当前位置:文档之家› 第九章 氧化还原反应与电化学基础.

第九章 氧化还原反应与电化学基础.

第九章 氧化还原反应与电化学基础.
第九章 氧化还原反应与电化学基础.

第九章氧化还原反应与电化学基础

【竞赛要求】

氧化态。氧化还原的基本概念和反应的书写与配平。原电池。电极符号、电极反应、原电池符号、原电池反应。标准电极电势。用标准电极电势判断反应的方向及氧化剂与还原剂的强弱。电解池的电极符号与电极反应。电解与电镀。电化学腐蚀。常见化学电源。Nernst 方程及有关计算。原电池电动势的计算。pH 对原电池的电动势、电极电势、氧化还原反应方向的影响。沉淀剂、络合剂对氧化还原反应方向的影响。

【知识梳理】

一、氧化还原反应的基本概念

1、氧化数

在氧化还原反应中,由于发生了电子转移,导致某些元素带电状态发生变化。为了描述元素原子带电状态的不同,人们提出了氧化数的概念。

1970年,国际纯粹与应用化学联合会(IUPAC )对氧化数的定义是:氧化数是某元素一个原子的荷电数,这个荷电数是假设把每个化学键的电子指定给电负性更大的原子而求得的。例如,在NaCl 中,钠的氧化数为 +1,氯的氧化数为–1。在SO 2中,硫的氧化数为+4,氧的氧化数为–2。由此可见,氧化数是元素在化合状态时人为规定的形式电荷数。确定氧化数的规则:

(1)在单质中,元素的氧化数为零。

(2)在单原子离子中,元素的氧化数等于离子所带的电荷数。

(3)在大多数化合物中,氢的氧化数为 +1,只有在活泼金属的氢化物(如NaH,CaH 2)中,氢的氧化数为–1。

(4)通常,在化合物中氧的氧化数为–2;但在过氧化物(如H 2O 2、Na 2O 2、BaO 2)中氧的氧化数为–1;而在OF 2和O 2F 2中,氧的氧化数分别为 +2和+1。

(5)在所有氟化物中,氟的氧化数为–1。

(6)碱金属和碱土金属在化合物中的氧化数分别为 +1和 +2。

(7)在中性分子中,各元素氧化数的代数和为零。在多原子原子离子中各元素氧化数的代数和等于离子所带的电荷数。

根据上述原则,可以确定化合物中某元素的氧化数。

2、氧化还原电对

在氧化还原反应中,元素氧化数升高的物质是还原剂,元素氧化数降低的物质是氧化剂。氧化还原反应是由还原剂被氧化和氧化剂被还原两个半反应所组成的。例如:

Zn(s + Cu2+

(aq Zn 2+(aq + Cu(s

是由半反应Zn(s

Zn 2+ + 2e-和Cu 2+ + 2e- Cu(s 所组成。

在半反应中,同一元素的两个不同氧化数的物种组成了电对,其中,氧化数较大的物种称为氧化型,氧化数较小的物种称为还原型。通常电对表示成:氧化型 / 还原型。例如:氧化还原反应是由两个电对构成的反应系统。可以表示为:

还原型(1)+氧化型(2)氧化型(1)+ 还原型(2)

二、氧化还原反应方程式的配平

配平氧化还原反应方程式的常用方法有氧化数法和离子–电子法。氧化值法在中学化学中已经学过,其重要原则是还原剂中元素氧化值升高的总数等于氧化剂中元素氧化值降低的总

Page 1 of 21

数。这里不在重复。以下我们介绍离子–电子法。

用离子–电子法配平氧化还原反应方程式的原则是:

(1)反应中氧化剂得到电子的总数必须等于还原剂失去电子的总数。

(2)根据质量守衡定律,方程式中等号两边各种元素的原子总数必须相等。

下面分别用酸性溶液和碱性溶液中的氧化还原反应为例介绍离子–电子法的配平步骤。例1 配平酸性溶液中的反应:KMnO 4 + K2SO 3 K 2SO 4 + MnSO4

具体配平步骤如下:

-2-(1)写出主要反应物和产物的离子式:MnO - Mn 2+ + SO 2

4 + SO34

(2)分别写出两个半反应中的电对:MnO -42- Mn 2+ SO 3- SO 2

4

(3)分别配平两个半反应。这是离子电子法的关键步骤。所以离子电子法也叫做半反应法。先根据溶液的酸碱性配平两边各元素的原子:

+ MnO -

4+ 8H2- Mn 2+ + 4H2O SO 3+ H2O -+ SO 2

4+ 2H

-少氧的一边加H 2O ,多氧的一边加H +,酸性溶液中不能出现OH 。

再加电子使两边的电荷数相等:

2-2-+ 2++MnO -

4+ 8H+5e = Mn + 4H2O ① SO 3+ H2O = SO4+ 2H + 2e ②--

(4)根据两个半反应得失电子的最小公倍数,将两个半反应分别乘以相应的系数后,消去电子,得到配平的离子方程式。①式×2加②式×5得:

2MnO 4+ 16H++ 10e = 2Mn 2+ + 8H2O --2-+)5SO 3+ 5H2O = 5SO4+ 10H + + 10e -2-2-2MnO 4+ 5SO3+ 6H+ = 2Mn 2+ + 5SO 4+ 3H2O -2-

核对等式两边各元素原子个数和电荷数是否相等。根据题目要求,将离子方程式改写为分子(或化学式)方程式。加入不参与反应阳离子或阴离子,引入的酸根离子以不引入其他杂质,不参与氧化还原反应为原则。此反应中加入的是稀硫酸。

2KMnO 4 + 5K2SO 3 +3H2SO 4 = 2MnSO4 + 5K2SO 4 + 3H2O

例2 将氯气通入热的氢氧化钠溶液中,生成氯化钠和氯酸钠,配平此反应方程式。配平:此反应是碱性溶液中Cl 2歧化为NaCl 和NaClO 3反应,Cl 2即是氧化剂,又是还原剂

?→NaCl + NaClO3 Cl 2 + NaOH ?

-?→Cl – + ClO3相应的离子方程式为: Cl 2 + OH–? ??

写出两个半反应: Cl 2

- Cl – Cl 2 - ClO 3 配平两个半反应,碱性溶液中少氧的一边加OH ,多氧的一边加H 2O ,但不能出现H +。--Cl 2 + 2e = 2Cl–③ Cl 2 + 12OH– = 2ClO3 +

6H2O +10e-④

将③式×5+④得

--+)Cl 2 + 12OH– = 2ClO3 + 6H2O +10e

- 6Cl 2 + 12OH– = 2ClO3 +10 Cl– + 6H2O -化为简式得: 3Cl 2 + 6OH– = ClO3 +5 Cl– + 3H2O

改写为分子方程式: 3Cl 2 + 6NaOH = NaClO3 + 5NaCl + 3H2O

Page 2 of 21 5Cl 2 + 10e = 10Cl–-

用离子–电子法配平氧化还原反应方程式时,可以不必知道元素的氧化值,转移电子数在配平半反应时即可以确定,这是此法的一个优点。离子电子法特别适合配平水溶液中的氧化还原反应,而配平半反应对于氧化还原反应的有关计算是非常重要的。

三、电极电势

1、原电池(1)原电池的组成

将锌片插入硫酸铜溶液中会自发地发生氧化还原反应:

-10Zn(s + Cu2+

(aq Zn 2+(aq + Cu(s △r H m (298K = – 281.66 kJ·mol

随着反应的进行,金属铜不断地沉淀在锌片上,同时锌片不断地溶解。反应是放热的,化学能转变为热能。如何将化学能转变为电能而产生电流呢?

1863年,J.E.Daniell 将锌片插入ZnSO 4溶液中,用这两个半电池组成了一个电池,称为Daniell 电池。

后来,经过改进,用充满含有饱和KCl 溶液的琼脂胶冻的倒置U 型管作盐桥将两个半电池联通,在锌片和铜片间串联一个安培计。

采用这样的铜–锌原电池获得了电流。

锌片为负极,发生氧化反应: Zn(s

Zn 2+ + 2e

-铜片为正极,发生还原反应: Cu 2+ + 2e Cu(s -

氧化和还原反应分别在两处进行,还原剂失去电子

经外电路转移给氧化剂形成了电子的有规则定向流动,

产生了电流。这种借助于自发的氧化还原反应产生电流

的装置称为原电池。

在原电池中,两个半电池中发生的反应叫做半电池反应或电极反应。

总的氧化还原反应叫做电池反应。铜–锌原电池反应为:

Zn(s + Cu2+

(aq Zn 2+(aq + Cu(s

原电池可以用简单的符号表示,称为电池符号(或电池图示)。例如铜–锌原电池的符号为:

Zn(s∣ZnSO 4(c 1 ‖CuSO 4(c 2 ∣Cu(s

在电池符号中,将负极写在左边,正极写在右边,用单竖线表示相与相间的界面,用双竖线表示盐桥。

有些原电池需要用铂片或石墨作电极。例如:

' Pt ∣Sn 2+(c 1,Sn 4+(c 1' ‖Fe 3+(c 2, Fe2+(c 2 ∣Pt

相应的电池反应为:2Fe 3+(aq + Sn2+

(aq Fe 2+(aq + Sn4+(aq

(2)原电池的电动势

原电池的两极用导线连接时有电流通过,说明两极之间存在着电势差在外电路电流趋于零时,用电位计测定正极与负极间的电势差,用E MF 表示原电池的电动势等于正极的电极电势与负极的电极电势之差: E MF =E (+ -E (- (10-1)

原电池的电动势与系统的组成有关。当原电池中的各物质均处于标准态时,测得的原电池

0的电动势称为标准电动势,用E MF 表示。E MF =E (0+ -E (0- (10-2) 0

例如,25℃在铜–锌原电池中,当c (Cu2+ =1.0 mol·L -1 , c (Zn2+ =1.0 mol·L -1时,测得的电池电动势E MF =1.10 V。

Page 3 of 21 0

(3)原电池的电动势与反应的Gibbs 函数变

热力学研究表明,在恒温恒压下,反应系统Gibbs 函数变等于系统能做的最大有用功,即:

△r G m =W max (10-3)

对于原电池反应来说,系统所能做的最大有用功就是电功。根据物理学原理,电功等于通过的电量Q 与电动势的乘积:W max = – QE MF = –zFE MF (10-4)

式中,F 为Faraday 常量,F = 96485 C·mol 1,z 为电池反应转移的电子数。由上述两式得:-

△r G m = –zFE MF (10-5)

0= –zFE 0 (10-6)如果电池反应是在标准状态下进行,则△r G m MF

根据(10-5),若已知电池电动势E MF ,可以求出电池反应的Gibbs 函数△r G m ;反之亦然。

2、电极电势

(1)电极电势的产生

原电池的电动势是组成原电池的两个电极电势之差。每个电极的电势是如何产生的呢?以

-金属电极为例,将金属浸入其盐溶液时,M(s 在金属与其盐溶液接触的界面上会发生金属溶解和金M 2+(aq + z e

属离子沉淀两个不同的过程:

当这两个过程速率相等时,达到动态平衡。如果是较活泼的金属(如锌,金属表面带负电荷,而靠近金属的溶液带正电荷,形成了双电层,产生了电势差,称为电极电势。对于不活泼的金属(如铜,则情况刚好相反,金属表面带正电荷,而靠近金属的溶液带负电荷。但也形成双电层,产生电极电势。

电极电势的绝对值尚无法测定。通常要选定一个参比电极,以其电极电势为基准,与其他电极相比较,从而确定其他电极的电极电势相对值。通常选取的参比电极是标准氢电极。

(2)标准电极的确定

①标准氢电极

-将镀有一层海绵状铂黑的铂片浸入H +浓度为1.0 mol ·l 1的酸性溶液中,不断通入压力

为100 kPa的纯净氢气。铂黑吸附氢气达到饱和。这样的氢电极即为标准氢电极,电极反应为:

-+2H (aq + 2e H 2(g

规定在298.15 K时,其标准电极电势为零,即E (H /H = 0 20

②甘汞电极

实际应用中常常使用甘汞电极作参比电极。甘汞电极的电极反应为:

--Hg 2Cl 2(s + 2e 2Hg(l + 2Cl(aq

饱和甘汞电极的电极电势为0.2415 V。

③其他标准电极电势的确定

通过实验测定某电极标准电极电势的方法是:以标准氢电极为负极,待测标准电极为正极组成原电池,测定该电池的标准电池电动势。由于标准氢电极电势为零,所以测得的标准电池电动势在数值上就等于待测电极的标准电极电势。例如,将标准氢电极与标准铜电极组成原电

-1-+2+池: Pt ∣H 2(100kPa∣H (1.0 mol·l ‖Cu (1.0 mol·l 1 ∣Cu(s

测得标准电池电动势 E MF = 0.340 V

Page 4 of 21 0

0由于E MF =E (0+ -E (0- =E (0Cu 2+/Cu -E (0H +/H =E (0Cu 2+/Cu 所以E (Cu 2+/Cu = 0.340 V 20

由于铜电极为正极,其电极反应为还原反应:Cu 2+(aq + 2e所以实验测得的标准电极电势为标准还原电极电势。

0同理,可以确定标准锌电极电势 E (Zn 2+/Zn = – 0.762 V - Cu(s

按照此方法,可以测定许多电对的标准还原电极电势。在无机化学教材的附表或化学手册中可以查到298.15K 时常用标准还原电极电势的数据。

(3)Nernst 方程式及其应用

①Nernst 方程式

影响电极电势的因素有浓度、压力和温度等。

(a )电池反应的Nernst 方程式

00对于原电池反应△r G m (T = –zFE MF (T △r G m (T = –zFE MF (T

0代入等温方程式得:△r G m (T = △r G m (T + RT lnJ

00–zFE MF (T = –zFE MF (T + RT lnJ 即 E MF (T = E MF (T -RT ln J (10-7)zF

此式称为电池反应的Nernst 方程式。式中,J 为电池反应的反应商,z 为电池反应中转移

0电子数。由此式可以看出浓度、压力和温度对电池电动势的影响。应当注意,E MF 也随温度

的变化而改变。

0298.15 K时,Nernst 方程式为: E MF (298.5 K = E MF (298.5 K - 0. 0592V lg J (10-8) z

利用此式可以计算298.15 K时的非标准电池电动势。

(b )电极反应的Nernst 方程式

对于电极氧化型 + z e

0-

还原型 0标准状态时△r G m = –zFE 非标准状态时△r G m = –zFE

RT c (氧化型(10-9) ln zF c (还原型

0. 0592V c (氧化型(10-10) 298.15K 时 E (298. 15K =E 0(298. 15K +lg z c (还原型

利用此式,可以计算298.15K 时非标准态时的电极电势。应该注意,z 为电极反应转移电子数。c (氧化型包括电极反应中氧化型一侧各物种的浓度幂,c (还原型包括电极反应中还原型一边各物种的浓度幂。

由电极反应的Nernst 方程式可以看出:c (氧化型增大,电极电势增大;c (还原型增大,电极电势减小。

②生成沉淀或配合物对电极电势的影响

在电极反应中,加入沉淀试剂或配位剂时,由于生成沉淀或配合物,会使离子的浓度改变,结果导致电极电势发生变化。

(a )沉淀的生成对电极电势的影响

0Ag +/Ag电对为例。298.15K 时,E (Ag +/Ag =0.799 V 代入等温方程式得: E =E 0-

相应的电极反应为:Ag +(aq + e- Ag(s

Page 5 of 21

+0

其Nernst 方程式为: E (Ag +/Ag =E (Ag +/Ag +0.0592 lgc (Ag

c 0

若加入NaCl ,生成AgCl 沉淀。

K

0–10sp (AgCl =1.8×10,

c (Ag /c =

+

0K sp (AgCl

c (Cl /c

-

-0

代入上述Nernst 方程, E +=E (0Ag +/Ag +0. 0592l g (Ag /Ag

-–1

0K sp (AgCl

c (Cl /c

-

当c (Cl = 1.0mol·l 时, E +=E (0Ag +/Ag +0. 0592l g (Ag /Ag

= 0.799V + 0.0592 ln1.8×10

-10

0K sp (AgCl

c (Cl /c

= 0.222 V

由此可见,当氧化型生成沉淀时,使氧化型离子浓度减小,电极电势降低。

这里计算所得E (Ag+/Ag值,实际上是电对AgCl/Ag的标准电极电势,因为当c (Cl = 1.0mol·L

-1

时,电极反应:

AgCl(s + e –

Ag (s + Cl(aq

处于标准状态。由此可以得出下列关系式:

E 0(AgCl /Ag =E 0(Ag +/Ag +0. 0592ln K sp (AgCl

很显然,由于氧化型生成沉淀,则 E 0(AgCl /Ag E 0(Ag +/Ag

当还原型生成沉淀时,由于还原型离子浓度减小,电极电势将增大。当氧化型和还原型都00

生成沉淀时,若K sp <K sp ,则电极电势减小。反之,则电极电势变大。(氧化型)(还原型)

(b )配合物的形成对电极电势的影响

以电对Cu 2+/Cu为例,298.15K 时, Cu 2+(aq + 2e–

Cu (s E 0=0. 340V

+–1

若加入过量氨水时,生成[Cu(NH3 4]2+,当c (Cu(NH3 2 = c(NH = 1.0 mol · L 时, 34

c (Cu /c =

代入Nernst 方程得:

2+0

+0

c [Cu (NH 3 24]/c 2+

[c (NH 3 /c 0]4K 0f [Cu (NH 3 4]

=

1

02+

K f [Cu (NH 3 4]

E (Cu 2+/Cu =E (0Cu 2+/Cu +

= 0.340 V +

即 E [0

Cu (NH

2+3 4

0. 0592V 1

lg 0

+

z K f [Cu (NH 3 2]4

0. 0592V 1lg = – 0.392 V 22. 30?1012 /Cu ]

=– 0.392 V

当电对的氧化型生成配合物时,使氧化型离子的浓度减小,则电极电势变小。同理可以推知:E (0Cu 2+/CuCl - =E (0Cu 2+/Cu + +0. 0592V lg K 0f (CuCl 2

2

= 0.1607 V + 0.0592V lg6.91×104 = 0.447 V

当电对的还原型生成配合物时,使还原型离子的浓度减小,则电极电势增大。

当氧化型和还原型都生成配合物时,若K 0f (氧化型)>K f (还原型)则电极电势变小;

反之,则电极电势变大。

3、电极电势的应用(1)判断氧化剂、还原剂的相对强弱

氧化剂是电对中的氧化剂,还原剂是电对中的还原剂。根据标准电极电势的大小,可以判断氧化剂、还原剂的相对强弱。E 愈大,电对中氧化型的氧化能力愈强,是强的氧化剂;E 愈小,电对中还原型的还原能力愈强,是强的还原剂。

在标准电极电势数据表中,电极反应为还原反应,即氧化型 + ze –

还原型

排在最前面的E 0(Li +/Li 最小,其还原型Li 是最强的还原剂;排在最后面的电对F 2 / HF的E 0最大,其氧化型F 2是最强的氧化剂。

(2)判断氧化还原反应的方向

判断化学反应自发进行方向的判据是?r G m 。对于氧化还原反应,由于?r G m 与E MF 之间的关系为:?r G m = -zFE MF

所以可以用E MF 代替?r G m 判断反应的方向。

E M

F >0 反应正向进行?r

G m < 0 E MF <0 反应逆向进行?r G m > 0

E M

F = 0 反应应处于平衡状态?r

G m = 0

又由于E MF = E (+ -E (- =E (氧化剂)-E (还原剂)

若使E >0,则必须E (+ E (- ,即氧化剂电对的电极电势大于还原剂电对的电极电势。 E 大的电对的氧化型作氧化剂, E 小的电对的还原型作还原剂,两者的反应自发地进行。氧化还原反应的方向可以表示为:

强氧化型(1)+ 强还原型(2)= 弱还原型(1)+ 弱氧化型(2)

00

从标准电极电势表中查得的E 能用于计算E MF 。但严格地说,E MF 只能用于判断标准状0态下的氧化还原反应的方向。如果用E MF 判断非标准状态下的氧化还原反应的方向,有如下经验规则:

E M

F >0.2 V 反应正向进行 E MF <-0.2 V 反应逆向进行

若-0.2 V <E MF < 0.2 V,因为浓度的影响,反应可能正向进行也可能逆向进行,所以

必须计算出E MF ,用以判断反应的方向。

(3)确定氧化还原反应的限度

氧化还原反应的限度即为平衡状态,可以用其标准平衡常数来表明。氧化还原反应的标准平衡常数与标准电池电动势有关,即与相关的电对的标准电极电势有关。由:

000

= –zFE MF ?r G m =-RT ln K 0 和?r G m

00

zFE MF zE MF 0

可得: ln K = (10-11) 298.15K 时: lg K = (10-12)

RT 0. 0592V

根据氧化还原反应方程式,确定正极和负极(方程式左边的氧化剂电对为正极,还原剂电

对为负极),计算标准电池电动势:E MF = E (+ -E (-

代入上式即可计算氧化还原反应的标准平衡常数。K 0愈大,反应正向进行的程度愈大。例如:试估计反应: Zn(s + Cu2+(aq

在298K 下进行的限度。

化学反应进行的限度可以由它的标准平衡常数来评价。

Zn(s + Cu2+(aq

Zn 2+(aq + Cu(s

Zn 2+(aq + Cu(s

=E (0Cu 2+/Cu -E (0Zn 2+/Zn E MF

= 0.3394V-(-0.7621V = 1.1015 V

zE MF 2?1. 1015V

lg K ===37. 2128 K 0=1. 63?1037

0. 0592V 0. 0592V

K 0值很大,说明反应向右进行得很完全。

由于生成难溶化合物、配合物、弱电解质会影响有关电对的电极电势,所以根据氧化还原反应的标准平衡常数与标准电池电动势间的定量关系,可以通过测定原电池电动势的方法来推算难溶电解质的溶度积、配合物的稳定常数、弱电解质的解离常数等。

例如 298K 时,下列电极反应的标准电极电势:

Ag +(aq + e-

Ag(s E 0 = 0.7991 V

Ag(s + 2NH3(aq E 0 = 0.3719 V

[Ag(NH3 2]+(aq + e-

试求出K 0

f , A

g (NH

+3 2

以给出的两电极反应组成原电池,电池反应为:

Ag +(aq + 2NH 3

(aq

[Ag(NH3 2]+ (aq K 0 = K 0 f , Ag (NH 3 +2

+3 2

=E (0Ag +/Ag -E [0Ag (NH E MF

/Ag ]

=0. 7991V -0. 3719V =0. 4272V

zE MF 1?0. 4272V

==7. 216 K 0 = K 0lg K = =1.64×107 f , Ag (NH 3 +2

0. 0592V 0. 0592V

(4)元素电势图

许多元素具有多种氧化值,不同氧化值的物种可以组成电对。将某种元素不同氧化值的物种从左到右按氧化值由高到低的顺序排成一行,每两个物种间用直线连接表示一个电对,并在

0.6945 1.763 酸性溶液中氧元素直线上标明此电对的标准电极电势的数值。这种图称为元素电势图。O 2 H 2O 2 例如,H 2O

的电势图为:

E A /V

碱性溶液中氧的元素电势图为:

0E A /V

0.6945 1.763–

O HO - OH 2

实验五氧化还原反应与电极电势(精)

实验五氧化还原反应与电极电势 一、实验目的 1、掌握电极电势对氧化还原反应的影响。 2、定性观察浓度、酸度对电极电势的影响。 3、定性观察浓度、酸度、温度、催化剂对氧化还原反应的方向、产物、速度的影响。 4、通过实验了解原电池的装置。 二、实验原理 氧化剂和还原剂的氧化、还原能力强弱,可根据她们的电极电势的相对大小来衡量。电极电势的值越大,则氧化态的氧化能力越强,其氧化态物质是较强氧化剂。电极电势的值越小,则还原态的还原能力越强,其还原态物质是较强还原剂。只有较强的氧化剂才能和较强还原剂反应。即φ氧化剂-φ还原剂﹥0时,氧化还原反应可以正方向进行。故根据电极电势可以判断氧化还原反应的方向。 利用氧化还原反应而产生电流的装置,称原电池。原电池的电动势等于正、负两极的电极电势之差:E = φ正-φ负。根据能斯特方程: 其中[氧化型]/[还原型]表示氧化态一边各物质浓度幂次方的乘积与还原态一边各物质浓度幂次方乘积之比。所以氧化型或还原型的浓度、酸度改变时,则电极电势φ值必定发生改变,从而引起电动势E将发生改变。准确测定电动势是用对消法在电位计上进行的。本实验只是为了定性进行比较,所以采用伏特计。浓度及酸度对电极电势的影响,可能导致氧化还原反应方向的改变,也可以影响氧化还原反应的产物。 三、仪器和药品 仪器:试管,烧杯,伏特计,表面皿,U形管 药品:2 mol·L-1 HCl,浓HNO3, 1mol·L-1 HNO3,3mol·L-1HAc,1mol·L-1 H2SO4,3mol·L-1 H2SO4,0.1mol·L-1 H2C2O4,浓NH3·H2O(2mol·L-1),6mol·L- 1NaOH,40%NaOH。 1mol·L-1 ZnSO4,1mol·L-1 CuSO4,0.1mol·L-1KI,0.1mol·L-

3 氧化还原与电化学

3 氧化还原与电化学 一、实验目的 1.了解原电池的组成及其电动势的粗略测定; 2.认识浓度、介质的酸碱性对氧化还原的影响; 3.认识一些中间价态物质的氧化还原性; 4.了解电化学腐蚀的基本原理及其防止的方法。 二、实验原理 1.原电池组成和电动势 利用氧化还原反应产生电流的装置叫做原电池。 原电池负极氧化反应 正极还原反应 正负极间必须用盐桥连接。 原电池电动势应为 2.浓度、介质对电极电势和氧化还原反应的影响 (1)浓度对电极电势的影响 例如: (2)介质的酸碱性对电极电势的影响 例如: (a) 2Zn e -2Zn +=22Cu e Cu ++=E E ??=正 - 负 22Zn e Zn +-=2220.059 Zn /Zn Zn /Zn lgc(Zn )2+θ++?=?+ 32C 1O 6H 6e C 13H O -+- +++? 1.45V θ?=3 3 63 C1O /C1C1O /C1[c(C1O )/c ][c(H )/c ]0.0591g 6[c(C1)/c ] - - -- - +-=+θθθ ??

(b) (c) (d) 3.物质的氧化还原性 例如 4.电化学腐蚀及其防止 吸氧腐蚀阳极 阴极 差异充气腐蚀 表面处高大,为阴极; 深处低,小,为阳极。 防腐蚀可用牺牲阳极法、外加电流法、缓蚀剂法。乌洛托品(六次甲基四胺)可作钢铁在酸性介质中的缓蚀剂。 三、仪器和药品 1.仪器 直流伏特计(0~3 V )(公用)盐桥(公用)① 242MnO 8H 5e Mn 4H O -++ +++?22448 42MnO /Mn MnO /Mn [c(MnO )/c ][c(H )/c ]0.0591g 5[c(Mn )/c ] -+-+ -θ+θθ +θ?=? +422MnO 2H O 3e MnO (s)4OH -- +++?MnO /MnO 4 2 4 2 44 MnO /MnO [c(MnO )/c ]0.0591g 3[c(OH )/c ]---θ θ -θ?=?+()244MnO e MnO --????→+←????强碱介质224 444 42MnO /MnO MnO /MnO 4[c(MnO )/c ]0.0591g [c(MnO )/c ] -----θ θ -θ?? +?2242PbS 4H O HAcPbSO ()4H O +↓+白色2422222MnO 6H 5H O 2Mn 5O 8H O -++ ++=++2Fe Fe 2e + =+22O 2H O 4e 4OH - ++=22 2O 4 O /OH O /OH p /p 0.059 1g 4[c(OH )/c ]- - θθ -θ?=? +2 O p 2 /O OH ?- 2 O p 2 /O OH ?-

工科化学问题详解第五章氧化还原反应与电化学

第五章氧化还原反应与电化学 教学容 1. 氧化数; 2.原电池与原电池电动势; 3. 金属的腐蚀与防护; 4.电解的基本原理及应用。 教学要求 了解氧化数的概念及确定方法;掌握原电池的组成、结构、符号表示、电极反应及电池反应的表示方法;了解电极电势的产生原因和测求方法;掌握浓度对电极电势的影响及Nernst方程的有关计算;了解电解池的结构特点;理解理论分解电压、实际分解电压的概念及产生原因;了解电解的应用;熟悉金属电化学腐蚀的产生原因及析氢腐蚀、吸氧腐蚀的主要特点;了解电化学腐蚀的主要防护方法。 知识点与考核点 1.氧化数 某元素的一个原子在化合状态时的形式电荷数 .....(可以为分数)。 2.电对 同一元素氧化数高的状态(氧化态)与其氧化数低的状态(还原态)构成 一个电对。通常表述为氧化态/还原态,例如,Cu2+/Cu、Zn2+/Zn、 Fe3+/Fe2+、Fe2+/Fe、O2/H2O2、H2O2/OH–等。 3.原电池 借助氧化还原反应直接 ..产生电流的装置。 4.原电池装置的符号表示:(以铜锌原电池为例) (-)Zn | Zn2+(c1)|| Cu2+(c2)| Cu(+) 负极反应:Zn(s)→Zn2+(aq)+2e– 正极反应: Cu2+(aq)+2e–→Cu(s) 电池总反应: Cu2+(aq)+ Zn(s)= Cu(s) + Zn2+(aq) 5.原电池装置的符号表示书写规则 (1)负极在左侧,正极在右侧, (2)两个半电池的中间用盐桥“||”连接, (3)盐桥两侧分别是正、负极的离子“Zn2+(c1)||Cu2+(c2)”,溶液需标 出离子的浓度。 例:将下列氧化还原反应组成原电池,写出电极反应。 (1)Sn2+(aq)+2Fe3+(aq)= Sn4+(aq)+2Fe2+ (aq) 解:原电池符号表示式为 (-)Pt | Sn2+ (c1), Sn4+ (c2) || Fe3+ (c3), Fe2+ (c4) | Pt(+)负极反应:Sn2+(aq)→ Sn4+(aq)+2e– 正极反应:2Fe3+(aq)+ 2e–→2Fe2+(aq)

实验七--氧化还原反应与电化学

实验七 氧化还原反应与电化学 一.实验目的 1. 了解测定电极电势的原理及方法 2. 掌握用酸度计测定原电池电动势的方法 3. 了解原电池、电解池的装置及作用原理 二.实验原理 1.电极电势的测定 E (Zn 2+/Zn)电极电位的测定 (-) Zn ?ZnSO 4(0.10mol·dm -3)??KCl(饱和)?Hg 2Cl 2,Hg (Pt) (+) 测测甘汞E E E E E E E E -=-=-=-=+++-+V 2415.0)/Zn Zn () /Zn Zn (V 2415.0)/Zn Zn ()(222 ()()() ++++ =22O 2Zn lg 216059.0Zn Zn Zn Zn c E E 理论 2.浓度对电极电势的影响 对于任意一个电极反应 氧化型物质 + z e - 还原型物质 )()(lg 05916.0)O/R ()O/R (还原态氧化态c c z E E += c (氧化态)增大或c (还原态)减小,E (O/R)变大;c (氧化态) 减小或c (还原态)增大,E (O/R) 减小。对比下面三个原电池 (1)(-) Zn ?ZnSO 4(0.10mol·dm -3) ║ CuSO 4(0.10mol·dm -3)?Cu (+) (2)(-) Zn ?ZnSO 4(0.10mol·dm -3) ║ [Cu(NH 3)4]2+, NH 3·H 2O ?Cu (+) (3)(-) Zn ?[Zn(NH 3)4]2+, NH 3·H 2O ║ CuSO 4(0.10mol·dm -3)?Cu (+) 电池(2)中正极的氧化态生成配离子使c (氧化态)变小,则正极的电极电势变小;(3)中负极的氧化态生成配离子使c (氧化态)变小,则负极的电极电势变小,故电动势 E 3 >E 1 >E 2。 3.酸度对电极电势的影响 含氧酸盐的氧化性随介质溶液的酸度的增加而增强,如 O H 7Cr 2 e 6H 14O Cr 23272+=+++-+- ) Cr ()H ()O Cr (lg 605916.0)/Cr O Cr ()/Cr O Cr (321427232723272++-+-+-?+=c c c E E

氧化还原反应与电极电势.

实验六氧化还原反应与电极电势 一、实验目的 1.熟悉电极电势与氧化还原反应的关系。 2.了解浓度、酸度、温度对氧化还原反应的影响。 3.了解原电池的装置和原理。 二、实验原理 氧化还原反应的实质是物质间电子的转移或电子对的偏移。氧化剂、还原剂得失电子能力的大小,即氧化还原能力的强弱,可根据它们相应电对的电极电势的相对大小来衡量。电极电势的数值越大,则氧化态的氧化能力越强,其氧化态物质是较强的氧化剂。电极电势的数值越小,则还原态的还原能力越强,其还原态物质是较强的还原剂。只有较强的氧化剂和较强的还原剂之间才能够发生反应,生成较弱的氧化剂和较弱的还原剂,故根据电极电势可以判断反应的方向。 利用氧化还原反应产生电流的装置称原电池。原电池的电动势E池= φ+-φ-,根据能斯特方程,当氧化型或还原型物质的浓度、酸度改变时,电极电势的数值会随之发生改变。本实验利用伏特计测定原电池的电动势来定性比较浓度、酸度等因素对电极电势及氧化还原反应的影响。 三、仪器和试药 仪器:试管、烧杯、表面皿、培养皿、U形管、伏特计、水浴锅、导线、砂纸、鳄鱼夹。 试药:HCl (2mol·L-1)、HNO3 (1mol·L-1, 浓)、H2SO4 (1, 3mol·L-1)、HAc (3mol·L-1)、H2C2O4 (0.1mol·L-1)、NH3·H2O (浓)、NaOH (6 mol·L-1, 40%)、ZnSO4 (1mol·L-1)、CuSO4 (1mol·L-1)、KI (0.1mol·L-1)、KBr (0.1mol·L-1)、AgNO3 (0.1, 0.5mol·L-1)、FeCl3 (0.1mol·L-1)、Fe2(SO4)3 (0.1mol·L-1)、FeSO4(0.4,1mol·L-1)、K2Cr2O7(0.4mol·L-1)、KMnO4(0.001mol·L-1)、Na2SO3 (0.1mol·L-1)、Na3AsO3 (0.1mol·L-1)、MnSO4 (0.1mol·L-1)、KSCN (0.1mol·L-1)、溴水(Br2)、碘水(I2)、CCl4、NH4F (1mol·L-1、固体)、KCl(饱和溶液)、SnCl2 (0.5mol·L-1)、CuCl2 (0.5mol·L-1)、(NH4)2C2O4(饱和溶液)、锌粒、小锌片、小铜片、琼脂、电极(锌片、铜片、铁片、碳棒)、红色石蕊试纸。 四、实验内容 1.电极电势和氧化还原反应 (1)向试管中加入10滴0.1mol·L-1的KI溶液和2滴0.1mol·L-1的FeCl3溶液后,摇匀,再加入10滴CCl4溶液充分振荡,观察CCl4层颜色的变化,解释原因并写出相应的反应方程式。 (2)用0.1mol·L-1KBr代替KI溶液进行同样实验,观察CCl4层颜色的变化。 (3)用溴水(Br2) 代替FeCl3溶液与0.1mol·L-1的KI溶液作用,又有何现象? 根据实验结果比较Br2/ Br-、I2/ I-、Fe3+/Fe2+三个电对的电极电势相对大小,指出最强的氧化剂和还原剂,并说明电极电势和氧化还原反应的关系。 2.浓度对电极电势的影响 (1)在两只50mL烧杯中,分别加入25mL 1mol·L-1的ZnSO4溶液和25mL 1mol·L-1的CuSO4溶液,在ZnSO4溶液中插入仔细打磨过的Zn片,在CuSO4溶液中插入仔细打磨过的Cu片,用导线将Cu片、Zn片分别与伏特计的正负极相连,两个烧杯溶液间用KCl盐桥连接好,测量电池电动势。

第九章氧化还原反应、电化学基础

第九章氧化还原反应电化学基础 本章学习要求: 1 掌握氧化还原反应方程式的配平及氧化数的概念。 2 了解原电池的构成、表示,电极电势的产生及一般理论计算,掌握能斯特 方程,了解电极电势的应用。 3 利用电极电势判断氧化还原反应的方向和极限。 4 初步掌握标准电极电势图及其应用。 讲授内容:氧化数、氧化还原电对、氧化还原方程式的配平,原电池、电极电势及其应用、电极电势的一般计算、能斯特方程、氧化还原反应的方向 和限度的判定、标准电极电势图及其应用。 本章重点:电极电势、氧化还原反应的方向和限度的判定、元素标准电极电势图及其应用。 本章难点:利用能斯特方程计算电极电势 课时安排:4学时 氧化还原反应的特征:反应前后某些元素的氧化态有变化,这种变化的实质就是 反应物之间电子转移的结果,所谓电子转移既指电子得失, 也指电子偏移。 9.1 氧化还原反应 9.1.1氧化和还原氧化剂和还原剂 还原:得电子从而使元素氧化态降低的过程。 氧化:失电子从而使元素氧化态升高的过程。 氧化剂:反应中得到电子的物质。 还原剂:失去电子的物质。 氧化还原反应:有电子得失或电子转移的反应。 在氧化还原反应中,还原剂被氧化,而氧化剂则被还原。 9.1.2 氧化还原反应方程式的配平 最常用的方法:氧化态法和离子电子法。 氧化态法配平氧化还原方程式的原则是:氧化剂中元素氧化态降低的总值等于还 原剂中元素氧化态升高的总值。 配平原则:①电荷守恒:氧化剂得电子数等于还原剂失电子数。 ②质量守恒:反应前后各元素原子总数相等。 用此法配平氧化还原反应方程式的具体步骤是: A 先找出反应式中氧化数发生变化的元素。 B 标出反应式中氧化数发生变化的元素(氧化剂、还原剂)的氧化数。 C 标出反应式中氧化剂、还原剂氧化数变化值。 D 按最小公倍数即“氧化剂氧化数降低总和等于还原剂氧化数升高总和”原则。在氧化剂和还原剂分子式前面乘上恰当的系数。 E 配平方程式中两边的H和O的个数。 根据介质不同,在酸性介质中O多的一边加H+,少的一边加H2O,在碱性介质中,O多的一边加H2O,O少的一边加OH-。在中性介质中,一边加H2O另一边加H+或OH-。

氧化还原反应及电化学-例题解析

第十四讲氧化还原反应及电化学 【例题解析】 【例1】(2005年江苏省化学竞赛夏令营选拔赛试题)铝是一种重要的金属材料,广泛用于制作导线、结构材料和日用器皿,铝合金大量用于飞机和其它构件的制造。十九世纪曾以电解熔融氧化铝的方法制备金属铝,当时铝由于价格昂贵而只被贵族用作装饰品。现代工业上是通过在1000℃左右的高温下电解氧化铝和冰晶石(Na3AlF6)的熔融液制备铝的。请回答下列问题: (1) 现代工业电解制备铝过程中正极和负极实际发生的反应分别为:在正极放电产生;在负极放电产生。 (2) 电解反应方程式为。 (3) 以现代工业方法制备的铝价格下降的可能原因是:。 (4) 若电流效率为75%,则制备1kg金属铝需以10A电流电解小时。 (5) 电解NaCl-AlCl3熔融液制备铝比电解Al2O3-Na3AlF6的熔融液制备铝节省电能约30%,为什么现在仍用后一种方法制备铝? 。 【解析】 (1) O2-3+ (2) O O Al 2 (3) 纯氧化铝熔点很高(>2000℃),加入Na3AlF6后由于形成共熔体使其熔点大大降低,从而使制备铝成本降低 (4) 397 (5) 由于AlCl3没有天然矿藏,制备AlCl3所需氯气仍需电解制得,电能没有省下。 【例2】(2006年江苏省化学竞赛夏令营选拔赛试题)锂离子电池、金属氢化物-镍电池(MH-Ni)、无水碱性锌-锰电池、燃料电池、太阳能电池等是21世纪理想的绿色环保电源。其中液态锂离子电池是指Li+嵌入化合物为正负电极的二次电池。正极采用锂化合物LiCoO2、LiNiO2或LiMn2O4,负极采用碳电极,充电后成为锂-碳层间化合物Li x C6(0

氧化还原原理在电化学中的应用_New

氧化还原原理在电化学中的应用

————————————————————————————————作者:————————————————————————————————日期:

氧化还原原理在电化学中的应用 氧化还原原理在电化学中的应用 摘要:电化学基础在高中阶段是一个知识难点,利用氧化还原原理来进行电化学的教学,有利于学生对该部分知识的理解,反过来又巩固和提高了氧化还原反应知识,更主要是训练了学生的思维,掌握了学习方法。通过研究和实践探索,取得了较好的效果。证明采用氧化还原原理的分析方法是可行的、策略是有效的、措施是可控的、效果是显著的。 关键词:氧化还原;电化学基础;电化学应用 氧化还原原理不仅仅是一个独立的知识点,更是一种工具,是贯穿整个高中化学知识体系的基本原理。体现在众多的知识和题目解释中,例如元素化合物的性质、化学工业流程、化学实验探究、电化学应用等,都会用到氧化还原原理。氧化还原的本质就是电子的转移,原电池的形成原理就是自发的氧化还原反应,在教学过程中,将两者有效的结合起来,能让学生更好的理解电化学,更好的应用电化学的知识和电化学在生活中的应用,并能巩固和提高氧化还原反应知识。 一、问题研究的背景 氧化还原反应在高一(人教版高中必修①)的课本中就已经进行过学习,电化学的基础在高一(人教版高中必修②)的课本开始学习。高一必修②只是简单介绍了电化学,详细的介绍是在高二(人教版高中必修④第四章)学习。很多老师在电化学的教学过程中,简单的提及原电池和电解池与氧化还原反应相关,然后就进行原电池和电解池的教学,导致学生没有从根本上理解电化学的来源和意义。从高一必修②中的Zn-Cu(H2SO4溶液)原电池、锌锰干电池、铅蓄充电电池、燃料电池,到高二选修④中的双液电池、化学电源、电解池,有很多不同

无机化学:第九章 氧化还原反应与电化学基础解析

第九章氧化还原反应和电化学基础 一、氧化还原反应方程式的配平 1、元素的氧化数(氧化值)(中学:化合价) ?定义:氧化数是某一个元素的荷电数,这种荷电数由假设把每个键中的电子数指定给电负性更大的原子而求得。 ?本质:a、离子化合物中,即正、负离子所带的电荷数; b、极性化合物中,即元素的一个原子提供参与共价键的电子数,其中电负性小,共用电子对离得较远的元素为正氧化数,电负性大、共用电子以离得较近的元素为负氧化数。『①单质的氧化数为0-1; ②在配合物中,当自由基或原子团作为配体时,其氧化数均看作 1; 2 ?定义:凡有电子得失或共用电子对偏移发生的反应。 氧化——失去电子或共用电子对偏离的变化,相应的物质称为“还原剂”; 还原——得到电子或共用电子对接近的变化,相应的物质称为“氧化剂”。 ?氧化剂 还原剂——氧化还原反应中,失去电子、氧化数升高的物质(发生氧化反应) 因此,凡元素氧化数发生变化的过程,就是氧化还原反应! 3、氧化还原反应方程式的配平方法与应用 (一)氧化数法:适用于任何氧化还原反应 ?依据:还原剂氧化数的升高总值 = 氧化剂氧化数降低总值 例1:KMnO4 + FeSO4 + H2SO4 == ①根据反应事实,写出反应产物,注意介质酸碱性: KMnO4 + FeSO4 + H2SO4==MnSO4 +Fe2(SO4)3 + K2SO4 + H2O ②调整计量系数,使氧化数升高值 = 降低值: +7 +2 +2 +3 KMnO4 + 5 FeSO4 + H2SO4==MnSO4 + 5/2 Fe2(SO4)3 + K2SO4 + H2O ③若出现分数,可调整为最小正整数: 2 KMnO4 +10 FeSO4 + H2SO4==2 MnSO4 + 5 Fe2(SO4) 3 + K2SO 4 + H2O 法2:配平各元素原子数(观察法)——先配平非H、O原子,后配平H、O原子。 ①配平K+、SO42-数目 SO42-:左11,应+7;右18 2 KMnO4 + 10 FeSO4 + 8 H2SO4 ==2 MnSO4 + 5 Fe2(SO4) 3 + K2SO 4 + H2O ②配平H+数目 H+:左2,应 8 H2O 2 KMnO4 +10 FeSO4 + 8 H2SO4==2 MnSO4 +5 Fe2(SO4) 3 + K2SO 4 + 8 H2O ③配平(或核对)O原子数目:已平衡。 小结:氧化数法配平氧化还原反应方程式的步骤

高中化学 氧化还原反应和电化学

第六章 氧化─还原反应和电化学 Chapt e r 6 Oxidation-Reduction Reactions & Electrochemistry 本章研究另一类化学反应──氧化─ 还原反应(有电子转移的反应) §6-1 氧化─ 还原反应 Oxidation —Reduction Reactions 一、氧化数(Oxidation Number ) 1.氧化数是一个经验值,是一个人为的概念。 2.引入此概念,有以下几方面的应用: (1) 判断是否发生氧化──氧化数升高、氧化反应、还原剂 reducing agent ( reductant );氧化数降低、还原反应、氧化剂 oxidizing agent ( oxidant )。 (2) 计算氧化──还原当量 (3) 配平氧化──还原反应方程式 (4) 分类化合物,如Fe ( Ⅲ )、Fe (Ⅱ);Cu (Ⅰ)、Cu (Ⅱ)。 引入氧化数,可以在不用详细研究化合物的结构和反应机理的情况下,实现上述四点。 3.怎样确定氧化数 (1) 在离子化合物中,元素的氧化数等于离子的正、负电荷数。 (2) 在共价化合物中,元素的氧化数为两个原子之间共用电子对的偏移数。 a .在非极性键共价分子(单质)中,元素的氧化数为零,如P 4、S 8、Cl 2中P 、S 、Cl 的氧化数都为零; b .在极性键共价分子中,元素的氧化数等于原子间共用电子对的偏移数,例如: 11H :F +-,1 1 11(-2) H :O :H +--+,11 0011(1) H :O :O:H +--+-,11 +11 (0) H ::F O +--。 (3) 具体规定: a .单质的氧化数为零,例如P 4、S 8中P 、S 的氧化数都为零,因为P -P 和 S -S 键中共用电子对没有偏移; b .除了在NaH 、CaH 2、NaBH 4、LiAlH 4中氢的氧化数为-1以外,氢的氧 化数为+1; c .所有氟化物中,氟的氧化数为-1; d .氧的氧化数一般为-2,但有许多例外,例如2O (1/2)--、22O (1)- -、3O (1/3)--、 21/2O ()++、2OF 2)(+等; 目前元素的最高氧化数达到+8,在OsO 4、RuO 4中,Os 和Ru 的氧化数均 为+8,其它元素的最高氧化数至多达到其主、副族数。例如:Na 2Cr 2O 12和CrO 5 中,Cr 的氧化数为+6,因为这些化合物中有22O - (O 的氧化数为-1)存在;

氧化还原电化学

1.氧化还原反应方程式(含电极反应式)书写策略 (1)三步书写未知氧化还原方程式 第一步根据氧化还原的顺序规律确定谁是氧化性最强的氧化剂及还原性最强的还原剂,确定氧化剂相应的还原产物及还原剂相应的氧化产物,并根据题意及化合价变化规则确定生成物的化合价、进一步列出得失电子情况; 第二步根据电荷守恒及溶液中存在的微粒情况将电荷配平; 第三步根据原子守恒结合溶液中微粒情况配平原子; (2) 四步书写电极反应式 第一步根据氧化还原的顺序规律确定谁是氧化性最强的氧化剂及还原性最强的还原剂,它们分别在两极上发生还原反应与氧化反应,并根据题意及化合价变化规则确定生成物的化合价、生成物的稳定存在形式、并进一步列出得失电子情况; 第二步根据电荷守恒及溶液中存在的微粒情况将电荷配平; 第三步根据原子守恒结合溶液中微粒情况配平原子; 第四步将两极上氧化剂与还原剂得失电子总数配平。 很明显:未知氧化还原方程式的书写与电极反应式的书写方法及技巧基本相同,无非是因为电极反应是在两个不同的场所进行的,书写出来的电极反应式分氧化反应和还原反应两部分,根据氧化还原规律,得失电子数必须相等(第四步)。 例1:完成下列氧化还原方程式的书写。 ①一定条件下,向废水中加入CH3OH,将HNO3还原成N2。若该反应消耗32 g CH3OH 转移6 mol电子,则参加反应的还原剂和氧化剂的物质的量之比是。(2011北京26) ②SO2吸收Br2的离子方程式是。(2009北京28)Na2SO3稀溶液与I2反应的离子方程式是。(2007北京28) ③MnO2在H2O2分解反应中作催化剂。若将适量MnO2加入酸化的H2O2的溶液中, MnO2 溶解产生Mn2+,该反应的离子方程式是。(2007北京27) ④铜屑放入稀硫酸不发生反应,若在稀硫酸中加入H2O2,铜屑可逐渐溶解,该反应的离子方程式是。(2005北京27) 转化为N2的离子方程式是。(2011北京26) ⑤来自电解的淡盐水(含氯水)将NH+ 4 ⑥若FeCO3浊液长时间暴露在空气中,会有部分固体表面变为红褐色,该变化的化学方程式是。(2009北京26) ⑦取硫酸亚铁溶液,调pH约为7,加入淀粉KI溶液和H2O2,溶液呈蓝色并有红褐色沉淀生成。当消耗2mol I-时,共转移3 mol电子,该反应的离子方程式是。(2008北京28) ⑧无色有刺激性气味的气体与含1.5mol氯的一种含氧酸(该酸的某盐常用于实验室制取氧气)的溶液在一定条件下反应,可生成一种强酸和一种氧化物,若有1.5×6.02×1023个电子转移时,该反应的化学方程式是。(2006北京28) ⑨将硫与氯水充分反应可生成两种强酸,该反应的化学方程式是。(2004北京27) (3)如果不是氧化还原反应,也可将三步的第一步改为依据元素守恒及相关信息确定生成物或反应物,其余两步与之相同。 高温 例2:将燃烧黄铁矿的化学方程式补充完整:4 +11O22Fe2O3+8SO2(2009北京28);将FeSO4溶液与稍过量的NH4HCO3溶液混合,得到含FeCO3的浊液的离子方程式是。(2009北京26) 例3:写出①铜锌原电池②氢氧燃料电池(KOH为电解质)③甲醇燃料电池(KOH为电解质)的电极反应式和总反应的离子方程式。

第7章 氧化还原反应 电化学基础

第7章氧化还原反应电化学基础 一、单选题 1. 下列电对中,Eθ值最小的是: A: Ag+/Ag;B: AgCl/Ag;C: AgBr/Ag;D: AgI/Ag 2. Eθ(Cu2+/Cu+)=0.158V,Eθ(Cu+/Cu)=0.522V,则反应2 Cu+Cu2+ + Cu的Kθ为: A: 6.93×10-7;B: 1.98×1012;C: 1.4×106; D: 4.8×10-13 3. 已知Eθ(Cl2/ Cl-)= +1.36V,在下列电极反应中标准电极电势为+1.36V 的电极反应是: A: Cl2+2e- = 2Cl- B: 2 Cl- - 2e- = Cl2 C: 1/2 Cl2+e- = Cl- D: 都是 4. 下列都是常见的氧化剂,其中氧化能力与溶液pH 值的大小无关的是: A: K2Cr2O7 B: PbO2 C: O2 D: FeCl3 5. 下列电极反应中,有关离子浓度减小时,电极电势增大的是: A: Sn4+ + 2e- = Sn2+B: Cl2+2e- = 2Cl-

C: Fe - 2e- = Fe2+ D: 2H+ + 2e- = H2 6. 为防止配制的SnCl2 溶液中Sn2+被完全氧化,最好的方法是: A: 加入Sn 粒B:. 加Fe 屑 C: 通入H2D: 均可 7. 反应Zn (s) + 2H+→Zn 2++ H2 (g)的平衡常数是多少? A: 2×10-33 B: 1×10-13 C: 7×10-12 D: 5×10 26 二、是非题(判断下列各项叙述是否正确,对的在括号中填“√”,错的填“×”) 1. 在氧化还原反应中,如果两个电对的电极电势相差越大,反应就进行得越快2.由于Eθ(Cu+/Cu)= +0.52V , Eθ(I2/ I-)= +0.536V , 故Cu+ 和I2不能发生氧化还原反应。 3.氢的电极电势是零。 4.计算在非标准状态下进行氧化还原反应的平衡常数,必须先算出非标准电动势。 5.FeCl3,KMnO4和H2O2是常见的氧化剂,当溶液中[H+]增大时,它们的氧化能力 都增加。

第九章 氧化还原反应与电化学基础.

第九章氧化还原反应与电化学基础 【竞赛要求】 氧化态。氧化还原的基本概念和反应的书写与配平。原电池。电极符号、电极反应、原电池符号、原电池反应。标准电极电势。用标准电极电势判断反应的方向及氧化剂与还原剂的强弱。电解池的电极符号与电极反应。电解与电镀。电化学腐蚀。常见化学电源。Nernst 方程及有关计算。原电池电动势的计算。pH 对原电池的电动势、电极电势、氧化还原反应方向的影响。沉淀剂、络合剂对氧化还原反应方向的影响。 【知识梳理】 一、氧化还原反应的基本概念 1、氧化数 在氧化还原反应中,由于发生了电子转移,导致某些元素带电状态发生变化。为了描述元素原子带电状态的不同,人们提出了氧化数的概念。 1970年,国际纯粹与应用化学联合会(IUPAC )对氧化数的定义是:氧化数是某元素一个原子的荷电数,这个荷电数是假设把每个化学键的电子指定给电负性更大的原子而求得的。例如,在NaCl 中,钠的氧化数为 +1,氯的氧化数为–1。在SO 2中,硫的氧化数为+4,氧的氧化数为–2。由此可见,氧化数是元素在化合状态时人为规定的形式电荷数。确定氧化数的规则: (1)在单质中,元素的氧化数为零。 (2)在单原子离子中,元素的氧化数等于离子所带的电荷数。 (3)在大多数化合物中,氢的氧化数为 +1,只有在活泼金属的氢化物(如NaH,CaH 2)中,氢的氧化数为–1。

(4)通常,在化合物中氧的氧化数为–2;但在过氧化物(如H 2O 2、Na 2O 2、BaO 2)中氧的氧化数为–1;而在OF 2和O 2F 2中,氧的氧化数分别为 +2和+1。 (5)在所有氟化物中,氟的氧化数为–1。 (6)碱金属和碱土金属在化合物中的氧化数分别为 +1和 +2。 (7)在中性分子中,各元素氧化数的代数和为零。在多原子原子离子中各元素氧化数的代数和等于离子所带的电荷数。 根据上述原则,可以确定化合物中某元素的氧化数。 2、氧化还原电对 在氧化还原反应中,元素氧化数升高的物质是还原剂,元素氧化数降低的物质是氧化剂。氧化还原反应是由还原剂被氧化和氧化剂被还原两个半反应所组成的。例如: Zn(s + Cu2+ (aq Zn 2+(aq + Cu(s 是由半反应Zn(s Zn 2+ + 2e-和Cu 2+ + 2e- Cu(s 所组成。 在半反应中,同一元素的两个不同氧化数的物种组成了电对,其中,氧化数较大的物种称为氧化型,氧化数较小的物种称为还原型。通常电对表示成:氧化型 / 还原型。例如:氧化还原反应是由两个电对构成的反应系统。可以表示为: 还原型(1)+氧化型(2)氧化型(1)+ 还原型(2)

实验17 氧化还原反应和电化学

实验17 氧化还原反应和电化学 一、实验目的 1.了解电极电势与氧化还原反应的关系; 2.试验并掌握浓度和酸度对电极电势的影响。 二、实验原理 原电池是将化学能转变为电能的装置。原电池的电动势可以表示为正极和负极电极电势之差: ε= E (+)-E (-) 电动势可以用万用电表测量。 氧化剂和还原剂的强弱,可用电对电极电势的大小来衡量。一个电对的标准电极电势E o 值越大,其氧化型的氧化能力就越强,而还原型的还原能力就越弱;若E o 值越小,其氧化型氧化能力越弱,而还原型还原能力越强。根据标准电极电势值可以判断反应进行的方向。在标准状态下反应能够进行的条件是: εo = E o (+)-E o (-) > 0 例如,E o (Fe 3+/ Fe 2+) = 0.771 V ,E o (I 2/ I -) = 0.535 V ,E o (Br 2/ Br -) = 1.08 V 则在标准状态下,电对Fe 3+/ Fe 2+的氧化型Fe 3+可以氧化电对I 2/ I -的还原型I -,反应式如下: 2Fe 3+ + 2I - ══ 2Fe 2+ + I 2 而反应电对Fe 3+/ Fe 2+的氧化型Fe 3+可以氧化电对Br 2/Br -的还原型Br -,相反的反应则可以 进行: Br 2 + 2Fe 2+ ══ 2Br - + 2Fe 3+ 当然,多数反应都是在非标准状态下进的,这时需要考虑浓度对电极电势的影响,这种影响可用能斯特(Nernst )方程来表示: 0.059 [] lg []E E n =+ 氧化型还原型 从能斯特方程可以看出,改变电对氧化型、还原型的浓度,将使电极电势值发生相应程度的变化。由于酸碱平衡、沉淀溶解平衡和配位离解平衡能够改变氧化型或还原型浓度,从而影响电对电极电势的大小,它们对于氧化还原反应都有影响;有时影响显著,甚至可能改变反应进行的方向。 三、实验用品 万用电表、导线、Cu 片、Zn 片、铁电极、碳电极 KI (0.1 mol·L -1)、KBr (0.1 mol·L -1)、Na 2SO 3(0.1 mol·L -1)、FeCl 3(0.1 mol·L -1)、Fe 2(SO 4)3(0.1 mol·L -1)、FeSO 4(0.1 mol·L -1)、NaCl (6 mol·L -1)、KMnO 4(0.01 mol·L -1、0.2 mol·L -1)、Na 2SO 4(1 mol·L -1)、NaHSO 3(1 mol·L -1)、CuSO 4(1 mol·L -1)、ZnSO 4(1 mol·L -1)、H 2SO 4(1 mol·L -1、3 mol·L -1、6 mol·L -1)、HCl (6 mol·L -1)、HAc (6 mol·L -1)、NaOH (6 mol·L -1)、K 2Cr 2O 7(0.4 mol·L -1)、浓NH 3·H 2O (AR )、NH 4F (10%)、CCl 4、 氯水、溴水、碘水、MnSO 4(0.2 mol·L -1)、H 2C 2O 4(0.2 mol·L -1)、浓HNO 3(AR )、HNO 3 (0.5 mol·L -1)、奈斯勒试剂、硫酸亚铁铵(AR ) 四、实验内容 (一)电极电势与氧化还原反应的方向 1.向试管中加入几滴0.1 mol·L -1 KI 溶液和少量CCl 4,边滴加0.1 mol·L -1 FeCl 3溶液边振摇试管,观察CCl 4层的颜色变化,写出反应方程式。 以KBr 代替KI 重复进行实验,结果如何? 2.向试管中滴加几滴Br 2水和少量CCl 4,摇动试管,观察CCl 4层的颜色。再加入约0.5 g 硫酸亚铁铵固体,充分反应后观察CCl 4层颜色有无变化? 以I 2水代替Br 2水重复进行实验。CCl 4层颜色有无变化?写出反应方程式。 3.在试管中加入几滴KBr 溶液和少量CCl 4,滴加氯水,充分振摇试管,观察CCl 4层的颜色变化。

氧化还原反应与电化学

第一章氧化—还原反应·电化学 1. 已知X的氧化数为+1; +2; +3; +4; +5; +3/4。试写出X在这些氧化数下的氧化物分子式。 2. 写出下列分子或离子中,硫的氧化数: S22-,HSO4-,S2O32-,SO3,H2S,S4O62-,SO2,S8。 3. 写出下列分子或离子中,锰的氧化数: MnF2,K4Mn(CN)6, K2MnO4, Mn2(CO)10, MnO4-, MnO2, Mn2O7, Mn(CO)5I。 4. 写出下列各分子或离子中,P的氧化数: H3PO4,P4O6,P4O10,P4,P2H4,H3PO3,HPO42-,HPO3,PH4+。 5. 用氧化数法配平下列反应方程式: (1) H2S + SO2→S + H2O (2) NH3 + NO →N2 + H2O (3) CuS + HNO3→Cu(NO3)2 + S + NO + H2O (4) CuFeS2 + SO2 + HCl →CuCl2 + FeCl2 + S + H2O (5) Zn + AgO + H2O →Zn(OH)2 + Ag2O (6) I2 + Cl2 + H2O →HIO3 + HCl (7) BaO2 + HCl →BaCl2 + H2O + Cl2 (8) K2Cr2O7 + FeSO4 + H2SO4→Cr2(SO4)2 + Fe2(SO4)3 + K2SO4 + H2O (9) KClO3→KClO4 + KCl

(10) As2S3 + HNO3 + H2O →H3AsO4 + H2SO4 + NO 6. 用氧化数法配平: (1) K2CrO4 + S →Cr2O3 + K2SO4 + K2O (2) KMnO4 + C12H22O11→CO2 + MnO2 + H2O + K2CO3 (3) HCNS + KClO3→CO2 + NO + SO2 + KCl + H2O (4) C3H8 + O2→CO2 + H2O (5) KMnO4 + H2C2O4→K2CO3 + MnO2 + H2O + CO2 7. 用离子?电子法配平如下反应方程式: (1) NO2- + Al →NH3 + Al(OH)4-(在OH-中) (2) Cu(NH3)42+ + CN-→Cu(CN)32-+ CNO-+ NH3(在OH-中) (3) HIO →IO3-+ I-+ H2O (在OH-中) (4) CN-+ O2→CO32-+ NH3(在OH-中) (5) MnO4-+ H2O2→Mn2+ + H2O + O2(在H+中) (6) Zn + CNS-→Zn2+ + H2S + HCN (在H+中)8. 用离子?电子法配平下列各反应方程式: (1) MnO4-+ Sn2+→Sn4+ + Mn2+(在H+中) (2) BrO3-+ Br-→Br2(在H+中) (3) Cr2O72-+ SO32-→SO42-+ Cr3+(在H+中) (4) Cr3+ + H2O2→CrO42-+ H2O (在OH-中) (5) Fe + NO2-→FeO22-+ NH3(在OH-中)

氧化还原反应与电化学

氧化还原反应与电化学 一、 实验目的 1. 掌握电极电势对氧化还原反应的影响 2. 了解氧化型或还原型物质浓度、溶液酸度改变对电极电势的影响。 3. 进一步理解氧化还原反应的可逆性 4. 熟练掌握能斯特方程的应用 二、 实验原理 氧化还原过程也就是电子的转移过程。能斯特(Nernst )方程式 电对的氧化型物质或还原型物质的浓度,是影响其电极电势的重要因素之一,电对在任一离子浓度下的电极电势,可由能斯特方程算出。例如Cu-Zn 原电池,若在铜半电池中加入氨水,由于Cu 2+和NH 3能生成深蓝色的、难解离的四氨合铜(II )配离子[Cu(NH 3)4]2+,溶液中的Cu 2+浓度就会降低,从而使电极电势降低: Cu 2++4NH 3=[Cu(NH 3)4]2+ (深蓝色) 过氧化氢的氧化还原性(摇摆实验)主要反应方程式: 辅助试剂起到调节(1)、(2)反应速率的作用 已知在酸性介质中元素电势图: 三、 实验仪器与药品 Pb(NO 3)2 (0.5mol · L – 1) CuSO 4 (0.5mol · L –1) ZnSO 4(0.5mol · L –1) 锌片 铅粒 铜片 氨水1:1 A:量取400 ml H 2O 2(30%)稀释到1000mL ; B:称取40g KIO 3和量取40mL H 2SO 4(2 mol · L –1),稀释到1000mL ;(此溶液相当于HIO 3溶液) C:(辅助试剂):称取15.5g 丙二酸,3.5g MnSO 4·2H 2O 和0.5g 淀粉(先溶于热水)稀释到1000mL 。 四、 实验内容 a.电极电势与氧化还原反应的关系 分别在5滴 Pb(NO 3)2 (0.5mol · L – 1)和5滴 CuSO 4 (0.5mol · L –1)点滴板穴中,各放入一块表面擦净的锌片,观察锌片表面和溶液颜色有无变化?以表面擦净的铅粒(或铅片)代替锌片,分别与ZnSO 4(0.5mol · L –1)和CuSO 4(0.5mol · L –1)溶液反应,观察有无变化?根据实验结果定性比较Zn 、Pb 、Cu 电极电势的大小。 根据实验结果,说明电极电势与氧化还原反应方向的关系 ,298.15K 时= T

氧化还原反应实验报告

实验十二氧化还原反应 一、实验目的 1.理解电极电势与氧化还原反应的关系和介质、浓度对氧化还原反应的影响。2.加深理解氧化态或还原态物质浓度变化对电极电势的影响。 3.进一步理解原电池、电解及电化学腐蚀等基本知识。 [教学重点] 电极电势和氧化还原反应的关系。 [教学难点] 原电池、电解及电化学腐蚀等知识。 [实验用品] 仪器:低压电源、盐桥、伏特计 药品:0.5 mol·L-1Pb(NO3)2、(0.5、1 mol·L-1)CuSO4、0.5 mol·L-1 ZnSO4、 0.1 mol·L-1KI、0.1 mol·L-1FeCl3、0.1 mol.L-1KBr、0.1 mol·L-1FeSO4、(1、3 mol·L-1) H2SO4、6 mol·L-1HAc、(2 mol·L-1、浓)HNO3、(0.01、0.1 mol·L-1)KMnO4、6 mol·L-1NaOH、0.1 mol·L-1K2Cr2O7、饱和KCl、浓NH3·H2O、饱和氯水、I2水、Br2水、CCl4、酚酞溶液、Na2S2O3、红石蕊试纸 材料:导线、砂纸、电极(铁钉、铜片、锌片、碳棒) 二、实验内容 (一)电极电势和氧化还原反应 1.2Fe3++ 2I-= 2Fe2++ I2 I2易溶于CCl4,CCl4层显紫红色 2.Fe3++ Br-不起反应,CCl4层无色 3.Cl2+ 2Br-= 2Cl-+ Br2 Br2溶于CCl4,CCl4层显橙黄色 (二)浓度和酸度对电极电势影响 1.浓度影响 在两只50m L烧杯中,分别注入30mL 0.5mol·L-1 ZnSO4和0.5mol·L-1 CuSO4,在ZnSO4中插入Zn片,CuSO4中插入Cu片,中间以盐桥相通,用导线将Zn片Cu片分别与伏特表的负极和正极相接。测量两电极之间的电压。 现象:伏特表指针偏到E=0.80处解释:(-):Zn2++2e-=Zn (+):Cu2++2e-=Cu CuSO4溶液中加浓NH3.H2O到沉淀溶解为止,形成深蓝色溶液; Cu2+ + 4NH3 = [Cu(NH3)4]2+ [Cu2+]下降, E变小,E=0.45V ZnSO4溶液中加浓NH3.H2O至沉淀溶解为止; Zn2+ + 4NH3 = [Zn(NH3)4]2+ [Zn2+]下降, E变大,E=0.76V 最后达到平衡, E=0.8V接近初起值. 2*.酸度影响 在两只50mL烧杯中,分别注入FeSO4、K2Cr2O7溶液。FeSO4溶液中插入Fe片,在K2Cr2O7 溶液中插入C棒,将Fe片、C棒通过导线分别与伏特表的负极和正极相接,中间用盐桥连接,测量两极电压。 文档冲亿季,好礼乐相随mini ipad移动硬盘拍立得百度书包 现象:测得E=0.61V 解释:(-) Cr2O72-+ 6e- + 14H+ = 2Cr3++ 7H2O (+) Fe2++ 2e- = Fe 在K2Cr2O7中,慢慢加入1mol·L-1H2SO4,再加入6mol·L-1NaOH。 加H+后E = 1.1V 加OH-后E = 0.36V

相关主题
文本预览
相关文档 最新文档