当前位置:文档之家› 风力发电机运行仿真

风力发电机运行仿真

风力发电机运行仿真
风力发电机运行仿真

基于MATLAB的“风力发电机运行仿真”

软件设计

摘要

关键词

1前言

1.1建模仿真的发展现状

20世纪 50—60年代, 自动控制领域普遍采用计算机模拟方法研究控制系统动态过程和性能。“计算机模拟”实质上是数学模型在计算机上的解算运行, 当时的计算机是模拟计算机, 后来发展为数字计算机。1961年G.W.Morgenthler 首次对仿真一词作了技术性的解释,认为“仿真”是指在实际系统尚不存在的情况下,对于系统或活动本质的复现。目前,比较流行于工程技术界的技术定义是系统仿真是通过对系统模型的实验,研究一个存在的或设计中的系统。仿真的三要素之间的关系可用三个基本活动来描述。如图1

图1 系统仿真三要素之间的关系

20世纪50年代初连续系统仿真在模拟计算机上进行, 50年代中出现数字仿真技术, 从此计算机仿真技术沿着模拟仿真和数字仿真两个方面发展。60年代初出现了混和模拟计算机, 增加了模拟仿真的逻辑控制功能, 解决了偏微分方程、差分方程、随机过程的仿真问题。从60-70代发展了面向仿真问题的仿真语言。20世纪80年代末到90年代初, 以计算机技术、通讯技术、智能技术等为代表的信息技术的迅猛发展, 给计算机仿真技术在可视仿真基础上的进一步发展带来了契机, 出现了多媒体仿真技术。多媒体仿真技术充分利用了视觉和听觉媒体的处理和合成技术, 更强调头脑、视觉和听觉的体验, 仿真中人与计算机交互手段也更加丰富。80年代初正式提出了“虚拟现实”一词。虚拟现实是一种由计算机全部或部分生成的多维感觉环境, 给参与者产生视觉、听觉、触觉等各种感官信息, 使参与者有身临其境的感觉, 同时参与者从定性和定量综合集成的虚拟环境中可以获得对客观世界中客观事物的感性和理性的认识。图2体现

了仿真科学与技术的发展进程。

图2 仿真科学与技术的发展

以美国为代表的发达国家高度重视仿真技术的发展和应用。美国等西方国家除军事用途外的其它行业中的仿真技术及应用都居于世界领先水平,如飞行模拟器、车辆运输仿真、电力系统、石油化工仿真系统等。

经过几个五年计划的努力,我国仿真技术得到了快速的发展,并取得了突破性成果,和长足的进步。在某些方面达到了国际先进水平。但总体水平,特别是应用水平与发达国家比较还有差距,需要进一步努力,加速发展仿真技术以缩小差距

1.2本仿真软件简介

2风力发电机各部分数学模型及仿真

2.1风力机

风能利用系数(功率系数)Cp 是指单位时间内风力机所获得的能量与风能之比。它是评定风力机气动特性优劣的只要参数,其定义式:

3

2

1SV P C p ρ= (1) 式中:

P 为风力机的功率,单位是W ;

ρ为空气密度,单位是kg/m 3;

S 为风轮的扫风面积,单位是m 2;

V 为来流风速,单位是m/s

在设计Savonius 风力机时要考虑两个重要的结构参数:一个是重叠比OL (Overlap ratio ),一个是高径比AP (Aapect ratio ):

d S OL /= (2) d H AP /= (3) 叶片重叠比对Savonius 风力机的各种性能影响很大。如图4的风洞试验数据所示,具有不同的叶片重叠比的风力机的最大功率系数相差很大,合理设计叶片重叠比可以改善风力机的静态启动特性,对风力机的动态力矩变化的战俘和相位也具有一定的影响。

图4 具有不同重叠比的Savonius 风力机的性能

叶片高径比也对风力机的性能影响很大,一般来说叶片高径比越大风力机性能越好。目前实际应用中的Savonius 风力机的叶片高径比一般为1~4,准确数值要根据设计目标、成本和安装地点的风况特点来决定。

叶尖速比λ是叶片的叶尖圆周速度与风速之比,用来描述风轮在不同风速中的状态:

V

R V Rn ωπλ==2 (4) 式中:

n 为风轮转速,单位是r/s ;

ω为风轮角频率,单位是rad/s ;

R 为风轮半径,单位是m ;

V 为上游风速,单位是m/s

风力机通过叶片捕获风能,将风能转换为作用的发电机转子上的机械能,将吸收的叶片转矩为作用在发电机转子上的机械转矩。

风力机吸收功率可以表示为风速的函数,其模型表示为:

32

1AV C P p ρ= (5) 所以风力机的机械转矩为:

λπρω2321V R C P

T p == (6) 其中相关参数的设定会影响风力机的输出效率。

对于风力机建模,主要有两种方式,一种是对发电机的实测数据的查表法,另一种是根据相关的公式进行垂直轴风力发电机输出参数建模。风能利用系数C p 的函数曲线如图6所示,由图可知,当叶尖速比在1左右时,输出效率最大。为了简化模型,我们在仿真过程中设定叶尖速比在速度范围之内为恒定值。

图6 最佳Savonius 型风力机输出效率及转矩效率随叶尖速比的变化

通过图6可以拟合曲线,得到风能利用系数C p 的函数:

)(6505.0)(3656.0)(2V

R V R f C p ωωλ?+?-== (7) 由此可得输出功率为:

3232

1)](6505.0)(3656.0[21)(AV V R V R AV f P ρωωρλ??+?-=?= (8) 根据数学模型,进行Simulink 仿真。输入为风速V ,空气密度ρ和发电机电磁转矩T_em ;叶尖速比λ和风力机受风面积A 为常数。输出为风力机输出功率P ,输出转矩Te ,输出转速ω和发电机输入转速ω_em 。同时我们还设定了风力机的启动风速和最高风速。模型如图7所示,并对其进行了封装。封装界面如图8。

图7 风力机仿真模型

图8 风力机封装界面

设定输入风速为15m/s,空气密度为1.29kg/m3,仿真时间为10秒,得输出曲线如图9。横坐标为时间,纵坐标分别为功率、转矩、转速、发电机输入转速。风力机输出功率约为620W。

图9 风力机仿真输出曲线

2.2发电机

2.2.1永磁发电机

永磁同步发电机由绕线转子同步发电机发展而来,定子与普通同步发电机基本相同,转子为永磁体,一般无阻尼绕组,因此不存在励磁绕组的铜损耗,同时无需外部提供励磁电源,可以提高效率;转子上没有滑轮,可以提高系统的稳定性。风力机输出的机械转矩带动发电机转子转动。

永磁同步发电机的转子为永磁式结构,转子的磁链由永磁体决定。我们将定子电压在dp0同步旋转坐标系下进行分解,其中,同步旋转坐标系的d 轴是转子磁链的方向。在此基础上建立发电机定子电压的d 轴和q 轴分量的表达式: ???

????++=-+=d e q q a q q e d d a d dt d i R u dt d i R u λωλλωλ (9) 式中:

i d 和i q 分别为发电机的d 轴和q 轴电流;

u d 和u q 分别为定子电压E g 的d 轴和q 轴分量;

λd 和λq 分别是d 轴和q 轴的磁链

R a 为定子电阻;

ωe 为电角频率

定义磁链的d 轴和q 轴的分量的表达式为:

?

??=+=q q q o

d d d i L i L λλλ (10)

式中:

L d 和L q 分别为发电机的d 轴和q 轴电感;

λo 为永磁体产生的磁链

定义q 轴的反电势e q =ωe λo ,而d 轴的反电势e d =0,因为发电机的转子为对称结构,这里我们可以假设发电机的d 轴和q 轴的电感相等,即L d =L q =L 。将式(8)带入到式(7)并整理化简得到: ???????++--=++-=q o d e q a q d q e d a d u L L i i L R dt

di u L i i L R dt di 1)1(1λωω (11) 因为L d =L q =L ,则永磁同步发电机的电磁转矩表达式为:

o q p o q q d q d e i n i i i L L T λλ5.1])[(5.1=+-= (12) 式中n p 为极对数。

MATLAB 中提供的永磁发电机模型当其输入为负时,作为发电机使用。输入有转矩Tm 和转速ω两种选择。本仿真软件中,我们选择转速ω输入。参数设置如图13所示,从上到下依次表示:定子相电阻,d 轴和q 轴定子电感,选择机器常数,感应磁链,电压常数,转矩常数,极对数,初始条件(转速、角度、电流)。通过调整感应磁链和极对数得到较为理想的曲线。图14和图15分别为仿真模型和仿真结果。

图13 永磁同步发电机参数设置

图14 永磁同步发电机模型

图15 发电机输出电压曲线2.2.2电励磁同步发电机

风力发电中所用的同步发电机绝大部分是三相同步电机,其输出联接到邻近的三相电网或输配电线。普通三相同步发电机的原理结构如图5所示。在定子铁心上有若干槽,槽内嵌有均匀分布的在空间彼此相隔120°电角的三相电枢绕组aa ′、bb ′和cc ′,转子上装有磁极和励磁绕组,当励磁绕组通以直流电流If 后,电机内产生磁场。转子被风力机带动旋转,则磁场与定子三相绕组之间有相对运动,从而在定子三相绕组中感应出三个幅值相同,彼此相隔120°电角的交流电势。这个交流电势的频率f 决定于电机的极对数p 和转子转速n ,即f=pn/60。

图5 三相同步发电机结构原理图

我们将定子电压在dp0同步旋转坐标系下进行分解,则定子方程可表示为: ????

?????+=-+=-+=dt d i R u dt d i R u dt d i R u a d e q q a q q e d d a d 000λλωλλωλ (11) 定义磁链的表达式:

?????='+='+'+=0

00i L i M i L i M i M i L Q Q q q q D D f f d d d λλλ (12) 式中:

M f ′为定子绕组和励磁绕组之间的互感系数;

M d ′为定子绕组和直轴阻尼绕组之间的互感系数;

M Q ′为定子绕组和交轴阻尼绕组之间的互感系数

发电机的电磁转矩为:

)(5.1q q q d p e i i n T λλ-= (13) MATLAB 中的同步电机有国际标准单位和标幺值两种,我们选择的是国际标准单位值的。输入分功率Pm 和转速ω两种,为了与永磁电机的输入统一,我们

还是选择转速ω输入。参数设置如图16所示,参数依次为:视在功率、线电压、频率、励磁电流,电子电阻、漏磁电感、d轴和q轴电感,定子的漏磁回路电阻、漏磁电感,阻尼器的d轴和q轴电阻和漏磁电感,极对数,初始值(初始速度偏差、电角度、线电流、相角、初始励磁电压)。

图16电励磁同步发电机参数设置

这一发电机模块需要配合励磁模块一起使用,在这里需要说明一下。图17为励磁模块的基础模型,从左到右依次是:低通滤波器,超前滞后补偿,主调节器,饱和度,励磁模型,阻尼器。通过改变主调节器的增益、时间常数和饱和度的上下限,得到稳定的励磁电压。与发电机相连得到整体模型,如图18所示。图19为发电机输出电压曲线。

图17励磁基础模型

图18 励磁发电机模型

图19 励磁发电机输出电压曲线

2.3整流逆变

3整体模型及GUI界面

3.1整体模型

将上一章的各个部分按照风力机、发电机、整流逆变的顺序连接在一起,得到整体的风力发电系统的模型,如图20所示,上为应用永磁发电机的风力发电系统,下为应用励磁同步发电机的风力发电系统,两者的区别仅在于发电机励磁方式不同。设置仿真时间为1秒进行仿真,由于模块比较复杂运算量比较大,所以实际的仿真时间较长,得到的仿真结果如图21所示。

图20 风力发电系统模型(上图为永磁同步发电机,下图为励磁同步发电机)

图21 发电机输出波形(上为永磁同步发电机输出,下为励磁同步发电机输出,右侧为波形

细节图)

从图形可以看出与之前发电机仿真结果相比波形中夹杂了很多谐波,并且也非正弦波形。通过调节发电机的参数不能解决这一问题,经过与指导老师讨论并查阅资料,我们在发电机与整流装置之间加入了1:1的变压器,利用变压器作为隔离装置,消除整流逆变对发电机输出的影响。如图22所示图中用粗线框住的部分为添加的变压器隔离装置。通过观察结果,达到了我们的目的。如图23所示为调试后的发电机输出曲线。图24为风力发电系统最终输出电压。

图22 修改后的风力发电系统模型(上图为永磁同步发电机,下图为励磁同步发电机)

图23修改后发电机输出波形(上为永磁同步发电机输出,下为励磁同步发电机输出)

图24 风力发电系统输出(上为永磁同步发电系统输出,下为励磁同步发电系统输出)3.2GUI界面设计

3.21 GUI的使用

GUI是Graphical User Interface 图形用户界面的意思,象很多高级编程语言一样,Matlab也有图形用户界面开发环境,随着计算机技术的飞速发展,人与计算机的通信方式也发生的很大的变化,从原来的命令行通讯方式(例如很早的DOS系统)变化到了现在的图形界面下的交互方式,而现在绝大多数的应用程序都是在图形化用户界面下运行的。

(1)首先我们新建一个GUI文件:,或者在命令窗口输入GUIDE,运行GUI界面设计工具,或者点击GUIDE按钮(问号左边第二个)启动,

图3-1 打开GUIDE的快捷按钮启动的界面如下图所示:

图3-2 GUIDE启动界面(2)选择Blank GUI(Default)

图3-3 GUI设计版面

(3)窗口的左边有许多控件,类似VC++、VB,可以将控件拖到窗口中。比如做一个按钮控制图片显示的界面,布置控件如下:

图3-4 拖动控件的实例

按钮的显示字符和字体大小可以通过双击后,在弹出的对话框中修改。

(4)对按钮控件功能的编程:

右键按钮,选择view callbacks->callback回调函数,就会弹出这个界面的M文件,并且光标定位在该按钮的子函数开始处,写好点击该按钮时触发的语句:

% --- Executes on button press in pushbutton1.

function pushbutton1_Callback(hObject, eventdata, handles)

% hObject handle to Untitled1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

axes(handles.axes1);

imshow('flower.jpg');

(4)保存文件,单击fig文件窗口上的三角执行或者运行其M文件运行该程序:

图3-5 运行设计的界面

图3-6 按下按钮之后

通过该例子简单描述下制作GUI的过程。

3.22 动态仿真软件界面设计

下面以水平轴并网风力发电场动态仿真界面设计为例,介绍各部分界面的需求分析、功能安排及设计过程。

需求分析:

该软件界面的制作是为了给实验室环境提供一种可靠的数据获取手段和决策安排方法。在给定各设备具体参数的情况下,能够得到与实际相贴近的过程结果数据。

功能安排:

对模型的参数修改及模型的打开关闭运行等操作;

仿真过程的曲线图的可视化;

仿真过程的详细数据的显示;

仿真过程的参数和详细数据可以保存为自定义文档;

以上功能的菜单实现。

设计过程:

基本的设计方法3.21中已经介绍过了。界面总貌如下所示

打开模型的回调函数:

if isempty(find_system('Name','power_wind_ig.mdl'))

open_system('power_wind_dfig_avg.mdl');

end

关闭模型的回调函数:

save_system('power_wind_dfig_avg.mdl');

close_system('power_wind_dfig_avg.mdl');

回主界面就是关闭改图形界面。主要是为了各个界面之间的衔接功能。其回调函数:

close(gcf);

set(0,'currentfigure',mainGUI);

这几个控制功能实现十分简单。困难在于,原来的动态仿真系统中的各个参数是在M文件中书写的,运行mdl文件之前需要先载入全局参数到内存,再启动仿真,然后再通过运行画图程序把结果体现出来。而现在是做成操作界面,如

风力发电安全考试题库

风力发电安全考试题库 Prepared on 22 November 2020

电力安全工作规程(变电部分)试题库 一、单选题(300道) 1、《国家电网公司电力安全工作规程(变电部分)》自()年8月1日起在公司系统内试行。 A、2005 B、2008 C、2009 答案:C 国家电网安监〔2009〕664号文 2、各单位可根据()制定《安规》补充条款和实施细则,经本单位分管生产的领导(总工程师)批准后执行。 A、有关规定 B、现场情况 C、本单位实际 答案:B 变规 3、在运行中若必须进行中性点接地点断开的工作时,应先建立有效的 ()才可进行断开工作。 A、保护接地 B、旁路接地 C、永久接地 答案:B 变规、火灾、地震、台风、冰雪、洪水、泥石流、沙尘暴等灾害发生时,如需要对设备进行巡视时,应制定必要的安全措施,得到设备运行管理单位分管领导批准,并至少两人一组,巡视人员应与()之间保持通信联络。 A、有关领导 B、管理部门 C、派出部门 答案:C

变规、经批准使用解锁钥匙解除防误闭锁,钥匙使用后,应及时()。 A、归还 B、封存 C、记录 答案:B 变规 6、外单位承担或外来人员参与公司系统电气工作的工作人员应熟悉本规程、并经考试合格,经设备()单位认可,方可参加工作。 A、维护 B、运行管理 C、建设 D、运行 答案:B 变规、室内母线分段部分、母线交叉部分及部分停电检修易误碰()的,应设有明显标志的永久性隔离挡板(护网)。 A、引线部分 B、停电部分 C、有电设备 答案:C 变规、火灾、地震、台风、()、洪水、泥石流、沙尘暴等灾害发生时,如需要对设备进行巡视时,应制定必要的安全措施,得到设备运行单位分管领导批准。 A、冰雪 B、暴风雪 C、雷雨 答案:A 变规、有一把高压室的钥匙可以借给()使用,但应登记签名,巡视或当日工作结束后交还。 A、经批准的巡视高压设备人员和经批准的检修、施工队伍的工作负责人 B、来本站检查工作的领导人员

250 小型风力发电机总体结构的设计

第一章 概述 1.1 风力发电机概况 风能的利用有着悠久的历史。 近年来, 资源的短缺和环境的日趋恶化使世界各国开始重 视开发和利用可再生、 且无污染的风能资源。自80年代以来, 风能利用的主要趋势是风力发 电。风力发电最初出现在边远地区, 应用的方式主要有: 1) 单独使用小型风力发电机供家 庭住宅使用; 2) 风力发电机与其它电源联用可为海上导航设备和远距离通信设备供电; 3) 并入地方孤立小电网为乡村供电。 随着现代技术的发展, 风力发电迅猛发展。以机组大型化(50kW~ 2MW )、集中安装和 控制为特点的风电场(也称风力田、风田) 成为主要的发展方向。20 年来, 世界上已有近30 个国家开发建设了风电场(是前期总数的3 倍) , 风电场总装机容量约1400 万kW (是前期总 数的100 倍)。目前, 德国、美国、丹麦以及亚洲的印度位居风力发电总装机容量前列, 且 未来计划投资有增无减。美国能源部预测2010 年风电至少达到国内电力消耗的10%。欧盟5 国要在2000~ 2002 年达到本国总发电量的10%左右, 丹麦甚至计划2030 年要达到40%。 中国是一个风力资源丰富的国家, 风力发电潜力巨大。据1998 年统计, 风力风电累计 装机22.36万kW , 仅占全国电网发电总装机的0.081% , 相对于可开发风能资源的开发率仅 为0.088%。 中国第一座风力发电场于1986 年在山东荣成落成, 总装机较小, 为3×55kW。到1993 年我国风电场总装机容量达17.1MW , 1999 年底, 我国共建了24 个风力发电场, 总装机 268MW。我国风力发电场主要分布在风能资源比较丰富的东南沿海、西北、东北和华北地区, 其中风电装机容量最多的是新疆已达72.35kW。在未来2~ 3 年内, 我国计划新增风电场装 机容量将在800MW 以上, 并且将会出现300~ 400MW 的特大型风力发电场。 1.2 风力发电机的研究现状 1.2.1 国外风力发电机的研制情况 美国从1974年起对风能进行系统的研究,能源部对风能项目的投资累计已达到25亿美 元。许多著名大学和研究机构都参加了风能的研究开发,目前己安装了8个巨型风力发电机 组。到19%年末,风力发电总装机容量己达到170x 4 10 kw,所提供的电力占全美电力需求量 的10%,居世界之首位,主要集中在加利福尼亚州。美国国会己通过了能源政策法,在能源 部的规划下, 将会改变风力发电集中于加利福尼亚的局面,在年平均风速达5.6m/s的中西部 12个州将建风力电站。据能源部预测,在未来15年内,风电将增加6倍。在今后2年内,在怀 俄明、伊阿华、明尼苏达、得克萨斯、佛蒙特、缅因州等修建大型风电场,这些风电场将使 美国风力发电能力再增加40x 4 10 kw, 预计到2010年, 风力发电总装机容量将达到630x 4 10 kw, 可满足全美电力需求量的25%。 德国是欧洲风力发电增长最快的国家,近年风力发电量急增,尤其沿海各州,风力发电 发展迅速,己超过丹麦,成为世界第二。到1995年己建成1035座风力发电装置,装机容量 49.4x 4 10 kw,1996年新装机约950座,装机容量为48x 4 10 kw,到19%年底德国己拥有4500座 风力发电装置,总装机容量达到约160x 4 10 kw,1997年估计可增加5x 4 10 kw,可为20多万个 家庭提供日常用电。这些风力发电装置中的1600个是政府投资建设的。装机容量超过1OO0kW 的风电场有250个,300OkW的最大风电场已投入使用,发电能力63x 4 10 kw,西部5x 4 10 kw风

风力发电系统建模与仿真

风力发电系统建模与仿真 摘要:风力发电作为一种清洁的可再生能源利用方式,近年来在世界范围内获得了飞速的发展。本文基于风力机发电建立模型,主要完成了以下工作:(1)基于风资源特点,建立了以风频、风速模型为基础的风力发电理论基础; (2)运用叶素理论,建立了变桨距风力机机理模型; (3)分析了变速恒频风力发电机的运行区域与变桨距控制的原理与方法,并给出了机组的仿真模型,为风力发电软件仿真奠定了基础; (4)搭建了一套基于PSCAD/EMTDC仿真软件的风力发电系统控制模型以及完整的风力发电样例系统模型,并且已初步实现风力机特性模拟功能。 关键词:风力发电;风频;风速;风力机;变桨距;建模与仿真 1 风资源及风力发电的基本原理 1.1 风资源概述 (1)风能的基本情况[1] 风的形成乃是空气流动的结果。风向和风速是两个描述风的重要参数。风向是指风吹来的方向,如果风是从东方吹来就称为东风。风速是表示风移动的速度即单位时间内空气流动所经过的距离。 风速是指某一高度连续10min所测得各瞬时风速的平均值。一般以草地上空10m高处的10min内风速的平均值为参考。风玫瑰图是一个给定地点一段时间内的风向分布图。通过它可以得知当地的主导风向。 风能的特点主要有:能量密度低、不稳定性、分布不均匀、可再生、须在有风地带、无污染、分布广泛、可分散利用、另外不须能源运输、可和其它能源相互转换等。 (2)风能资源的估算 风能的大小实际就是气流流过的动能,因此可以推导出气流在单位时间内垂直流过单位截面积的风能,即风能密度,表示如下: 3 ω= (1-1) 5.0vρ 式中, ω——风能密度(2 W),是描述一个地方风能潜力的最方便最有价值的量; /m ρ——空气密度(3 kg); /m

风电考试试题1附答案

风电考试试题1 说明:本试卷分六部分,全卷满分100 分。考试用时120 分钟。 项目组:姓名: 一、填空题(本大题共24 题,60 空,每空分,共计30分。) 1. 操作票应填写设备的双重名称,即设备名称和编号。 2.装设接地线必须先接接地端,后接导体端,且必须接触良好。拆接地线的顺序与此相反。装、拆接地线均应使用绝缘棒和戴绝缘手套。 3.SF6 断路器中的SF6 气体的作用是灭弧和绝缘。 4.从业人员有权对本单位安全生产工作中存在的问题提出批评、检举、控告;有权拒绝违章指挥和强令冒险作业。 5.对于异步发电机的运转,重要的是为生成和保持磁场必须向转子提供励磁电流,该无功电流需求取决于功率,并在并入电网运行时从电网中获取。6.风电机组的主要参数是风轮直径和额定功率。 ? 7. 水平轴风力机可分为升力型和阻力型两类。 8. 风轮的仰角是指风轮的旋转轴线和水平面的夹角,其作用是避免叶尖和塔架的碰撞。 9. 风机的制动系统主要分为空气动力制动和机械制动两部分。 10. 齿轮箱油有两种作用,一是润滑,一是冷却。 11. 偏航系统一般有以下的部件构成:偏航马达、偏航刹车、偏航减速箱、偏航轴承、偏航齿轮和偏航计数器等。 12. 风机中的传感器大致包括风传感器、温度传感器、位置传感器、转速传感器、压力传感器、震动或加速度传感器六种。 13. 在风力发电机组中,常采用刚性联轴器、弹性联轴器两种方式。 14. 风能利用系数是评定风轮气动特性优劣的主要参数。 15. 目前主要有两种调节功率的方法,都是采用空气动力方法进行调节的。一种是定桨距(失速)调节方法;一种是变桨距调节方法。

16. 齿轮箱油温最高不应超过80 ℃,不同轴承间的温差不得超过15 ℃,当油温低于10 ℃时,加热器会自动对油池进行加热;当油温高于65 ℃时,油路会自动进入冷却器管路,经冷却降温后再进入润滑油路。 - 17.风电机上的PT100是温度传感器,其主要功能相当于一个可变电阻器,随着温度的增加电阻器的阻值增加。在摄氏零度时,传感器的电阻为100 欧姆。 18. 风能大小与风速的立方成正比。 19. 变电工作人体在无遮拦时与高压带电导体应保持的最小安全距离为:10kV 及以下米,35kV 米,110kV 米,在有安全遮拦时与10kV及以下高压带电导体应保持的最小安全距离为米。 20.兆欧表上有三个接线柱,“L”表示线(路)端接线柱,“E”表示地线接线柱,“G”表示屏蔽线接线柱。 21.对称三相交流电的三相之间的相位相差为120 度。 22.风电机齿轮箱的润滑分为:飞溅润滑和强制润滑。 23.测电笔可测电压范围为60 伏至500伏。 24.按游标的刻度来分,游标卡尺又分、、mm三种。 二、单选题(本大题共20 题,每题只有一个正确答案,每小题1分,共计20 分) 1.据统计,由于油液污染引起的故障占液压系统总故障的()以上,()是液压系统中最主要的污染物。( D ) ! A、20%,水蒸气 B、50%,固体颗粒 C、75%,水蒸气 D、75%,固体颗粒 2. 下列哪个是风电机组常用的固体润滑剂(A ) A、二硫化钼 B、四氯化碳

小型风力发电机动力结构设计毕业设计论文

第一章概述 1.1课题研究的目的和意义 数千年来,风能技术发展缓慢,也没有引起人们足够的重视。但自1973年世界石油危机以来,在常规能源告急和全球生态环境恶化的双重压力下,风能作为新能源的一部分才重新有了长足的发展。风能作为一种无污染和可再生的新能源有着巨大的发展潜力,特别是对沿海岛屿,交通不便的边远山区,地广人稀的草原牧场,以及远离电网和近期内电网还难以达到的农村、边疆,作为解决生产和生活能源的一种可靠途径,有着十分重要的意义。 当前,全球都面临着能源枯竭、环境恶化、气温升高等问题,日益增长的能源需求、能源安全问题受到世界各国广泛关注。风能是一种可再生能源,它资源丰富,是一种永久性的本地资源,可为人类提供长期稳定的能源供应;她安全、清洁,没有燃料风险,更不会在使用中破坏环境。为此,世界各国都在加快风力发电技术的研究,以缓解越来越重的能源与环境压力,中国也不例外。 中国是世界上最大的煤炭生产国和消费国,能源利用以煤炭为主。在当前以石化能源为主体的能源结构中,煤炭占73.8%,石油占18.6%,天然气占2%,其余为水电等其它资源。在电力的能源消费中,也是以煤炭为主,燃煤发电量占总发电量的80%。但是,能为人类所用的石化资源是有限的,据第二届环太平洋煤炭会议资料介绍,按目前的技术水平和采掘速度计算,全球煤炭资源还可开采200年。此外,石油探明储量预测仅能开采34年,天然气约能开采60年。随着人口的增长和经济的发展,能源供需矛盾加剧,如果不趁早调整以石化能源为主体的能源结构,势必形成对数亿年来地球积累的生物石化遗产更大规模的挖掘、消耗,由此将导致有限的石化能源趋于枯竭,人类生态环境质量下降的恶性循环,不利于经济、能源、环境的协调发展。电力部己制定“大力发展水电,继续发展火电,适当发展核电,积极发展新能源发电”的基本原则,把风力发电作为优化我国电力工业结构跨世纪的战略发展目标①。 表1-1 1996-2005年世界风电市场增长 从表1-1可以看出,世界上的风电能源增长的非常迅速,10年平均增长率达到了29.77。截止2005年底,全世界并网运行的风力发电机总装机容量达到59237 MW ,是1996年装机容量的9.76倍②。

【风力发电技术方案】直驱风力发电实验仿真平台技术方案

直驱风力发电实验仿真平台 技 术 方 案

一、直驱风力发电实验仿真平台设计初衷 在能源枯竭与环境污染问题日益严重的今天,风力发电已经成为绿色可再生能源的一个重要途径。永磁直驱风力发电机不仅可以提高发电机的效率,并且因为发电机采用了永磁结构,省去了电刷和集电环等易耗机械部件,提高了系统的可靠性,而且不需要电励磁装置,能在增大电机容量的同时,减少体积。另外,风力机的直驱化也是当前的一个热点趋势。目前大多风力发电系统发电机与风轮并不是直接相连,而是通过变速齿轮连接,这种机械装置不仅降低了系统的效率,增加了系统的成本,而且容易出现故障,是风力发电急需解决的瓶颈问题。直驱式风力发电机可以直接与风轮相连,增加了系统的稳定性,减少了维护工作,并且还降低了噪音。因此鉴于诸多优点,国内各类科研单位,都青睐于对永磁直驱风力发电的研究。 那么,在风力发电产业蓬勃发展的国际环境下,风力发电水平不断提高。科研实验室作为各种新理论和新技术的孕育摇篮,其先期的研究和验证对风电技术的发展和前进起着至关重要的引导和推动作用。进行实验研究最直接有效的方法是将风力发电机与风力机相连,进行现场实际试验。但是鉴于所需要的风场环境以及体积庞大、结构复杂的桨叶设备,实验室内不可能具备条件,只能在室外进行现场调试。但是,受环境、自然因素、天气条件等影响,现场实验困难重重,比如:无法自由的对风速进行变化,某些高风速下的极限测试只能在极少数情况下得以实现,实验周期长,人力、物力、经费投入大;新理论和新技术存在诸多的未知数,实验结果的好坏难以预测,现场调试风险巨大;电气设备的运算和安装不便,不同容量设备难以在同一风力系统进行试验;这些因素都要求在实验室内构件模拟系统来模拟实际风力机的真实工作特性势在必行。 对此,南京研旭电气科技有限公司设计了一整套模拟定桨距式的永磁直驱风力发电的实验仿真平台。通过此平台,研究人员可以研究永磁直驱风力发电机的真实工作特性,可以缩短研究和开发周期、节省研究经费,便于对风力发电系统的控制技术展开全面深入的研究,具有重要的显示意义。

风电专业考试题库(带答案)

风电专业考试题库 以下试题的难易程度用“★”的来表示,其中“★”数量越多表示试题难度越大,共526题。 一、填空题 ★1、风力发电机开始发电时,轮毂高度处的最低风速叫。 (切入风速) ★2、严格按照制造厂家提供的维护日期表对风力发电机组进行的预防性维护是。(定期维护) ★3、禁止一人爬梯或在塔内工作,为安全起见应至少有人工作。(两) ★4、是设在水平轴风力发电机组顶部内装有传动和其他装置的机壳。(机舱) ★5、风能的大小与风速的成正比。(立方)E=1/2(ρtsυ3)式中:ρ!———空气密度(千克/米2);υ———风速(米/ 秒);t———时间(秒);S———截面面积(米2)。 ★6、风力发电机达到额定功率输出时规定的风速叫。(额定风速)★7、叶轮旋转时叶尖运动所生成圆的投影面积称为。 (扫掠面积) ★8、风力发电机的接地电阻应每年测试次。(一) ★9、风力发电机年度维护计划应维护一次。(每年) ★10、SL1500齿轮箱油滤芯的更换周期为个月。(6) ★11、G52机组的额定功率 KW。(850) ★★12、凡采用保护接零的供电系统,其中性点接地电阻不得超

过。(4欧) ★★13、在风力发电机电源线上,并联电容器的目的是为了。(提高功率因素) ★★14、风轮的叶尖速比是风轮的和设计风速之比。(叶尖速度)★★15、风力发电机组的偏航系统的主要作用是与其控制系统配合,使风电机的风轮在正常情况下处于。(迎风状态) ★★16、风电场生产必须坚持的原则。 (安全第一,预防为主) ★★17、是风电场选址必须考虑的重要因素之一。(风况) ★★18、风力发电机的是表示风力发电机的净电输出功率和轮毂高度处风速的函数关系。(功率曲线) ★★19、风力发电机组投运后,一般在后进行首次维护。 (三个月) ★★20、瞬时风速的最大值称为。(极大风速) ★★21、正常工作条件下,风力发电机组输出的最高净电功率称为。 (最大功率) ★★22、在国家标准中规定,使用“downwind”来表示。 (主风方向) ★★23、在国家标准中规定,使用“pitch angle”来表示。(桨距角) ★★24、在国家标准中规定,使用“wind turbine”来表示。(风力机) ★★25、风力发电机组在调试时首先应检查回路。(相序)

小型垂直轴风力发电机设计

小型垂直轴风力发电系统设计 [摘要]本文介绍了一种小型垂直轴风力发电系统的设计方案,本系统主要面向沿海高层建筑或边远地区用户。经过查阅大量文献资料结合必要的理论计算,系统采用四片NACA0012型叶片构成H型达里厄风力机,利用永磁直驱同步发电机将机械能转化为电能,经过电力电子电路对蓄电池进行充电。文中对主要支撑件和传动件进行了必要的结构校核,对所用的两个角接触球轴承进行了使用寿命校核。最后以垂直轴风轮和永磁直驱发电机为主要对象,用solidworks软件建立三维模型,设计风力发电系统主要零部件,并简要介绍其控制电路、选择蓄电池型号。 [关键字] 垂直轴风力发电机达里厄 NACA0012翼型

Design of the Vertical Axis Wind Turbine [Abstract]This is a design of a kind of vertical axis wind turbine which was used in removed rural area or highrise in seaside city based on related theories. By consulting reference sources and necessary mathematical operation,four NACA0012 air-foil blades were used as the compoments of the H-type Darrieus. The lead-acid bettery was charged by the electrical energy which was generated by a permanent magnet synchronous motor with the operation of power electronic circuits. In this article,some constructures such as the main suppoting parts and the angular contact ball bearings were vertified on the intensity and life. By using of the solidworks2006 software,every important part has a 3D model. We also design a control circuit and bettery breifly. [Keywords] Vertical axis Wind turbine Darrieus NACA0012 air-foil

双馈风力发电模拟实验机组

双馈风力发电模拟实验机组 双馈风电机组(又称:双馈风力发电机模拟试验台),是风力发电行业广泛应用的模拟实验机组,该机组具有模拟变速恒频风力机组并网发电的功能及特性,是风电行业科学研究、教学实验的理想产品。 双馈风电机组分为拖动单元、控制单元、发电单元、测量单元。 本机组使用原动电机为拖动单元,电动机通过联轴器拖动双馈发电机。用户可根据设计的实验目的由控制单元调节电动机转速,达到宽范围模拟大自然风速变化引起的发电机发电状况之变化。用户通过开放式测量单元,可以根据自己的实验需求给定发电机转矩,通过控制双馈发电机的功率输出,达到变速恒频风力机组的并网发电等过程各参数的实验研究。通过机组故障模拟,达到对机组常见故障的认识和处理方法。 拖动单元的原动机选用异步电动机(也可选用永磁同步电动机、交流同步电动机、直流电动机):模拟机组因风速变化而引起的转速变化。 发电单元选用双馈发电机(也可选用永磁同步发电机、直流发电机、交流异步发电机,交流同步发电机):双馈发电机变速恒频发电。 控制单元选用变频器控制拖动电机转速,用以模拟风速的变化,同时可以方便的通过计算机控制变频器实现电机的转速调节模拟风机出力。 测量单元选用光电编码器采集发电机的转子位置和实时转速,光电编码器安装于发电机后端输出轴上(两台电机联轴间也可安装扭矩传感器,用于测量轴功率和转速);选用电压、电流、频率等测量传感元件及检测显示表面板、按键,开关模块等,对电量信号进行采集、分析、处理。 机组实现变速恒频风力机组发电状态的模拟,包括转速、转矩、发电量及有功、无功调节。拖动单元:模拟机组因风速变化而引起的转速变化。 机组模拟实验内容 1、风力发电机接线形式实验 2、空载运转实验 3、风速模拟实验 4、转距模拟实验

小型风力发电机的构造原理

小型风力发电机介绍 一,小型风力发电机的使用条件 小型风力发电机一般应在风力资源较丰富的地区使用。即年平均风速在3m/s以上,全年3-20m/s有效风速累计时数3000h以上;全年3-20m/s平均有效风能密度lOOW/m2以上。在选择使用风力发电机时,要做到心中有数,避免盲目性,这样才能充分地利用当地的风力资源,最大限度地发挥风力发电机的效率,取得较高的经济效益。 应该指出的是,在风力资源丰富地区,最好选择风机额定设计风速与当地最佳设计风速相吻合的风力发电机。如能做到这一点无论是从风力机的选择上,还是利用风力资源的经济意义上都有重要的意义。风洞试验证明,风轮的转换功率与风速的立方成正比,也就是说,风速对功率影响最大。例如,在当地最佳设计风速为6m/s的地区,安装一台额定设计风速为8m/s的风力发电机,结果其年额定输出功率只达到原设计输出功率的42%,也就是说,风力发电机额定输出功率较设计值降低了58%。若选用的风力发电机额定设计风速越高,那么其额定功率输出的效果就越加不理想。但也必须指出,风力发电机额定设计风速偏低,其风轮直径、电机相对要增大,整机造价相应也就加大.从制造和产品的经济意义上考虑都是不合算的。 二,小型风力发电执使用的一般要求 目前,小型风力发电机都采用蓄电池贮能,家用电器的用电都由蓄电池提供。所以,用电时总的原则是,蓄电池放电后能及时由风力发电机给以补充。也就是说,蓄电池充入的电量和用电器所需消耗的电量要大致相等(一般以日计算)。下面举一例说明这一问题:某地区使用了一台风力发电机,额定风速输出功率为IOOW,假设,该地区某日相当于额定风速的风力吹刮时数连续为4h,则该风机日输出并贮存到蓄电池里的能量为400Wh。考虑到铅蓄电池的转换效率为70%,则用户用电器实际可利用的能量280Wh。如果该用户使用的电器有: (1)15W灯泡两只,使用4h,耗能为120Wh; (Z)35W电视机一台,使用3h,耗能为105Wh; (3)15W收录机一台,使用4h,耗能为60Wh。 以上总耗能为285Wh。 这样,用电器日总耗能比风力发电机所能提供的能量超出了5Wh,也就是出现了所谓的“入不付出”用电;这种入不付出的用电,将会使蓄电池处在亏电的状态下工作。如果经常长时间地这么用电,将会使蓄电池严重亏电而损坏,缩短其使用寿命。 上例,是假定风力发电机在额定风速状击下的用电情况,而实际上,由于风的多变性,间歇性,风既有大小的不同(风速)又有吹刮时间长短的不同(风频)。所以,在使用用电器时要做到风况好时可适当多用电,风况差时少用电。这就需要用户在使用时认真总结经验。 另外,有条件的地区和用户可备一台千瓦级的柴油发电机组,当风况差的时候给蓄电池补充充电,做到蓄电池不间断地供电。 三,小型风力发电机的合理配套

风电运行试题库

风电运行试题库 一、单项选择150道题二、多项选择150道题 三、判断题150道题四、简答题150道题 共计:600道题 一、单项选择题(共150题,每题1分。) 1、当风力发电机火灾无法控制时,应首先(C)。 A、汇报上级; B、组织抢救; C、撤离现场; D、汇报场长。 2、风能的大小与空气密度(A) A、成正比; B、成反比; C、平方成正比; D、立方成正比。 3、风力发电机风轮吸收能量的多少主要取决于空气(B)的变化。 A、密度; B、速度; C、湿度; D、温度。 4、风力发电机达到额定功率输出时规定的风速叫(B)。 A、平均风速; B、额定风速; C、最大风速; D、启动风速。 5、风力发电机开始发电时,轮毂高度处的最低风速叫(D) A、额定风速; B、平均风速; C、切出风速; D、切入风速。 6、在某一期间内,风力发电机组的实际发电量于理论发电量的比值,叫做风力发电机组的(A)。 A、容量系数; B、功率系数; C、可利用率; D、发电率。 7、风能的大小与风速的(B)成正比 A、平方; B、立方;C四次方;D、五次方。 8、由雷电引起的过电压叫(C) A、内部过电压; B、外部过电压; C、工频过电压; D、大气过电压。

9、高压隔离开关俗称刀闸,它(D)。 A、可以断开正常的负荷电流; B、可以切断故障电流; C、可以接通正常的负载电流; D、可以隔离高压电源。 10、标志电能质量的两个基本指标是(A) A、电压和频率; B、电压和电流; C、电流和功率; D、频率和波形。 11、变压器发生内部故障的主保护是(C)保护。 A、过流; B、速断; C、瓦斯; D、过负荷。 12、当发现有人触电时,应当做的首要工作是(C). A、迅速通知医院; B、迅速做人工呼吸; C、迅速脱离电源; D、迅速通知供电部门。 13、心肺复苏法支持生命的三项基本措施是通畅气道、人工呼吸和(B) A、立体胸部猛压; B、胸部心脏按压; C、膈下腹部猛压; D、仰头抬额法。 14、总容量在100kVA以上的变压器,接地装置的接地电阻应不大于(C)欧姆。 A、2; B、3; C、4; D、8。 15、变压器停运期超过(B)个月后恢复送电时,需按检修后鉴定项目做试验合格后才可投入运行。 A、3; B、6; C、9; D、12. 16、安全带使用前应进行检查,并定期进行(D)试验。 A、变形; B、破裂; C、动荷载; D、静荷载。 17、兆欧表输出的电压是脉动的直流电压,主要是用来测定电气设备

永磁同步风力发电机的设计说明

哈尔滨工业大学 《交流永磁同步电机理论》课程报告题目:永磁同步风力发电机的设计 院 (系) 电气工程及其自动化 学科电气工程 授课教师 学号 研究生 二〇一四年六月

第1章小型永磁发电机的基本结构 小型风力发电机因其功率低,体积小,一般没有减速机构,多为直驱型。发电机型式多种多样,有直流发电机、电励磁交流发电机、永磁电机、开关磁阻电机等。其中永磁电机因其诸多优点而被广泛采用。 1.1小型永磁风力发电机的基本结构 按照永磁体磁化方向与转子旋转方向的相互关系,永磁发电机可分为径向式、切向式和轴向式。 (1)径向式永磁发电机径向式转子磁路结构中永磁体磁化方向与气隙磁通轴线一致且离气隙较近,漏磁系数较切向结构小,径向磁化结构中的永磁体工作于串联状态,只有一块永磁体的面积提供发电机每极气隙磁通,因此气隙磁密相对较低。这种结构具有简单、制造方便、漏磁小等优点。 径向磁场永磁发电机可分为两种:永磁体表贴式和永磁体内置式。表贴式转子结构简单、极数增加容易、永磁体都粘在转子表面上,但是,这需要高磁积能的永磁体(如钕铁硼等)来提供足够的气隙磁密。考虑到永磁体的机械强度,此种结构永磁电机高转速运行时还需转子护套。内置式转子机械强度较高,但制造工艺相对复杂,制造费用较高。 径向磁场电机用作直驱风力发电机,大多为传统的内转子设计。风力机和永磁体内转子同轴安装,这种结构的发电机定子绕组和铁心通风散热好,温度低,定子外形尺寸小;也有一些外转子设计。风力机与发电机的永磁体外转子直接耦合,定子电枢安装在静止轴上,这种结构有永磁体安装固定、转子可靠性好和转动惯量大的优点,缺点是对电枢铁心和绕组通风冷却不利,永磁体转子直径大,不易密封防护、安装和运输[1]。表贴式和径向式的结构如图1-1 a)所示。 a)径向式结构 b)切向式结构

风力发电系统建模与仿真

风力发电系统建模与仿真

风力发电系统建模与仿真 摘要:风力发电作为一种清洁的可再生能源利用方式,近年来在世界范围内获得了飞速的发展。本文基于风力机发电建立模型,主要完成了以下工作:(1)基于风资源特点,建立了以风频、风速模型为基础的风力发电理论基 础; (2)运用叶素理论,建立了变桨距风力机机理模型; (3)分析了变速恒频风力发电机的运行区域与变桨距控制的原理与方法,并给出了机组的仿真模型,为风力发电软件仿真奠定了基础; (4)搭建了一套基于PSCAD/EMTDC仿真软件的风力发电系统控制模型以及 完整的风力发电样例系统模型,并且已初步实现风力机特性模拟功能。 关键词:风力发电;风频;风速;风力机;变桨距;建模与仿真 1 风资源及风力发电的基本原理 1.1 风资源概述 (1)风能的基本情况[1] 风的形成乃是空气流动的结果。风向和风速是两个描述风的重要参数。风向是指风吹来的方向,如果风是从东方吹来就称为东风。风速是表示风移动的速度即单位时间内空气流动所经过的距离。 风速是指某一高度连续10min所测得各瞬时风速的平均值。一般以草地上空10m高处的10min内风速的平均值为参考。风玫瑰图是一个给定地点一段时间内的风向分布图。通过它可以得知当地的主导风向。 风能的特点主要有:能量密度低、不稳定性、分布不均匀、可再生、须在有风地带、无污染、分布广泛、可分散利用、另外不须能源运输、可和其它能源相互转换等。 (2)风能资源的估算 风能的大小实际就是气流流过的动能,因此可以推导出气流在单位时间内垂直流过单位截面积的风能,即风能密度,表示如下: 3 ω= (1-1) 5.0vρ 式中, ω——风能密度(2 W),是描述一个地方风能潜力 /m 的最方便最有价值的量;

风力发电技术题库

一、填空题 整体认识 1、750风力发电机组采用(水平)轴、三叶片、(上)风向、定桨距(失速)调节、(异步)发电机并网的总体设计方案 2、单级异步发电机与齿轮箱之间采用了(膜片式)联轴器连接,该联轴器既具有(扭矩传递)功能,又具有(扭矩过载)保护作用 3、750机组设置了齿轮润滑油(加热装置),外接(强迫油冷却)装置、发电机(加热)除湿装置、散热系统等。 4、机组的软并网装置可将电流限定在额定值的(1.5)倍之内;机组的无功补偿装置可保证功率因数在额定功率点达到(0.99)以上。 5、整个机组由计算机控制,数据自动(采集处理)、自动运行并可远程监控。 6、750机组安全系统独立于(控制系统),包括相互独立、(失效保护)的叶尖气动刹车和两组机械刹车。 7、750机组的切入风速(4.0)m/s,额定风速(15)m/s,切出风速10分钟均值(25 )m/s 。 8、齿轮箱的弹性支撑承担着齿轮箱的全部重量。由于弹性支撑是主轴的一个(浮动)支点,也承担着主轴的部分重量。 9、S48/750机组叶轮转速是(22.3)rpm ,叶片端线速度(56)m/s 。 10、齿轮箱的齿轮传动比率是(67.9),润滑形式(压力强制润滑)。

异步发电机 1、原动机拖动异步电机, 使其转子转速n 高于旋转磁场的(同步转速),即使转差率s< 0, 就变成异步发电机运行。 2、风力发电机选用(H)级的绝缘材料。 3、异步发电机本身不能提供激磁电流,必须从电网吸取(无功励磁)功率以建立磁场 4、三相异步发电机的基本结构与三相异步电动机(相同)。 5、异步发电机输向电网的电流频率和它自身的转差率(无关)。 6、发电机基本参数 额定功率(750 ) kW 额定电压(690) V 额定电流(690) A 额定转速(1520) rpm 额定滑差(1.33) % 绝缘等级(H) 8、750kW风力发电机为卧式、(强迫)通风、三相铜条(鼠笼异步)发电机。 9、发电机的自然(功率因数)要尽可能高,以减少对电网无功功率

750kw风力发电机叶片建模与仿真分析解析

毕业论文题目:750KW风力机叶片建模与模态仿真分析 学院: 专业:机械设计制造及其自动化 班级:学号: 学生姓名: 导师姓名: 完成日期: 2014年6月20日

诚信声明 本人声明: 1、本人所呈交的毕业设计(论文)是在老师指导下进行的研究工作及取得的研究成果; 2、据查证,除了文中特别加以标注和致谢的地方外,毕业设计(论文)中不包含其他人已经公开发表过的研究成果,也不包含为获得其他教育机构的学位而使用过的材料; 3、我承诺,本人提交的毕业设计(论文)中的所有内容均真实、可信。 作者签名:日期:年月日

毕业设计(论文)任务书 题目: 750KW风力机叶片建模与模态仿真分析 姓名学院专业班级学号 指导老师职称教研室主任 一、基本任务及要求: 1、查阅20篇左右文献资料,撰写开题报告和文献综述。 2、确定叶片主要翼形构成、外形参数及载荷。 3、应用三维建模软件建立叶片三维实体模型。 4、应用仿真软件对复合材料叶片进行模态仿真分析。 5、改变叶片转速,讨论复合材料叶片动力刚化效应对振动的影响。 6、按照要求撰写毕业论文和打印图纸。 二、进度安排及完成时间: 2014.2.20-3.5:课题调研(含毕业实习及撰写毕业实习报告)、查阅文献资料。2014.3.6-3.28:撰写文献综述和开题报告。 2014.3.29-4.8:确定叶片主要翼形构成、外形参数及载荷。 2014.4.9-4.19:应用三维建模软件建立叶片三维实体模型。 2014.4.20-4.27:应用仿真软件对复合材料叶片进行模态仿真分析。 2014.4.28-5.5:改变叶片转速,讨论复合材料叶片动力刚化效应对振动的影响。2014.5.6-5.26:撰写毕业论文、完成设计。 2014.5.27-6.10:整理毕业设计资料,毕业答辩。

风力发电模拟监控实验

风力机空气动力学实验之一风力发电模拟监控实验 STR-WIND5000 风力发电机变桨距系统 实训指导书 南京工业大学 机械与动力工程学院 2014年11月

实训二发电机的功率与转速的关系实训 1、实训目的 了解永磁同步发电机的功率-转速特性 2、实训设备 风力发电实训装置 3、实训原理 在某一来流风速下,风力发电会在特定转速稳定运行,如下图中,曲线1为该时刻发电机外特性u=f(i),直线1为负载特性,两者的交点即为工作点系统的工作点,在此工作点对应有系统的输出电压u和电流i,二者乘积为系统的输出功率,当负载发生改变时,新的负载特性曲线2与发电机的输出特性曲线1的交点也发生了改变,系统的输出功率也随之改变。当来流风速变化时,风力发电机稳定在另一转速下运行,对应外特性u=f(i)曲线2,负载曲线与其相交点也发生了改变,风力发电机的功率输出也随之改变。 曲线1 发电机电压电流输出特性曲线2 发电机功率跟随转速变化的曲线 图2-1 由此可知来流风速的变化和负载的变化可以改变风力发电机的公路输出。来流风速是风的自然属性,不可人为改变,在风力发电机运行过程中,如果风力发电机所接触的负载不变,发电机的输出功率也不变。当风速发生变化时,风轮的输出功率也会发生改变,而负载功率不变,此时会出现发电机与风轮不匹配的现象,风力发电机的运行效率不高。解决方法之一是可以人为改变发电机负载,使发电机的输出功率发生改变,使风轮和发电机的工作达到匹配状态,即风轮的最佳工作状态。 发电机负载功率特性曲线的计算比较困难,通常通过实验的方法测得,在设计好风轮后,由发电机厂家提供相关永磁电机的功率特性曲线,将给定的特性曲线来计算获得的不同来流风速下风轮功率进行匹配,选择和风轮相匹配的发电机。在离网型风力发电机系统中,负载主要为蓄电池,因此在测试发电机的功率-转速特性时通常以蓄电池为负载进行测试。 4、实训步骤 1)将设备上电,打开变桨控制里面的空开,打开蓄电池空开。 2)打开总电源按钮,开启总电源。 3)按下原动机按钮,将原动机投入进去。 4)在监控中心,点击变频器模块,点击变频器下面的频率,点击开启,然频率从6HZ 开始,到20HZ结束,由小到大,每隔2HZ 一个点,观察风能控制柜上监控的风力发动机输

新能源风力发电考试题库

风电专业考试题库 一、填空题 1、风力发电机开始发电时,轮毂高度处的最低风速叫()。 (切入风速) 2、严格按照制造厂家提供的维护日期表对风力发电机组进行的预防性维护是()。(定期维护) 3、禁止一人爬梯或在塔内工作,为安全起见应至少有人工作。 (两) 4、()是设在水平轴风力发电机组顶部内装有传动和其他装置的机壳。(机舱) 5、风能的大小与风速的()成正比。(立方) 6、风力发电机达到额定功率输出时规定的风速叫。(额定风速) 7、叶轮旋转时叶尖运动所生成圆的投影面积称为() 。 (扫掠面积) 8、风力发电机的接地电阻应每年测试() 次。(一) 9、风力发电机年度维护计划应() 维护一次。(每年) 10、SL1500齿轮箱油滤芯的更换周期为()个月。(6) 11、G52机组的额定功率() KW。(850) 12、凡采用保护接零的供电系统,其中性点接地电阻不得超过()。(4欧) 13、在风力发电机电源线上,并联电容器的目的是为了()。 (提高功率因素) 14、风轮的叶尖速比是风轮的()和设计风速之比。(叶尖速度) 15、风力发电机组的偏航系统的主要作用是与其控制系统配合,使风电机的风轮在正常情况下处于() 。(迎风状态) 16、风电场生产必须坚持()() 的原则。 (安全第一,预防为主) 17、()是风电场选址必须考虑的重要因素之一。(风况) 18、风力发电机的()()是表示风力发电机的净电输出功率和轮毂高度处风速的函数关系。(功率曲线) 19、风力发电机组投运后,一般在() 后进行首次维护。 (三个月) 20、瞬时风速的最大值称为() 。(极大风速) 21、正常工作条件下,风力发电机组输出的最高净电功率称为() 。 (最大功率) 22、在国家标准中规定,使用“downwind”来表示()。 (主风方向) 23、在国家标准中规定,使用“pitch angle”来表示()。 (桨距角) 24、在国家标准中规定,使用“wind turbine”来表示。

小型风力发电机毕业设计论文

小型风力发电机毕业设计 摘要 基于开发风能资源在改善能源结构中的重要意义,本论文对风力发电机的特性作了简要的介绍,且对风力发电机的各种参数和风力机类型作了必要的说明。在此基础上,对风力发电机的原理和结构作了细致的分析。首先,对风力发电机的总体机械结构进行了设计,并且设计了限速控制系统。本课题设计的是一种新型的立式垂直轴小型风力发电机,由风机叶轮、立柱、横梁、变速机构、离合装置和发电机组成。这种发电机有体积小、噪音小、使用寿命长、价格低的特点,适合在有风能资源地区的楼房顶部,供应家庭用电,例如照明:灯泡,节能灯;家用电器:电视机、收音机、电风扇、洗衣机、电冰箱。 关键词:风力发电限速控制系统小型风力发电机

Abstract Exploiting wind energy resources is of great significance in improving energy structure. In the discourse,the characters of wind generator are introduced briefly,while parameters and types of wind generators are also narrated. Base on these,the theory and constitution of the wind generator are meticulously analyzed. Firstly,Has carried on the design to wind-driven generator's overall mechanism, And has designed the regulating control system. What I design is one kind of new vertical axis small wind-driven generator, by the air blower impeller, the column, the crossbeam, the gearshift mechanism, the engaging and disengaging gear and the generator is composed. This kind of generator has the volume to be small, the noise is small, the service life is long, the price low characteristic, suits in has the wind energy resources area building crown, the supply family uses electricity, For example illumination: The light bulb, conserves energy the lamp; Domestic electric appliances: Television, radio, electric fan, washer, electric refrigerator. Key words:Wind power generation, Regulating control system, Small wind-driven generator

风力发电系统建模与仿真

《新能源发电及并网技术》专题报告风力发电系统建模与仿真 学院电气工程学院 专业电气工程 姓名xxxxxxx 学号xxxxxxxxxxxx 2013年6月

目录 1 风资源及风力发电的基本原理 (1) 1.1 风资源概述 (1) 1.2 风力发电的基本原理 (2) 1.3 风力发电特点 (3) 2 风能及风力机系统模型的建立 (3) 2.1风频模型 (3) 2.2 风速模型 (4) 2.3 风力机建模与分析 (5) 3 变桨距风力发电机组控制系统模型 (10) 3.1 变桨距风力发电机组的运行状态 (10) 3.2 变桨距控制系统 (11) 4风力发电控制系统的模拟仿真分析 (13) 4.1 无穷大系统模型的建立 (13) 4.2 风力发电机系统并网模拟仿真分析 (13) 5 结论 (17) 参考文献 (18)

摘要:风力发电作为一种清洁的可再生能源利用方式,近年来在世界范围内获得了飞速的发展。本文基于风力机发电建立模型,建立了以风频、风速模型为基础的风力发电理论基础,运用叶素理论,建立了变桨距风力机机理模型,然后分析了变速恒频风力发电机的运行区域与变桨距控制的原理与方法,并给出了机组的仿真模型,最后搭建了一套基于PSCAD/EMTDC 仿真软件的风力发电系统控制模型以及完整的风力发电样例系统模型,并且已初步实现风力机特性模拟功能。 关键词:风力发电;风频;风速;风力机;变桨距;建模与仿真 1 风资源及风力发电的基本原理 1.1 风资源概述 随着世界工业化进程的不断加快,使得能源消耗逐渐增加,全球工业有害物质的排放量与日俱增,从而造成气候异常、灾害增多、恶性疾病的多发,因此,能源和环境问题成为当今世界所面临的两大重要课题。由能源问题引发的危机以及日益突出的环境问题,使人们认识到开发清洁的可再生能源是保护生态环境和可持续发展的客观需要。可以说,对风力发电的研究和进行这方面的毕业设计对我们从事风力发电事业的同学是有着十分重大的理论和现实意义的,也是十分有必要的。 风力发电起源于20世纪70年代,技术成熟于80年代,自90年代以来风力发电进入了大发展阶段。随着风力发电容量的不断增大,控制方式从基本单一的定桨距失速控制向全桨叶变距控制和变速控制发展。前人在风轮机的空气动力学原理和能量转换原理的基础上,系统分析了定桨距风力发电机组、变桨距风力发电机组、变速风力发电机组的基本控制要求和控制策略,并对并网型风力发电机组的变桨距控制技术进行了一定的研究。变桨距风力发电机组的主要控制是在起动时对风轮转速的控制和并网后对输入功率的控制。通过变距控制可以根据风速来调整桨叶节距角,以满足发电机起动与系统输出功率稳定的双重要求。但由于对运行工况的认识不足,对变桨距控制系统的设计不能满足风力发电机组正常运行的要求,更达不到优化功率曲线和稳定功率输出的要求。 1、风能的基本情况[1] 风的形成乃是空气流动的结果。风向和风速是两个描述风的重要参数。风向是指风吹来的方向,如果风是从东方吹来就称为东风。风速是表示风移动的速度即单位时间内空气流动所经过的距离。

相关主题
文本预览
相关文档 最新文档