当前位置:文档之家› 第七章_伺服系统分析

第七章_伺服系统分析

第7章--非线性系统分析--练习与解答

第七章 非线性控制系统分析 习题与解答 7-1 设一阶非线性系统的微分方程为 3x x x +-= 试确定系统有几个平衡状态,分析平衡状态的稳定性,并画出系统的相轨迹。 解 令 x =0 得 -+=-=-+=x x x x x x x 3 2 1110()()() 系统平衡状态 x e =-+011,, 其中:0=e x :稳定的平衡状态; 1,1+-=e x :不稳定平衡状态。 计算列表,画出相轨迹如图解7-1所示。 可见:当x ()01<时,系统最终收敛到稳定的平衡状态;当x ()01>时,系统发散;1)0(-x 时,x t ()→∞。 注:系统为一阶,故其相轨迹只有一条,不可能在整个 ~x x 平面上任意分布。 7-2 试确定下列方程的奇点及其类型,并用等倾斜线法绘制相平面图。 (1) x x x ++=0 (2) ???+=+=2122112x x x x x x 解 (1) 系统方程为 图解7-1 系统相轨迹

?? ?<=-+I I >=++I ) 0(0: )0(0:x x x x x x x x 令0x x == ,得平衡点:0e x =。 系统特征方程及特征根: 2 1,221,21: 10,()2 2:10, 1.618, 0.618 () s s s j s s s I II ? ++==- ±?? ?+-==-+? 稳定的焦点鞍点 (, ) , , x f x x x x dx dx x x x dx dx x x x x x ==--=--= =-- =-+=αα β111 ??? ? ??? <-= >--=) 0(1 1 :II ) 0(1 1: I x x β αβ α 计算列表 用等倾斜线法绘制系统相平面图如图解7-2(a )所示。

电力系统分析第七章例题(栗然)(DOC)

第七章习题 7-1:电力系统接线图示于图6-44a 。试分别计算f 点发生三相短路故障后0.2s 和2s 的短路电流。各元件型号及参数如下: 水轮发电机G-1:100MW ,cos ?=0.85,'' 0.3d X =;汽轮发电机G-2和G-3每台50MW ,cos ?=0.8, '' 0.14d X =;水电厂A :375MW ,''0.3d X =;S 为无穷大系统,X=0。变压器T-1:125MVA ,V S %=13; T-2 和T -3每台63MVA ,V S (1-2)%=23,V S (2-3)%=8,V S (1-3)%=15。线路L-1:每回200km ,电抗为0.411 /km Ω;L-2:每回100km ;电抗为0.4 /km Ω。 解:(1)选S B =100MVA ,V B = Vav ,做等值网络并计算其参数,所得结果计于图6-44b 。 (2)网络化简,求各电源到短路点的转移电抗 利用网络的对称性可将等值电路化简为图6-44c 的形式,即将G-2,T-2支路和G-3,T-3支路并联。然后将以f ,A ,G 23三点为顶点的星形化为三角形,即可得到电源A ,G 23对短路点的转移电抗,如图6-44d 所示。

23 0.1120.119 0.1120.1190.3040.1180.064 G X ?=++=+ (0.1180.064)0.119 0.1180.0640.1190.4940.112 Af X +?=+++ = 最后将发电机G-1与等值电源G 23并联,如图6-44e 所示,得到 139.0304 .0257.0304.0257.0123=+?=f G X (3)求各电源的计算电抗。 123100/0.85250/0.8 0.1390.337100 jsG f X +?=?= 853.1100 375 494.0=?=jsA X (4)查计算曲线数字表求出短路周期电流的标幺值。对于等值电源G123用汽轮发电机计算曲线数字表,对水电厂A 用水轮发电机计算曲线数字表,采用线性差值得到的表结果为 G123A G123A 0.2I =2.538 I =0.581 2I =2.260 I =0.589 t s t s ==时 时 系统提供的短路电流为 821.12078 .01 == S I

第7章非线性控制系统分析

291 第7章 非线性控制系统分析 非线性系统的形式和种类繁多,在构成控制系统的环节中,有一个或一个以上的环节具有非线性特性时,这种控制系统就属于非线性控制系统。本章所说的非线性环节是指输入、输出间的静特性不满足线性关系的环节。对于非线性控制系统,目前还没有通用的分析设计方法,这里主要介绍工程上常用的相平面分析法和描述函数法。 7.1 非线性控制系统概述 7.1.1 非线性现象的普遍性 组成实际控制系统的环节总是在一定程度上带有非线性。例如,作为放大元件的晶体管放大器,由于它们的组成元件(如晶体管、铁心等)都有一个线性工作范围,超出这个范围,放大器就会出现饱和现象;执行元件例如电动机,总是存在摩擦力矩和负载力矩,因此只有当输入电压达到一定数值时,电动机才会转动,即存在不灵敏区,同时,当输入电压超过一定数值时,由于磁性材料的非线性,电动机的输出转矩会出现饱和;各种传动机构由于机械加工和装配上的缺陷,在传动过程中总存在着间隙,等等。 实际控制系统总是或多或少地存在着非线性因素,所谓线性系统只是在忽略了非线性因素或在一定条件下进行了线性化处理后的理想模型。 7.1.2 控制系统中的典型非线性特性 在实际控制系统中所遇到的非线性特性是各式各样的。常见的典型非线性特性有下述几种: 1.饱和非线性特性 实际放大器只能在一定的输入范围内保持输出和输入之间的 线性关系;当输入超出该范围时,其输出则保持为一个常值。这 种特性称为饱和非线性特性,如图7-1所示,其中a x a <<-的 区域是线性范围,线性范围以外的区域是饱和区。许多元件的 图7-1 饱和非线性

292 运动范围由于受到能源、功率等条件的限制,也都有饱和非线性特性。有时,工程上还人为引入饱和非线性特性以限制过载。 2.不灵敏区(死区)非线性特性 一般的测量元件、执行机构都存在不灵敏区。例如某些检测元件对于小于某值的输入量不敏感;某些执行机构接受到的输入信号比较小时不会动作,只有在输入信号大到一定程度以后才会有输出。这种只有在输入量超过一定值后才有输出的特性称为不灵敏区非线性特性,如图7-2所示。其中,?<

相关主题
文本预览
相关文档 最新文档