当前位置:文档之家› 应用数值分析第四版第一章课后作业答案

应用数值分析第四版第一章课后作业答案

应用数值分析第四版第一章课后作业答案
应用数值分析第四版第一章课后作业答案

第一章

1、 在下列各对数中,x 是精确值 a 的近似值。

3

.14,7/100)4(143

.0,7/1)2(0031

.0,1000/)3(1.3,)1(========x a x a x a x a ππ

试估计x 的绝对误差和相对误差。 解:(1)0132.00416

.01.3≈=

≈-=

-=a e

e x a e r π (2)0011.00143

.0143.07/1≈=

≈-=-=a e

e x a e r (3)0127.000004

.00031.01000/≈=

≈-=-=a

e

e x a e r π (4)001.00143

.03.147/100≈=

≈-=-=a

e

e x a e r

2. 已知四个数:x 1=26.3,x 2=0.0250, x 3= 134.25,x 4=0.001。试估计各近似数的有效位数和误差限,并估计运算μ1= x 1 x 2 x 3和μ1= x 3 x 4 /x 1的相对误差限。

解:x 1=26.3 n=3 δx 1=0.05 δr x 1=δx 1/∣x 1∣=0.19011×10-2

x 2=0.0250 n=3 δx 2=0.00005 δr x 2=δx 2/∣x 2∣=0.2×10-2

x 3= 134.25 n=5 δx 3=0.005 δr x 3=δx 3/∣x 3∣=0.372×10

-4

x 4=0.001 n=1 δx 4=0.0005 δr x 4=δx 4/∣x 4∣=0.5

由公式:e r (μ)= e (μ)/∣μ∣≦1/∣μ∣Σn

i=1∣?f/?x i ∣δx i

e r (μ1)≦1/∣μ1∣[x 2 x 3δx 1+ x 1 x 3δx 2 +x 1

x 2δx 3] =0.34468/88.269275 =0.0039049

e r (μ2)≦1/∣μ2∣[x 3 x 4/ x 21δx 1+ x 4/ x 1δx 3 + x 3

/ x 1δx 4] =0.501937

3、设精确数a>0,x 是a的近似值,x 的相对误差限是0.2,求㏑x 的相对误差限。

解:设=()u f x ,

()()()()()

()||||||||||()||()||

|

|()||()||||r r r

x e u df x e x df x e x e u u dx u dx u x df x x df x x e x x dx u dx u δ=

≈==≤

()||10.2

(())|

|()||ln ln ln r r r r df x x x x f x x x dx u x x x x

δδδδ==??==

4、长方体的长宽高分别为50cm ,20cm 和10cm ,试求测量误差满足什么条件时其表面积的误差不超过1cm 2。

解:设2()S xy yz zx =++

{}[]{}(,,)(,,)(,,)

()|

|()||()||()(,,)(,,)(,,)||||||max (),(),()2()2()2()max (),(),()1S x y z S x y z S x y z e S e x e y e z x y z

S x y z S x y z S x y z e x e y e z x y z y z z x x y e x e y e z ???≤++?????

???≤++ ??????

=+++++<

{}[]11

max (),(),()2()2()2()4()

11

0.0031254(502010)320

e x e y e z y z z x x y x y z <

=

+++++++===++

所以,测量误差小于0.00625时其表面积的误差不超过1cm 2。

5、设x 和y 的相对误差为0.001,则xy 的相对误差约为多少?

解:由公式:i r i

n

i n i

n n

i i i

r x x f

x x f x x x f x x f u δδδ??=??=

==1

111

),,()

,,()(

则有:002.0001.0001.0)()()()(=+=+=≤y x xy xy e r r r r δδδ xy 的相对误差约为0.002.

6. 改变下列表达式,使计算结果更准确。

(1)1,||1x x x +-≥ (2)

11,||1121x

x x x

--≤++ (3)(1cos ),0,||1x x x x -≠≤ (4)11,||1x x x x x

+--≥

解:(1)111x x x x

+-=++ (2)2

112121(12)(1)x x x x x x --=

++++ (3)2

(1cos )sin (1cos )

x x x x x -=+

(4)2

2

112

(11)

x x x x

x x x +--=

++-

7、计算6(21)-的近似值,取2 1.414≈。利用以下四种计算格式,试问哪一种算法误差

最小。 (1)6

1(21)+ (2)3(322)- (3)3

1(322)

+ (4)99702-

解:计算各项的条件数'()(())||()

xf x cond f x f x = 11 1.4146

1

(),(())| 3.5145(1)

x f x cond f x x ==

=+ 322 1.414()(32),(())|49.3256x f x x cond f x ==-= 331.41431(),(())| 1.4558

(32)

x

f x c o n d f x x ==

=+ 441.4

14()9970,(())|4949

x f x x c o n d f x ==-= 由计算知,第一种算法误差最小。

n n 1

1

8 ∞

=∑、考虑无穷级数,它是微积分中的发散级数。在计算机上计算该级数的部分和,会得到怎样的结果?为什么?

解:在计算机上计算该级数的是一个收敛的级数。因为随着n 的增大,会出现大数吃

小数的现象。

9、 通过分析浮点数集合F=(10,3,-2,2)在数轴上的分布讨论一般浮点数集的分布情

况。

解:浮点数集合F=(10,3,-2,2)在数轴上离原点越近,分布越稠密;离原点越远,

分布越稀疏。一般浮点数集的分布也符合此规律。

10、试导出计算积分1

(1,2,3,4)14n n x I dx n x ==+?的递推计算公式111()4n n I I n -=-,并分析此递推公式的数值稳定性。

解:1111

1111

0000

141()14414414n n n n n n n x x x x x I dx dx x dx dx x x x ----+-===-+++???? 1

11

()4n n I I n -∴=

- 分析计算的误差,设初值0I 的误差为000I I e -=,递推过程的舍入误差不计,并记

n n n I I e -=,则有 。显然,随着计算的递推,误差越来越小,因此递推公式是稳定的。

11、为减少乘除法运算次数,应将下面算式怎样改写?

0114

)1(...)(41e I I I I e

n n

n n n n n -==--=-=--

3

217

151318)

()(-+-+-+

=x x x y 解:令1

1

-=

x u ,则18357+++=u u u y ))(( 12、试推导求函数值)(x f y =的绝对误差和相对误差。 解:**(())()()'()()'()()e f x f x f x f x x f x e x ξ=-=-≈

***()()'()()'()()'()

(())()()()()()

r r f x f x f x x f x x x f x e f x x x e x f x f x f x x f x ξ---==≈=

13、试推导求函数值),(y x f 的条件数)),((y x f Cond 。 解:(,)(,)

(,)(,)()()f x y f x y f x y f x y x x y y x y

??=+

-+-+?? '

'(,)(,)(,)(,)()()

(,)(,)(,)y x yf x y xf x y f x y f x y x x y y f x y f x y x f x y y

---≈+

''''

(,)(,)(,)(,)

()()(,)(,)(,)(,)(,)()()max ,(,)(,)y x y

x

yf x y xf x y f x y f x y x x y y f x y f x y x f x y y yf x y xf x y x x y y f x y f x y x y ---≤+

????--??≤ +??? ??????

?

'(,)'(,)

((,))(,)(,)

x y xf x y yf x y Cond f x y f x y f x y ∴=+

14、序列{}n x 满足递推公式

??

????=-=≈=+)

,,(.105732

1310n n x x x n n 求计算到20x 的的误差,并讨论计算过程的稳定性。 解:000x x e -=

000111555e x x x x e =-=-=

021*********e x x x x e =---=-=)()(

9020201084545?≈=.e e

误差逐渐增大,计算不稳定

15、写出下面Matlab 程序所描述的数学表达式。 (1)for j=1: n

for i=1: m

y ( i )= A (i, j)*x(j)+y(i) end end (2)for j=1:n

y=x(j)*A(:,j)+y end

解:(1)m n n m R y R x R A y Ax y ∈∈∈+=?,,,

(2)y Ax y += A 为n 列的矩阵,x 为n 行1列的列向量,y 为与A 有相同行数的

列向量

16、写出下面Matlab 程序所描述的数学表达式。 (1) for i=1: m

for j=1: n

A(i,j)= A (i, j)+x(i)*y(j) end end

(2) for j=1:m

A(:,j)= A (:, j)+ y(j)* x(:) end

解:(1) n m n

m R y R x R

A y x A A ???∈∈∈+=11,,,*

(2) x y A A *+= A 为m 列的矩阵,y 为与A 有相同行数的列向量。

最新应用数值分析第四版第一章课后作业答案

第一章 1、 在下列各对数中,x 是精确值 a 的近似值。 3 .14,7/100)4(143 .0,7/1)2(0031 .0,1000/)3(1 .3,)1(========x a x a x a x a ππ 试估计x 的绝对误差和相对误差。 解:(1)0132.00416 .01.3≈= ≈-= -=a e e x a e r π (2)0011.00143 .0143.07/1≈= ≈-=-=a e e x a e r (3)0127.000004 .00031.01000/≈= ≈-=-=a e e x a e r π (4)001.00143 .03.147/100≈= ≈-=-=a e e x a e r 2. 已知四个数:x 1=26.3,x 2=0.0250, x 3= 134.25,x 4=0.001。试估计各近似数的有效位数和误差限,并估计运算μ1= x 1 x 2 x 3和μ1= x 3 x 4 /x 1的相对误差限。 解:x 1=26.3 n=3 δx 1=0.05 δr x 1=δx 1/∣x 1∣=0.19011×10-2 x 2=0.0250 n=3 δx 2=0.00005 δr x 2=δx 2/∣x 2∣=0.2×10-2 x 3= 134.25 n=5 δx 3=0.005 δr x 3=δx 3/∣x 3∣=0.372×10 -4 x 4=0.001 n=1 δx 4=0.0005 δr x 4=δx 4/∣x 4∣=0.5 由公式:e r (μ)= e (μ)/∣μ∣≦1/∣μ∣Σn i=1∣?f/?x i ∣δx i e r (μ1)≦1/∣μ1∣[x 2 x 3δx 1+ x 1 x 3δx 2 +x 1 x 2δx 3] =0.34468/88.269275 =0.0039049 e r (μ2)≦1/∣μ2∣[x 3 x 4/ x 21δx 1+ x 4/ x 1δx 3 + x 3 / x 1δx 4] =0.501937 3、设精确数a>0,x 是a的近似值,x 的相对误差限是0.2,求㏑x 的相对误差限。 解:设=()u f x , ()()()()() ()||||||||||()||()|| | |()||()||||r r r x e u df x e x df x e x e u u dx u dx u x df x x df x x e x x dx u dx u δ= ≈==≤ ()||10.2 (())| |()||ln ln ln r r r r df x x x x f x x x dx u x x x x δδδδ==??==

数值分析之幂法及反幂法C语言程序实例

数值分析之幂法及反幂法C 语言程序实例 1、算法设计方案: ①求1λ、501λ和s λ的值: s λ:s λ表示矩阵的按模最小特征值,为求得s λ直接对待求矩阵A 应用反幂法即可。 1λ、501λ:已知矩阵A 的特征值满足关系 1n λλ<< ,要求1λ、及501λ时,可 按如下方法求解: a . 对矩阵A 用幂法,求得按模最大的特征值1m λ。 b . 按平移量1m λ对矩阵A 进行原点平移得矩阵1m B A I λ=+,对矩阵B 用反幂法 求得B 的按模最小特征值2m λ。 c . 321m m m λλλ=- 则:113min(,)m m λλλ=,13max(,)n m m λλλ=即为所求。 ②求和A 的与数5011 140 k k λλμλ-=+最接近的特征值 ik λ(k=0,1,…39): 求矩阵A 的特征值中与k μ最接近的特征值的大小,采用原点平移的方法: 先求矩阵 B=A-k μI 对应的按模最小特征值k β,则k β+k μ即为矩阵A 与k μ最接近的特征值。 重复以上过程39次即可求得ik λ(k=0,1,…39)的值。 ③求A 的(谱范数)条件数2cond()A 和行列式det A : 在(1)中用反幂法求矩阵A 的按模最小特征值时,要用到Doolittle 分解方法,在Doolittle 分解完成后得到的两个矩阵分别为L 和U ,则A 的行列式可由U 阵求出,即:det(A)=det(U)。 求得det(A)不为0,因此A 为非奇异的实对称矩阵,则: max 2()s cond A λλ= ,max λ和s λ分别为模最大特征值与模最小特征值。

数值分析课后题答案

数值分析 第二章 2.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20 ()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23 537623 l x l x x x x x x x =-+=---+ -+= +- 6.设,0,1,,j x j n =L 为互异节点,求证: (1) 0()n k k j j j x l x x =≡∑ (0,1,,);k n =L (2)0 ()()0n k j j j x x l x =-≡∑ (0,1,,);k n =L 证明 (1) 令()k f x x = 若插值节点为,0,1,,j x j n =L ,则函数()f x 的n 次插值多项式为0 ()()n k n j j j L x x l x == ∑。 插值余项为(1)1() ()()()()(1)! n n n n f R x f x L x x n ξω++=-= + 又,k n ≤Q

(1)()0 ()0 n n f R x ξ+∴=∴= 0()n k k j j j x l x x =∴=∑ (0,1,,);k n =L 0 000 (2)()() (())()()(()) n k j j j n n j i k i k j j j i n n i k i i k j j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑ 0i n ≤≤Q 又 由上题结论可知 ()n k i j j j x l x x ==∑ ()()0 n i k i i k i k C x x x x -=∴=-=-=∑原式 ∴得证。 7设[]2 (),f x C a b ∈且()()0,f a f b ==求证: 21 max ()()max ().8 a x b a x b f x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为 10 101010 ()() ()x x x x L x f x f x x x x x --=+-- =() () x b x a f a f b a b x a --=+-- 1()()0()0 f a f b L x ==∴=Q 又 插值余项为1011 ()()()()()()2 R x f x L x f x x x x x ''=-= -- 011 ()()()()2 f x f x x x x x ''∴= --

泰勒定理及其在数值分析中的应用

摘要 因为泰勒公式的形式简单易懂,由此,适用在很多学科。在计算机与物理等各个方面均有着极其广泛的应用,除此之外,也在数值分析、常微分方程、最优化理论这些数学分支中产生着至关重要的作用。可见,泰勒公式的用处很多,所以,更要弄清楚泰勒公式的概念和数学原理。这是数学中非常基础的东西,对学生今后的数学学习将起到非常好的作用。本论文的目的,主要是对泰勒定理在数值分析中的应用做研究,从利用泰勒公式近似计算函数值、利用泰勒公式近似计算导数值、泰勒公式在常微分方程数值求解中的应用等方面,对泰勒公式在数值分析方面的应用进行研究。泰勒公式在数值分析的各个方面都有着重要的应用,深入探讨泰勒公式的应用,对于我们解决一些复杂问题起到事半功倍的效果.只要在解题中注意分析并注重归纳总结,就能很好地运用泰勒公式.正确的应用泰勒公式使我们的证明和计算题变得简明快捷。 关键词:泰勒公式;数值分析;应用

ABSTRACT Because of the Taylor formula is very simple, so, can be applied to many subjects. In various physical and computer etc, have a very wide range of applications, in addition, also in the ordinary differential equations, numerical analysis, optimization theory, the branch of mathematics plays an extremely important role. Therefore, a lot of, Taylor formula. So, to clarify concepts and mathematical principle of Taylor formula. This is the very basis of mathematics of mathematics learning things, the students will play a very good role. The purpose of this thesis, mainly to do research on the application of Taylor theorem in numerical analysis, calculating the function value, using the Taylor formula to calculate the value of Taylor formula, the numerical solution of ordinary differential equation application, from using Taylor's formula approximation, the Taylor formula is analyzed in terms of the application in the numerical study. Taylor formula has important applications in the numerical analysis, in-depth study of the application of Taylor formula, for us to solve some complex problems play a multiplier effect. As long as the attention and focus on solving problems of the summary, will be able to use Taylor formula. Using Taylor formula to correct the proof and calculation problems we became fast and simple. Key words: Taylor formula; numerical analysis; application

应用数值分析(第四版)课后习题答案第9章

第九章习题解答 1.已知矩阵????? ???????=??????????=4114114114,30103212321A A 试用格希哥林圆盘确定A 的特征值的界。 解:,24)2(, 33)1(≤-≤-λλ 2.设T x x x x ),...,,(321=是矩阵A 属于特征值λ的特征向量,若i x x =∞, 试证明特征值的估计式∑≠=≤-n i j j ij ii a a 1λ. 解:,x Ax λ = ∞∞∞∞≤==x A x x Ax i λλ 由 i x x =∞ 得 i n in i ii i x x a x a x a λ=++++ 11 j n j i i ij i ii x a x a ∑≠==-1)(λ j n j i i ij j n j i i ij i ii x a x a x a ∑∑≠=≠=≤=-11λ ∑∑≠=≠=≤≤-n j i i ij i j n j i i ij ii a x x a a 11λ 3.用幂法求矩阵 ???? ??????=1634310232A 的强特征值和特征向量,迭代初值取T y )1,1,1()0(=。 解:y=[1,1,1]';z=y;d=0; A=[2,3,2;10,3,4;3,6,1]; for k=1:100 y=A*z; [c,i]=max(abs(y)); if y(i)<0,c=-c;end

z=y/c if abs(c-d)<0.0001,break; end d=c end 11.0000 =c ,0.7500) 1.0000 0.5000(z 10.9999 =c ,0.7500) 1.0000 0.5000(z 11.0003 =c ,0.7500) 1.0000 0.5000(z 10.9989=c ,0.7500) 1.0000 0.5000(z 11.0040 =c ,0.7498) 1.0000 0.5000(z 10.9859=c ,0.7506) 1.0000 0.5001(z 11.04981 =c ,0.7478) 1.0000 0.4995(z 10.8316 =c ,0.7574) 1.0000 0.5020(z 11.5839 =c ,) 0.7260 1.0000 0.4928 (z 9.4706 =c ,0.8261) 1.0000 0.5280(z 17 = c ,0.5882) 1.0000 0.4118(z 11T (11)10T (10)9T (9)8T (8)7T (7)6T (6)5T (5)4T (4)3T (3)2T (2)1T (1)=========== 强特征值为11,特征向量为T 0.7500) 1.0000 0.5000(。 4.用反幂法求矩阵???? ??????=111132126A 最接近6的特征值和特征向量,迭代初值取 T y )1,1,1()0(=。 解:y=[1,1,1]';z=y;d=0; A=[6,2,1;2,3,1;1,1,1]; for k=1:100 AA=A-6*eye(3); y=AA\z; [c,i]=max(abs(y)); if y(i)<0,c=-c;end z=y/c; if abs(c-d)<0.0001,break; end d=c end d=6+1/c

演讲稿数值分析应用实例.doc

非线性方程求根 问题:在相距100m的两座建筑物(高度相等的点)之间悬挂一根电缆,仅允许电缆在中间最多下垂1m,试计算所需电缆的长度。 设空中电缆的曲线(悬链线)方程为 ] , [ , ) ( 50 50 2 - ∈ + = - x e e a y a x a x (1) 由题设知曲线的最低点)) ( , (0 0y与最高点)) ( , (50 50y之间的高度差为1m,所以有 1 2 50 50 + = +- a e e a a a) ( (2) 由上述方程解出a后,电缆长度可用下式计算: ) ( ) (a a a x a x L e e a dx e e dx x y ds L 50 50 50 50 50 2 1- - - - = ? ? ? ? ? ? + = ' + = =? ? ?(3) 相关Matlab命令: 1、描绘函数] , [ , ) ( ) (1500 500 1 2 50 50 ∈ - - + = - a a e e a a y a a 的图形;

2、用fzero 命令求方程在1250=a 附近的根的近似值x ,并计算)(x y 的函数值; 3、编写二分法程序,用二分法求0=)(a y 在],[13001200内的根,误差不超过310-,并给出对分次数; 4、编写Newton 迭代法程序,并求0=)(a y 在],[13001200内的根,误差不超过310-,并给出迭代次数。 5、编写Newton 割线法程序,并求0=)(a y 在],[13001200内的根,误差不超过310-,并给出迭代次数。

线性方程组求解应用实例 问题:投入产出分析 国民经济各个部门之间存在相互依存的关系,每个部门在运转中将其他部门的产品或半成品(称为投入)经过加工变为自己的产品(称为产出),如何根据各部门间的投入产出关系,确定各部门的产出水平,以满足社会需求,是投入产出分析中研究的课题。考虑下面的例子: 设国民经济由农业、制造业和服务业三个部门构成,已知某年它们之间的投入产出关系、外部需求、初始投入等如表1所示(数字表示产值)。 表1 国民经济三个部门间的关系单位:亿元 假定总投入等于总产出,并且每个部门的产出与它的投入成正比,由上表可以确定三个部门的投入产出表:如表2所示。 表2 三个部门的投入产出表

非线性方程数值解法及其应用

非线性方程数值解法及其应用 摘要:数值计算方法主要研究如何运用计算机去获得数学问题的数值解的理论和算法。 本文主要介绍非线性方程的数值解法以及它在各个领域的应用。是直接从方程出发,逐步缩小根的存在区间,或逐步将根的近似值精确化,直到满足问题对精度的要求。我将从二分法、Steffensen 加速收敛法、Newton 迭代法、弦截法来分析非线性方程的解法及应用。 关键字:非线性方程;二分法;Steffensen 加速收敛法;代数Newton 法;弦截法 一、前言 随着科技技术的飞速发展,科学计算越来越显示出其重要性。科学计算的应用之广已遍及各行各业,例如气象资料的分析图像,飞机、汽车及轮船的外形设计,高科技研究等都离不开科学计算。因此经常需要求非线性方程 f(x) = O 的根。方程f(x) = O 的根叫做函数f(x)的零点。由连续函数的特性知:若f(x)在闭区间[a ,b]上连续,且f(a)·f(b)

数值分析在生活中的应用举例及Matlab实现

Matlab 实验报告 学院:数学与信息科学学院班级:信息班 学号:20135034027 姓名:马永杉

最小二乘法,用MATLAB实现 1.数值实例 下面给定的是郑州最近1个月早晨7:00左右的天气预报所得到的温度,按照数据找出任意次曲线拟合方程和它的图像。下面用MATLAB编程对上述数据进行最小二乘拟合。 2、程序代码 x=[1:1:30]; y=[9,10,11,12,13,14,13,12,11,9,10,11,12,13,14,12,11,10,9,8,7,8,9,11,9 ,7,6,5,3,1]; a1=polyfit(x,y,3) %三次多项式拟合% a2= polyfit(x,y,9) %九次多项式拟合% a3= polyfit(x,y,15) %十五次多项式拟合% b1=polyval(a1,x) b2=polyval(a2,x) b3=polyval(a3,x) r1= sum((y-b1).^2) %三次多项式误差平方和% r2= sum((y-b2).^2) %九次次多项式误差平方和% r3= sum((y-b3).^2) %十五次多项式误差平方和% plot(x,y,'*') %用*画出x,y图像% hold on plot(x,b1, 'r') %用红色线画出x,b1图像% hold on plot(x,b2, 'g') %用绿色线画出x,b2图像% hold on plot(x,b3, 'b:o') %用蓝色o线画出x,b3图像% 2.流程图

4.数值结果分析 不同次数多项式拟合误差平方和为: r1=67.6659 r2=20.1060 r3=3.7952 r1、r2、r3分别表示三次、九次、十五次多项式误差平方和。 5、拟合曲线如下图

数值分析习题集及答案

(适合课程《数值方法A 》和《数值方法B 》) 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位 有效数字: ***** 123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: * * * * * * * * 12412324(),(),()/,i x x x ii x x x iii x x ++其中* * * * 1234,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 11783 100 n n Y Y -=- ( n=1,2,…) 计算到100Y .若取783≈27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字(783≈27.982). 8. 当N 充分大时,怎样求 2 11N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设2 12S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加, 而相对误差却减小. 11. 序列{}n y 满足递推关系1101 n n y y -=-(n=1,2,…),若02 1.41y =≈(三位有效数字),计算到10 y 时误差有多大?这个计算过程稳定吗? 12. 计算6 (21)f =-,取 2 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 6 3 11,(322), ,9970 2. (21) (322) --++ 13. 2 ()ln(1)f x x x =- -,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等 价公式 2 2 ln(1)ln(1)x x x x - -=-+ + 计算,求对数时误差有多大? 14. 试用消元法解方程组{ 10 10 12121010; 2. x x x x +=+=假定只用三位数计算,问结果是否可靠? 15. 已知三角形面积 1sin , 2 s ab c = 其中c 为弧度, 02c π << ,且测量a ,b ,c 的误差分别为,,.a b c ???证 明面积的误差s ?满足 . s a b c s a b c ????≤ ++ 第二章 插值法 1. 根据( 2.2)定义的范德蒙行列式,令

数值分析课程设计学生题目

《数值分析》课程设计

本课程设计的内容为:每个小组的同学均应完成以下五个案例; 目标:能将数值分析课程中所学的算法知识熟练应用于实际问题中。 案例1 土木工程和环境工程师在设计一条排水渠道时必须考虑渠道的各种参数(如宽度,深度,渠道内壁光滑度)及水流速度、流量、水深等物理量之间的关系。 假设修一条横断面为矩形的水渠,其宽度为B ,假定水流是定常的,也就是说水流速度不随时间而变化。 根据质量守恒定律可以得到 Q=UBH (1.1) 其中Q 是水的流量(s m /3 ),U 是流速(s m /),H 是水的深度(m )。 在水工学中应用的有关流速的公式是 3 /23 /22/1)2()(1H B BH S n U += (1.2) 这里n 是Manning 粗糙系数,它是一个与水渠内壁材料的光滑性有关的无量纲量;S 是水渠 的斜度系数,也是一个无量纲量,它代表水渠底每米内的落差。 把(1.2)代入(1.1)就得到 3 /23 /52/1)2()(1H B BH S n U += (1.3) 为了不同的工业目的(比如说要把污染物稀释到一定的浓度以下,或者为某工厂输入一定量 的水),需要指定流量Q 和B ,求出水的深度。这样,就需要求解 0) 2()(1)(3 /23 /52/1=-+=Q H B BH S n H f (1.4) 一个具体的案例是 s m Q S n m B /5 ,0002.0 ,03.0 ,203==== 求出渠道中水的深度H 。 所涉及的知识——非线性方程解法。 案例2 在化学工程中常常研究在一个封闭系统中同时进行的两种可逆反应 C D A C B A ?+?+2 其中A ,B ,C 和D 代表不同的物质。反应达到平衡是有如下的平衡关系: d a c b a c C C C k C C C k == 22 1 , 其中2 24 1107.3 ,104--?=?=k k 称为平衡常数,),,,(d c b a n C n =代表平衡状态时该物质的浓度。假定反应开始时各种物质的浓度为:

数值分析课后题答案

数值分析 2?当x=1,—1,2时,f(x)=O, 一3,4,求f(x)的二次插值多项式。解: X 0 =1,x j = — 1,x 2 = 2, f(X。)= 0, f (xj = -3, f (x2)= 4; l o(x)=(x-xi^~x2\=-1(x 1)(x-2) (x o -X/X o _x2) 2 (x -x0)(x -x2) 1 l i(x) 0 2(x-1)(x-2) (x i ~x0)(x i ~x2) 6 (x—x0)(x—x,) 1 l2(x) 0 1(x-1)(x 1) (X2 -X°)(X2 - X i) 3 则二次拉格朗日插值多项式为 2 L 2(X)= ' y k 1 k ( x) kz0 = -3l°(x) 4l2(x) 1 4 =(x_1)(x—2) 4 (x-1)(x 1) 2 3 5 2 3 7 x x - 6 2 3 6?设Xj, j =0,1,||(,n 为互异节点,求证: n (1 )7 x:l j(x) =x k(k =0,1川,n); j=0 n (2 )7 (X j -x)k l j(x)三0 (k =0,1川,n); j £ 证明 (1)令f(x)=x k

n 若插值节点为X j, j =0,1,|l(, n,则函数f (x)的n次插值多项式为L n(x)八x k l j(x)。 j=0 f (n 十)(?) 插值余项为R n(X)二f(X)-L n(X) n1(X) (n +1)!

.f(n1)( ^0 R n(X)=O n 二瓦x k l j(x) =x k(k =0,1川,n); j :o n ⑵、(X j -x)k l j(x) j卫 n n =為(' C?x j(—x)k_L)l j(x) j =0 i =0 n n i k i i =為C k( -x) (、X j l j(x)) i =0 j=0 又70 _i _n 由上题结论可知 n .原式二''C k(-x)k_L x' i=0 =(X -X)k =0 -得证。 7设f (x) c2 la,b 1且f (a) =f (b)二0,求证: max f(x)兰一(b-a) max a $至小一*丘f (x). 解:令x^a,x^b,以此为插值节点,则线性插值多项式为 L i(x^ f(x o) x x f (xj X o —人x -X o X —X o x-b x-a ==f(a) f(b)- a - b x -a 又T f (a) = f (b)二0 L i(x) = 0 1 插值余项为R(x)二f (x) - L,(x) f (x)(x - X Q)(X - xj 1 f(x) = 2 f (x)(x -X g)(X -xj

数值分析简述及求解应用

数值分析简述及求解应用 摘要:数值分析是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科,本文主要介绍了数值分析的一些求解方法的原理和过程,并应用在电流回路和单晶硅提拉过程中的,进一步体现数值分析的实际应用。 关键字:解方程组插值法牛顿法 一、引言 随着科学技术的发展,提出了大量复杂的数值计算问题,在建立电子计算机成为数值计算的主要工具以后,它以数字计算机求解数学问题的理论和方法为研究对象。有可靠的理论分析,要有数值实验,并对计算的结果进行误差分析。数值分析的主要内容包括插值法,函数逼近,曲线拟和,数值积分,数值微分,解线性方程组的直接方法,解线性方程组的迭代法,非线性方程求根,常微分方程的数值解法。运用数值分析解决问题的过程包括: 实际问题→数学建模→数值计算方法→程序设计→上机计算求出结果。 在自然科学研究和工程技术中有许多问题可归结为求解方程组的问题,方程组求解是科学计算中最常遇到的问题。如在应力分析、电路分析、分子结构、测量学中都会遇到解方程组问题。在很多广泛应用的数学问题的数值方法中,如三次样条、最小二乘法、微分方程边值问题的差分法与有限元法也都涉及到求解方程组。 在工程中常会遇到求解线性方程组的问题,解线性方程组的方法有直接法和迭代法,直接法就是经过有限步算术运算,可求的线性方程组精确解的方法(若计算过程没有舍入误差),但实际犹如舍入误差的存在和影响,这种方法也只能求得近似解,这类方法是解低阶稠密矩阵方程组级某些大型稀疏矩阵方程组的有效方法。直接法包括高斯消元法,矩阵三角分解法、追赶法、平方根法。迭代法就是利用某种极限过程去逐步逼近线性方程组精确解的方法。将方程组的解看作是某极限过程的极限值,且计算这一极限值的每一步是利用前一步所得结果施行相同的演算步骤而进行。迭代法具有需要计算机的存储单元少,程序设计简单,原始系数矩阵在计算过程始终不变等优点,但存在收敛性级收敛速度问题。迭代法是解大型稀疏矩阵方程组(尤其是微分方程离散后得到的大型方程组)的重要方法。迭代法包括Jacobi法SOR法、SSOR法等多种方法。非线性是实际问题中经常用到出现的并在科学和工程中的低位也越来越重要,很多线性模型都是在一定条件下由非线性简化得到的。所以往往需要非线性的研究。非线性的数值解法有牛顿法,迭代收敛的加速解法,弦解法和抛物线法等。还有很多问题都可用常微分方程的定解来描述,主要有处置问题和边值问题。常微分方程是描述连续变化的数学语言,微分方程的求解是确定满足给定方程的可微函数y(x)。下面就数值分析中常用的一些方法和实例进行阐述。 二、数值分析中的一些方法 1、插值法 许多实际问题都用y=f(x)来表示,有的函数虽然有解析式,但由于计算复杂实用不方便,为了找一个既能反映函数的特性又便于计算的函数,我们利用插值法可以得到这个简单函数,插值法包括拉格朗日插值,牛顿插值,Hermite插值等多种方法。 拉格朗日插值是n次多项式插值,其成功地用构造插值基函数的方法解决了

数值分析第四版习题及答案

第四版 数值分析习题 第一章绪论 1.设x>0,x得相对误差为δ,求得误差、 2.设x得相对误差为2%,求得相对误差、 3.下列各数都就是经过四舍五入得到得近似数,即误差限不超过最后一位得半个单位,试指 出它们就是几位有效数字: 4.利用公式(3、3)求下列各近似值得误差限: 其中均为第3题所给得数、 5.计算球体积要使相对误差限为1%,问度量半径R时允许得相对误差限就是多少? 6.设按递推公式 ( n=1,2,…) 计算到、若取≈27、982(五位有效数字),试问计算将有多大误差? 7.求方程得两个根,使它至少具有四位有效数字(≈27、982)、 8.当N充分大时,怎样求? 9.正方形得边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g就是准确得,而对t得测量有±0、1秒得误差,证明当t增加时S得绝对误差增 加,而相对误差却减小、 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到得结果最好? 13.,求f(30)得值、若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果就是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c得误差分别为证明面积得误差满足 第二章插值法 1.根据(2、2)定义得范德蒙行列式,令 证明就是n次多项式,它得根就是,且 、 2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)得二次插值多项式、 3. 4., 研究用线性插值求cos x 近似值时得总误差界、

泛函分析在数值分析中的应用

泛函分析在数值分析中 的应用 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

泛函分析在数值分析中的应用 刘肖廷工程力学 一、数学概述 数学是一门从集合概念角度去研究物质世界数量关系与空间形式的基础的自 然学科。它从应用的角度可以分为基础数学与应用数学两大范畴,而基础数学 又可以划分为纯数学和基础应用数学两大范畴。其中,纯数学是建立在基础应 用数学基础上进行的单纯的数学研究。可见基础应用数学是数学学科的基础。 基础应用数学以代数学,几何学,分析学与拓扑学为基础研究物质世界的数 学关系与空间形式。分而言之,代数学主要是从集合概念角度去研究物质世界 的数量关系;几何学主要是从集合概念的角度去研究物质世界的空间形式;分 析学则主要研究集合间的映射关系及其运算;而拓扑学则包含点集拓扑,代数 拓扑,微分拓扑,辛拓普等几个分支,融合与代数学与几何学之中。 应用数学则是以基础数学的基本方法(代数,几何,分析)为基础,去探讨 物质世界不同类型的数量关系与空间形式的。它主要包括三角学,概率论,数 理统计,随机过程,积分变换,运筹学,微分方程,积分方程,模糊数学,数 值分析,数值代数,矩阵论,测度论,李群与李代数等领域。当然,我们同样 不能忽视应用数学对基础数学在理论上的支持与贡献。 由此可见,集合概念是数学的核心概念,代数、几何与分析是是数学的三大 基本方法,代数学、几何学、分析学与拓扑学是支撑数学大厦的四根最紧要的 支柱,此四者同时又是相互联系,不可分割的。这一点印证了一句名言,数学 的魅力正在于其中各个分支之间的相互联系。 泛函分析的基本内容和基本特征 (一)度量空间和赋范线性空间 1、度量空间是现代数学中一种基本的、重要的、最接近于欧几里得空间的抽 象空间。19 世纪末,德国数学家G.康托尔创立了集合论,为各种抽象空间的 建立奠定了基础。20 世纪初期,法国数学家M. R. 弗雷歇发现许多分析学的 成果从更抽象的观点看来,都涉及函数间的距离关系,从而抽象出度盘空间的 d?→。若对于任何x, 概念。定义:设x 为一个集合,一个映射: X X R y,z属于x,有(1) (正定性)(x,y)0 d=。当且仅当x y d≥,且(x,y)0 =; (2)

数值分析第四版习题及答案

第四版 数值分析习题 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试 指出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -= ( n=1,2,…) 计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字27.982). 8. 当N 充分大时,怎样求 211N dx x +∞ +? ? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的 绝对误差增加,而相对误差却减小. 11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y ≈(三位有效数

字),计算到10y 时误差有多大?这个计算过程稳定吗? 12. 计算6 1)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大? 若改用另一等价公式 ln(ln(x x =- 计算,求对数时误差有多大? 14. 试用消元法解方程组 { 101012121010; 2. x x x x +=+=假定只用三位数计算,问结果是否可靠? 15. 已知三角形面积 1sin ,2s ab c = 其中c 为弧度, 02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ???证明面积的误差s ?满足 .s a b c s a b c ????≤++ 第二章 插值法 1. 根据( 2.2)定义的范德蒙行列式,令 20000112111 2 1 ()(,,,,)11 n n n n n n n n n x x x V x V x x x x x x x x x x ----== 证明()n V x 是n 次多项式,它的根是01,,n x x - ,且 101101()(,,,)()()n n n n V x V x x x x x x x ---=-- . 2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式. 3. 给出f (x )=ln x 的数值表用线性插值及二次插值计算ln 0.54 的近似值.

数值计算实例

数值计算 插值 假设需要得到x 坐标每改变0.1 时的y 坐标, 用三次插值方法对机翼断面下缘轮廓线上的部分数据加细, 并作出插值函数的图形. 程序: clear, close all x=[0,3,5,7,9,11,12,13,14,15]; y=[0,1.2,1.7,2.0,2.1,2.0,1.8,1.2,1.0,1.6]; plot(x,y); xi=0:0.1:15; yi_cubic=interp1(x,y,xi,'cubic'); plot(x,y,'ro',xi,yi_cubic); pp=csape(x,y,'second'); v=ppval(pp,xi); v; T=(ppval(pp,0.1)-ppval(pp,0))/0.1; angle=atan(T)*180/pi; s=v(130:151); ss=min(s); 图形: 最小二乘拟合

已知空气温度与动力粘度关系如下,进行最小二乘拟合 0℃170.8×10^-4mPa.s 40℃190.4×10^-4mPa.s 74 ℃210.2×10^-4mPa.s 229 ℃263.8×10^-4mPa.s 334℃312.3×10^-4mPa.s 409℃341.3×10^-4mPa.s 481℃358.3×10^-4mPa.s 565℃375.0×10^-4mPa.s 638℃401.4×10^-4mPa.s 750 ℃426.3×10^-4mPa.s 810 ℃441.9×10^-4mPa.s 程序: >> x=[0 40 74 229 334 409 481 565 638 750 810]; >> y=[170.8 190.4 210.2 263.8 312.3 341.3 358.3 375.0 401.4 426.3 441.9]; >> p=polyfit(x,y,2) p = -0.0002 0.4652 172.5460 >> xi=[0:2:810]; >> yi=polyval(p,xi); >> plot(x,y,'ko-',xi,yi,'k--') 解线性方程组的直接法

应用数值分析(第四版)课后习题答案第2章

第二章习题解答 1. ( 1) R n Xn中的子集“上三角阵”和“正交矩阵”对矩阵乘法是封闭的。 (2)R n Xn中的子集“正交矩阵”,“非奇异的对称阵”和“单位上(下)三角阵”对矩阵求逆是 封闭的。 -1 设A是nXn的正交矩阵。证明A也是nXn的正交矩阵。 证明:⑴证明:A为上三角阵,B为上三角阵,A, B R n n a ij 0(i j ), b ij 0(i j) n C AB 则G j a ik b kj, C j 0(i j) k1 上三角阵对矩阵乘法封闭。 以下证明:A为正交矩阵,B为正交矩阵,A,B R n n AA T A T A E,BB T B T B E (AB)((AB)T) ABB T A T E,( AB)T(AB) B T A T AB E AB为正交矩阵,故正交矩阵对矩阵乘法封闭。 (2) A是nXn的正交矩阵 A A-1 =A-1A=E 故(A-1) -1 =A A-1(A1) -1= (A-1) -1A-1 =E 故A-1也是nXn 的正交矩阵。 设A是非奇异的对称阵,证A也是非奇异的对称阵。 A非奇异.A可逆且A-1非奇异 又A T=A .( A-1)T=( A T)-1=A-1 故A-1也是非奇异的对称阵 设 A 是单位上(下)三角阵。证A-1也是单位上(下)三角阵。 -1 证明:A是单位上三角阵,故|A|=1 ,.A可逆,即A存在,记为(b ij ) n Xn n 由 A A =E,则a j b jk ik (其中a ij 0 j >i 时,1) j1 故b nn=1, b ni=0 (n 丰 j) 类似可得,b ii =1 (j=1 …n) b jk=0 (k > j) 即A-1是单位上三角阵 综上所述可得。F t Xn中的子集“正交矩阵”,“非奇异的对称阵”和“单位上(下)三角阵”对矩阵求逆是封闭的。 2、试求齐次线行方程组Ax=0 的基础解 系。 1 21 41 A= 0 11 00

相关主题
文本预览
相关文档 最新文档