信息工程学院)潘秀琴李元卢勇

李瑞翔张军张洪赵悦

(college of information and engineering of Minzu university

of china,Beijing100081,China)PAN Xiu-qin LI Yuan

LU Yong LI Rui-xiang ZHANG Jun ZHANG Hong

ZHAO Yue

通讯地址:(100081北京中央民族大学信息工程学院自动化系)

潘秀琴

(收稿日期:2009.05.08)(修稿日期:2009.08.08)

(上接第192页)

参考文献

[1]National Semiconductor.ADC08D1000High Performance,Low

Power,Dual82Bit,1GSPS A/D Converter Data Sheet,December

2005.

[2]Altera器件高密度BGA封装设计,Altera2006年6月5.0版

[3]Guidelines for Designing High-Speed FPGA PCBs

[4]Development Reference Platform ADC08(D)XXXXDEV Evelu-

tion Board,https://www.doczj.com/doc/387106482.html,

[5]一种基于FPGA+DSP的数据采集与处理平台微计算机信息

2009,3-2.

[6]High-Density Design With MicroStar BGAs

作者简介:桑泉(1980-),男,吉林松原人,硕士研究生,研究方向为

信号与信息处理;柯式镇男,福建省同安县人,1967年1月生。

博士,研究员。主要从事岩石电学性质、测井方法及仪器的研究

工作;钱步仁,男,江苏扬州人,硕士研究生导师,研究方向:井控

技术训练仿真培训系统、井控远程控制防喷器仿真培训装置。

虚拟仪器测量技术,运用虚拟仪器开发软件对钻井过程中复杂

信号测量处理、实时监控。

Biography:SANG Quan(1980-),Gender(Han),Jilin,China Uni-

versity of Petroleum-Beijing,signal and information process.

(102249北京中国石油大学机电学院)桑泉钱步仁

(102249北京中国石油大学资源与信息学院)柯式镇

(Department of mechanical and electrical Engineering,China

University of Petroleum,Beijing102249,China)SANG Quan

QIAN Bu-ren

(Department of Natural Resource&Information Technolo-

gy,China University of Petroleum,Beijing102249,China)

KE Shi-zhen

通讯地址:(102249北京中国石油大学机电学院)桑泉

(收稿日期:2009.04.21)(修稿日期:2009.07.21)

(上接第194页)

表1测试记录

5结束语

基于改进算法测试DS-25旋转编码器的绝对位置角度能

大量节约存储空间,增强程序的灵活性,并且摒弃复杂的查表过

程,提升程序的执行效率。该方法已成功地应用到重庆生普石油

设备制造有限公司所研制的陀螺测斜仪上,取得了满意的效果。

本文作者创新点:改进DS-25编码器解算角度位置的方法,

以提高软件灵活性并降低硬件成本。

参考文献

[1]舒乃秋.检测技术[M].北京:中国电力出版社,2006

[2]张庆龄.检测技术理论与实践[M].北京:北京航空航天大学出

版社,2007

[3]赵波.绝对式三级组合光电轴角编码器[J].微机算计信息,2008,5-1

[4]王裕琛.译码器,编码器,数据选择器,电子开关,电源分册[M].

北京:科学技术出版社,2006

[5]程晓莉.绝对式编码器在电机定位种地应用[J].控制工程,2007,12

(5):19~21

[6]Netzer Precision.DS-25.pdf.https://www.doczj.com/doc/387106482.html,

[7]申忠宇汪倩倩.基于AVR单片机电风扇360度内摇头角度

自由调节装置的实现[J].微计算机信息,2007,1-2

[8]钱政.测试误差分析与数据处理[M].北京:北京航空航天大学

出版社,2008

作者简介:贺玲玲(1975-)女(汉族),重庆市人,讲师,硕士研究生,

主要研究方向:嵌入式系统开发与应用。

Biography:HE Ling-ling(1975-),female,(han),Chongqing

Yongchuan county,Chongqing Technology and Business

University,Engneering,Main research is the development and

application of embedded systems.

(400067重庆重庆工商大学计算机科学与信息工程学院)贺玲玲

(Chongqing Technology and Business University,Chongqing

400067,China)HE Ling-ling

通讯地址:(400067重庆市南岸区五公里回龙兰湖天2栋3-11-

1)贺玲玲

(收稿日期:2009.04.17)(修稿日期:2009.07.17)

激光雷达高速数据采集系统解决方案

激光雷达高速数据采集系统解决方案 0、引言 1、 当雷达探测到目标后, 可从回波中提取有关信息,如实现对目标的距离和空间角度定位,并由其距离和角度随时间变化的规律中得到目标位置的变化率,由此对目标实现跟踪; 雷达的测量如果能在一维或多维上有足够的分辨力, 则可得到目标尺寸和形状的信息; 采用不同的极化方法,可测量目标形状的对称性。雷达还可测定目标的表面粗糙度及介电特性等。接下来坤驰科技将为您具体介绍一下激光雷达在数据采集方面的研究。 1、雷达原理 目标标记: 目标在空间、陆地或海面上的位置, 可以用多种坐标系来表示。在雷达应用中, 测定目标坐标常采用极(球)坐标系统, 如图1.1所示。图中, 空间任一目标P所在位置可用下列三个坐标确定: 1、目标的斜距R; 2、方位角α;仰角β。 如需要知道目标的高度和水平距离, 那么利用圆柱坐标系统就比较方便。在这种系统中, 目标的位置由以下三个坐标来确定: 水平距离D,方位角α,高度H。 图1.1 用极(球)坐标系统表示目标位置

系统原理: 由雷达发射机产生的电磁能, 经收发开关后传输给天线, 再由天线将此电磁能定向辐射于大气中。电磁能在大气中以光速传播, 如果目标恰好位于定向天线的波束内, 则它将要截取一部分电磁能。目标将被截取的电磁能向各方向散射, 其中部分散射的能量朝向雷达接收方向。雷达天线搜集到这部分散射的电磁波后, 就经传输线和收发开关馈给接收机。接收机将这微弱信号放大并经信号处理后即可获取所需信息, 并将结果送至终端显示。 图1.2 雷达系统原理图 测量方法 1).目标斜距的测量 雷达工作时, 发射机经天线向空间发射一串重复周期一定的高频脉冲。如果在电磁波传播的途径上有目标存在, 那么雷达就可以接收到由目标反射回来的回波。由于回波信号往返于雷达与目标之间, 它将滞后于发射脉冲一个时间tr, 如图1.3所示。 我们知道电磁波的能量是以光速传播的, 设目标的距离为 R, 则传播的距离等于光速乘上时间间隔, 即2R=ct r 或 2 r ct R

高速数据采集系统设计

高速数据采集系统 设计

基于FPGA和SoC单片机的 高速数据采集系统设计 一.选题背景及意义 随着信息技术的飞速发展,各种数据的实时采集和处理在现代工业控制和科学研究中已成为必不可少的部分。高速数据采集系统在自动测试、生产控制、通信、信号处理等领域占有极其重要的地位。随着SoC单片机的快速发展,现在已经能够将采集多路模拟信号的A/D转换子系统和CPU核集成在一片芯片上,使整个数据采集系统几乎能够单芯片实现,从而使数据采集系统体积小,性价比高。FPGA为实现高速数据采集提供了一种理想的实现途径。利用FPGA高速性能和本身集成的几万个逻辑门和嵌入式存储器块,把数据采集系统中的数据缓存和控制电路全部集成在一片FPGA芯片中,大大减小了系统体积,提高了灵活性。FPGA 还具有系统编程功能以及功能强大的EDA软件支持,使得系统具有升级容易、开发周期短等优点。 二.设计要求 设计一高速数据采集系统,系统框图如图1-1所示。输入模拟信号为频率200KHz、Vpp=0.5V的正弦信号。采样频率设定为25MHz。经过按键启动一次数据采集,每次连续采集128点数据,单片机读取128点数据后在LCD模块上回放显示信号波形。

图1-1 高速数据采集原理框图 三.整体方案设计 高速数据采集系统采用如图3-1的设计方案。高速数据采集系统由单片机最小系统、FPGA最小系统和模拟量输入通道三部分组成。输入正弦信号经过调理电路后送高速A/D转换器,高速A/D 转换器以25MHz的频率采样模拟信号,输出的数字量依次存入FPGA内部的FIFO存储器中,并将128字节数据在LCD模块回放显示。 图3-1 高速数据采集系统设计方案 四.硬件电路设计 1.模拟量输入通道的设计 模拟量输入通道由高速A/D转换器和信号调理电路组成。信号调理电路将模拟信号放大、滤波、直流电平位移,以满足A/D转换器对模拟输入信号的要求。

键控大数据采集及数值显示电路设计(微机原理)

二○一二~二○一三学年第一学期 信息科学与工程学院 自动化系 课程设计计划书 班级:自动化1006班 课程名称:微机原理及应用课程设计姓名: 指导教师: 二○一二年月十二日

一、设计题目 键控数据采集及数值显示电路设计 二、设计任务 按不同的数字键(0、1、2、3、4、5、6、7)采集0809相应数据通道的模拟量,并在LED数码管上显示值。设定输入模拟量在0—5V范围内,显示值在0—255范围内。 三、设计要求 1.画出连接线路图或功能模块引脚连接图。 2.采用8088CPU作主控制器,0809作A/D转换器,采用直接地址译码方法,给各芯片分配地址,选取芯片中必须包含有8255。 3.采用3个共阴极型LED动态显示,只需显示0—255范围内的值。 四、设计思想及需要用的主要芯片 1、设计思想 首先通过编程对8255初始化,然后通过8255对ADC0809转换器初始化,通过0~7号按键(在这里0~7号按键用开关实现,有按键的过程中会有抖动,所以需要加入一个74LS244芯片,用于缓冲),经8088微处理器处理后选择ADC0809的模拟通道,将0~5V内的模拟量通过选择的模拟通道传递给模数转换器,通过转换器把模拟量转换为0~255之间的数字量,将数字量通过可编程并行接口8255(在这里端口A作为数据输入端,端口B作为数据输出端,端口C 作为控制端),送给LED数码管显示。 2.主要芯片及其功能 ADC0809是8位逐次逼近式A/D转换器。片内有8路模拟开关及地址锁存与译码电路、8位A/D转换和三态输出锁存缓冲器。其芯片引脚图如下

8255是Intel公司生产的可编程并行I/O接口芯片,有3个8位并行I/O 口。具有3个通道3种工作方式的可编程并行接口芯片(40引脚)。。 74LS244是数据输入三态缓冲器。外设输入的数据和状态信号,通过数据输入三态缓冲器井经过数据总线传递给微处理器。8个数据输入端与外设相连,8个数据输出端与微型计算机的数据总线相连。其引脚图如下 74LS273是数据输出寄存器。8个输入端微型计算机的数据总线相连,8个数据输出端与外设相连,由时终端控制数据的写入。其引脚图如下

人才培养工作状态数据采集平台分析报告

人才培养工作状态数据采集平台分析报告 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

人才培养工作状态数据采集平台 平台数据分析报告 二○一一年十月 平台数据分析报告 一、办学基本情况综述 通过对学院2010年9月至2011年8月人才培养工作状态数据采集平台的分析,可以看到,学院从建校至今,共设置了39个高职专业,2010年招生34个高职专业,2011年计划招生36个专业。共有8届毕业生,截止2011年8月31日,学院在校生数11242人。 表1办学基本条件统计表 践场所占有面积平方米;生均学生宿舍面积平方米;生均教学科研仪器设备值元;新增设备比例%;生均纸质图书册、电子图书;生

均年进书量册;百名学生教学用计算机台;百名学生阅览室、多媒体教室和语音室座位个。 学院现有专任教师455人,校内兼课人员56人,校外兼职教师141人,校外兼课教师42人,学生与教师(折合后)比:1。高级职称教师占专任教师的%,具有硕士以上学位教师占专任教师的%。 对照教育部《普通高等学校基本办学条件指标(试行)》中的标准,学院在生均占地面积、教学行政用房面积、学生宿舍面积、教学仪器设备值以及生师比、年新增教学仪器设备和新增生均图书量、每百名学生拥有计算机台数、多媒体教室座位数等方面已符合国家的要求,说明目前学院这些方面已能够满足办学的需要。 此外,对照普通高等学校基本办学条件指标,学院生均纸质图书距离80册的标准尚有差距,需要在今后的办学过程中不断改善。 二、对专项数据的分析 (一)院领导班子情况分析 截止2011年8月31日,院领导共8位,2人具有党政行政工作经历,6人长期从事学校管理工作。大学本科以上学历7人,专科学历1人;高级职称7人。平均年龄岁。平均兼课量学时,听课次,走访学生寝室次,走访校外实习点次,参与学生社团文体活动次。

数据采集电路PCB的设计与制作

分类号:TP315 U D C:D10621-408-(2007)6203-0 密级:公开编号:2003032184 成都信息工程学院 学位论文 基于C51的数据采集电路PCB的设计与制作 论文作者姓名: 申请学位专业: 申请学位类别: 指导教师姓名(职称): 论文提交日期:

基于C51的数据采集电路PCB的设计与制作 摘要 “基于C51的数据采集电路PCB的设计与制作”是针对现代水利行业水情数据采集而设计制作的电路PCB。同时,也是为了响应国家提出的数字水利这样一个大背景下,把水利信息化尽快的实现、完善、壮大起来。本设计讲述了电子电路设计软件Protle99的基本功能,而后逐一介绍开发数据采集系统的步骤:需求分析、系统分析、系统设计、系统实现、系统维护。需求分析介绍了针对水利行业而进行了本系统的设计,在系统分析中分析了电子电路设计功能的各种元气件功能和各种连线要完成的功能,以及整个要完成的功能。在系统的设计中,详细的展现了系统的各个功能模块、原理图绘制、PCB的完成所需的准备步骤。在系统的实现中,给出了一个满足系统功能的完整PCB。通过反复的测试,我们得出结果,整个系统的设计是成功的,可以应用到所有的水利行业,进行数据的采集。 关键字:PCB;数据采集;电子电路;数字水利

The Design and Implementation of Data Acquisition Circuit Based on C51 Abstract “The design and implementation of data acquisition circuit based on C51” is the circuit PCB designed and implemented according to data of water situation of modern conservancy industry. At the same time, in order to response to the digital conservancy raised by our country, it makes the conservancy informationization implement, perfect and grow. This paper discusses the basic function of electronic circuit design software-Protle99. It takes this system for example to introduce the development steps of this system one by one: demand analysis, syst em analysis, system design, system implementation and system maintenance. Demand analysis introduces the design of this system focusing on conservancy industry. It analyses functions of various components and various connections of electronic circuit desig n in system analysis, as well as the function of completion. In the design of this system, it shows the preparing steps of every functional module, drawing of principle chart, and completion of PBC of this system. In the implementation of this system, it gives a complete PBC matched for the function of the system. After repeated tests, the result is that the design of this system is successful and it can be applied to all conservancy industries to collect data. Key word s:PCB; data collection; electronic circuit;digital conservancy

人才培养工作状态数据采集平台

人才培养工作状态数据采集平台填报指南(一) 评建办咨询电话 综合楼304 8715(1850)朱晓峰张磊 综合楼302 8715(1858)殷锐

一、 注释 例一 (一) 注释类别一 1. 院校名称若同时使用两个以上院校名的请一并填写。 2. 建校时间指院校独立设置具有举办高等职业教育资格的时间(上级主管部门批准时间)。 3. 建校基础指高职学院的筹建基础,具体包括哪几所学校。 4. 举办方(单一选项):省级政府/地市级政府/行业/企业/其他 5. 院校性质(单一选项):公办/民办 6. 院校类别(单一选项):第一产业/第二产业/第三产业/综合 7. 立项部门(单一选项):国家/省/未立项 8. 每位院校领导信息占一行。 9. 性别(单一选项):男/女。 10. 每兼一门课即填一行

11.一体化教室是指兼具理论教学与动手能力培养功能的教室。(有待学院相关部门认定) 12.每个校内实践基地(含实验室、实习实训基地)填一行。 13.主要面向专业填制不超过5个。 14.支持部门(单一选项):国家/省 15.社会(准)捐赠设备值泛指社会各方的捐赠,包括为学校所用,不为学校所有的可称为“准 捐赠”的仪器设备等;实物资产折算为资金统计。 16.大型设备指单价≥5万元的设备。 17.所列主要项目一般不超过5项。 18.专职管理人员,当其承担多个实验实训室管理时,以某个实验实训室为专职,其它都为兼 职。并在填写是表明“兼”。(有别于指导实训的教师) 19.每个校外实习实训基地填制一行格。其它校外教育资源,可以用“补充说明”形式表达。 20.是否有住宿条件(单一选项):是/否 21.基地是否发放学生实习补贴(单一选项):是/否 22.级别(单一选项):省/市 23.部门(单一选项):中央部委/省市部门/行业/企业/其他 24.日常教学经费包括实验实习费、教学仪器维修费、教学差旅费、资料讲义费、体育维持费 和聘请兼职教师费等。 25.校内专任教师可包括正式签约聘用的非在编的全职教师。 26.学历(单一选项):博士研究生/硕士研究生/大学/专科/专科以下 27.学位(单一选项):博士/硕士/学士 28.专业特长指教师在专业领域某一方面的优势和专长。 29.专业技术职务指教师获得的人事部门认定的职称,包括教师系列职称、工程系列职称、研 究员系列职称等;B1.技术职务等级(单一选项):高级/中级/初级。(原中专的高级讲师也可计入高级职称人数,改制超过6年的高级讲师不再计入。) 30.职业资格等级指教师获得的劳动与社会保障部门、其他部委、行业、企业等颁发的各类职 业资格证书。各类技能证书也在本栏填写。 31.本学年所授课程全部列出 32.是否为专业带头人(单一选项):是/否(有待学院相关部门认定) 33.是否为骨干教师(单一选项):是/否(有待学院相关部门认定) 34.是否为双师素质(单一选项):是/否。双师素质教师是指具有教师资格,又具备下列条件 之一的校内专任教师和校内兼课人员:⑴具有本专业中级(或以上)技术职称及职业资格

等间距采样的高速数据采集系统设计

等间距采样的高速数据采集系统设计 郝亮,孟立凡,刘灿,高建中 (中北大学仪器科学与动态测试教育部重点实验室,太原030051) 摘要:简单介绍通过对窄脉冲等间距采样来测试电缆故障的基本原理,分析其脉冲的特点和处理要求;采用F PGA和MSP430F149作为主控芯片,设计了单路多次低速数据采集系统;利用Quartus II软件编写主控程序,并在Modelsim下进行仿真验证。实验结果表明,该系统方案切实可行,可有效解决电缆故障测距过程中的高精度数据采集问题。 关键词:等间距采样;数据采集;MSP430F149;F PGA 中图分类号:TN98文献标识码:B H igh2spe ed Data Acquisition System Based on Equidistance Sampling Hao Liang,Meng Lifan,Liu Can,Gao Jianzhong (Inst ruments Science and Dynamic Measurement Ministry of Education Key Laboratory, North University of China,T aiyuan030051,China) A bstract:T he basic principle of testing cable faults wit h narrow2pulse equidistance sampling is described.Pulse characteristics and pro2 cessing requirements are analyzed.The single2line repeated low2speed dat a acquisition system is designed with FPGA and MSP430F149 as main control chips.Main control procedures are programmed in Quartus II and simulated in Modelsim.Experimental result shows that t he system is practical,and the problem of high2precision data acquisition in the process of cable fault location is resolved effectively. K ey words:equidist ance sampling;data acquisit ion;MSP430F149;FPGA 引言 电缆故障是通信行业中的常见故障,而电缆测距是排除故障的前提条件。准确的电缆测距可以缩短发现故障点的时间,利于快速排除故障,减少损失。窄脉冲时域反射仪利用时域反射技术来测定电缆断点位置,可以同时检测出同轴传输系统中多个不连续点的位置、性质和大小。窄脉冲信号持续的时间非常短暂,为了能够有效地捕捉到窄脉冲信号,对A/D采样率和处理器速率提出了较高的要求,传统的数据采集已经不能满足系统设计需求。本文介绍的单路多次低速数据采集方案硬件结构简单,成本低,能够满足系统设计要求。 1系统设计理论依据 根据电磁波理论,电缆即传输线。假若在电缆的一端发送一探测脉冲,它就会沿着电缆进行传输,当电缆线路发生障碍时会造成阻抗不匹配,电磁波会在障碍点产生反射。在发射端,由测量仪器将发送脉冲和反射脉冲波形记录下来。实际测试中,具体障碍的波形有所差异:断线(开路)障碍时,反射脉冲与发射脉冲极性相同;而短路、混线障碍时,反射脉冲与发射脉冲极性相反。波形如图1所示。 图1发射脉冲与反射脉冲波形 设从发射窄脉冲开始到接收到反射脉冲波的时间为$t,则: l=v#$t 2 其中,v为脉冲波在电缆中的传输速度;l为电缆故障点与脉冲波送入端的距离。 由以上分析可知,在同一个固定障碍的线路上多次送入同一脉冲电压,其反射脉冲将同样地在同一位置多次出现。 要实现对反射窄脉冲的捕获和1m的测距分辨率(在波速为200m/L s的情况下),则$t= 2l v =2@1 200 =0.01L s =10ns。即要求抽样的时间分辨率为10ns,对应的数据采集系统频率高达100MHz。同时,最大测量范围是2km 时,要求发射脉冲的重复周期T= 2l v =2@2000 200 =20L s。

实验七 数据采集电路PCB板设计

实验七数据采集电路PCB板设计 一、实验目的 (1)掌握电路原理图设计流程。 (2)掌握电路原理图层次设计。 (3)掌握由电路原理图到PCB设计的设计流程。 (4)掌握PCB设计流程。 二、基本要求 在自己的工程组的PCB工程文件中建立多个原理图文件,并建立一个PCB文件。按实验内容,设计出PCB板。 三、实验器材 P4计算机、Protel DXP软件 四、实验内容 绘制出下列电路原理图,进行层次设计,并进行PCB板设计。 图7-1 5V电源电路原理图 图7-2 串行通信电路原理图

图7-3 数据采集电路原理图 五、实验步骤 1. 建立原理图文件 (1) 运行Protel DXP,进入Protel DXP设计环境。 (2) 打开工程组文件:执行菜单命令【File】→【Open Project Group…】,在弹出的“Choose Project Group to Open”对话框中的【查找范围】中找到“我的工程组文件”所在的路径,并将该文件打开。 (3) 关闭当前的工程文件。 (4) 建立工程文件:执行菜单命令【File】→【New】→【PCB Project】,建立PCB Project1.PrjPCB工程文件。 执行菜单命令【File】→【Save Project】,在弹出的“Save [PCB Project1.PrjPCB] As…”对话框的文件名输入框中输入文件名(如输入:“数据采集电路PCB工程”),然后选择保存路径,再单击“保存”按钮。这样即可建立并更改工程文件名。 (5) 建立原理图文件:执行菜单命令【File】→【New】→【Schematic】,建立原理图文件Sheet1.SchDoc。 (6) 保存并更改原理图文件名:执行菜单命令【File】→【Save】,在弹出的“Save [Sheet1.SchDoc] As…”对话框的文件名输入框中输入文件名(如输入:“5V电源电路”),然后选择保存路径,再单击“保存”按钮。至此已建立好“5V电源电路”文件。按图7-1所示,绘制出5V电源电路原理图,并给元件编号。 (7) 向当前工程“数据采集电路PCB工程”中添加“串行通信电路原理图”文件:右键单击【Project】中的“数据采集电路PCB工程”工程文件名,在弹出的菜单中选择菜单命令【Add to Project…】,弹出“Choose Document to Add to Project [数据采集电路PCB工程.PRJPCB]”,选择打开文件“串行通信电路”。 (8) 继续建立原理图文件:执行菜单命令【File】→【New】→【Schematic】,建立原理图文件Sheet1.SchDoc。 (9) 保存并更改原理图文件名:执行菜单命令【File】→【Save】,在弹出的“Save [Sheet1.SchDoc] As…”对话框的文件名输入框中输入文件名(如输入:“数据采集电路”),然后选择保存路径,再单击“保存”按钮。至此已建立好“数据采集电路”文件。按图7-3所示,绘制出数据采集电路原理图,并给元件编号。 (10) 继续建立原理图文件:执行菜单命令【File】→【New】→【Schematic】,建立原理图文件Sheet1.SchDoc。 (11) 保存并更改原理图文件名:执行菜单命令【File】→【Save】,在弹出的“Save [Sheet1.SchDoc] As…”对话框的文件名输入框中输入文件名(如输入:“数据采集系统电路”),然后选择保存路径,再单击“保存”按钮。至此已建立好“数据采集系统电路”文件。

多路数据采集系统设计毕业论文

多路数据采集系统设计毕业论文 第1章绪论 1.1 多路数据采集系统介绍 随着工、农业的发展,多路数据采集势必将得到越来越多的应用,为适应这一趋势,作这方面的研究就显得十分重要。在科学研究中,运用数据采集系统可获得大量的动态信息,也是获取科学数据和生成知识的重要手段之一。总之,不论在哪个应用领域中,数据采集与处理将直接影响工作效率和所取得的经济效益。 此外,计算机的发展对通信起了巨大的推动作用。算机和通信紧密结合构成了灵活多样的通信控制系统,也可以构成强有力的信息处理系统,这样对社会的发展产生了深远的影响。数据通信是计算机广泛应用的必然产物[2]。 数据采集系统,从严格的意义上来说,应该是用计算机控制的多路数据自动检测或巡回检测,并且能够对数据实行存储、处理、分析计算以及从检测的数据中提取可用的信息,供显示、记录、打印或描绘的系统。 数据采集系统一般由数据输入通道,数据存储与管理,数据处理,数据输出及显示这五个部分组成。输入通道要实现对被测对象的检测,采样和信号转换等

工作。数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。数据处理就是从采集到的原始数据中,删除有关干扰噪声,无关信息和必要的信息,提取出反映被测对象特征的重要信息。另外,就是对数据进行统计分析,以便于检索;或者把数据恢复成原来物理量的形式,以可输出的形态在输出设备上输出,例如打印,显示,绘图等。数据输出及显示就是把数据以适当的形式进行输出和显示。 由于RS-232在微机通信接口中广泛采用,技术已相当成熟。在近端与远端通信过程中,采用串行RS-232标准,实现PC机与单片机间的数据传输。在本毕业设计中对多路数据采集系统作了初步的研究。本系统主要解决的是怎样进行数据采集以及怎样进行多路的数据采集,并将数据上传至计算机[2]。 1.2 设计思路 多路数据采集系统采用ADC0809模数转换器作为数据采集单元和AT89C51单片机来对它们进行控制,不仅具有控制方便、简单和灵活性大等优点,而且可以大幅度提高采集数据的灵敏度及指标。通过MAX232电平转换芯片实现单片机与PC 机的异步串行通信,设计中的HD7279实现了键盘控制与LED显示显示功能。本文设计了一种以AT89C51和ADC0809及RS232为核心的多路数据采集系统。 多路数据采集系统就是通过键盘控制选择通路,将采集到的电压模拟两转换成数字量实时的送到单片机里处理从而显示出采集电压和地址值,最终控制执行单片机与PC机的异步串行通信。 连接好硬件后,给ADC0809的三条输入通路通入直流电压。4-F键为功能键,4-E键为复位键,F键为确认键。1-3键为通道选择键,分别采集三个通道的数据值并实时显示出数值和地址值。结合单片机RS232串口功能还实现了与PC机的异

一种高速数据采集系统的研究

第31卷第5期 唐山师范学院学报 2009年9月 Vol. 31 No. 5 Journal of Tangshan Teachers College Sep. 2009 ────────── 收稿日期:2008-12-12 作者简介:李洋(1982-),男,河北衡水人,唐山师范学院基础教育部教师。 -66- 一种高速数据采集系统的研究 李 洋,郭小松 (唐山师范学院 基础教育部,河北 唐山 063000) 摘 要:由于高速数据采集对信号完整性、信号干扰、高速布线及数据处理和高速实时存储要求极高,而其应用环境又往往非常复杂,所以在目前的实际应用中,很难实现一种既能进行长时间高速数据采集、又能进行大容量存储的数据采集系统。在此背景下,提出了一种高速数据采集及存储的解决方案,采用高速FPGA 加嵌入式微处理器作为中央处理器来进行高速数据传输和磁盘阵列数据存储,实现高速数据采集及大容量实时存储。 关键词:数据采集;模数转换;海量存储;RAID0 中图分类号: T N919.5 文献标识码:A 文章编号:1009-9115(2009)05-0066-03 Study of High-Speed Data Acquisition and Storage System LI Yang, GUO Xiao-song (Department of Foundation Education, Tangshan Teachers College, Tangshan Hebei 063000, China) Abstract: Because of the extreme requirements of signal integrity, noise jamming, high-speed layout, high-speed real-time storage and the complex application environments, it is very difficult to realize a high-speed data acquisition system which is suitable for long-time data acquisition and mass storage. Against this background, a solution of high-speed data acquisition and storage system is introduced in this thesis, which is using of high-speed FPGA and embedded microprocessors as the central processing device for high-speed data transfer and data storage of redundant array of inexpensive disks , realized on-time data acquisition and mass storage. Key words: data acquisition; A/D convert; mass storage; RAID 现代工业生产和科学研究对数据采集的要求日益提高,在雷达、声纳、软件无线电、瞬态信号测量等一些高速、高精度的测量中,需要进行高速数据采集。目前,数据采集系统在高速A/D 、D/A 器件发展的带动下,采集带宽在稳步提高,具有100MSPS 采集能力以上的高速数据采集系统产品己较成熟。然而国外厂商的高速采集系统往往都价格不菲,而且由于高速数据采集对信号完整性、信号干扰、高速布线及数据处理和高速实时存储要求极高,国内完全掌握这个技术的厂商并不多,所以在实际应用中,很难找到一种满足需要的高速采集系统。这种情况长期限制了高速数据采集技术在我国工业生产和科学研究中的应用。 在这样的背景下,本文提出一种高速数据采集与实时存储系统的解决方案,解决以往在高速技术、数据存储与传输技术等方面的几个技术难点,采用FPGA 作为核心器件,集成中央逻辑控制及硬盘接口,直接将高速数据存入有多块硬 盘组成的实时RAID 存储系统中,实现了高速采集和实时存储,并可脱机运行。这种方案成本低廉,能提高采集速度,增加系统可靠性,并大大提高可持续采集时间,具有较大的灵活性。 1 总体系统方案硬件设计 高速数据采集系统的主要目的是把采集到的模拟信号转化为数字信号,所以模拟信号进入数据采集系统的第一步就是通过AD 采集电路进行模数转换;采集到的数据为了以后研究调用,就需要存储到存储器中,所以系统的最后一步是使用高速海量存储器对数据进行存储;系统的启动、停止和数据传输的方式还需要使用中央逻辑控制电路,所以在AD 采集电路与高速海量存储器之间增加中央逻辑控制电路来作为AD 采集电路与高速海量存储器之间的桥梁;系统通过人机接口与PC 机连接,可以对数据采集系统进行调试,还方便调用存储数据进行研究测试,并实现

5 Gsps高速数据采集系统的设计与实现

5 Gsps 高速数据采集系统的设计与实现 摘要:以某高速实时频谱仪为应用背景,论述了5 Gsps 采样率的高速数据采集系统的构成和设计要点,着重分析了采集系统的关键部分高速ADC(analog to digital,模数转换器)的设计、系统采样时钟设计、模数混合信号完整性设计、电磁兼容性设计和基于总线和接口标准(PCI Express)的数据传输和处理软件设计。在实现了系统硬件的基础上,采用Xilinx 公司ISE 软件的在线逻辑分析仪(ChipScope Pro)测试了ADC 和采样时钟的性能,实测表明整体指标达到设计要求。给出上位机对采集数据进行处理的结果,表明系统实现了数据的实时采集 存储功能。关键词:高速数据采集;高速ADC;FPGA;PCI Express 高速实时频谱仪是对实时采集的数据进行频谱分析,要达到这样的目的,对数据采集系 统的采样精度、采样率和存储量等指标提出了更高的要求。而在高速数据采集 系统中,ADC 在很大程度上决定了系统的整体性能,而它们的性能又受到时钟质量的影响。为满足系统对高速ADC 采样精度、采样率的要求,本设计中提 出一种新的解决方案,采用型号为EV8AQ160 的高速ADC 对数据进行采样;考虑到ADC 对高质量、低抖动、低相位噪声的采样时钟的要求,采用AD9520 为5 Gsps 数据采集系统提供采样时钟。为保证系统的稳定性,对模数混合信号完整性和电磁兼容性进行了分析。对ADC 和时钟性能进行测试,并给出上位 机数据显示结果,实测表明该系统实现了数据的高速采集、存储和实时后处理。 1 系统的构成高速数据采集系统主要包括模拟信号调理电路、高速ADC、高速时钟电路、大容量数据缓存、系统时序及控制逻辑电路和计算机接口电路等。图1 所示为5 Gsps 高速数据采集系统的原理框图。所用ADC 型号为EV8AQ160,8 bit 采样精度,内部集成4 路ADC,最高采样率达5 Gsps,可以工作在多种模式下。通过对ADC 工作模式进行配置,ADC 既可以工作在采样

人才培养工作状态数据采集平台分析报告

关于人才培养工作状态数据采集平台的分析报告 高等职业院校人才培养工作状态数据采集平台是促进学校管理现代化、标准化、制度化,完善教学质量保障体系的一个重要手段和途径。 学院领导高度重视《2015年人才培养状态数据平台》采集工作,组织相关部门和人员召开会议,对2015年填报要求认真学习和研究,对填报细节工作逐一落实,按照源头录入、规范采集的原则,有组织、有步骤地进行了数据采集和填报。以用好数据采集平台为依据,通过数据采集平台的建设来引导学院的内涵建设,规范学院各单位的日常工作,促进学院办学水平的提升。对各项数据进行了深入细致的分析,找出了学院一年来取得的成绩以及尚存在的问题,并对存在的问题制定了相应的整改措施。 根据省教育厅关于数据平台培训工作通知要求,我院精心挑选两名责任心强且技术过硬的骨干教师专门负责汇总各项数据。按照填报精神,我院分管院长亲自召开数据填报安排会议,要求各部门高度重视数据平台采集工作,统一思想,加强学习,提高认识,充分理解新版数据平台中的各项指标内涵,从源头上确保采集数据的准确性和实时性,切实按照“独立、原始、及时、公开”的原则建设数据平台,充分发挥数据平台在学院人才培养工作中的宏观调控作用,推进学院各项管理水平再上一个新的台阶。 我院在使用和改进完善人才培养状态数据采集平台的过程中体会到:一是数据采集平台是我院实施人才培养工作动态监测,

及时发现问题,实现科学决策,进行宏观调控,实施规范管理的重要手段。二是数据采集平台不能是应付评估才建设的临时工作,而应该是作为学院教学质量保障机制的重要部分,建立长效机制,制定规章制度,明确牵头单位,为学院的科学、规范管理和教育教学质量提供保障,为学院决策提供依据。三是人才培养状态数据采集平台是我院发展的风向标,通过对自身人才培养工作状态数据的分析,我院能够较为清晰地掌握本校的发展现状及未来的发展趋势,便于高职院校实现教学质量的自我监控和自我评估,有利于规范自己的教育教学管理、加强内涵建设、创新人才培养模式、构建全方位多角度的人才培养质量保障体系。四是有利于教育部或省教育厅的专家组来我院进行指导时能够准确的指出我院当前发展中存在的问题,更可以有针对性地提出解决问题的方案,更有利于我院今后的发展。 我院建立健全了《高等职业院校人才培养工作状态数据采集平台》定期分析制度,充分发挥其对学院工作状态的反映和监控作用。以《高等职业院校人才培养工作状态数据采集平台》上的信息为引导,推进教学改革,加强专业建设、课程建设和教学团队等各项建设工作,不断培育特色,提升人才培养工作水平,逐步构建学院自主发展,社会参与,自我约束、自我发展的新机制。 通过对学院2014年—2015年人才培养工作状态数据采集平台的分析,对照普通高等学校基本办学条件指标(教发[2004]2号),学院在生师比、实践教学场所、生均占有面积、生均图书量、每百名学生拥有计算机台数、多媒体教室座位数等方面已基本达

学院人才培养工作状态数据采集平台管理办法

学院人才培养工作状态数据采集平台管理办法 第一章总则 第一条根据《教育部关于印发<高等职业院校人才培养工作评估方案〉的通知》(教高〔2008〕5号)文件要求,认真做好我院人才培养工作状态数据采集平台(以下称“数据采集平台”)的数据采集与上报工作,及时分析我院人才培养工作状态,特制定本办法。 第二条数据平台是运用现代数据信息管理技术,对高等职业院校人才培养工作状态数据进行战略重组和系统优化,以不断完善教学质量保障体系,促进管理的制度化、规范化、信息化,从而提升管理水平,提高管理效益,深化内涵建设。第三条通过数据平台的建设和有序运行,实现其“统计汇总、反映现状,管理监控、促进规范,分析开发、提供决策”的基本功能。 第二章机构与职责 第四条组织机构设置 为确保做好数据采集平台的管理和使用,学院成立数据采集平台管理办公室,设在教育教学督导处。 各部门数据采集平台管理具体分工按数据采集平台表格的特征归口负责,由数据采集平台管理办公室负责分工安排。

第五条职责 1.数据采集平台由学院数据采集平台管理办公室统一管理,具体负责全院数据采集的组织工作,包括数据采集平台的运行管理与维护、对各部门报送的数据进行最终汇总、审核,形成总的分析报告提交院长办公会审议;并负责上报省教育厅。 2. 各处室、二级学院、系(部)及有关单位指定专人(信息采集管理员,一般由办公室主任担任)负责本单位数据的采集、汇总和审核,审核的内容包括数据填报格式的规范性、数据及字段的完整性和准确性等。 3. 各处室、二级学院、系(部)及有关单位负责人为本部门信息数据采集工作的第一责任人,各填报单位在完成初始数据的采集、汇总和审核后,连同电子数据报数据采集平台管理办公室。 4.各处室、二级学院、系(部)对相关条目数据进行统计分析,并形成分析报告,报送数据采集平台管理办公室。 第六条数据采集工作实施工作责任制,纳入各部门工作目标考核。 第三章数据采集的组织实施 第七条数据采集时间 为确保数据采集时效性,各部门要及时更新数据。各部门的

数据采集系统

湖南工业大学科技学院 毕业设计(论文)开题报告 (2012届) 教学部:机电信息工程教学部 专业:电子信息工程 学生姓名:肖红杰 班级: 0801 学号 0812140106 指导教师姓名:杨韬仪职称讲师 2011年12 月10 日

题目:基于单片机的数据采集系统的控制器设计 1.结合课题任务情况,查阅文献资料,撰写1500~2000字左右的文献综述。 近年来,数据采集及其应用技术受到人们越来越广泛的关注,数据采集系统在各行各业也迅速的得到应用。如在冶金、化工、医学、和电器性能测试等许多场合需要同时对多通道的模拟信号进行采集、预处理、暂存和向上位机传送、再由上位机进行数据分析和处理,信号波形显示、自动报表生成等处理,这些都需要数据采集系统来完成。但很多数据采集系统存在功能单一、采集通道少、采集速率低、操作复杂、并且对操作环境要求高等问题。人们需要一种应用范围广、性价比高的数据采集系统,基于单片机的数据采集系统具有实现处理功能强大、处理速度快、显示直观,性价比高、应用广泛等特点,可广泛应用于工业控制、仪器、仪表、机电一体化,智能家居等诸多领域。总之,无论在那个应用领域中,数据采集与处理越及时,工作效率就超高,取得的经济效益就越大。 数据采集系统的任务,就是采集传感器输出的模拟信号转换成计算机能识别的信号,并送入计算机,然后将计算得到的数据进行显示或打印,以便实现对某些物理量的监测,其中一些数据还将被生产过程中的计算机控制系统用来控制某些物理量。 数据采集系统的市场需求量大,特别是随着技术的发展,可用数据器为核心构成一个小系统,而目前国内生产的主要是数据采集卡,存在无显示功能、无记忆存储功能等问题,其应用有很大的局限性,所以开发高性能的,具有存储功能的数据采集产品具有很大的市场前景。 随着电子技术的迅速发展,,一些高性能的电子芯片不断推出,为我们进行电子系统设计提供的更多的选择和更多的方便,单片机具有体积小、低功耗、使用方便、处理精度高、性价比高等优点,这些都使得越来越广泛的选用单片机作为数据采集系统的核心处理器。一些高性能的A/D转换芯片的出现也为数据采集系统的设计提供了更多的方便,无论是采集精度还是采样速度都比以前有了较大的提高。其中一些知名的大公司如MAXIM公司、TI公司、ADI公司都有推出性能比效突出的 A/D转换芯片,这些芯片普通具有低功耗、小尺寸的特点,有些芯片还具有多通道的同步转换功能。这些芯片的出现,不仅因为芯片价格便宜,能够降低系统设计的成本,而且可以取代以前繁琐的设计方法,提高系统的集成度。 数据采集器是目前工业控制中应用较多的一类产品,数据采集器的研制已经相当成熟,而且数据采集器的各类不断增多,性能越来越好,功能也越来越强大。 在国外,数据采集器已发展的相当成熟,无论是在工业领域,还是在生活中的应用,比如美国FLUKE公司的262XA系列数据采集器是一种小型、便携、操作简单、使用灵活的数据采集器,它既可单独使用又可和计算机连接使用,它具有多种测量

高速数据采集技术发展综述

高速数据采集技术发展综述 摘要:高速数据采集系统广泛应用于军事、航天、航空、铁路、机械等诸多行业。区别于中速及低速数据采集系统,高速数据采集系统内部包含高速电路,电路系统1/3以上数字逻辑电路的时钟频率>=50MHz;对于并行采样系统,采样频率达到50MHz,并行8bit以上;对于串行采样系统,采样频率达到200MHz,目前广泛使用的高速数据采集系统采样频率一般在200KS/s~100MS/s,分辨率16bit~24bit。本篇文章主要简单介绍高速数据采集技术的发展,高速数据采集系统的结构、功能、原理、实现形式以及一些主要的应用。 关键词:高数数据采集系统、系统结构、系统原理、系统功能、实现形式、应用举例。 引言:高速数据采集技术在通信、航天、雷达等多个领域中广泛应用。随着软件无线电、通信技术、图像采集等技术的发展,对数据采集系统的要求越来越高,不仅要求较高的采集精度和采样速率,还要求采集设备便携化、网络化与智能化,并且需要将采集信息稳定的传输到计算机,进行显示与数据处理。同时,以太网协议已经成为当今局域网采用的最通用的通信协议标准。在嵌入式领域中,将以太网协议与数据采集系统相结合,形成局域网,实现方便可靠的数据传输与控制,是当前的研究热点。 1. 高速数据采集的发展 数据采集系统起始于20世纪50年代,由于数据采集测试系统具有高速性和~定的灵活性,可以满足众多传统方法不能完成的数据采集和测试任务,因而得到了初步的认可。到了70年代中后期,在数据采集系统发展过程中逐渐分为两类,一类是实验室数据采集系统,另一类是工业现场数据采集系统。就使用的总线而言,实验室数据采集系统多采用并行总线,工业现场数据采集系统多采用串行数据总线。随着微型机的发展,诞生了采集器、仪表等同计算机融为一体的数据采集系统。由于这种数据采集系统的性能优良,超过了传统的自动检测仪表和专用数据采集系统,因此获得了惊人的发展他3。随着计算机的普及应用,数据采集系统得到了极大的发展,基于标准总线并带有高速DSP的高速数据采集板卡产品也越来越多,技术先进、市场主流的厂商主要有Spectrum Signal Processing,SPEC,Signatec,Acquisition Logic,Blue Wave等公司 2001年Acquisition logic公司推出了基于PCI总线,采样率为500MS/s,1GS/s的8bit数据采集板卡AL500和AL51G,它的存储深度分别为64MB,256MB和1000MB三种。PCI 总线为主模式,数据宽度32bit,时钟频率33MHz,在突发模式下传输速率可达到133MB /s。两种板卡还同时具有数字信号处理功能:通过板卡上的现场可编程门阵列FPGA来实

相关主题
文本预览
相关文档 最新文档