当前位置:文档之家› 并联电抗器无功补偿

并联电抗器无功补偿

并联电抗器无功补偿
并联电抗器无功补偿

并联电抗器

1.并联电抗器在电力系统中的作用

并联电抗器无功功率补偿装置常用于补偿系统电容。它通过向超高压、大容量的电网提供可阶梯调节的感性无功功率,补偿电网的剩余容性充电无功功率控制无功功率潮流,保证电网电压稳定在允许范围内。实践证明,对于一些电压偏高的电网,安装一定数量的并联电抗器是解决系统无功功率过剩,降低电压的有效措施,特别是限制由于线路开路或轻载负荷所引起的电压升高。所以在一定的运行工况中,在超高压输电线路手段装设并联电抗器以吸收输电线路电容所产生的无功功率,称为并联电抗器补偿。

由于目前应用于电力系统的电抗器大都为固定容量的电抗器,其容量不能改变,无法随时跟踪运行工况的无功功率变化,造成电抗器容量的浪费,与目前节能减排的主题不相符合,所以,有必要研究可控电抗器这个热门话题,使得电抗器的容量可控可调,这也在一定程度上符合我国发展智能电网的要求。

2.可控并联电抗器的分类、基本原理和优缺点

图1可控并联电抗器的分类

2.1 传统机械式可调电抗器

调匝式和调气隙式是最早出现并广泛应用的可调电抗器。其基本原理是通过调节线圈匝数或调节铁芯气隙的长度来改变电抗器的磁路磁导,从而改变电抗值。调匝式可控电抗器较易实现,但是电抗值不能做的无级调整。调气隙式由于机械惯性和电机的控制问题无法在工程上应用。

2.2 晶闸管可控电抗器(TCR)

晶闸管可控电抗器,是随着电力电子技术发展起来的一种新型的可控电抗器,它采用线性电抗器与反并联晶闸管串联的接线方式,通过控制晶闸管的触发角就可以控制电抗器的等效电抗值。

TCR的控制灵活,响应速度快,缺点是在调节时会产生大量的谐波,需要加装专门的滤波装置。在高电压大容量的场合下,必须采用多个晶闸管串联的方式,造价昂贵,这使得它在超高压电网中的应用受到了相当大的限制,目前主要应用范围是35kV和10kV的配电

网中。

2.3 磁控电抗器

磁控电抗器是通过改变铁芯的磁阻来实现电感值可调。磁阻大,电感小;磁阻小,电感大,改变磁阻的方法一般有两种:一种是外加直流助磁来改变磁路的饱和程度;另一种是在控制绕组外加交流电流调节电抗器铁芯中的来实现电抗值可调的目的。

2.3.1 直流可控电抗器

直流可控电抗器属于磁控电抗器的一种。它包括直流助磁式可控电抗器、高漏抗变压器式可控电抗器、磁阀式可控电抗器和正交磁芯式可控电抗器。

(1)直流助磁式可控电抗器

直流助磁式可控电抗器是通过改变电抗器副边控制绕组的直接电流来改变磁路的饱和程度。当直流电流增大时,磁路饱和程度加深,交流有效磁导率降低,有效电抗值减小;反之,直流电流减小时,有效电抗值增大。由于直流控制绕组和交流工作绕组含有较大谐波分量,并且噪声问题比较严重,因此此类电抗器有一定的适用范围。

(2)磁阀式可控电抗器

“磁阀”的概念是前苏联学者在1986年提出的,使可控电抗器的理论向前发展了一大步。磁阀式可控电抗器是借助控制回路直流控制电流的激磁改变铁心的磁饱和度,从而达到平滑调节感抗的目的。磁阀式可控电抗器的铁心截面积具有减小的一段,在整个容量调节范围内,只有小面积的那一段饱和,其余段均处于未饱和线性状态,通过改变小截面段磁路的饱和程度来改变电抗器的容量,这就磁阀名称的由来。磁阀式可控电抗器制造工艺简单,成本低廉,对于提高电网的输电能力,调整电网电压,补偿无功功率,以及限制过电压都有非常大的应用潜力。

图2(a)为磁阀式可控电抗器的结构原理图,(b)为相应的电路图。

(a)结构原理图(b)电路原理图

图2 磁阀式电抗器的原理图

当KP1,KP2均不导通时,由绕组结构的对称性可知,其与空载变压器作用相同。当电源电压处于正半波时,晶闸管KP1承受正向电压,KP2承受反向电压。此时,若触发KP1使之导通,电源通过变比为δ的“自耦变压器”,由匝数为N2的线圈向电路提供直流控制电压和电流。当KP2在电源的负半波被触发导通时,同样也产生直流控制电压和电流,而且控制电流的方向与KP1导通时一致。这样,KP1和KP2在一个工频周波内轮流导通,构成全波整流,二极管起续流作用,保证晶闸管在相应的正向电压过零时能够顺利关断。改变KP1和KP2的导通角,便可改变被控电流的大小,从而改变铁心的饱和度,实现电抗值连续可变。

(3)高漏抗变压器式可控电抗器

高漏抗变压器式可控电抗器是在晶闸管可控电抗器(TCR)的基础上发展起来的,其一、二次绕组间的短路阻抗很大,二次绕组用晶闸管短路。通过调节二次绕组中晶闸管的导通角来调节二次绕组的中的短路电流,可以实现电抗值的连续平滑可调。此可控电抗器相对于TCR的优点是将可控硅元件转移到变压器低压侧,降低了设备的成本,但仍然存在谐波问题,需要增加滤波装置。

2.3.2 交流可控电抗器

(1)基于磁通控制式可控电抗器

基于磁通控制式可控电抗器是一种新的可控电抗器。它通过在带气隙的变压器的二次侧采用有源的方式注入一个与一次侧电流侧成比例的电流,改变二次侧注入电流的大小即可实现变压器一次侧等效阻抗的连续可调。此种电抗器铁芯不饱和,理论上不会产生谐波,但仍处于理论研究阶段。

(2)变压器式可控电抗器

变压器式可控电抗器是在高漏抗式可控电抗器基础上提出的一种拓扑结构。其电路原理图如图3所示,通过分级控制各控制绕组的反并联晶闸管的导通和关断以达到分级平滑调节整个电抗器等效阻抗的目的。由于晶闸管工作于全关断或导通,所以不会对系统产生谐波污染。

图3变压器式可控电抗器

(3)调电容式可控电抗器

调电容式可控电抗器原理电路图如图4所示。在电抗器工作时,当有较大的感性电流时,利用晶闸管分组投入电容器,利用电容电流限制部分电感电流,通过改变接入其中电容组数,达到补偿电流的目的。此种可控电抗不会产生谐波,但由于分级控制,不能做到无级调节,另外由于增加了电容器,所以增加了设备的容量,使成本增加。

图4调电容式可控电抗器

2.4 PWM控制电抗器

这种电抗器是近几年来发展起来的一种新型可调电抗器,它利用PWM技术来调节电抗器侧的电压的幅值和相位,从而调节其输入电网的电流的幅值和相位,这便可以等效的改变送入电网的无功功率,从而起到动态无功功率补偿的作用。其优点是谐波含量少,电抗量可平滑调节,但缺点同样十分突出,电力电子器件的耐压水平限制了其在超高压电网中的应用,同时其控制相当复杂,成大非常大。

2.5 超导可控电抗器

尚不能实现,故在此不做讨论。

3.可控电抗器的国内外现状与发展

国内外可控电抗器在实际中应用得较多的是磁阀式可控电抗器,国际上磁阀式电抗器在110kV及以上高压系统的应用在前苏联国家,见表1所示。

表1 磁阀式电抗器在110kV及以上高压系统的应用情况

在国内,我国自主研发的首套500kV、100Mvar磁控式可控电抗器于2007年9月在湖北江陵换流站投运成功,是国际上首次将磁控式可控电抗器应用到500kV输电线路侧,并在系统运行中发挥了重要作用,为我国特高压可控电抗器的研制、运行与维护积累了宝贵经验。2006年9月,由中国电力科学研究院设计的忻都500kV高阻抗变压器式可控并联电抗器示范工程成功投入运行,该装置通过运行方式的切换可分别作为母线并联电抗器和线路并联电抗器使用。

综上所述,在目前来看,磁阀式可控电抗器和高阻抗变压器式可控电抗器是发展的重点,也是今后应用于实际电网的重点。

变电站无功补偿电容器容量计算

变电站无功补偿电容器容量计算 变电站无功补偿电容器容量计算 侯广松山东菏泽供电公司(274016) 摘要:该文探讨了变电站在进行无功补偿电容器建设时确定补偿容量的计算方法。 关键词:变电站;补偿容量;设计 合理进行无功补偿是保证电压质量和电网稳定运行的必要手段,对提高输送能力和降低电网损耗具有重要意义,2004年8月24日国家电网公司下发的《国家电网公司电力系统无功补偿配置技术原则》要求220kV变电站“补偿容量按照主变压器容量的10%-25%配置”,35kV~110kV变电站“按主变压器容量的10%~30%配置”,具体计算方法没有明确指出。现以我公司220kV单城变电站扩建增设无功补偿电容器为例进行探讨。 1、变电站基本情况 220kV单城站在系统中的位置如图1,220kV鱼台站接入济宁电网与山东省电网相联。该站1999年建成投运,一期一台主变容量150MV A,未装设无功补偿设备,作为“提高输送能力”的一项措施,2005年加装无功补偿电容器。 图1 系统接线示意图 2、计算补偿容量的不同方法 依据《电力系统电压和无功电力技术导则》、《国家电网公司电力系统无功补偿配置技术原则》要求,由不同角度计算可得出不同的容量要求。 (1)按最高负荷时变压器高压侧功率因数不低于0.95计算。220kV单城站#1主变压器高压侧最高负荷 Smax=P+Q=108.5+j67.2 功率因数

补偿容量 (1) (2)按补偿主变压器无功损耗计算 单城站#1主变参数及110kV 侧、35kV 侧负荷见表1。 空载漏磁无功损耗 额定负载漏磁功率 (3) (2) (4)

变压器无功损耗 (5) 补偿容量QC=ΔQT=16.04 MVar (3)按各种运行方式下电压合格计算 无功负荷变化引起母线电压的变化量与变电站在电网中所处的位置有关,计算较为复杂,最好使用某种软件进行计算分析。 以电力系统分析综合程序PSASP分析知,220kV白单线开环时单城站220kV母线电压最低,达208.5kV(见图2),安装电容器后应保证该方式下电压满足UN+7-3%的要求,即单城站220kV母线电压应在213.4kV及以上。 补偿后的潮流图如图3。 由图3知,在单城站35kV母线增加15.9MVar的无功电源可使单城站220kV母线电压满足下限要求。即

无功补偿电容器串联电抗器的选用

无功补偿电容器串联电抗器的选用 在高压无功补偿装置中,一般都装有串联电抗器,它的作用主要有两点:1)限制合闸涌流,使其不超过20倍;2)抑制供电系统的高次谐波,用来保护电容器。因此,电抗器在无功补偿装置中的作用非常重要。 然而,串抗与电容器不能随意组合,若不考虑电容装置接入处电网的实际情况,采用“一刀切”的配置方式(如电容器一律配用电抗率为5%~6%的串抗),往往适得其反,招致某次谐波的严重放大甚至发生谐振,危及装置与系统的安全。由于电力谐波存在的普遍性,复杂性和随机性,以及电容装置所在电网结构与特性的差异,使得电容装置的谐波响应及其串抗电抗率的选择成为疑难的问题,也是人们着力研究的课题。电容器组投入串抗后改变了电路的特性,串抗既有其抑制涌流和谐波的优点,又有其额外增加的电能损耗和建设投资与运行费用的缺点。所以对于新扩建的电容装置,或者已经投运的电容装置中的串抗选用方案,进行技术经济比较是很有必要的。虽然现有的成果尚不足为电容装置工程设计中串抗的选用作出量化的规定,但是随着研究工作的深入,实际运行经验的积累,业已提出许多为人共识的见解,或行之有效的措施,或可供借鉴的教训。 下面总结电容器串联电抗器时,电抗率选择的一般规律。 1. 电网谐波中以3次为主 根据《并联电容器装置设计规范》,当电网谐波以3次及以上为主时,一般为12%;也可根据实际情况采用4.5%~6%与12%两种电抗器:(1)3次谐波含量较小,可选择0.5%~1%的串联电抗器,但应验算电容器投入后3次谐波放大量是否超过或接近限值,并有一定裕度。(2)3次谐波含量较大,已经超过或接近限值,可以选用12%或4.5%~6%串联电抗器混合装设。 2. 电网谐波中以3、5次为主 (1)3次谐波含量较小,5次谐波含量较大,选择4.5%~6%的串联电抗器,尽量不使用0.1%~1%的串联电抗器;(2)3次谐波含量略大,5次谐波含量较小,选择0.1%~1%的串联电抗器,但应验算电容器投入后3次谐波放大是否超过或接近限值,并有一定裕度。 3. 电网谐波以5次及以上为主 (1)5次谐波含量较小,应选择4.5%~6%的串联电抗器;(2)5次谐波含量较大,应选择4.5%的串联电抗器。对于采用0.1%~1%的串两电抗器,要防止对5次、7次谐波的严重放大伙谐振。对于采用4.5%~6%的串联电抗器,要防止怼次谐波的严重放大或谐振。当系统中无谐波源时,为防止电容器组投切时产生的过电压和对电容器组正常运行时的静态过电压、无功过补时电容器端的电压升高的情况分析计算,可选用0.5%~1%的电抗器。 根据以上的选择原则,对无功补偿装置中的串联电抗器有以下建议: (1)新建变电所的电容器装置中串联电抗器的选择必须慎重,不能与电容器任意组合,必须考虑电容器装置接入处的谐波背景。 (2)对于已经投运的电容器装置,其串联电抗器选择是否合理须进一步验算,并组织现场实测,了解电网谐波背景的变化。对于电抗率选择合理的电容器装置不得随意增大或减小电容器组的容量。 (3)电容器组容量变化很大时,可选用于电容器同步调整分接头的电抗器或选择电抗

负荷计算及无功补偿

第三章 负荷计算及无功补偿 广东省唯美建筑陶瓷有限公司 刘建川 3.1 负荷曲线与计算负荷 负荷曲线(load curve )是指用于表达电力负荷随时间变化情况的函数曲线。在直角坐标糸中,纵坐标表示负荷(有功功率和无功功率)值,横坐标表示对应的时间(一般以小时为单位) 日负荷曲线 年负荷曲线 年每日最大负荷曲线 年最大负荷和年最大负荷利用小时数 3.1.2 计算负荷 计算负荷是按发热条件选择电气设备的一个假定负荷,其物理量含义是计算负荷所产生的恒定温升等于实际变化负荷所产生的最高温升。通常将以半小时平均负荷依据所绘制的负荷曲线上的“最大负荷”称为计算负荷,并把它作为按发热条件选择电气设备的依据。 3.2 用电设备额定容量的确定 3.2.1 用电设备的一作方式 (1)连续工作方式 在规定的环境温度下连续运行,设备任何部份温升不超过最高允许值,负荷比较稳定。 (2)短时运行工作制 (3)断续工作制 用电设备以断续方式反复进行工作,其工作时间与停歇时间相互交替。取一个工作时间内的工作时间与工作周期的百分比值,称为暂载率,即 *100%%100%0 t t T t t ε==+ 暂载率亦称为负荷持续率或接电率。根据国家技术标准规定,重复短暂负荷下电气设备的额定工作周期为10min 。吊车电动机的标准暂载率为15%、25%、40%、60%四种,电焊设备的标准暂载率为50%、65%、75%、100%,其中草药100%为自动焊机的暂载率。 3.2.2 用电设备额定容量的计算 (1)长期工作和短时工作制的设备容量 等于其铭牌一的额定功率,在实际的计算中,少量的短时工作制负荷可忽略不计。 (2)重复短时工作制的设备容量 ○ 1吊车机组用电动机的设备容量统一换算到暂载率为ε=25%时的额定功 率,若不等于25%,要进行换算,公式为:2Pe Pn ==Pe 为换算到ε=25%时的电动机的设备容量 εN 为铭牌暂载率

并联电抗器的作用

编号:SY-AQ-02610 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 并联电抗器的作用 Function of shunt reactor

并联电抗器的作用 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关系更直接,显得更为突出。 1、削弱空载或轻载时长线路的电容效应所引起的工频电压升高。 这种电压升高是由于空载或轻载时,线路的电容(对低电容和相间电容)电流在线路的电感上的压降所引起的。它将使线路电压高于电源电压。当愈严重,通常线路愈长,则电容效应愈大,工频电压升高也愈大。 对超高压远距离输电线路而言,空载或轻载时线路电容的充电功率是很大的,通常充电功率随电压的平方面急剧增加,巨大的充电功率除引起上述工频电压升高现象之外,还将增大线路的功率和电能损耗以及引起自励磁,同期困难等问题。装设并联电抗器可以补偿这部分充电功率。 2、改善沿线电压分布和轻载线路中的无功分布并降低线损。 当线路上传输的功率不等于自然功率时,则沿线各点电压将偏

离额定值,有时甚至偏离较大,如依靠并联电抗器的补偿,则可以仰低线路电压得升高。 1、减少潜供电流,加速潜供电弧的熄灭,提高线路自动重合闸的成功率。 所谓潜供电流,是指当发生单相瞬时接地故障时,在故障相两侧断开后,故障点处弧光中所存在的残余电流。 产生潜供电流的原因:故障相虽以被切断电源,但由于非故障相仍带电运行,通过相间电容的影响,两相对故障点进行电容性供电;由于相间互感的影响,故障相上将被感应出一个电势,在此电势的作用下通过故障点及相对地电容将形成一个环流,通常把上述两部分电流的总和称之为潜供电流。潜供电流的存在,使得系统发生单相瞬时接地短路处的潜供电弧不可能很快熄灭,将会影响单相自动综合闸的成功率。 并联电抗器的中性点经小抗接地的方法来补偿潜供电流,从而加快潜供电弧的熄灭。 2、有利于消除发电机的自励磁。

CKSC-72-6-6补偿柜专用电抗器9页

高压电抗器|CKSC-72/6-6%|补偿柜专用电抗器CKSC系列电抗器是用于高压无功补偿柜里面的重要元件之一 我们共同认识一下高压电抗器的作用 高压用于3.3KV,6KV 10KV 可以说高压10000V 都称为意义上的高压里面通过的是交流,与补偿电容器串联,对稳态性谐波(5、7、11、13次)构成串联谐振。通常有5~6%电抗器,属于高感值电抗器。 高压电抗器用途是什么该产品与并联电容器组相串联,具有补偿电网无功功率、提高功率因数、抑制谐波电流、限制合闸涌流等功能,适用于电力系统、电力化铁道、冶金、石化等较高防火要求、电磁干扰要求和安装空间有限的城网变电站、地下变电站和微机控制变电站等场所 CKSC-72/6-6% 全称是6KV三相高压环氧浇注电抗器 电抗器容量是 72KVAR 高压指的是6KV系统 电容柜补偿的容量是1200KVAR CKSC中的S代表的是三相电抗器如果是D 代表单相电抗器 6指的是电抗率,常用的电抗率有 1% 6% 7% 12% 14%等 壹,以下是我公司CKSC-72/6-6%规格参数

贰,CKSC-72/6-6%电抗器外形示意图 参,CKSC-72/6-6% 全称是10KV三相高压环氧浇注电抗器使用场合 补偿电网无功功率、提高功率因数、抑制谐波电流、限制合闸涌流等功能,适用于电力系统、电力化铁道、冶金、石化等较高防火要求、电磁干扰要求和安装空间有限的城网变电站、地下变电站和微机控制变电站等场所肆,CKSC-72/6-6%型号意义

伍,CKSC-72/6-6% 全称是10KV三相高压环氧浇注电抗器使用环境特点 1.眀拔高度不超过2000米。 2.运行环境温度-25℃~+45℃,相对湿度不超过90%。 3.栀围无有害气体,无易燃易爆物品。 4.栀围环境应有良好的通风条件。 陆,CKSC-72/6-6%性能及技术参数 1.可用于系统电压为:6kV、10kV、10.5kV、11kV。 2.电抗率为:1%、4.5%、5%、6%、7%、12%、14% 3.绝缘等级:F级,电抗器噪声:≤45dB 4.过载能力:≤1.35倍下连续运行

无功补偿及电能计算

北极星主页 | 旧版 | 电力运营 | 电信运营 | 工业控制 | 电子技术 | 仪器仪表 | 大学院校 | 科研院所 | 协会学会新闻中心| 技术天地| 企业搜索| 产品中心| 商务信息| 人才招聘| 期刊媒体| 行业展会| 热点专题| 论坛| 博客| 高级搜索 帐号 密码 个人用户注册企业免费注册 能源工程 ENERGY ENGINEERING 2003年第1卷第1期 工矿企业无功补偿技术及其管理要求 方云翔 (浙江信息工程学校,湖州 313000)

摘要:分析了工矿企业采用无功补偿技术的必要性,介绍了无功补偿方式的确定及补偿容量的计算方法,并论述了加强无功补偿装置管理、提高运行效率应注意的问题。 关键词:无功补偿;技术管理;工矿企业 1 前言 供电部门在向用电单位(以下简称用户)输送的三相交流功率中,包括有功功率和无功功率两部分。将电能转换成机械能、热能、光能等那一部分功率叫有功功率,用户应按期向供电部门交纳所用有功电度的电费;无功功率为建立磁场而存在并未做功,所以供电部门不能向用户收取无功电度电费,但无功功率在输变电过程中要造成大量线路损耗和电压损失,占用输变电设备的容量,降低了设备利用率。因此,供电部门对输送给用户的无功功率实行限制,制订了功率因数标准,采用经济手段———功率因数调整电费对用户进行考核。用户功率因数低于考核标准,调整电费是正值,用户除了交纳正常电费之外,还要增加支付调整电费(功率因数罚款);用户功率因数高于考核标准,调整电费是负值,用户可以从正常电费中减去调整电费(功率因数奖励)。 用电设备如变压器、交流电动机、荧光灯电感式镇流器等均是电感性负荷,绝大多数用户的自然功率因数低于考核标准,都要采取一些措施进行无功补偿来提高功率因数。安装移相电力电容器是广大用户无功补偿的首选方案。 2 无功补偿的经济意义 2.1 提高输变电设备的利用率 有功功率

并联电抗器的选择及保护装置的配置

并联电抗器的选择及保护装置的配置 来源:时间:2007-06-13 字体:[ 大中小 ] 投稿 摘要: 本文讨论了在地方电网工程设计实践中,线路并联电抗器的容量、台数、装设地点、继电保护配置等有关技术问题,对设计人员有一定参考价值。 电抗器分为铁芯的和空芯的两大类。铁芯电抗器有线路并联电抗器和消弧线圈两种,其构造与变压器相似,不同的是其铁芯带有气隙,电抗器的线圈只有一个,不分一次和二次。空芯电抗器有水泥电抗器,用电缆做成空心线圈,沿线圈圆周均匀对称的用水泥浇注,把线圈匝间固定起来。水泥电抗器大多用在大容量发电厂或变电站的输配电系统中。 一、并联电抗器容量及台微选择 二、在大电力系统中,并联电抗器的容量、台数、装设地点、中性点小电抗器参数及伏安特性等的选择比较复杂,需对工频暂态及稳态电压升高、潜供电流及恢复电压、发电机自励磁、谐振过电压等方面进行专题计算、模拟试验和分析比较后才能确定。 对地方小电力系统,我们是对工频电压升高,发电机自励磁计算分析后,再根据小电力系统实际情况来确定并联电抗器容量。其推荐值可按下式初步计算。 若线路电压为110~220千伏,线路长度在300公里以下,取0.4~0.45.线路电压为330千伏,线路长度在300公里以上,可取0.5 Ue——电力网额定线电压(千伏)来源:https://www.doczj.com/doc/382017604.html, Ic.——电力网电容电流(千安) 此值可用计算或直接测量的方法求得.如果能从有关手册查出输电线的电纳,则可直接由下式计算求得:请登陆:输配电设备网浏览更多信息

可查表求得(表略). 根据以上公式计算出并联电抗器容量后进行标准化,选取铁芯式电抗器.其台数决定于并联电抗器总容量的大小,设计容量在10000千乏以上,投切次数少,可选一台集中补偿;8000千乏以下适用于小电力系统、电压等级低,一般选两台分散补偿,有利于运行调整. 并联电抗器可向特种变压器厂订货,选取BKSJ型. 二、装设地点及安装方式 理论上讲,并联电抗器装设地点设在线路的哪一方都可以.但要根据工程实际情况考虑所选并联电抗器电压等级高低、新建工程是否需要补偿,工程扩建时是否有安装地方,控制操作是否方便灵活等各方面因素后再确定. 对大电力系统,补偿容量大,电压高,可集中安装在区域性枢纽变电所高压倒,采用户外安装方式.因投切次数少,在满足开断容量条件下可采用隔离开关和油开关操作. 小电力系统的补偿容量小,电压等级低,可户外分散安装。为了运行、调整投切灵活力便,可采用ZN型真空断路器开关柜. 三、保护装置的配置 (-)装设瓦斯保护.当并联电抗器内部由于短路等原因产生大量瓦斯时,应及时动作并跳闸。当产生轻微瓦斯或油面下降时,应及时发出信号。 瓦斯保护流速整定值的选择,主要取决于并联电抗器容量、冷却方式及导油管直径。目前国内尚无统一标准,均采用经验数据进行整定。 1.并联电抗器容量≤10000千乏、导油管直径≤5.3厘米或瓦斯继电器为QJ1一50型时,流速值可取0.6~0.8米/秒。 2.当并联电抗器容量大于10000千乏以上,导油管直径为8.0厘米或瓦斯继电器为QJ1一80型时,流速值可取0.8~1.2米/秒。 3.对于强迫油循环冷却的并联电抗器不低于1.1米/秒。 (二)装设差动保护或电流速断保护 大容量并联电抗器装设差动保护,小容量若灵敏度满足要求时可装设电流速断保护,以防御并联电抗器内部及其引出线的相间和单相接他短路。在可能出现的最大不平衡电流下,保护装置不应该误动作.并联电抗器装设过电流保护作为差动保护的后备,保护装置带时限动作于跳闸。 (三)装设过负荷保护,以防御电源电压升高和引起并联电抗器的过负荷。保护装置带时限动作后作用于信号。来源:输配电设备网

电抗器基本知识介绍

电抗器基本知识介绍 一、干式电抗器的种类与用途 电抗器是重要的的电力设备,在电力系统中起补偿杂散容性电流、限制合闸涌流、限制短路电流、滤波、平波、启动、防雷、阻波等作用。根据电抗器的结构型式可分为空心电抗器、铁心电抗器与半心电抗器。 补偿杂散容性电流的电抗器主要有并联电抗器与消弧线圈。并联电抗器的作用是限制电力传输系统的工频电压升高现象,工频电压升高的原因在于空载长线的电容效应、不对称对地短路故障与突然甩负荷。消弧线圈通常应用在配电系统,它的作用是使得单相对地短路电流不能持续燃烧,导致电弧熄灭。消弧线圈通常具有调谐功能,可根据电力系统的杂散电容与脱谐度改变其电感值。 串联电抗器或称阻尼电抗器的作用是限制合闸涌流。串联电抗器与电力电容器串联使用,用于限制对电容器组合闸时的浪涌电流,通常选取电容器组容量的6%。 限流电抗器是串联于电力系统之中,多用于发电机出线端或配电系统的出线端,起限制短路电流的作用。为了与其他电力设备配合,其实际阻抗不能小于额定值。 滤波电抗器与电容器配合使用,构成LC谐振支路。针对特定次数的谐波达到谐振,滤除电力系统中的有害次谐波。 平波电抗器应用在直流系统中,起限制直流电流的脉动幅值作用。在设计平波电抗器时须注意线圈中的电流是按电阻分布的,设计时最好采用微分方程组计算。若按交流阻抗设计可能造成线圈出现过热现象,且阻抗值未必准确。 启动电抗器用于交流电动机启动时刻,限制 防雷线圈通常用于变电站进出线上,减 阻波器与防雷线圈的应用场合相仿,线 用于阻碍电力 便于将通讯载波提

取出来,实现电力载波的重要设备。 户外空心干式电抗器是20世纪80年代出现的新一代电抗器产品,如图1.1所示。它是利用环氧绕包技术将绕组完全密封,导线相互粘接大大的增加了绕组的机械强度。同时利用新的耐候材料喷吐于包封的表面,使得产品能够满足在户外的苛刻条件下运行。包封间由撑条形成气道,包封间与包封内绕组多采用并联连接以便满足容量与散热的要求。为了满足各个并联支路电流合理分配的需要,采用分数匝来减少支路间的环流问题。为了能够形成分数匝,采用星形架作为绕组的出线连接端。绕组的上下星架通过拉纱方式固定,固化后整个产品成为一个整体。这种结构的电抗器与传统方式的电抗器相比较具有可以直接用于户外、电感为线性、噪音小、防爆、使用维护方便等特点,因而对于某些此产品有可能正逐步取代其他形式的电抗器。 由于受到绕组结构的限制,户外空芯干式电抗器通常不适合电感量(>700mH )较大或电感较小(<0.08mH)但电流较大的场合,否则就会造成体积过于庞大或者支路电流极不平衡。在这两种极端条件下,需要适当改变线圈的绕线形式。此外,空心电抗器通常占地面积最大、对外漏磁最严重,这是这类电抗器的主要缺点。 干式铁心电抗器主要是由铁心和线圈组成的,如图1.2所示。干式铁心电抗 器主要由铁心、线圈构成。铁心可分为铁心柱与 铁轭两部分,铁心柱通常是由铁饼与气隙组成。 线圈与铁心柱套装,并由端部垫块固定。铁心柱 则由螺杆与上下铁轭夹件固定成整体。对于三相 电抗器常采用三心柱结构,但对于三相不平衡运 行条件下,需采用多心柱结构,否则容易造成铁 心磁饱和问题。干式铁心电抗器的线圈通常采用 浇注、绕包与浸漆方式。由于铁磁介质的导磁率极高, 而且其磁化曲线是非线性的, 故用在铁心电抗器中的铁心必须带气隙。带气隙的铁心,其磁阻主要取决于气隙的尺寸。由于气隙的磁化特性基本上是线性的, 所以铁心电抗器的电感值取决于自身线圈匝数以及线圈和铁心气隙的尺寸。由于干式铁心电抗器是将磁能主要存贮于铁心气隙当中,铁心相当于对磁路短路,相当于只有气隙总长度的空心线圈。因此铁心电抗器线圈的匝数较少, 从而图1.2 干式铁心电抗器

无功补偿容量计算

无功补偿容量计算 Prepared on 22 November 2020

一、无功补偿装置介绍 现在市场上的无功补偿装置主要分为固定电容器组、分组投切电容器组、有载调压式电容器组、SVC和SVG。下面介绍下各种补偿装置的特点。 1)固定电容器组。其特点是价格便宜,运行方式简单,投切间隔时间长。但它对于补偿变化的无功功率效果不好,因为它只能选择全部无功补偿投入或全部无功补偿切出,从而可能造成从补偿不足直接补偿到过补偿,且投切间隔时间长无法满足对电压稳定的要求。而由于光照强度是不停变化的,利用光伏发电的光伏场发出的电能也跟着光伏能力的变化而不断变化,因此固定电容器组不适应光伏场的要求,不建议光伏项目中的无功补偿选用固定电容器组。 2)分组投切电容器组。分组投切电容器组和固定电容器组的区别主要是将电容器组分为几组,在需要时逐组投入或切出电容器。但它仍然存在投切间隔时间长的问题,且分的组数较少,一般为2~3组(分的组数多了,投资和占地太大),仍有过补偿的可能。因此分组投切电容器组适用于电力系统较坚强、对相应速度要求较低的场所。 3)有载调压式电容器组。有载调压式电容器组和固定电容器组的区别主要是在电容器组前加上了一台有载调压主变。根据公式Q=2πfCU2可知,电容器组产生的无功功率和端电压的平方成正比,故调节电容器组端电压可以调节电容器组产生的无功功率。有载调压式电容器组的投切间隔时间大大缩短,由原来的几分钟缩短为几秒钟。且有载调压主变档位较多,一般为8~10档,每档的补偿无功功率不大,过补偿的可能性较小。因此分组投切电容器组适用于电力系统对光伏场要求一般的场所。

串联电抗器进行无功补偿的必然性

串联电抗器进行无功补偿的必然性 单一使用电容器进行无功补偿的危害 1. 建筑领域的谐波源是必然存在的(整流设备,各种办公设备的 整流电源;电梯系统的变频设备;空调系统的变频器;水泵系统的变频器;不同容量的UPS 电源等)。 2. 单一使用电容器进行无功补偿,谐波电流会大量流入电容器。 谐波电流都是高频电流。感抗会随着频率的升高而变大,容抗会随着频率的升高而变小。这样电流会向阻抗小的地方流。电容器工作时都是满负荷工作的,一旦谐波电流流入电容器,量小会造成过电流,影响电容器寿命;量大会直接造成电容器鼓肚甚至爆 炸。后果不堪设想。 3. 当配电系统中存在了感性设备(变压器),容性设备(电容器) 就会形成谐振电路。当发生串并、联谐振时,谐波电流、电压会被放大20倍或以上倍数,这里不用考虑谐波的量,只要存在谐波,谐波电流就有被放大的可能。谐振点会随着电容投切量的改变而不断改变,放大的谐波电流次数也会改变,随时随刻都可能发生谐振。 根据以上几点说明,我们不难看出,串联可以改变谐振点的电抗器进行无功补偿的方案是必要的和必然的,工程师们如此的无功补偿设计方案是合理的,是对用户端配电系统的安全负责的。 L f X n n TR ???=)()(2πC f X n n C ???=)()(21π

4.安装与输出容量计算公式如下: 1 22 2-??=n n )电容器电压系统电压(安装容量输出容量(1) 注:1.n=谐振点(如串6%的电抗器,即X L =6%X C ,可根据此公式计算谐振点。08.46 100===L C x x n 2.因串接6%的电抗器,所以电容器的装设耐压应根据下 面公式进行计算: H L S C V V V V ++= (2) 电容器耐压=系统电压+电抗电压+谐波电压 V S =400V ;V L =6% V S 根据IEEE519规定(低压):谐波电压至少考虑 V 3=0.5%V S ,V 5=5%V S ,V 7=5%V S 由此计算,得到电容器的耐压至少使用480V 。 输出/安装容量关系计算事例如下: )08.4(1 480400var)50(var)36(22 2=?-??=n n n V V k k )电容器电压系统电压(安装容量输出容量 06391.169444.0501 08.408.44804005022 2??=-??=)(V V =36.941(kvar ) 2. 因此项目使用了一定量的变频器、UPS 、调光照明等非线性负荷约300KW ,计算器基波电流约为480A ()92.0(cos cos 3=←=θθUI P , 根据n I I n 1=: 117115%147;%205I I I I I I ====

电抗器的选型介绍

并联电抗器:发电机满负载试验用的电抗器是并联电抗器的雏型。铁心式电抗器由于分段铁心之间存在着交变磁场的吸引力,因此噪音一般要比同容量变压器高出10dB左右。并联电抗器里面通过的交流,并联电抗器的作用是补偿系统的容抗。通常与晶闸管串联,可连续调节电抗电流。 串联电抗器:里面通过的是交流,串联电抗器的作用是与补偿电容器串联,对稳态性谐波(5、7、11、13次)构成串联谐振。通常有5~6%电抗器,属于高感值电抗器。 调谐电抗器:里面通过的是交流电,串联电抗器的作用是与电容器串联,对规定的n次谐波分量构成串联谐振,从而吸收该谐波分量,通常n=5、7、11、13、19。 输出电抗器:它的作用是限制电机连接电缆的容性充电电流及使电机绕组上的电压上升率限制在54OV/us以内,一般功率为4-90KW变频器与电机间的电缆长度超过50m时,应设置输出电抗器,它还用于钝化变频器输出电压(开关的陡度),减少对逆变器中的元件(如IGBT)的扰动和冲击。 输出电抗器的使用说明:为了增加变频器到电机之间的距离可以适当加粗电缆,增加电缆的绝缘强度,尽量选用非屏蔽电缆。输出电抗器的特点: 1、适用于无功补偿和谐波的治理; 2、输出电抗器主要作用是补偿长线分布电容的影响,抑制输出谐波电流; 3、有效地保护变频器和改善功率因数,能阻止来自电网的干扰,减少整流单元产生的谐波电流对电网的污染。 输入电抗器:它的作用是限制变流器换相时电网侧的电压降;抑制谐波以及并联变流器组的解耦;限制电网电压的跳跃或电网系统操作时所产生的电流冲击。当电网短路容量与变流器变频器容量比大于33:1时,输入电抗器的相对电压降,对单象限工作为2%,四象限为4%。当电网短路电压大于6%时,允许输入电抗器运行。对于12脉动整流单元,至少需要一相对电压降为2%的网侧进线电抗器。输入电抗器主要应用于工业/工厂自动化控制系统中,安装在变频器、调速器与电网电源输入电抗器之间,用于抑制变频器、调速器等产生的浪涌电压和电流,最大限度的衰减系统中的高次谐波及畸变谐波。 输入电抗器的特点: 1、适用于无功功率补偿和谐波的治理; 2、输入电抗器用来限制电网电压突变和操作过电压引起的电流冲击;对谐波起滤波作用,以抑制电网电压波形畸变; 3、平滑电源电压中包含的尖峰脉冲,平滑桥式整流电路换相时产生的电压缺陷。 限流电抗器:限流电抗器一般用于配电线路。从同一母线引出的分支馈线上往往串有限流电抗器,以限制馈线的短路电流,并维持母线电压,不致因馈线短路而致过低。 消弧线圈:消弧线圈广泛用于10kV-63kV级的谐振接地系统。由于变电所的无油化倾向,因此35kV以下的消弧线圈现很多是干式浇注型。 阻尼电抗器:(通常也称串联电抗器)与电容器组或密集型电容器相串联,用以限制电容器的合闸涌流。这一点,作用与限流电抗器相类似滤波电抗器滤波电抗器与滤波电容器串联组成谐振滤波器,一般用于3次至17次的谐振滤波或更高次的高通滤波。直流输电线路的换流站、相控型静止补偿装置、中大型整流装置、电气化铁道,以至于所有大功率晶闸管控制的电力电子电路都是谐波电流源,必须加以滤除,不让其进入系统。电力部门对于电力系统中的谐波有具体规定。 平波电抗器:平波电抗器用于整流以后的直流回路中。整流电路的脉波数总是有限的,在输出的整直电压中总是有纹波的。这种纹波往往是有害的,需要由平波电抗器加以抑制。直流输电的换流站都装有平波电抗器,使输出的直流接近于理想直流。直流供电的晶闸管电气传动中,平波电抗器也是不可少的。平波电抗器在整流电路中是个重要元件,在中频电源中主要作用是:

电抗器计算公式和顺序

电抗器计算公式和步骤 S=1.73*U*I 4% X=4/S*.9 1. 铁芯直径D D=KPZ0.25 cm K—50~58 PZ—每柱容量kVA 2.估算每匝电压ET ET=4.44fBSP×10-4 V B—芯柱磁密 0.9~1T SP—芯柱有效截面

cm2 3. 线圈匝数 W=UKM/(ET×100)KM—主电抗占总电抗的百分数 U—总电抗电压 V 4. 每匝电压及铁芯磁密 ET=UKM/(W×100) V BM=ET×104/(4.44fSP) T 5. 主电抗计算 选择单个气隙尺寸δ=0.5~3cm 计算行射宽度E E=δ/πln((H+δ)/δ) cm H—铁饼高度,一般5cm 计算行射面积SE

SE=2E×(AM+BM+2E) cm2 AM—叠片总厚度 cm BM—最大片宽 cm 计算气隙处总有效截面积 SM=SF/KF+SE cm2 SF—铁芯截面 KF—叠片系数 计算气隙个数 n=(7.9fW2SM)/(X NδKM×106) XN—电抗Ω 计算主电抗 XM=(7.9fW2SM)/(nδ×108) 如果XM≈X N KM/100则往下进行,否则重新选择单个气隙长度,重复上述计算。 6.

漏电抗计算 Xd=(7.9fW2Sdρ)/(H×108) Ω Sd=2π/3FRF+πRn2-SF/KF ρ=1-2×(RW-RO)/(π×H)式中: F—线圈幅向尺寸 cm RF—线圈平均半径 cm Rn—线圈内半径 cm RW—线圈外半径 cm RO—铁芯半径 cm

H—线圈高度 cm 总电抗X N X N=XM+Xd Ω 附:串联电抗器参数与计算 一基本技术参数 1 额定电压UN (电力系统的额定电压kV) 并联电容器的额定电压U1N 2 额定电流I1 3 额定频率f 4 相数单相三相 5 电抗器额定端电压U1当电抗器流过额定电流时一相绕组二端的电压6 电抗器额定容量P

并联电抗器知识问答

1、并联电抗器的作用是什么? (1)降低工频电压升高。超高压输电线路一般距离较长,可达数百公里,由于线路采用分裂导线,线路的相间和对地电容均很大,在线路带电的状态下,线路相间和对地电容中产生相当数量的容性无功功率(即充电功率),且与线路的长度成正比,其数值可达200-300kvar,大容性功率通过系统感性元件(发电机、变压器、输电线路)时,末端电压将要升高,即所谓“容升”现象。在系统为小运行方式时,这种现象尤其严重。在超高压输电线路上接入并联电容器后,可明显降低线路末端工频电压的升高。 (2)降低操作过电压。操作过电压产生于断路器的操作,当系统中用断路器接通或切除部分电气元件时,在断路器的断口上会出现操作过电压,它往往是在工频电压升高的基础上出现的,如甩负荷、单相接地等均产生工频电压的升高,当断路器切除接地故障或接地故障切除后重合闸时,又引起系统操作过电压,工频电压升高与操作过电压迭加,使操作过电压更高。所以,工频电压升高的程度直接影响操作过电压的幅值。加装并联电抗器后,限制了工频电压的升高,从而降低了操作过电压的幅值。 当开断带有并联电抗器的空载线路时,被开断线路上的剩余电荷沿着电抗器泄入大地,使断路器断口上的恢复电压由零缓慢上升,大大降低了断路器断口发生重燃的可能性,

因此也降低了操作过电压。 (3)有利用单相重合闸。为了提高运行可靠性,超高压电网中采用单相自动重合闸,即当线路发生单相接地故障时,立即开断该相线路,待故障处电弧熄灭后再重合该相。由于超高压输电线路间电容和电感(互感)很大,故障相电源(电源中性点接地)将经这些电容和电感向故障继续提供电弧电流(即潜供电流),使故障处电弧难于熄灭。如果线路上并联三相Y形接线的电抗器,且Y形接线的中性点经小电抗器接地,就可以限制和消除单相接地处的潜供电流,使电弧熄灭,有利于重合闸成功。这时的小电抗器相当于消弧线圈。 2、中性点电抗器起什么作用? (1)中性点电抗器与三相并联电抗器相配合,补偿相间电容和相对地电容,限制过电压,消除潜供电流,保证线路单相自动重合闸装置正常工作。 (2)限制电抗器非全相断开时的谐振过电压,因为非全相断开是一个谐振过程,在谐振过程中可能产生很高的谐振电压。 3、大型并联电抗器器和普通变压器比较在原理方面有何特点?

并联电抗器无功补偿

并联电抗器 1.并联电抗器在电力系统中的作用 并联电抗器无功功率补偿装置常用于补偿系统电容。它通过向超高压、大容量的电网提供可阶梯调节的感性无功功率,补偿电网的剩余容性充电无功功率控制无功功率潮流,保证电网电压稳定在允许范围内。实践证明,对于一些电压偏高的电网,安装一定数量的并联电抗器是解决系统无功功率过剩,降低电压的有效措施,特别是限制由于线路开路或轻载负荷所引起的电压升高。所以在一定的运行工况中,在超高压输电线路手段装设并联电抗器以吸收输电线路电容所产生的无功功率,称为并联电抗器补偿。 由于目前应用于电力系统的电抗器大都为固定容量的电抗器,其容量不能改变,无法随时跟踪运行工况的无功功率变化,造成电抗器容量的浪费,与目前节能减排的主题不相符合,所以,有必要研究可控电抗器这个热门话题,使得电抗器的容量可控可调,这也在一定程度上符合我国发展智能电网的要求。 2.可控并联电抗器的分类、基本原理和优缺点 图1可控并联电抗器的分类 2.1 传统机械式可调电抗器 调匝式和调气隙式是最早出现并广泛应用的可调电抗器。其基本原理是通过调节线圈匝数或调节铁芯气隙的长度来改变电抗器的磁路磁导,从而改变电抗值。调匝式可控电抗器较易实现,但是电抗值不能做的无级调整。调气隙式由于机械惯性和电机的控制问题无法在工程上应用。 2.2 晶闸管可控电抗器(TCR) 晶闸管可控电抗器,是随着电力电子技术发展起来的一种新型的可控电抗器,它采用线性电抗器与反并联晶闸管串联的接线方式,通过控制晶闸管的触发角就可以控制电抗器的等效电抗值。 TCR的控制灵活,响应速度快,缺点是在调节时会产生大量的谐波,需要加装专门的滤波装置。在高电压大容量的场合下,必须采用多个晶闸管串联的方式,造价昂贵,这使得它在超高压电网中的应用受到了相当大的限制,目前主要应用范围是35kV和10kV的配电

无功补偿电容器运行特性参数选取

无功补偿电容器运行特性参数选取 1 电力电容器及其主要特性参数 电力电容器是无功补偿装置的主要部件。随着技术进步和工艺更新,纸介质电容器已被 自愈式电容器所取代,自愈式电容器采用在电介质中两面蒸镀金属体为电极,其最大的改进是电容器在电介质局部击穿时其绝缘具有自然恢复性能,即电介质局部击穿时,击穿处附近的金属涂层将熔化和气化并形成空洞,由此虽然会造成极板面积减少使电容C 及相应无功功率有所下降,但不影响电容器正常运行。 自愈式电容器主要特性参数有额定电压、电容、无功功率。 1. 1 额定电压 《自愈式低电压并联电容器》第3. 2 条规定“电容器额定电压优先值如 下0. 23 ,0. 4 ,0. 525 及0. 69 kV。”电容器额定电压选取一般比电气设备额定运行电压高5 %。 1. 2 电容 电容器的电容是极板上的电荷相对于极板间电压的比值,该值与极板面积、极板间绝缘 厚度和绝缘介质的介电系数有关, 其计算式为C = 1 4πε× S D 式中ε为极板间绝缘介质的介电系数; S 为电容器极板面积; D 为电容器绝缘层厚度。 在上式中,电容C 数值与电压无直接关系, C 值似乎仅取决于电容器极板面积和绝缘介质,但这只是电容器未接网投运时的静态状况;接网投运后,由于电介质局部击穿造成极板面积减少从而会影响到电容C 数值降低,因此运行过程中, 电容C 是个逐年衰减下降的变量,其衰减速度取决于运行电压状况和自身稳态过电压能力。出厂电容器的电容值定义为静态电 容。一般,投运后第一年电容值下降率应在2 %以内,第二年至第五年电容值下降率应在1 %~ 2 % ,第五年后因电介质老化,电容值将加速下降,当电容值下降至出厂时的85 %以下,可认为该电容器寿命期结束。 1. 3 无功功率 在交流电路中,无功功率QC = UI sinφ由于电容器电介质损耗角极小,φ= 90°,所以sin φ= 1 ,则无功功率QC = UI =ωCU2 ×10 - 3 = 2πf CU2 ×10 - 3 (μF) ,从该式可见,电容器无功功率不仅取决于电容C ,而且还与电源频率f 、端电压U 直接相关,电容器额定无功功率的准确定义应是标准频率下外接额定电压时静态电容C 所对应的无功率。接网投运后电容器所输出实际无功功率能否达到标定容量,则需视运行电压状况。当电网电压低于电容器额定电压时,电容器所输出的无功功率将小于标定值。因此如果电容器额定电压选择偏高,电容器实际运行电压长期低于额定值,很可能因电容器无功出力低于设计值造成电网无功短 缺。 2 无功补偿电容装置参数的选取误区 无功补偿装置在进行设计选型及设备订货时,提供给厂家的参数往往仅是电容补偿柜型 号和无功功率数值,而电容器额定电压及静态电容值这两个重要参数常被忽略。由于电容器 生产厂家对产品安装处电压状况不甚了解,在产品设计时往往侧重于降低产品生产成本和减 少电介质局部击穿,所选取的电容器额定电压往往高于国家标准推荐值,这样做对电网运行的无功补偿效果会造成什么影响对电网建设投资又会引起什么变化呢可通过以下案例进行 分析。 例如某台10 0. 4 kV 变压器,按照功率因数0. 9 的运行要求,需在变压器低压侧进行集中 无功补偿,经计算需补偿无功功率100 kvar ,如果按额定电压U = 450 V 配置电容器,根据QC=ωCU2 ×10 - 3 计算,电容器组的静态电容值C 为1 572μF ,接入电网后在运行电压U =400 V 的状态下,该电容器实际向电网提供的无功功率QC 为79 kvar ,补偿效果仅达预期的79 %。反之,在上述条件下,要想保证实际补偿效果为100 kvar ,则至少需配置电容器无功功率为127 kvar ,也就意味着设备投资需要增加27 %。中山市2004 年变压器增加898 台,合计容量近60 万kvar ,按30 %补偿率计需补偿无功功率近18 万kvar 。

无功补偿电抗器的性能与作用

无功补偿用串联电抗器的性能与作用 目前工矿企业无功补偿多采用分组自动跟踪补偿,单组容量多为900kvar以下,一般都将电力电容器,串联电抗器及真空接触器等装于同一柜内,这样就要求电抗器体积小、性能好、重量轻、便于安装维护;现对无功补偿用串联电抗器的用途、性能介绍如下。 一、串联电抗器类种 1、油浸式铁芯电抗器; 2、干式铁芯电抗器; 3、干式空芯电抗器; 4、干式半芯电抗器; 5、干式磁屏蔽电抗器; 二、无功补偿电抗器用途分为: 1、限流电抗器; 2、抑制谐波电抗器; 3、滤波电抗器; 三、串联电抗器的作用是多功能的,主要有: 1、降低电容器组的涌流倍数和涌流频率,便于选择配套设备和保护电容器。根据GB50227标准要求应将涌流限制在电容器额定电流的10倍以下,为了不发生谐波放大(谐波牵引),要求串联电抗器的伏安特性尽量为线性。网络谐波较小时,采用限制涌流的电抗器;电抗率在0.1%-1%左右即:可将涌流限制在额定电流的10倍以下,以减少电抗器的有功损耗,而且电抗器的体积小、占地面积小、便于安装在电容器柜内。采用这种电抗器是即经济,又节能。 2、串联滤波电抗器,电抗器阻抗与电容器容抗全调谐后,组成某次谐波的交流滤波器。滤去某次高次谐波,而降低母线上该次谐波的电压值,使线路上不存在高次谐波电流,提高电网的电压质量。 滤波电抗器的调谐度:

XL=ωL=1/n2XC=AXC 式中A-调谐度(%) XL-电抗值(Ω) XC-容抗值(Ω) n-谐波次数 L-电感值(μH) ω----314各次谐波滤波电抗器的电抗率 3次谐波为11.12% 5次谐波为4% 7次谐波为2.04% 11次谐波为0.83% 高次谐波为0.53% 按上述调谐度配置电抗器,可满足滤除各次谐波。 3、抑制谐波的电抗器,先决条件是需要清楚电网的谐波情况,查清周围用电户有无大型整流设备、电弧、炼钢等能产生谐波的设备,有无性能不良好的高压变压器及高压电机,尽可能实测一下电网谐波的实际量值,再根据实际谐波量来配置适当的电抗器。铁芯电抗器电抗线性度不好,有噪声,空芯电抗器运行无噪声,线性度好,损耗小。 标准规定空芯电抗器容量在100KVAR以下时,每伏安损耗不大于0.03W。例如:单台12000VA电抗率6%的电抗器损耗为360W,三相有功损耗为1080W,这是一个不小的数字。电网上谐波较小时,采用限流电抗器可节省电能。 4、由于设置了串联电抗器,减少了系统向并联电容器装置或电容器装置向系统提供短路电流值。 5、可减少电容器组向故障电容器组的放电电流,保护电力电容器。 6、可减少电容器组的涌流,有利于接触器灭弧,降低操作过电压的幅值。 7、减小了由于操作并联电容器组引起的过电压幅值,有利于电网的过电压保护。 四、串联电抗器的选型原则 用电企业都有自身的特点,对设备有不同的要求,干式电抗器有噪音小、电

并联电抗器的作用

编订:__________________ 审核:__________________ 单位:__________________ 并联电抗器的作用 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-6227-76 并联电抗器的作用 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1、削弱空载或轻载时长线路的电容效应所引起的工频电压升高。 这种电压升高是由于空载或轻载时,线路的电容(对低电容和相间电容)电流在线路的电感上的压降所引起的。它将使线路电压高于电源电压。当愈严重,通常线路愈长,则电容效应愈大,工频电压升高也愈大。 对超高压远距离输电线路而言,空载或轻载时线路电容的充电功率是很大的,通常充电功率随电压的平方面急剧增加,巨大的充电功率除引起上述工频电压升高现象之外,还将增大线路的功率和电能损耗以及引起自励磁,同期困难等问题。装设并联电抗器可以补偿这部分充电功率。 2、改善沿线电压分布和轻载线路中的无功分布并

降低线损。 当线路上传输的功率不等于自然功率时,则沿线各点电压将偏离额定值,有时甚至偏离较大,如依靠并联电抗器的补偿,则可以仰低线路电压得升高。 1、减少潜供电流,加速潜供电弧的熄灭,提高线路自动重合闸的成功率。 所谓潜供电流,是指当发生单相瞬时接地故障时,在故障相两侧断开后,故障点处弧光中所存在的残余电流。 产生潜供电流的原因:故障相虽以被切断电源,但由于非故障相仍带电运行,通过相间电容的影响,两相对故障点进行电容性供电;由于相间互感的影响,故障相上将被感应出一个电势,在此电势的作用下通过故障点及相对地电容将形成一个环流,通常把上述两部分电流的总和称之为潜供电流。潜供电流的存在,使得系统发生单相瞬时接地短路处的潜供电弧不可能很快熄灭,将会影响单相自动综合闸的成功率。 并联电抗器的中性点经小抗接地的方法来补偿潜

相关主题
文本预览
相关文档 最新文档