当前位置:文档之家› 精密射出成型

精密射出成型

精密射出成型
精密射出成型

精密射出成型乃是传统射出成型但是要求产品之高精密度。

一、射出成型各阶段之基本原理与物理现象:

﹝1﹞射出成型以模具的机械动作可分为锁模阶段、充填阶段、保压阶段、冷却阶段及开模顶出五个阶段,如图1-1所示;但以熔胶在模具的流动至开模为止,则可分为充填、保压及冷却三个过程。

图1-1模具机械动作阶段图

﹝2﹞在充填过程中时射出成形机的螺杆向前运动将熔胶经由浇口,流道压入模穴内。由于熔融树脂具有高度黏性,为,同时熔胶也必须维持有压力梯度。熔胶的

黏度随时间、剪变率而改变,因此在模腔内各点的压力随着时间位置在变化。在整个过程中,模穴壁上的压力随时间的变化大致如图1-2所示。

图1-2模穴压力在射出成周期的变化。﹝1﹞充填阶段﹝2﹞压料(packing) ﹝3﹞冷却

阶段

在充填阶段﹝1﹞压力主要是来克服熔胶在模穴内流动的阻力,当模穴充填完后由于熔胶的可压缩性以及其后冷却的收缩,为了补偿这个收缩效应,在保压阶段﹝2﹞保压压力将熔胶继续压挤入模穴直浇口凝固。尔后熔胶一直冷却至表面固化到某一程度成品才被顶出。充填阶段时,当熔胶流入模穴时与冷的腔壁接触,会形成薄的凝层,靠近壁上的熔胶温度会降低,在熔胶流动的峰前,由于喷流效应( Fountain Flow Effect ) 熔胶从中心往两模腔壁流动造成等速的熔胶流动,同时热熔胶从中心带至前缘及两边模腔壁。在熔峰后端之熔胶则是层状流动,在中心的流动速度最大,而凝固层边的流速为零。如图1-3所示。

图1-3充填过程中熔胶流动方向剖面流速分布图。熔胶流峰显示喷流效应(Fountain Flow

Effect)

同理靠近模穴处温度较低而肉厚中央熔胶仍然保持高温,有时由于黏度生热﹝Viscous Heating﹞的效应﹝与

射速有关﹞在较近模穴的地方会产生高温,这种现象在浇口尤其显着( 图1-4 )。由于熔胶是非牛顿流体,黏度呈现剪薄(Shear Thinning ﹞效应随着温度、剪切率而改变,因此在充填过程中,压力、速度、温度,以及扮随的黏度、剪切率在流动方向以及肉厚方向均有很大的变化,对于成型及成品品质会有很大的影响。在射出成型整个单一位置的压力和温度的变化图可对照压力、比容﹝密度﹞、温度曲线来分析。

图1-4充填过程肉厚方向温度分布图

图1-5射出压力路径与成品收缩

A-B 是塑胶在料管加温过程B-C 是熔胶充填过程C-D 是熔胶保压过程D-E 是过熔胶冷却过程

熔胶各点压力-温度变化的行径﹝A - B - C - D - E ﹞就决定了它在开模顶出位置的收缩率,由于各点收缩率不同会形成品的残留应力及翘曲变形。在这个过程熔胶保压压力对于顶出时E点的位置有大的影响性。总之,精密成型之品质乃是用材料之基本特性和成型加工之热机过程﹝Thermal-mechanical Process﹞来决定,而成型加工之热机过程又与成型条件、成品几何与模具设计有关。

二、射出成形机的基本结构

﹝1﹞射出单元

依射出装置来区分的成形机种类为柱塞式、螺杆式以及预备可塑化,目前射出机多为螺杆式的射出单元。

1、柱塞式的构造如图 1 - 6 所示:

图1-6柱塞式构造

其工作原理为:

从漏斗上落下来的成形材料,利用连结于射出柱塞的计量装置作往复运动而计量,计量终了,射出柱塞前进,材料通过加热缸内面与鱼雷构成狭小的通路,在此充分加热成为熔融状态,再从喷嘴部射出于模具内。鱼雷外围相对于中心轴成辐射状配置很多细槽,材料通过此部份时被均匀加热。

2、往复螺杆式射出装置如图1-1所示;而螺杆的基本形状如图1- 7所示:

图1-7螺杆的基本形状

其工作原理为:

来自漏斗的材料与自身的重量落下于加热缸内,由螺杆混练,沿其螺旋槽送到加热缸前端部,此时材料被外周的加热器加热,且有混练作用发生的磨擦热,使材料成为熔融状态。随熔融材料的贮存于加热缸前端部,由于材料的反作用力使螺杆后退,利用背压并配合限制开关限定其后退量,在一定位置停止螺杆的旋转,即完成计量。模内的材料冷却固化后,顶出成型品,开关闭模具,进入射出工程,此时藉射出装置后部的油压缸,对螺杆施加射出力,螺杆成为射出柱塞,在高压下,加热缸前端部的材料从喷嘴部往模内射出。

优点及缺点分别说明如下:

a. 优点:

?藉螺杆的混练作用,材料内部也发热,均匀可塑化,可塑化能力大。

?由于加热缸的压力损失,可使用较低的射出压力,亦能成型

?加热缸内的材料滞留处少,热安定性差的材料也很少因滞留而分解。

?材料更换、换色操作容易。

?有材料可用干式着色法直接上色。

b. 缺点:

?在射出时,熔融材料易顺着螺旋槽而移往加热缸后部,造成材料逆流。

3、预备可塑化式射出装置预备可塑化式装置是将预塑加热缸﹝将成形材料加热熔融﹞和射出加热缸﹝将熔融材料射出﹞相结合,依照加热缸之形式大概分为下列两种:

a. 柱塞预备可塑化式(图 1 - 8 )塑料在预塑加热缸中加热,使塑料达到可塑化熔融,再由柱塞推送至射出加热缸中,此时送入塑料压力使射出柱塞后退,调节此后退量以决定一次的射出量,在达到所定之射出量时,柱塞再推进将熔融塑料射入模穴内成形。

图1-8柱塞预备可塑化式

b. 螺杆预备可塑化式(图 1 - 9 )

预塑加热缸为螺杆式,螺杆旋转将塑料送入预塑加热缸中热成熔融状态,再送至射出加热缸中,此时也藉射出柱塞之后退量设定射出量,计量完成则柱塞再推进将熔融塑料射入模穴内成形。

图1-9螺杆预备可塑化式

﹝2﹞锁模单元

合模装置除了用以开闭模之外,最主要是用以对抗射出于模内之熔融材料的高压力,以充分的强力闭锁。常见的合模装置有直压式、肘节式及肘节直压式三种。

1. 直压式锁模装置如图1-10:直压式合模装置又可分为升压滑块式、辅助缸式及增压缸式。

图1-10直压式锁模装置图

2. 肘节式锁模装置如图1-11:

肘节式合模装置是以肘节接头将油压缸或电动机产生的力放大,使合模力增大。在肘节机构中,力的放大率与速度因连杆位置而大有变化,在闭模的最初阶段,力的放大率小而速度快,接近闭模行程终了时,力的放大率大而速度慢。在肘节连接杆将近完全伸直前产生很大的锁模力。依其构造不同可分为单肘节式如图1-12、

双肘节式如图1-13。

图1-11肘节式锁模装置

图1-12单肘节式

图1-13双肘节式附注

3. 肘节直压式锁模装置肘节直压式锁模装置是组合肘节机构与直压式锁模缸装置,外观为肘节式的一种,但锁模力的发生接近于直压式。其动作是肘节机构使模具的开闭高速化,而直压式锁模缸产生锁模力,容易调整模厚及锁模力。如图 1 - 1 4 所示。

﹝3﹞控制及操作单元

目前射出成型机的控制及操作多分手动操作及电脑控制操作两部份,以Battenfeld 为例,分别如图1-15及图1-16所示。

图1-15射出成型机之手动操作图1-16射出成型机之计算机控制操作三、实验设备

( 1 ) 射出成型机( 德国Battenfeld 双料共射出成型机)

( 2 ) 周边设备

1 . 模温控制机

2 . 烘料机

四、实验步骤:

( 1 ) 模具安装在射出成型机

1 . 模具的安装与固定

2 . 关模行程的设定

( 2 ) 原料的添加与烘干

( 3 ) 射出成型机操作面板的认识与操作

1 . 手动面板部份:

手动操作面板说明

手动操作面板

( 1 ) 紧急停止开关( 8 ) 泵浦停止开关( 2 ) 泵浦起动开关( 9 ) 加热器总开关( 3 ) 泵浦启动指示灯( 1 0 ) 电热指示灯

( 4 ) 开关模开关( 1 1 ) 顶出缩回开关( 5 ) 射座前进后退开关( 1 2 ) 射出进料开关( 6 ) 手动全( 半) 自动切换开关( 1 3 ) 吹气开关

2 . 电脑控制面板部份:

a . 控制板的说明

控制板

( 1 ) 本文( 1 1 ) 萤幕软体键目录

( 2 ) 设定值( 1 2 ) E L 萤幕

( 3 ) 实际值( 1 3 ) 数字键入键

( 4 ) 功能代号( 1 4 ) 游标向上

( 5 ) 功能符号( 1 5 ) 游标向下

( 6 ) 参数代号( 1 6 ) 功能键

( 7 ) 参数表( 1 7 ) 键盘问题显示

( 8 ) 游标框( 1 8 ) 钥匙开关

( 9 ) 动作游标显示( 1 9 ) 输入键

( 1 0 ) 萤幕软体键( 2 0 ) 记忆盒连接座

b . 各项参数的设定

?开关模的设定( F 0 1 ) * 关模之设定基本上与开模一

样;反向而已,其功能键为 F 0 8 射座前进与后退( F 0 2 ) * 射座后退的设定与前进反向;功能键为 F 0 7 。?射出参数的设定0 3 3 射出速度Injection speed 0 - 100% (1 - 15) 0 3 2 射出

行程Injection stroke (mm)

?保压切换点的设定041Start Follow-up pressure stroke dependent Program follow-up pressure time dependent Program follow-up pressure start hydraulic pressure

?保压压力的设定051 Follow-up pressure interpolation 055 Cooling time

?进料过程的设定

061 Back pressure program manual

c . 设定状况显示

( 1 ) 机器型式( 8 ) 螺杆行程实际值

( 2 ) 目前本文所在列( 9 ) 进料时螺杆实际转速

( 3 ) 射出机整体外观图( 1 0 ) 实际油温显示

( 4 ) 现在时间( 1 1 ) 实际料温显示

( 5 ) 顶针行程实际值( 1 2 ) 模具及生产资料( 6 ) 动模板行程实际值( 1 3 ) 模具温度

( 7 ) 射座行程实际值

( 4 ) 射出成型机成型前的准备与操作

1 . 起动电源

2 . 设定料温

3 . 冷却循环

4 . 清除料筒旧料

五、讨论事项:

1 . 模具安装的注意事项

2 . 射出成型机的起动与成型设定的步骤

3 . 成型操作的安全事项

4 . 成型前各项检查

最近的塑胶射出成型技术

一、前言 射出成型系統包括了射出成型機、模具、成型條件、成型方法、成型品設計等重要因素,成型品的品質、成本即受這些因素之影響,而各項因素又會互相干擾。 射出成型機在全電動化、精密控制、專用機台等方面的進步很顯著,尤其是全電動射出成型機的訂單已超高油壓式射出成型機,其優點在於精密控制性以及節約能源方面。 電動射出機以小型機為主,但最近已有鎖模力超過1000噸的大型機了。各公司並開發DVD、連接器、微齒輪等精密成型品的專用成型機。此外模具也在精密化、熱澆道等方面進步顯著。以下因篇幅所限,將以最近的成型法為中心,介紹其代表性例子。 二、超高速射出成型 模穴充填壓力要進一步均一化,可採用多種方法,其一為提高射出速度。對薄肉或複雜形狀的模穴,為將熔融塑料充填至最末端,各公司均開發出超高速射出成型機。可成型厚度0.5mm以下的薄製品,日本FANUC公司利用線性馬達,使射出速度達2000mm/s,加速度13G以上,用此超高速成型機製造厚度0.13mm 的喇叭筒。日精樹脂工業公司則以油壓機開發出射出速度2000mm/s的機台。 熔融塑料是非牛頓性流體,其粘度會隨剪切速度而下降,塑料更因射出成型時的剪切發熱而流動。(圖1)為60*290*2mm的模穴在充填後立即試算出來的料門至145mm位置的塑料溫度分布圖。射出速度愈大,模具壁面相接之固化層部分發生更多剪切發熱,使其溫度上升而阻止固化層的形成,促進塑料流動。射出成型時在最易冷卻的部分,對與固化層相接部位施以最大剪切速度,使該部分粘度下降,且引發自行發熱而保持流動,這是巧妙應用熔融塑料特性的成型法。

三、低壓射出成型 成型品單位投影面積鎖模力為0.3噸/cm2左右者,為一般的射出成型,低壓射出成型的鎖模力則多在其一半以下。代表性的成型法為射出壓縮成型法(圖2),不但模內壓力均一,塑料可均一地流動至模穴末端(圖3),流動長度也可增至2倍(圖4)。0.6mm厚的光碟、各種電子儀器的薄肉外殼等均可用此法成型。射出壓力可精密控制的低壓成型,已被各種射出成型機所採用。

射出成型工艺

射出成型工艺 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

射出成型工艺 图1 塑胶射出流程 注塑过程中的关键步骤: 1. 塑化计量 1)塑化 达到组分均匀、密度均匀、黏度均匀、温度分布均匀。 2)计量 保证将塑化好的熔体定温、定压、定量射出。 3)塑化效果和能力 柱塞式射出机、螺杆式射出机(普通螺杆塑化、动力熔融)。其中螺杆式射出机的塑化能力强于柱塞式射出机。 2.射出充模 1)流动充模 射出过程中注塑压力和速度的变化。 射出压力与熔体温度、熔体流速的关系。 射出压力与熔体充模特性(充模流动形式和充模速度)的关系。 2)保压补缩 保证将塑化好的熔体定温、定压、定量射出。 保压力、保压时间和模腔压力之间的关系会影响制件的密度、收缩及表面缺陷。

射出成形加工考虑要点 1.模具成形温度 模温过低:熔体流动性差,制件上产生较 大应力、熔接痕,表面质量差。 模温过高:冷却时间、收缩率、翘曲变形 均增大。 模温影响射出的成型性、成型效率、制品 品质。尤其对流动性、尺寸安定性、表面光泽 及内应力有绝对影响. 2. 塑料温度 若低于黏流温度:不利于塑化,熔料黏度 大,成型困难,易出现熔接痕,表面无光泽或 缺料。 若高于热分解温度:引起热降解,导致之间物理和力学性能变差。 3. 螺杆回转速度 当进料时,螺杆回转并在背压作用下向后退,其回转速度将主要影响螺杆对物料的塑化能力,此外对料温也会产生影响。 螺杆转速达到一定数值后,综合塑化效果下降。 4.背压设定 与螺杆转速一起影响螺杆对物料的塑化效果,要综合考虑背压力和螺杆转速的设定。 背压大而螺杆转速小时会发生逆流。 背压过小会使空气进入螺杆前端。 5.射出成形压力 若射出压力过小:模腔压力不足,熔体难以充满模腔。 若射出压力过大:涨模、溢料,压力波动 较大,生产难于稳定控制,制件应力增大。 射出压力确定原则:根据条件,射出压力 尽量高,有助于提高充模速度、熔接痕强度, 防止缺料,使收缩率减小;但同时要注意避免 喷射流动。 6. 射出成形速度 若射出速度过小:制件表层冷却 快,易发生缺料、分层和熔接痕 若射出速度过高:维持熔体温 度,减小熔体黏度,制件比较密实均 匀容易产生喷射,在排气不良时会使 制件灼伤或热降解 同时应当注意要改变聚合物黏度 时应根据聚合物黏度对温度敏感性和 对剪切速率敏感性两个因素确定注射温度和注射速度。 6.保压力和保压时间图2. 螺杆转速与塑化效果的关系 图4. 注嘴结构 图3. 背压油缸结构

什么是精密制造技术(2).doc

2.国内外现状 工业发达国家的近净成形技术在近20多年来有很大发展,已经成为机械制造业主要的制造技术,在铸造、锻压、焊接、热处理和表面改性方面都已占据了总产量的主要地位。在我国近净成形技术在整个成形生产中比重还比较低,成形件精度总体平均要比国外低1~2个等级,一些先进的近净成形技术在我国只有少数企业采用,一些复杂难成形件我国还不能生产,部分先进成形设备、机械手和机器人、很大一部分高水平自动化生产线建线技术,我国还不能全部立足国内,因而总体水平上要比先进国家落后15~25年。每一个专业方向上,国外近20年来都出现了一批新技术,有一些我们还没有掌握,有一些虽然做了试验研究,还没有用于生产。

过去人们往往侧重于单项技术的发展和应用研究,今天市场竞争激烈,人们为了更好更经济成形零部件,越来越多地注意到多项先进技术的综合运用,可以获得更好的效果。例如利用材料超塑特性进行焊接在航空件成形中的应用,利用低合金成份的非调质钢通过控锻控冷可以取代调质热处理,把铸造和锻压结合起来的半固态成形,粉未烧结的坯料再经过锻造获更好性能近净形零件,都是国外发展较快应用效果好的技术。我国专家把成形辊锻和精锻相结合,用于汽车前梁生产比国外通用技术建设生产线,一条线就可节约上亿投资。 传统的成形技术是建立在经验和实验数据基础上的技术,制定一个新零件成形工艺在生产时还要进行大量修改调试。计算机和计算技术发展,特别是非线性有限元的发展,使得难度很大的成形过程有可能进行模拟分析和数值计算。发达国家在这方面已

经开展了大量研究工作,并形成一些商业软件用于成形工艺分析。我国在这方面已经进行了大量研究,一些单位也研制了一些软件,但由于投入不足,形成商业软件的很少。 近净成形与近无缺陷成形技术通常用于大批量生产,要求企业建设不同技术水平的生产线,需要有相应的机械手和机器人。由于工作的条件、环境比较恶劣,对这些机器人的需要数量相对较少、品种较多,所以需要由本专业人员参与研制。当今,人们对产品需求逐步提出了一些个性化要求,所以在建设自动生产线时,提出了建设柔性生产线的要求,国外在近净成形生产方面已经出现了少量柔性生产线,我国必须注意这一动向,应该根据用户需求和投资强度,建设不同自动化程度和满足柔性化需求的生产线。 国外企业为了保证产品质量,一方面加强质量管理,做好生

下料成型通用工艺规范汇总

T—0908--01 剪板下料通用工艺规范 编制/日期: 审核/日期: 批准/日期:

剪板机下料通用工艺规范 1、总则 本标准根据结构件厂现有的剪床,规定了剪板机下料应遵守的工艺规范,适用于在剪板机上下料的金属材料。剪切的材料厚度基本尺寸为0.5~13mm(不同设备剪切的板厚不同),料宽最大为2500mm。 2 引用标准 GB/T 16743-1997 冲裁间隙 JB/T 9168.1-1998 切削加工通用工艺守则下料 3 下料前的准备 3.1 熟悉图纸和有关工艺要求,充分了解所加工的零件的几何形状、尺寸要求,及材质、规格、数量等。 3.2 核对材质、规格与派工单要求是否相符。材料代用时是否有代用手续。 3.3 查看材料外观质量(疤痕、夹层、变形、锈蚀等)是否符合质量要求。 3.4 为了降低消耗,提高材料利用率,要合理套裁下料。 3.5 厚板件有材质纤维方向要求的应严格按工序卡片要求执行。 3.6 下料前要按尺寸要求调准定尺挡板,并保证工作可靠,下料时材料一定靠实挡板。 3.7 熟悉所用的设备、工具的使用性能,严格遵守安全操作规程和设备维护保养规则。 3.8 操作人员应按有关文件的规定,认真做好现场管理工作。对工件和工具应备有相应的工位器具,整齐地放置在指定地点,防止碰损、锈蚀。 3.9 操作前,操作人员应准备好作业必备的工具、量具、样板,并仔细检查、调试所用的设备、仪表、量检具、样板,使其处于良好的状态。剪板机各油孔加油。 3.10 下料好的物料应标识图号与派工单一同移工。 4 剪板下料 4.1 剪床刀片必须锋利及紧固牢靠,并按板料厚度调整刀片间隙。 4.2 钢板剪切时,剪刃间隙符合JB/T 9168.1标准要求,见表1。 表1:钢板剪切时剪刃间隙(单位:mm) 4.3 先用钢笔尺量出刀口与挡料板两断之间的距离,反复测量数次,然后先试剪一块小料核对尺寸正确与否,如尺寸公差在规定范围内,即可进行入料剪切,如不符合公差要求,应重新调整定位距离,直到符合规定要求为止。然后进行纵挡板调正,使纵与横板或刀口成90°并紧牢。 4.4 剪切最后剩下的料头必须保证剪床的压料板能压牢。 4.5 下料时应先将不规则的端头切掉,切最后剩下的料头必须保证剪床的压料板能压牢。 4.6 切口端面不得有撕裂、裂纹、棱边,去除毛刺。 4.7 剪床上的剪切

射出成型简介

射出成型简介 1 射出成形之基本知识。 1.1 射出成形的特征以及组成。 射出成形是将溶融的成形材料以高压的方式填充到封闭的模具内,射出成形的模腔内承受的压力约400KGF/CM2,大约为400个大气压,以这样高的压力来制作产品是它的特征,这是它的优点也是它的缺点。也就是说模具必须制作得相当坚固,因而模具价格也相当昂贵,因此必须大量生产以便与高价的模具费用互相扣抵,例如每批之生产量必须10000PCS以上才合理,换句话说;射出成形的工作必须以大量生产才行。 成型过程所说几个步骤: 1.1.1关门 安全门上才开始成型。 1.1.2 锁模 将移动侧的移动板前进,使得模具关闭,模具关闭以后确实地把模具锁紧。1.1.3 射出(包括保压) 螺杆快速地往前推进,把熔融之成形材料注入模腔内填充成形,填充之后压力要必须继续保持,这个动作特别取名为“保压”。在刚充填时模具承受的压力,一般叫做射出压或者叫做“一次压”。 1.1.4 冷却(以及下个动作的可塑化工程) 模腔内之成形材料等待冷却凝固之过程叫“冷却”。在这时候射出装置也准备下次工作,这个过程叫做“可塑化过程”。放在料斗里的成形材料,流入加热的料管内加热,是依据螺杆旋转把原料变成熔融状态,螺杆像拨

取螺丝的原理一样,一面转一面后退,螺杆前端会储存熔融之成形材料,螺杆旋转时,抵抗螺杆向后退的压力称之为螺杆的“背压”。 1.1.5 打开模具 将移动侧的移动板向后退,模具跟着打开。 1.1.6 打开安全门 安全门打开,这时成形机处于待机中之状能。 1.1.7 取件 将成品取出,然后检视确认模具内未残留任何对象再关门.以上整个成形作业叫做一个CYCLE成型。 成品是由模具的形状成形出来。模具是由母模及公模块合成,公母模模仁之间留有空隙,材料在此流入压缩形成产品。成型材料要流入公母模之前的通路有主流道(SPRUE)流道(RUNNER)闸门(GATE)等。1.2 射出成形机 射出成形机以较大项目来区分,可分为两项,锁模装置和射出装置。1.2.2 锁模装置 将模具关闭不被打开,成形材料在模腔内冷却凝固后,模具才打开然后取出成品等等动作的设备装置之锁模装置。 1.2.3 将成形材料射出,填充到模腔内的设备装置称之射出装置。此两个装置组合而成为射出成形机。 下面继续说明射出成形机的能力,射出成形机之能力基本上是下述3项规定来区分。 A 锁模力

先进材料成型技术及理论

华中科技大学博士研究生入学考试 《先进材料成形技术与理论》考试大纲 一、《先进材料成形技术及理论》课程概述 编号:MB11001 学时数:40 学分:2.5 教学方式:讲课30、研讨6、实验参观4 二、教学目的与要求: 材料的种类繁多,其加工方法各异,近年来随同科学技术的发展,新材料、材料加工新技术不断出现。本课程将概述材料的分类及其加工方法的选择;重点介绍液态金属精密成形、金属材料塑性精确成形及金属连接成形等研究与应用领域的新技术、新理论;阐述材料加工中的共性与一体化技术。本课程作为材料加工工程专业的学位课,将使研究生对材料加工的新技术与新理论有个全面的了解,引导研究生在大材料学科领域进行思考与分析,为从事材料加工工程技术的研究与发展奠定基础。 三、课程内容: 第一章材料的分类及其加工方法概述 1.1材料的分类及加工方法概述 1.2材料加工方法的选择(不同材料)及不同加工方法的精度比较(同一种材料) 1.3材料加工中的共性(与一体化)技术 1.4材料加工技术的发展趋势 第二章液态金属精密成形理论及应用 2.1 材料液态成形的范畴及概述 2.2 消失模精密铸造原理及应用(原理、关键技术、应用实例、缺陷与防治) 2.3 Corsworth Process新技术(精密砂型铸造:锆英(砂)树脂砂型、电磁浇注、热法旧砂再生) 2.4 半固态铸造成形原理与技术(流变铸造、触变成形、注射成形) 2.5 铝、镁合金的精确成形技术(金属型铸造、压铸、反重力精密铸造、精密熔模铸造等) 2.6 特殊凝固技术(快速凝固、定向凝固、振动凝固) 2.7 金属零件的数字化铸造(铸件三维造型、工艺模拟及优化、样品铸件快速铸造、工业化生产及 其设计) 2.8 高密度粘土砂紧实机理及其成形技术(高压造型、气冲造型、静压造型) 第三章金属材料塑性精密成形工艺及理论 3.1 金属塑性成形种类与概述 3.2金属材料的超塑性及超塑成形(概念、条件、成形工艺) 3.3 复杂零件精密模锻及复杂管件的精密成形(精密模锻、复杂管件成形) 3.4 板料精密成形(精密冲裁、液压胀形、其它板料精密成型) 3.5 板料数字化成形(点(锤)渐进成形、线渐进(快速)成形、无模(面、液压缸作顶模)成形)

材料成型工艺总结

红字不要求,蓝字是补充!不排除错别字啊! 2.1 液态金属充型过程的水力学特性及流动情况 浇注系统:浇口杯,直浇道,横浇道,内浇道(各组成部份的作用)P11 浇口杯:①承载来自浇包的金属液,防止金属液飞溅和溢出,便于浇注; ②减轻液流对型腔的冲击; ③分离熔渣和气泡; ④增加充型压力头。 影响浇口杯内水平蜗旋的主要原因:①浇口杯内液面的深度;②浇注高度;③浇注方向; ④浇口杯的结构。 液面浅和浇注高度大时,偏离直浇道中心的水平流速较高,因而易出现水平旋涡(避免)。垂直旋涡能促使熔渣和气泡浮至液面,对挡渣和分离冲入的气泡有利。 直浇道:将来自浇口杯的液流引入横浇道、内浇道或直接进入型腔。 横浇道:连接直浇道和内浇道的中间通道,功用:①稳流②流量分配③挡渣 内浇道:浇注系统中把液体金属引入型腔。功用:①控制充型速度和方向②分配液态金属③调节铸件各部位的温度分布和凝固次序④对铸件有一定的补缩作用。 2.2 浇注系统的设计P19 按截面积分:收缩式浇注式(定义,特征),扩张式浇注系统(定义,特征), 收缩式浇注系统 定义:直浇道、横浇道和内浇道的横截面积依次缩小的浇注系统。 特征:液态金属在这种浇注系统中流动时,由于浇道截面积越来越小,流动速度越来越大,从内浇道进入型腔的液流,流动速度很大,对型壁产生冲击,易引起喷溅和剧烈氧化。但此种浇注系统在充型的最初阶段直至整个充型过程,都保持充满状态,金属液中的熔渣易于上浮到横浇道上部,避免进入型腔。此外,这种浇注系统所占体积较小,减少了合金的消耗。这种浇注系统主要用于不易氧化的铸铁件。 扩张式浇注系统 定义:直浇道、横浇道和内浇道截面积依次扩大的浇注系统。 特征:金属液在横浇道和内浇道中流速较慢,在进入型腔时流速平稳。不足之处是横浇道在充型初期不易充满,在开始段浮渣作用较差。易氧化的铝合金和镁合金要求液流平稳,大、中型铸件一般都采用扩张式浇注系统。 液态金属导入位置:顶注式(定义,特征),底注式(定义,特征), 顶注式 定义:以浇注位置为基准,金属液从铸件型腔顶部引入的浇注系统。 优点:①液态金属从铸型型腔顶部引入,在浇注和凝固过程中,铸件上部的温度高于下部,有利于铸件自下而上顺序凝固,能够有效地发挥顶部冒口的补缩作用。 ②液流流量大,充型时间短,充型能力强。 ③造型工艺简单,模具制造方便,浇注系统和冒口消耗金属少,浇注系统切割清理容易。 缺点:液体金属进入型腔后,从高处落下,对铸型冲击大,容易导致液态金属的飞溅、氧化和卷入气体,形成氧化夹渣和气孔缺陷。 底注式 定义:内浇道设在铸件底部的浇注系统。 优点:①合金液从下部充填型腔,流动平稳。 ②无论浇口比多大,横浇道基本处于充满状态,有利于挡渣。型腔内的气体能

精密射出成型技术

精密射出成型技術 射出成形近況 塑膠射出成型製品因具有優異的特性﹐使用量正逐年增加﹒根據工業局的統計資料顯示﹐國內塑膠加工業廠家數目近一萬家﹐從業合占製造業總人數的11%﹐產值約占總產值的%﹒但員工人數在50人以下的廠家﹐竟占了85%﹐可見塑膠射出成型加工業﹐屬中小企業的占絕大多數﹒ 成形追求的精密射出技術 如何提升技術﹑創造產品的附加價值﹐乃成為成形界首要努力的目標﹒精密射出成型技術也因此逐漸受到重視﹒ 何謂精密射出成型﹖顧名思義﹐就是以較高的射出成型技術﹐製造出精度高的塑膠製品﹒談到精密射出成型﹐應從二個層面來思考﹒一種是在設計開發階段﹐就先擬定一套完整的生產技術﹐掌握這些生產因素﹐使做出來的成品精度﹐控制在預測的精度範圍內﹒這種技術層次較高﹐似屬於研究開發的技術﹒ 另外一種是在生產前﹐尚無法確保掌握在生產過程中﹐製造出來的成品精度到底是多少﹖只知道它大概在某個程度範圍內﹒有時﹐甚至無法預知製品的精度到底是偏上限﹐還是下限﹖但是在試做過程中﹐可以根據投入的生產因素及得到的製品精度範圍﹐再來調整﹑修正投入的生產條件﹐使製品精度更能符合需求﹐並且更希望在往後的每一次量產中﹐都能得到品質穩定性﹑再現性很高的產品﹒ 以上兩種方式﹐應該都市目前成型界所追求的精密射出成型技術﹒ 何為“精密“射出成型 目前所談到產品的精度﹐除了尺寸﹑公差精度外﹐應包括製品表面精度(縮水﹑凹痕﹑接合線﹑光澤度﹑平坦度……等)﹒ 就塑膠製品尺寸縮水來說﹐層次較高的精密射出成型技術﹐應該在模具設計之初﹐就能根據製品大小﹑形狀﹑塑膠原料﹑澆口大小﹑流動方向﹐決定一個很精確的縮水律﹐而模具

尺寸即依此縮水律來設計﹑加工﹒在射出成型時﹐再依環境﹑原料的處理﹐決定最佳的成型條件﹐使做出來的製品尺寸經過縮水後﹐正好符合成品圖上所要求尺寸精度﹒層次較低的精密射出成型技術﹐就是在模具設計時無法精確的決定縮水率等﹐預知射出後的成品品質﹒只能在以後生產時﹐根據做出來的製品品質的變化定型的後收縮率情況﹐修正生產因素(包括料的乾燥﹑射出條件的調整……等)﹐使製品的最終品質接近成品圖的要求﹐並控制在以後每次生產都能達到這個精度﹒ 因此精密射出成型技術﹐就是(1)無人化全自動(2)成型週期一定的生產技術﹒本文僅就目前成型界較迫切需要改進的後半段加以探討﹐我想應有事半功倍之效﹒ 成形優先改善專案 目前﹐許多成行廠認為要達到精密射出成型﹐最迫切需要優先改善的是﹕精密的模具與高精度自動化射出成型機﹒其實這二個因素﹐只是精密射出成型技術中很小的一環﹐還有許多很重要的部分被我們忽略了﹒ 過分的強調模具及成型機的重要性﹐反而使我們不去重視其它更重要﹑且更應該多注意的部分﹒ 精密成型技術是一種連續性﹑相互關聯的﹑許多技術的組合﹐它代表企業整體的技術能力與水準﹑不良率的高低﹐是整個企業能力的總表現﹐並非某個單位﹑某個人的能力表現﹒品質差﹑不良率的產生﹐也不是某個員工的不對﹐因為沒有員工願意作出不良品﹒ 精密射出宜考慮因素 既然精密射出成型技術﹐是許多相互關聯技術的組合﹐所以我們應該從塑膠原料的品質﹑處理方法﹑加工環境﹑機台性能﹑模具品質﹑射出成型條件的設定等一連貫因素來考慮﹒而這些因素有﹕ (1)季節﹕春﹑夏﹑秋﹑冬氣候的變化﹐冷卻水溫度的差異﹒ (2)時間﹕白天﹑晚上﹑早上﹑週一﹑週六﹑周日的差異﹒ (3)人員﹕人員熟練度﹑情緒﹑疲勞﹑注意力﹑個性﹑習性……等﹒

塑料成型技术

塑料成型技术数据 一、前言 在射出成形过程中,从试模到大量生产的这一段期间内,因成形不良,致使成品产生暇疵,而造成不良品或报废品的因素有很多,其中主要原因大致可归纳为以下数点: 1.成形作业过程中品管人员或作业人员疏忽。 2.成形材料使用不当。 3.射出成形机能力不足。 4.成形作业条件设定不当。 5.模具设计上制作不完备。 6.成形品设计上下不完善。 形成成形不良之原因,除上述第一项纯属品管人员或作业人员之疏忽,而造成之错失外,其余若详加分析的话则可得知实际上造成成品不良的原因,并不单纯,因为在上述诸项原因中有的不良原因之形成,并非是单独由某一种原因所产生的,而是有许多项状况之消除,常有赖于实际作业者多年的经验与直觉的判断。

二、成形品不良状况 1.充填不足(SHORT SHOT) 2.毛边(FLASH) 3.缩水(SINK MARK) 4.流痕(FLOW MARK) 5.喷痕(JETT ING) 6.银条(SILVER STREAKS) 7.表面模糊状(DULLSURFACE) 8.接合线(WELD LINE) 9.气泡(BUBLE) 10.黑条与烧焦(BLACK STREAKS) 11.裂痕与破裂(CRAGING CRACKING)) 12.变形(WARPAGE) 13.顶白(白化、挽白) 14.颤纹(CHATTER MARK) 15.表面剥离(层裂) 三、形成不良的原因 1.充填不足(SHORT SHOT) 又称为缺料、短料、未饱料……,系指成形时所射出的熔融塑料【註1】未能完全充满整个模窝【註2】而言,发生充填不足的原因大都是成形条件设定不当,成品壁厚设计太薄,模具设计制作不完备成形机本身容量不足。 2.毛边(FLASH) 又称之为溢料、毛头、过饱料……,系指熔融树脂流入分模面(P.L 面) 里,或渗入模仁【註3】之嵌合处内,致使成品产生不应有的料。形成毛边的原因,除成形机的能力不足外,大致上可以说是模具的问题比较多。 【註1】塑膠原料在料管中加溫至最宜成形的溫度時融解成流體的現象,稱之為熔融樹脂。 【註2】雄(公) 模與雌(母) 模,合模後所留下之間隙亦是將來成形後,所得之成品形狀,此一空間稱之為模窩。 【註3】一組模具之組成很少是由一塊鋼材一體加工成形的,大部份是由許多種鋼材及配件嵌合而成的,除了本體以外之配件,稱之為模仁或仁仔或CORE 配件模塊等。

精密注塑成型PVT控制技术

精密注塑成型PVT控制技术新浪微博QQ空间人人网开心网更多 图1 聚合物典型PVT特性曲线

产效率。综观当今注塑机市场,在保证制品质量的前提下,如何利用成熟的自动化设备,提高产品精度,降低废品、次品率及节约原材料、能源以降低成本,增强市场竞争,己引起国内外注塑机厂商的高度重视,为此采用先进的控制技术和管理手段已成为必然的趋势。 传统注塑机中的过程控制方法大多采用注射压力、保压压力、合模力、注射速度及注射量等参数作为控制量,称为机器变量。这些变量由操作员根据经验和试模对注塑机预先输入控制参数,通常主要采用时间来控制每个阶段的开始和结束。这些变量完全由注塑机本身决定,而与材料的特性关系不大。参数控制作为控制系统的主要功能,需要对连续变化的过程参数,如温度、压力、位置和速度等进行精确的闭环控制。由于注射过程主要参数都具有相当显著的非线性时变特性,而其动态特性又会随着工艺条件的更改而变化,所以这种对传统的固定参数进行控制的策略很难有效地保证不同操作条件下的控制性能。 随着对精密成型研究的深入,有人提出了采用物料的参数作为变量,例如熔体压力、熔体温度和熔体冷却速率等,这些变量称为工艺变量。大量研究表明,工艺变量与传统的机器变量相比,具有更高的控制精度。 图2 注塑成型过程中型腔温度、压力曲线 聚合物材料从粒料(或粉料)经过塑化、填充、压缩、保压以及冷却定型成为制品,这是注塑成型的一般过程。但是由于材料和模具的多样性,需要采用不同的工艺参数,如果参数选择不当,无论填充过多或是填充不足,都会影响最终制品的质量,甚至造成废品。因此,确保每次成型的制品保持相同的尺寸、重量及收缩率,是注塑成型控制所要达到的目标。 PVT控制技术 聚合物的PVT特性,即压力(P)、比容(V)和温度(T)之间的相互关系,是聚合物材料的本质属性。它们属于工艺参数,在聚合物的生产、加工以及应用等方面有着十分重

材料成形工艺期末复习总结

7.简述铸造成型的实质及优缺点。 答:铸造成型的实质是:利用金属的流动性,逐步冷却凝固成型的工艺过程。优点:1.工艺灵活生大,2.成本较低,3.可以铸出外形复杂的毛坯 缺点:1.组织性能差,2机械性能较低,3.难以精确控制,铸件质量不够稳定4.劳动条件太差,劳动强度太大。 8.合金流动性取决于哪些因素?合金流动性不好对铸件品质有何影响? 答:合金流动性取决于 1.合金的化学成分 2.浇注温度 3.浇注压力 4.铸型的导热能力5.铸型的阻力 合金流动性不好:产生浇不到、冷隔等缺陷,也是引起铸件气孔、夹渣和缩孔缺陷的间接原因。 9.何谓合金的收缩,影响合金收缩的因素有哪些? 答:合金的收缩:合金在浇注、凝固直至冷却到室温的过程中体积或缩减的现象 影响因素:1.化学成分 2 浇注温度 3.铸件的结构与铸型条件 11.怎样区别铸件裂纹的性质?用什么措施防止裂纹? 答:裂纹可以分为热裂纹和冷裂纹。 热裂纹的特征是:裂纹短、缝隙宽,形状曲折,裂纹内呈氧化色。 防止方法:选择凝固温度范围小,热裂纹倾向小的合金和改善铸件结构,提高型砂的退让。 冷裂纹的特征是:裂纹细小,呈现连续直线状,裂缝内有金属光泽或轻微氧化色。 防止方法:减少铸件内应力和降低合金脆性,设置防裂肋 13.灰铸铁最适合铸造什么样的铸件?举出十种你所知道的铸铁名称及它们为什么不用别的材料的原因。 答:发动机缸体,缸盖,刹车盘,机床支架,阀门,法兰,飞轮,机床,机座,主轴箱 原因是灰铸铁的性能:[组织]:可看成是碳钢的基体加片状石墨。按基体组织的不同灰铸铁分为三类:铁素体基体灰铸铁;铁素体一珠光体基体灰铸铁;珠光体基体灰铸铁。 [力学性能]:灰铸铁的力学性能与基体的组织和石墨的形态有关。灰铸铁中的片状石墨对基体的割裂严重,在石墨尖角处易造成应力集中,使灰铸铁的抗拉强度、塑性和韧性远低于钢,但抗压强度与钢相当,也是常用铸铁件中力学性能最差的铸铁。同时,基体组织对灰铸铁的力学性能也有一定的影响,铁素体基体灰铸铁的石墨片粗大,强度和硬度最低,故应用较少;珠光体基体灰铸铁的石墨片细小,有较高的强度和硬度,主要用来制造较重要铸件;铁素体一珠光体基体灰铸铁的石墨片较珠光体灰铸铁稍粗大,性能不如珠光体灰铸铁。故工业上较多使用的是珠光体基体的灰铸铁。 [其他性能]:良好的铸造性能、良好的减振性、良好的耐磨性能、良好的切削加工性能、低的缺口敏感性 14.可锻铸铁是如何获得的?为什么它只适宜制作薄壁小铸件? 答:制造可锻铸铁必须采用碳、硅含量很低的铁液,以获得完全的白口组织。 可锻铸铁件的壁厚不得太厚,否则铸件冷却速度缓慢,不能得到完全的白口组织。 17. 压力铸造工艺有何缺点?它熔模铸造工艺的适用范围有何显著不同? 答:压力铸造的优点: 1.生产率高 2.铸件的尺寸精度高,表面粗糙度低,并可直接铸出极薄件或带有小孔、 螺纹的铸件 3.铸件冷却快,又是在压力下结晶,故晶粒细小,表层紧实,铸件的强 度、硬度高 4.便于采用嵌铸法 压力铸造的缺点: 1.压铸机费用高,压铸型成本极高,工艺准备时间长,不适宜单件、不批生产。 2.由于压铸型寿命原因,目前压铸尚不适于铸钢、铸造铁等高熔点合金的铸造。

材料成型技术基础知识点总结

第一章铸造 1.铸造:将液态金属在重力或外力作用下充填到型腔中,待其凝固冷却后,获得所需形状和尺寸的毛坯或零件的方法。 2.充型:溶化合金填充铸型的过程。 3.充型能力:液态合金充满型腔,形成轮廓清晰、形状和尺寸符合要求的优质铸件的能力。 4.充型能力的影响因素: 金属液本身的流动能力(合金流动性) 浇注条件:浇注温度、充型压力 铸型条件:铸型蓄热能力、铸型温度、铸型中的气体、铸件结构 流动性是熔融金属的流动能力,是液态金属固有的属性。 5.影响合金流动性的因素: (1)合金种类:与合金的熔点、导热率、合金液的粘度等物理性能有关。 (2)化学成份:纯金属和共晶成分的合金流动性最好; (3)杂质与含气量:杂质增加粘度,流动性下降;含气量少,流动性好。 6.金属的凝固方式: ①逐层凝固方式 ②体积凝固方式或称“糊状凝固方式”。 ③中间凝固方式 7.收缩:液态合金在凝固和冷却过程中,体积和尺寸减小的现象称为合金的收缩。 收缩能使铸件产生缩孔、缩松、裂纹、变形和内应力等缺陷。 8.合金的收缩可分为三个阶段:液态收缩、凝固收缩和固态收缩。 液态收缩和凝固收缩,通常以体积收缩率表示。液态收缩和凝固收缩是铸件产生缩孔、缩松缺陷的基本原因。 合金的固态收缩,通常用线收缩率来表示。固态收缩是铸件产生内应力、裂纹和变形等缺陷的主要原因。 9.影响收缩的因素 (1)化学成分:碳素钢随含碳量增加,凝固收缩增加,而固态收缩略减。 (2)浇注温度:浇注温度愈高,过热度愈大,合金的液态收缩增加。 (3)铸件结构:铸型中的铸件冷却时,因形状和尺寸不同,各部分的冷却速度不同,结果对铸件收缩产生阻碍。 (4)铸型和型芯对铸件的收缩也产生机械阻力 10.缩孔及缩松:铸件凝固结束后常常在某些部位出现孔洞,按照孔洞的大小和分布可分为缩孔和缩松。大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。 缩孔的形成:主要出现在金属在恒温或很窄温度范围内结晶,铸件壁呈逐层凝固方式的条件下。 缩松的形成:主要出现在呈糊状凝固方式的合金中或断面较大的铸件壁中,是被树枝状晶体分隔开的液体区难以得到补缩所致。 合金的液态收缩和凝固收缩越大,浇注温度越高,铸件的壁越厚,缩孔的容积就越大。 缩松大多分布在铸件中心轴线处、热节处、冒口根部、内浇口附近或缩孔下方。

精密锻造模具成形技术的简介及应用

精密锻造模具成形技术的简介及应用 随着我国市场经济体质的不断发展和完善,传统的锻造模具技术已经无法满足市场的需求。随着科技的不断进步,锻造模具已经广泛运用在航天、船舶、汽车等重要领域,我国的锻造技术也在不断地蓬勃发展。本文主要介绍下现有的精密锻造模具成形技术,并简单的讲解下其发展趋势。 一、精密锻造技术的概念 精密锻造成形技术,指的是在零件基本成形后,只需少许加工或无需加工就可以使用的零件成形技术,又称近净成形技术。这种技术是以常规锻造成形技术为基础发展起来的,是由计算机信息技术、新能源、新材料等集成的一门应用技术。现阶段,精密锻造成形技术主要用在精锻零件和精化毛坯等方面。 二、精密锻造成形技术的种类 精密锻造成形技术,它的优势很明显,成本低、效率高、节能环保、精度高等。这种成形工艺种类很多,按成形速度划分:高速精锻、一般精锻、慢速精锻成形等;以锻造过程中金属流动状况为标准划分:半闭、闭式、开式精锻成形工艺;按成形温度划分:超塑、室温、中温、高温精锻成形等;按成形技术分为:分流锻造、等温锻造、复动锻、复合成形、温精锻成形、热精锻成形和冷精锻成形等。按成形技术对精锻技术进行的划分,已经成为了生产中人们习惯分类方式。 1.复动锻造 复动锻造,又称闭塞锻造,这种工艺是最先进的精锻技术之一。这种技术是通过一个冲头在封闭凹槽内部单向挤压或是用两个冲头双向复动挤压而使得金属一次成型的,成型的零件属于无飞边的近净精锻件。之所以要用闭塞锻造,是为了使材料使用率上升,降低加工工序的复杂度。 闭塞锻造能够做到通过一次操作而成形复杂的型面并取得很大变形量,在生产复杂零件时能够省去绝大多数的切削,有效降低成本。 2. 等温锻造 等温锻造指的是在恒定温度下将胚料在模具中锻造加工成精锻成形零件的工艺。与常规锻造相比,等温锻造能够将毛坯的加热温度控制在一定范围内,使锻造过程中的温度大致相等,大大改善了在加工过程中模具因温度骤变而发生的塑性变化。由于等温锻造的工艺特点,特别适合对形变温度很敏感的材料或是难成形的材料的精锻,如镁合金、铝合金等。 3.分流锻造 分流锻造技术的重要环节是在模具或毛坯的成形部分建立一个材料的分流通道,以确保良好的填料效果。使用这种技术时,在型腔填满材料的的过程中,一部分材料留下分流通道,形成分流,这样有助于填满难成形的部分。

冲压工艺与模具设计知识点总结

1,P1,冲压是通过模具对板材施加压力或拉力,使板材塑性成形,有时对板材施加剪切力而使板材分离,从而获得一定尺寸、形状和性能的一种零件加工方法。冲压工艺可以分成分离工序和成形工序两大类。(判断:表1和表2) 2,P18,硬化定义:随着冷变形程度的增加,金属材料强度和硬度指标都有所提高,但塑性、韧性有所下降。N称为材料的硬化指数,是表明材料冷变形硬化性能的重要参数。硬化指数n大时,表现在冷变形过程中材料的变形抗力随变形的增加而迅速增大,材料的塑性变形稳定性较好,不易出现局部的集中变形和破坏,有利于提高伸长类变形的成形极限。P30,成形破裂:胀形(a破裂)和扩孔翻边破裂(B破裂)。3,P32(了解)硬化指数n值:材料在塑性变形时的硬化强度。N大,说明该材料的拉伸失稳点到来较晚。塑性应变比r值:r值反映了板材在板平面方向和板厚方向由于各向异性而引起应变能力不一致的情况,它反映了板材在板平面内承受拉力或压力时抵抗变薄或变厚的能力。 4,P45,冲裁过程的三个阶段:弹性变形阶段,塑性变形阶段,断裂分离阶段。 5,P48,断面的4个特征区:圆角带,光亮带,断裂带,毛刺。(简答)影响断面质量的因素:1,材料力学性能的影响。材料塑性好,材料被剪切的深度较大,所得断面光亮带所占的比例就大,圆角也大;反之则反。2,模具间隙的影

响。间隙过小时,最初形成的滞留裂纹,在凸模继续下压时,产生二次剪切,会在光亮带中部形成高而薄的毛刺;间隙过大时,使光亮带所占比列减小,材料发生较大的塌角,第二次拉裂使得断面的垂直度差,毛刺大而厚,难以去除,使冲裁件断面质量下降。3,模具刃口状态的影响。刃口越锋利,拉力越集中,毛刺越小;刃口磨损后,压缩力增大,毛刺增大。4,断面质量还与模具结构、冲裁件轮廓形状、刃口的摩擦条件等有关。 6,P50,降低冲裁力的方法:阶梯凸模冲裁(缺点:长凸模插入凹模较深,容易磨损,修磨刃口夜间麻烦),斜刃口冲裁,加热冲裁。 7,P52,F卸:从凸模上将零件或废料卸下来所需要得力。 F推:顺着冲裁方向将零件或废料从凹模腔推出的力。 F顶:逆着冲裁方向将零件或废料从凹模腔顶出的力。 设h为凹模孔口直臂的高度,t为材料厚度,则工件数:n=h|t。刚性卸料装置和下出料方式的冲裁模总压力:F总=F冲+F推 弹性和下出料方式的总冲压力:F总=F冲+F卸+F推 弹性和上出料方式的总冲压力:F总=F冲+F卸+F顶(选择)8,P53,冲裁间隙:冲裁模的凸模和凹模刃口之间的间隙。分双边(C)和单边(Z)两种。 间隙的影响:(1)对冲裁件质量的影响。间隙较大时,材料所受的拉伸作用增大,冲裁完毕后材料弹性恢复,冲裁件尺寸向实体

注射成型工艺过程

注射成型工艺过程—注射成型过程 各种注塑机完成注射成型的动作程序可能不完全相同,但其成型的基本过程还就是相同的。现以螺杆式注塑机为例予以说明。从料斗落入料筒中的塑料,随着螺杆的转动沿着螺杆向前输送。在这一输送过程中,物料被逐渐压实,物料中的气体由加料口排除。 在料筒外加热与螺杆剪切热的作用下,物料实现其物理状态的变化,最后呈黏流态,并建立起一定的压力。当螺杆头部的熔料压力达到能克服注射油缸活塞退回时的阻力(所谓背压)时,螺杆便开始向后退,进行所谓计量。与此同时,料筒前端与螺杆头部熔料逐渐增多,当达到所需要的注射量时(即螺杆退回到一定位置时),计量装置撞击限位开关,螺杆即停止转动与后退。至此,预塑完毕。同时,合模油缸中的压力油推动合模机构动作,移动模板使模具闭合。继而,注射座前移,注射油缸充入压力油,使油缸活塞带动螺杆按要求的压力与速度将熔料注入到模腔内。当熔料充满模腔后,螺杆仍对熔料保持一定的压力,即所谓进行保压,以防止模腔中熔料的反流,并向模腔内补充因制品冷却收缩所需要的物料。模腔中的熔料经过冷却,由黏流态回复到玻璃态,从而定型,获得一定的尺寸精度与表面粗糙度。当完全冷却定型后,模具打开,在顶出机构的作用下,将制件脱出,从而完成一个注射成型过程,参瞧下图。

图注射成型过程 1—合模注射;2—保压;3—螺杆预塑、制品顶出 按照习惯,我们把一个注射成型过程称为一个工作循环,而该循环由合模算起,为了明了起见,我们用下面工艺流程图表示。 合模→注射→保压(螺杆预塑)→冷却→开模→顶出制品→合模 注射成型过程包括加料、加热塑化、闭模、加压注射、保压、冷却定型、启模、制件取出等工序。其中,加热塑化、加压射、冷却定型就是注射过程中三个基本步骤。 ①加料。每次加料量应尽量保持一定,以保证塑化均匀一致,减少注射成型压力传递的波动。 ②塑化。塑料在进入模腔之前要达到规定的成型温度,提供足够数量

注塑成型工艺流程图

注塑成型工艺流程图 一、注塑成型的基本原理: 注塑机利用塑胶加热到一定温度后,能熔融成液体的性质,把熔融液体用高压注射到密闭的模腔内,经过冷却定型,开模后顶出得到所需的塑体产品。 二、注塑成型的四大要素: 1.塑胶模具 2.注塑机 3.塑胶原料 4.成型条件 三、塑胶模具 大部份使用二板模、三板模,也有部份带滑块的行位模。 基本结构: 1.公模(下模)公模固定板、公模辅助板、顶针板、公模板。2.母模(上模) 母模板、母模固定板、进胶圈、定位圈。3.衡温系统冷却.稳(衡)定模具温度。 四、注塑机 主要由塑化、注射装置,合模装置和传动机构组成;电气带动电机,电机带动油泵,油泵产生油压,油压带动活塞,活塞带动机械,机械产生动作; 1、依注射方式可分为: 1.卧式注塑机 2.立式注塑机 3.角式注塑机 4.多色注塑机 2、依锁模方式可分为: 1.直压式注塑机 2.曲轴式注塑机 3.直压、曲轴复合式 3、依加料方式可分为:

1.柱塞式注塑机 2.单程螺杆注塑机 3.往复式螺杆注塑机4、注塑机四大系统: 1.射出系统 a.多段化、搅拌性及耐腐蚀性。 b.射速、射出、保压、背压、螺杆转速分段控制。 c.搅拌性、寿命长的螺杆装置。 d.料管互换性,自动清洗。 e.油泵之平衡、稳定性。 2.锁模系统 a.高速度、高钢性。 b.自动调模、换模装置。 c.自动润滑系统。 d.平衡、稳定性。 3.油压系统 a.全电子式回馈控制。 b.动作平顺、高稳定性、封闭性。 c.快速、节能性。 d.液压油冷却,自滤系统。 4.电控系统 a.多段化、具记忆、扩充性之微电脑控制。 b.闭环式电路、回路。 c.SSR(比例、积分、微分)温度控制。

塑料成型工艺与模具设计试题及答案总结(doc 25页)

浙江省2010年4月自考塑料成型工艺与模具设计试题 课程代码:02220 一、填空题(本大题共5小题,每空1分,共10分) 请在每小题的空格中填上正确答案。错填、不填均无分。 1.按塑料中合成树脂的分子结构及热性能分为______________和______________。 2.注射模塑工艺过程的确定是注射工艺规程制定的中心环节,它包括成型前的______________、注射______________、制品的后处理。 3.侧向分型和抽芯机构按其动力来源可分为______________、______________、气动和液压三大类。 4.排气是制品______________的需要,而引气则是制品______________的需要。 5.塑料的使用性能包括:物理性能、______________、______________、热性能、电性能等。 二、判断题(本大题共10小题,每小题2分,共20分) 判断下列各题,正确的在题后括号内打“√”,错的打“×”。 1.加强筋的筋与筋之间的间隔距离应小于塑件壁厚。( ) 2.一副塑料模可能有一个或两个分型面,分型面可能是垂直、倾斜或平行于合模方向。 ( ) 3.溢式压缩模适用于压制扁平及对强度和尺寸无严格要求的塑件。( ) 4.用固定式压缩模压制塑件时,其推出一般由压机顶出机构来完成,压机顶出机构通过尾轴或中间接头和拉杆等零件与模具推出机构相连。( ) 5.填充剂是塑料中必不可少的成分。( ) 6.冷却水道与型腔表壁的距离越近冷却效率越高。( ) 7.为了减少分流道对熔体流动的阻力,分流道表面必须修的光滑。( ) 8.浇口的主要作用之一是防止熔体倒流,便于凝料和塑件分离。( ) 9.大多数情况下利用分型面或模具零件配合间隙自然排气。当需开设排气槽时,通常开设在分型面的凹槽一侧。( ) 10.推件板推出时,由于推件板与型芯接触的部位,需要有一定的硬度和表面粗糙度要求,为防止整体淬火引起的变形,常用局部镶嵌的组合结构。( ) 三、名词解释(本大题共4小题,每小题5分,共20分) 1.热固性塑料 2.流动性

射出成型工艺

射出成型工艺 图1 塑胶射出流程 注塑过程中的关键步骤: 1. 塑化计量 1)塑化 达到组分均匀、密度均匀、黏度均匀、温度分布均匀。 2)计量 保证将塑化好的熔体定温、定压、定量射出。 3)塑化效果和能力 柱塞式射出机、螺杆式射出机(普通螺杆塑化、动力熔融)。其中螺杆式射出机的塑化能力强于柱塞式射出机。 2.射出充模 1)流动充模

射出过程中注塑压力和速度的变化。 射出压力与熔体温度、熔体流速的关系。 射出压力与熔体充模特性(充模流动形式和充模速度)的关系。 2)保压补缩 保证将塑化好的熔体定温、定压、定量射出。 保压力、保压时间和模腔压力之间的关系会影响制件的密度、收缩及表面缺陷。 射出成形加工考虑要点 1.模具成形温度 模温过低:熔体流动性差,制件上产生较大应力、熔接痕,表面质量差。 模温过高:冷却时间、收缩率、翘曲变形均增大。 模温影响射出的成型性、成型效率、制品品质。尤其对流动性、尺寸安定性、表面光泽及内应力有绝对影响. 2. 塑料温度 若低于黏流温度:不利于塑化,熔料黏度大,成型困难,易出现熔接痕,表面无光泽或缺料。 若高于热分解温度:引起热降解, 3. 螺杆回转速度 当进料时,螺杆回转并在背压作 用下向后退,其回转速度将主要影响 图2. 螺杆转速与塑化效果的关系 螺杆对物料的塑化能力,此外对料温

也会产生影响。 螺杆转速达到一定数值后,综合塑化效果下降。 4. 背压设定 与螺杆转速一起影响螺杆对物料的塑化 效果,要综合考虑背压力和螺杆转速的设定。 背压大而螺杆转速小时会发生逆流。 背压过小会使空气进入螺杆前端。 5. 射出成形压力 若射出压力过小:模腔压力不足,熔体难以充满模腔。 若射出压力过大:涨模、溢料,压力波动较大,生产难于稳定控制,制件应力增大。 射出压力确定原则:根据条件,射出压力尽量高,有助于提高充模速度、熔接痕强度,防止缺料,使收缩率减小;但同时要注意避免喷射流动。 6. 射出成形速度 若射出速度过小:制件表层冷却快,易发生缺料、分层和熔接痕 若射出速度过高:维持熔体温度,减小熔体 黏度,制件比较密实均匀容易产生喷射,在排气不良时会使制件灼伤或热降解 同时应当注意要改变聚合物黏度时应根据聚合物黏度对温度敏感性和对剪切速率敏感性两个因素确定注射温度和注射速度。 图4. 注嘴结构 图3. 背压油缸结构

相关主题
文本预览
相关文档 最新文档