当前位置:文档之家› 第三节-金属晶体-学案-答案

第三节-金属晶体-学案-答案

第三节-金属晶体-学案-答案
第三节-金属晶体-学案-答案

第三节金属晶体

学业要求素养对接

1.认识金属晶体的结构和性质。

2.能利用金属键、“电子气理论”解释金属的一些物理性质。微观探析:金属晶体的结构特点。

模型认知:能说明金属晶体中的微粒及其微粒间的相互作用。

[知识梳理]

一、金属键与金属晶体

1.金属键

(1)定义:在金属单质晶体中原子之间金属阳离子与自由电子之间强烈的相互作用。

(2)成键微粒:金属阳离子和自由电子。

(3)成键条件:金属单质或合金。

(4)成键本质

电子气理论:金属原子脱落下来的价电子形成遍布整块晶体的“电子气”,被所有原子共用,从而把所有金属原子维系在一起,形成像共价晶体一样的“巨分子”。

2.金属晶体

(1)通过金属离子与自由电子之间的较强作用形成的单质晶体,叫做金属晶体。

(2)用电子气理论解释金属的物理性质

二、混合晶体——石墨晶体

1.晶体模型

2.结构特点——层状结构

(1)同层内碳原子采取sp2杂化,以共价键(σ键)结合,形成平面六元并环结构。由于所有的p轨道平行且相互重叠,使p轨道中的电子可在整个碳原子平面中运动。

(2)层与层之间靠范德华力维系。

3.晶体类型

石墨晶体中,既有共价键,又有金属键和范德华力,属于混合晶体。

4.性质

熔点很高、质软、易导电等。

[自我检测]

1.判断正误,正确的打“√”;错误的打“×”。

(1)常温下,金属单质都以晶体形式存在。()

(2)金属键可以看作许多原子共用许多电子的相互作用,故也有方向性和饱和性。()

(3)金属晶体的熔点一定比共价晶体低。()

(4)晶体中有阳离子,必然含有阴离子。()

(5)同主族金属元素自上而下,金属单质的熔点逐渐降低,体现金属键逐渐减弱。()

(6)金属晶体的堆积模型仅与金属原子半径有关。()

(7)金属晶体中体心立方堆积,配位数最多,空间利用率最大。()

(8)石墨为混合晶体,因层间存在分子间作用力,故熔点低于金刚石。()

答案(1)×(2)×(3)×(4)×(5)√(6)×(7)×(8)×

2.根据物质的性质,判断下列晶体类型:

(1)SiI4:熔点120.5 ℃,沸点271.5 ℃,易水解________。

(2)硼:熔点2 300 ℃,沸点2 550 ℃,硬度大________。

(3)硒:熔点217 ℃,沸点685 ℃,溶于氯仿________。

(4)锑:熔点630.74 ℃,沸点1 750 ℃,导电________。

答案(1)分子晶体(2)共价晶体(3)分子晶体

(4)金属晶体

学习任务金属键对金属的物理性质的影响

【合作交流】

金属键是化学键的一种,主要在金属中存在。由自由电子及排列成晶格状的金属离子之间的静电作用组合而成。金属键有金属的很多特性。例如:一般金属的熔点、沸点随金属键的强度而升高。其强弱通常与金属离子半径成逆相关,与金属内部自由电子密度成正相关。

1.含有阳离子的晶体中一定含有阴离子吗?

提示不一定。如金属晶体中只有阳离子和自由电子,没有阴离子,但有阴离子时,一定有阳离子。

2.金属键强弱的影响因素有哪些?

提示由于金属键是产生在自由电子(带负电)和金属阳离子(带正电)之间的电性作用,所以金属阳离子电荷越多,半径越小,则金属键越强。由于堆积方式影响空间利用率,所以它也是金属键强弱的影响因素之一。

【点拨提升】

1.金属键

(1)金属键的特征

金属键无方向性和饱和性。

晶体中的电子不专属于某一个或几个特定的金属阳离子,而几乎是均匀地分布在整块晶体中,因此晶体中存在所有金属阳离子与所有自由电子之间“弥漫”的电性作用,这就是金属键,因此金属键没有方向性和饱和性。

(2)金属键的强弱比较

一般来说,金属键的强弱主要取决于金属元素原子的半径和价电子数。原子半径越大,价电子数越少,金属键越弱;原子半径越小,价电子数越多,金属键越强。

(3)金属键对物质性质的影响

①金属键越强,晶体的熔、沸点越高。

②金属键越强,晶体的硬度越大。

2.金属晶体的性质

(1)金属晶体具有良好的导电性、导热性和延展性。

(2)熔、沸点:金属键越强,熔、沸点越高。

①同周期金属单质,从左到右(如Na、Mg、Al)熔、沸点升高。

②同主族金属单质,从上到下(如碱金属)熔、沸点降低。

③合金的熔、沸点一般比其各成分金属的熔、沸点低。

④金属晶体熔点差别很大,如汞常温下为液体,熔点很低;而铁常温下为固体,熔点很高。

3.金属晶体物理特性分析

(1)金属键没有方向性,当金属受到外力作用时,晶体中的各原子层发生相对滑动而不会破坏金属键,金属发生形变但不会断裂,故金属晶体具有良好的延展性。

(2)金属材料有良好的导电性是由于金属晶体中的自由电子可以在外加电场作用下发生定向移动。

(3)金属的导热性是自由电子在运动时与金属原子碰撞而引起能量的交换,从而使能量从温度高的部分传到温度低的部分,使整块金属达到相同的温度。

【例1】下列关于金属键的叙述中,不正确的是()

A.金属键是金属阳离子和自由电子这两种带异性电荷的微粒间的强烈相互作用,其实质与离子键类似,也是一种电性作用

B.金属键可以看作是许多原子共用许多电子所形成的强烈的相互作用,所以与共价键类似,也有方向性和饱和性

C.金属键是带异性电荷的金属阳离子和自由电子间的相互作用,故金属键无饱和性和方向性

D.构成金属键的自由电子在整个金属内部的三维空间中做自由运动

解析从基本构成微粒的性质看,金属键与离子键的实质类似,都属于电性作用,特征都是无方向性和饱和性;自由电子是由金属原子提供的,并且在整个金属内部的三维空间内运动,为整个金属的所有阳离子所共有,从这个角度看,金属键与共价键有类似之处,但两者又有明显的不同,如金属键无方向性和饱和性。故选B。

答案 B

【变式训练1】

1.下列物质的熔点依次升高的是()

A.Mg、Na、K

B.Na、Mg、Al

C.Na、Rb、Ca

D.铝、铝硅合金

解析A项中K+、Na+、Mg2+的半径依次减小,Mg2+的电荷数比K+、Na+的大,故各物质熔点的顺序为K<Na<Mg;同理分析,B项正确;C项中各物质熔点的顺序应为Rb<Na<Ca;D项中各物质熔点的顺序应为铝硅合金<铝。

答案 B

2.下列有关金属键的叙述错误的是()

A.金属键没有饱和性和方向性

B.金属键是金属阳离子和自由电子之间存在的强烈的静电吸引作用

C.金属键中的电子属于整块金属

D.金属的性质和金属固体的形成都与金属键有关

解析金属原子脱落下来的价电子形成遍布整块晶体的“电子气”,被所有原子所共用,从而把所有的金属原子维系在一起,故金属键无饱和性和方向性;金属阳离子和自由电子之间的强烈作用,既包括静电吸引作用,也存在静电排斥作用;金属键中的电子属于整块金属;金属的性质及固体的形成都与金属键的强弱有关。

答案 B

3.关于金属性质和原因的描述不正确的是()

A.金属一般具有银白色光泽,是物理性质,与金属键没有关系

B.金属具有良好的导电性,是因为金属晶体中共享了金属原子的价电子,形成了“电子气”,在外电场的作用下自由电子定向移动便形成了电流

C.金属具有良好的导热性能,是因为自由电子通过与金属离子发生碰撞,传递了能量

D.金属晶体具有良好的延展性,是因为金属晶体中的原子层可以滑动而不破坏金属键

解析金属中的自由电子吸收了可见光,又把各种波长的光大部分再反射出来,因而金属一般显银白色光泽;金属具有导电性是因为在外加电场作用下,自由电子定向移动形成电流;金属具有导热性是因为自由电子受热后,与金属离子发生碰撞,传递能量;良好的延展性是因为原子层滑动,但金属键未被破坏。

答案 A

分层训练

基础练

1.下列叙述中,不正确的是()

A.金属元素在化合物中一般显正价

B.金属元素的单质在常温下均为金属晶体

C.金属键是金属阳离子和自由电子间的相互作用,故金属键无饱和性和方向性

D.构成金属的自由电子在整个金属内部的三维空间中做自由运动

解析因金属原子的最外层电子数很少,且原子核对外层电子的引力小,金属原子一般只能失电子,不能得电子,所以在化合物中一般显正价,A项正确;Hg 在常温下为液态,B项错误;金属原子脱落下来的价电子形成遍布整块晶体的“电子气”,被所有原子共用,从而把所有的金属原子维系在一起,故金属键无方向性和饱和性,C项正确;自由电子是由金属原子提供的,并且在整个金属内部的三维空间内运动,属于整块固态金属,D项正确。

答案 B

2.物质结构理论推出:金属晶体中金属离子与自由电子之间的强烈相互作用叫金属键。金属键越强,其金属的硬度越大,熔、沸点越高。据研究表明,一般地,金属原子半径越小,价电子数越多,则金属键越强。由此判断下列说法正确的是()

A.镁的硬度大于铝

B.镁的熔、沸点低于钙

C.镁的硬度大于钾

D.钙的熔、沸点低于钾

解析Mg的半径大于Al的半径,且价电子数小于Al的,所以金属键应为MgK,故金属键Ca>K,D项错。答案 C

3.在金属晶体中,如果金属原子的价电子数越多,金属阳离子的半径越小,自由电子与金属阳离子间的作用力越大,金属的熔点越高。由此判断下列各组金属熔点的高低顺序,其中正确的是()

A.Mg>Al>Ca

B.Al>Na>Li

C.Al>Mg>Ca

D.Mg>Ba>Al

解析金属原子的价电子数:Al>Mg=Ca=Ba>Li=Na,金属阳离子的半径:r(Ba2+)>r(Ca2+)>r(Na+)>r(Mg2+)>r(Al3+)>r(Li+),则C正确。

答案 C

4.石墨晶体是层状结构(如图)。以下有关石墨晶体的说法正确的一组是()

①石墨中存在两种作用力;②石墨是混合晶体;③石墨中的C为sp2杂化;④石墨熔点、沸点都比金刚石低;⑤石墨中碳原子数和C—C键数之比为1∶2;⑥石墨和金刚石的硬度相同;⑦石墨层内导电性和层间导电性不同;⑧每个六元环完全占有的碳原子数是2

A.全对

B.除⑤外

C.除①④⑤⑥外

D.除⑥⑦⑧外

解析①不正确,石墨中存在三种作用力,一种是范德华力,一种是共价键,还有一种是金属键;②正确;③正确,石墨中的C为sp2杂化;④不正确,石墨熔点比金刚石高;⑤不正确,石墨中碳原子数和C—C键数之比为2∶3;⑥不正确,石墨质软,金刚石的硬度大;⑦正确;⑧正确,每个六元环完全占有的碳原子数是6×1/3=2。

答案 C

5.下列有关金属的说法正确的是()

A.金属原子的核外电子在金属晶体中都是自由电子

B.金属导电的实质是金属阳离子在外电场作用下的定向移动

C.金属原子在化学变化中失去的电子数越多,其还原性越强

D.体心立方晶胞和面心立方晶胞中实际含有的原子个数之比为1∶2

解析因金属的价电子受原子核的吸引小,则金属原子中的价电子在晶体中为自由电子,故A错误;金属导电的实质是自由电子定向移动而产生电流的结果,故B错误;金属原子在化学变化中失去电子越容易,其还原性越强,与失电子的多少无关,故C错误;体心立方晶胞中原子在顶点和体心,则原子个数为1

+8×1

8=2,面心立方晶胞中原子在顶点和面心,原子个数为8×1

8

+6×1

2

=4,

原子的个数之比为2∶4=1∶2,故D正确。

答案 D

6.如图所示,铁有δ、γ、α三种同素异形体,三种晶体在不同温度下能发生转化。

下列说法不正确的是()

A.δ—Fe晶体中与每个铁原子等距离且最近的铁原子有8个

B.α—Fe晶体中与每个铁原子等距离且最近的铁原子有6个

C.若δ—Fe晶胞边长为a cm,α—Fe晶胞边长为b cm,则两种晶体密度比为2b3∶a3

D.将铁加热到1 500 ℃后,分别急速冷却和缓慢冷却,得到的晶体类型相同

解析由题图知,δ—Fe晶体中与每个铁原子等距离且最近的铁原子有8个,A 项正确;α—Fe晶体中与每个铁原子等距离且最近的铁原子有6个,B项正确;1个δ—Fe晶胞占有2个铁原子,1个α—Fe晶胞占有1个铁原子,故二者密度

之比为2×56

N A a3∶1×56

N A b3

=2b3∶a3,C项正确;将铁加热到1 500 ℃后,分别急速冷

却和缓慢冷却,得到的晶体类型是不同的,D项错误。

答案 D

7.石墨能与熔融金属钾作用,形成石墨间隙化合物,钾原子填充在石墨各层原子中。比较常见的石墨间隙化合物是青铜色的化合物,其化学式可写为C x K,其平面图形如图所示。x的值为()

A.8

B.12

C.24

D.60

解析可选取题图中6个钾原子围成的正六边形为结构单元,每个钾原子被3

个正六边形共用,则该结构单元中实际含有的钾原子数为6×1

3

+1=3,该六边形内实际含有的碳原子数为24,故钾原子数与碳原子数之比为1∶8。

答案 A

8.教材中给出的几种晶体的晶胞如图所示。

则这些晶胞分别表示的物质可能是()

A.碘、锌、钠、金刚石

B.金刚石、锌、碘、钠

C.钠、锌、碘、金刚石

D.锌、钠、碘、金刚石

解析第一种晶胞为体心立方堆积,钾、钠、铁等金属采用这种堆积方式;第二种晶胞为六方最密堆积,镁、锌、钛等金属采用这种堆积方式;构成第三种晶胞的粒子为双原子分子,可能是碘;第四种粒子的晶胞结构为正四面体,可能为金刚石。

答案 C

9.用晶体的X-射线衍射法可以测得阿伏加德罗常数,对金属铜的测定得到以下结果:铜原子位于晶胞的顶点和面心上,边长为361 pm。又知铜的密度为9.00 g·cm -3,该铜晶胞的体积是________cm3,晶胞的质量是________g,阿伏加德罗常数为________。[列式计算,已知A r(Cu)=63.6]

解析铜晶胞的体积V=(361×10-10cm)3≈4.70×10-23cm3,所以晶胞的质量为m=ρV=4.70×10-23cm3×9.00 g·cm-3=4.23×10-22g;一个晶胞中含4个Cu原

子,所以阿伏加德罗常数为N A=

63.6 g·mol-1

1

4×4.23×10

-22g

≈6.01×1023 mol-1。

答案 4.70×10-23 4.23×10-22N A=

63.6 g·mol-1

1

4×4.23×10

-22g

≈6.01×1023 mol-1

10.(1)如图甲所示为二维平面晶体示意图,所表示的化学式为AX3的是________。

(2)图乙为一个金属铜的晶胞,请完成以下各题。

①该晶胞“实际”拥有的铜原子数是________个。

②此晶胞立方体的边长为a cm,Cu的相对原子质量为64,金属铜的密度为ρ g·cm -3,则阿伏加德罗常数的值为________(用a、ρ表示)。

解析(1)由图甲中直接相邻的原子数可以求得a、b中两类原子数之比分别为1∶2、1∶3,得出其化学式分别为AX2、AX3。

(2)①用“均摊法”:8×1

8

+6×1

2

=4;②4

N A·64=ρ·a

3,N A=256

ρ·a3

答案(1)b(2)①4②256

ρ·a3

素养练

11.金晶体的最小重复单元(也称晶胞)如图所示,即在立方体的8个顶点各有1个金原子,各个面的中心有1个金原子,每个金原子被相邻的晶胞所共有。金原子的直径为d,用N A表示阿伏加德罗常数的值,M表示金的摩尔质量。

(1)金晶体的每个晶胞中含有________个金原子。

(2)欲计算1个金晶胞的体积,除假定金原子是刚性小球外,还应假定________。

(3)1个晶胞的体积是________。

(4)金晶体的密度是________。

解析(1)由题中对金晶体晶胞的叙述,可求出每个晶胞中所拥有的金原子个数,

即8×1

8+6×1

2

=4。

(2)金原子的排列是紧密堆积形式的,每个面心的原子和4个顶点的原子要相互接触。

(3)右图是金晶体中原子之间相互位置关系的平面图,AC为金原子直径的2倍AB 为立方体的边长,由图可得,立方体的边长为2d,所以一个晶胞的体积为(2d)3=22d3。

(4)1个晶胞的质量等于4个金原子的质量,所以ρ=

4M

N A×22d3

=2M

N A d3

答案(1)4(2)每个面心的原子和4个顶点的原子相互接触(3)22d3(4)

2M N A d3

12.不锈钢是由铁、铬、镍、碳及多种不同元素组成的合金,铁是主要成分元素,铬是第一主要的合金元素。其中铬的含量不能低于11%,不然就不能生成致密氧化膜CrO3。

(1)写出基态Fe2+的电子排布式_____________________________;

基态碳(C)原子的电子排布图为______________________________。

(2)[Cr(H2O)4Cl2]Cl·2H2O中Cr的配位数为________;已知CrO5中Cr为+6价,则CrO5的结构式为________。

(3)Fe的一种晶体如图甲、乙所示。

若按甲中虚线(面对角线)方向切乙,得到的切面图正确的是________(填字母)。

解析(1)根据构造原理即可写出基态Fe2+的电子排布式。

(2)[Cr(H2O)4Cl2]Cl·2H2O中4个H2O和2个Cl-为配体,故Cr的配位数为6;CrO5中Cr为+6价,可见Cr和O形成6对共用电子对,则氧原子的多余电子

通过O—O键结合起来。(3)题图乙由8个甲组成,甲中Fe位于顶点和体心,故乙中每个小立方体的体心都有一个铁原子,按面对角线方向切乙,形成的切面边长不相等,因此切面图为A。

答案(1)1s22s22p63s23p63d6或[Ar]3d6

13.氮化硼(BN)晶体有多种相结构。六方相氮化硼是通常存在的稳定相,与石墨相似,具有层状结构,可作高温润滑剂。立方相氮化硼是超硬材料,有优异的耐磨性。它们的晶体结构如图所示。

(1)下列关于这两种晶体的说法中正确的是________(填字母)。

a.立方相氮化硼含有σ键和π键,所以硬度大

b.六方相氮化硼层间作用力小,所以质地软

c.两种晶体中的B—N键均为共价键

d.两种晶体均为分子晶体

(2)六方相氮化硼晶体层内一个硼原子与相邻氮原子构成的空间构型为________,其结构与石墨相似却不导电,原因是_______________________________________________________。

(3)立方相氮化硼晶体中,硼原子的杂化轨道类型为________。该晶体的天然矿物在青藏高原地下约300 km的古地壳中被发现。根据这一矿物形成事实,推断实验室由六方相氮化硼合成立方相氮化硼需要的条件应是________。

解析 (1)六方相氮化硼与石墨相似,层间的作用是范德华力;立方相氮化硼中都是单键,无π键,二者均不是分子晶体,b 、c 项正确。(2)六方相氮化硼晶体层内1个硼原子与3个氮原子形成平面三角形结构,最外层电子全部成键,没有自由移动的电子存在,故不能导电。(3)立方相氮化硼晶体中,每个硼原子与4个氮原子形成4个σ键,因此B 为sp 3杂化,根据其存在的环境可知反应条件为高温、高压。

答案 (1)bc (2)平面三角形 层状结构中没有自由移动的电子 (3)sp 3 高温、高压

14.金属钨晶体中晶胞的结构模型如图所示。实际测得金属钨的密度为ρ,钨的相对原子质量为M ,假定钨原子为等直径的刚性球,请回答下列问题:

(1)每一个晶胞分摊到________个钨原子。

(2)晶胞的边长a 为________。

(3)钨的原子半径r 为________(只有体对角线上的各个球才是彼此接触的)。

(4)金属钨原子形成的体心立体结构的空间利用率为________。

解析 (1)晶胞中每个顶点的钨原子为8个晶胞所共有,体心的钨原子完全为该晶胞所有,故每一个晶胞分摊到2个钨原子。(2)每个晶胞中含有2个钨原子,

则每个晶胞的质量m =2M N A

,又因每个晶胞的体积V =a 3,所以晶胞密度ρ=m V =2M

N A a 3,a =32M N A ρ。

(3)钨晶胞的体对角线上堆积着3个钨原子,则体对角线的长度为钨原子半径的4

倍,即4r =3a ,r =3a 4=34×32M N A

ρ。(4)每个晶胞含有2个钨原子,2个钨

原子的体积V′=2×4

3πr 3=8πr

3

3

,则该体心立方结构的空间利用率=V′

V

8πr3

3

a3

×100%=8

3π?

?

?

?

?

3

4a

3

a3×100%=

8×100%=68%。

答案(1)2(2)32M

N Aρ(3)

3

32M

N Aρ(4)68%

金属工艺学课后答案

金属工艺学课后答案 1、什么是应力?什么是应变? 答:试样单位截面上的拉力,称为应力,用符号ζ表示,单位是MPa。 试样单位长度上的伸长量,称为应变,用符号ε表示。 2、画出低碳钢拉伸曲线图,并指出缩颈现象发生在拉伸图上哪一点?若没有出现缩颈现象,是否表示试样没有发生塑性变形? 答:b 点发生缩颈现象。若没有出现缩颈现象,试样并不是没有发生塑性变形,而是没有产生明显的塑性变形。 3、将钟表发条拉直是弹性变形还是塑性变形?怎样判断它的变形性质? 答:将钟表发条拉直是弹性变形,因为当时钟停止时,钟表发条恢复了原状,故属弹性变形。 4、布氏硬度法和洛氏硬度法各有什么优缺点?各适用于何种场合。下列情况应采用哪种硬 度法测定其硬度? 答:布氏硬度法:(1)优点:压痕面积大,硬度值比较稳定,故测试数据重复性好,准确度 较洛氏硬度法高。(2)缺点:测试费时,且压痕较大,不适于成品检验。 (3)应用:硬度值HB 小于450 的毛坯材料。 洛氏硬度法:(1)优点:设备简单,测试简单、迅速,并不损坏被测零件。 (2)缺点:测得的硬度值重复性较差,对组织偏析材料尤为明显。 (3)应用:一般淬火件,调质件。 库存钢材——布氏硬度锻件——布氏硬度 硬质合金刀头——洛氏硬度台虎钳钳口——洛氏硬度。 5、下列符号所表示的力学性能指标的名称、含义和单位是什么? ζ:强度,表示材料在外加拉应力的作用下,抵抗塑性变形和断裂的能力,单位MPa。 ζs:屈服强度,指金属材料开始发生明显塑性变形时的应力,单位MPa。 ζb:抗拉强度,指金属材料在拉断前可能承受的最大应力,单位MPa。 ζ0.2:屈服强度,试样在产生0.2%塑性变形时的应力,单位MPa。 ζ-1:疲劳强度,表示金属材料在无数次的循环载荷作用下不致引起断裂的最大应力,单位MPa。 δ:伸长率,试样产生塑性变形而发生破坏是的最大伸长量。 αk:冲击韧性,金属材料在一次性、大能量冲击下,发生断裂,断口处面积所承受的冲击功,单位是J/cm2 HRC:洛氏硬度,无单位。 HBS:布氏硬度,无单位。表示金属材料在受外加压力作用下,抵抗局部塑性变形的能力。HBW:布氏硬度,无单位。 1、金属的晶粒粗细对其力学性能有什么影响? 答:晶粒越细小,ζb、HB、αk 越高;晶粒越粗,ζb、HB,、αk,、δ下降。 2、什么是同素异晶转变?试画出纯铁的冷却曲线,并指出室温和1100℃时的纯铁晶格有什 么不同? 答:随温度的改变,固态金属晶格也随之改变的现象,称为同素异

高中化学《金属晶体》教案 新人教版选修

高中化学《金属晶体》教案新人教版选修 第1 课时 【教材内容分析】 在必修2 中,学生已初步了解了物质结构和元素周期律、离子键、共价键、分子间作用力等知识。 本节内容是在介绍了分子晶体和原子晶体等知识的基础上,再介绍金属晶体的知识,可以使学生对于晶体有一个较全面的了解,也可使学生进一步深化对所学的知识的认识。教材从介绍金属键和电子气理论入手,对金属的通性作出了解释,并在金属键的基础上,简单的介绍了金属晶体的几种常见的堆积模型,让学生对金属晶体有一个较为全面的认识。 教学目标1理解金属键的概念和电子气理论2初步学会用电子气理论解释金属的物理性质重点: 金属键和电子气理论难点: 金属具有共同物理性质的解释。 【教学过程设计】 【引入】 大家都知道晶体有固定的几何外形、有确定的熔点,水、干冰等都属于分子晶体,靠范德华力结合在一起,金刚石、金刚砂等都是原子晶体,靠共价键相互结合,那么我们所熟悉的铁、铝等金属是不是晶体呢?它们又是靠什么作用结合在一起的呢?

【板书】 一、金属键金属晶体中原子之间的化学作用力叫做金属键。 【讲解】 金属原子的电离能低,容易失去电子而形成阳离子和自由电子,阳离子整体共同整体吸引自由电子而结合在一起。 这种金属离子与自由电子之间的较强作用就叫做金属键。金属键可看成是由许多原子共用许多电子的一种特殊形式的共价键,这种键既没有方向性也没有饱和性,金属键的特征是成键电子可以在金属中自由流动,使得金属呈现出特有的属性在金属单质的晶体中,原子之间以金属键相互结合。金属键是一种遍布整个晶体的离域化学键。 【强调】 金属晶体是以金属键为基本作用力的晶体。 【板书】 二、电子气理论及其对金属通性的解释1电子气理论 【讲解】 经典的金属键理论叫做“ 电子气理论”。它把金属键形象地描绘成从金属原子上“ 脱落” 下来的大量自由电子形成可与气体相比拟的带负电的“ 电子气” ,金属原子则“ 浸泡” 在“ 电子气” 的“ 海洋” 之中。 2金属通性的解释

人教版化学选修三教学案:第三节 金属晶体教案

第三节金属晶体(第1课时) 【教学目标】 1、理解金属键的概念和电子气理论 2、初步学会用电子气理论解释金属的物理性质 【教学难点】金属键和电子气理论 【教学重点】金属具有共同物理性质的解释。 【教学过程设计】 【引入】大家都知道晶体有固定的几何外形、有确定的熔点,水、干冰等都属于分子晶体,靠范德华力结合在一起,金刚石、金刚砂等都是原子晶体,靠共价键相互结合,那么我们所熟悉的铁、铝等金属是不是晶体呢?它们又是靠什么作用结合在一起的呢? 【板书】一、金属键 金属晶体中原子之间的化学作用力叫做金属键。 【讲解】金属原子的电离能低,容易失去电子而形成阳离子和自由电子,阳离子整体共同整体吸引自由电子而结合在一起。这种金属离子与自由电子之间的较强作用就叫做金属键。金属键可看成是由许多原子共用许多电子的一种特殊形式的共价键,这种键既没有方向性也没有饱和性,金属键的特征是成键电子可以在金属中自由流动,使得金属呈现出特有的属性在金属单质的晶体中,原子之间以金属键相互结合。金属键是一种遍布整个晶体的离域化学键。 【强调】金属晶体是以金属键为基本作用力的晶体。 【板书】二、电子气理论及其对金属通性的解释 1.电子气理论 【讲解】经典的金属键理论叫做“电子气理论”。它把金属键形象地描绘成从金属原子上“脱落”下来的大量自由电子形成可与气体相比拟的带负电的“电子气”,金属原子则“浸泡”在“电子气”的“海洋”之中。

2.金属通性的解释 【展示金属实物】展示的金属实物有金属导线(铜或铝)、铁丝、镀铜金属片等,并将铁丝随意弯曲,引导观察铜的金属光泽。叙述应用部分包括电工架设金属高压电线,家用铁锅炒菜,锻压机把钢锭压成钢板等。 【教师引导】从上述金属的应用来看,金属有哪些共同的物理性质呢? 【学生分组讨论】请一位同学归纳,其他同学补充。 【板书】金属共同的物理性质 容易导电、导热、有延展性、有金属光泽等。 ⑴金属导电性的解释 在金属晶体中,充满着带负电的“电子气”,这些电子气的运动是没有一定方向的,但在外加电场的条件下电子气就会发生定向移动,因而形成电流,所以金属容易导电。 【设问】导热是能量传递的一种形式,它必然是物质运动的结果,那么金属晶体导热过程中电子气中的自由电子担当什么角色? ⑵金属导热性的解释 金属容易导热,是由于电子气中的自由电子在热的作用下与金属原子频繁碰撞从而把能量从温度高的部分传到温度低的部分,从而使整块金属达到相同的温度。 ⑶金属延展性的解释 当金属受到外力作用时,晶体中的各原子层就会发生相对滑动,但不会改变原来的排列方式,弥漫在金属原子间的电子气可以起到类似轴承中滚珠之间润滑剂的作用,所以在各原子层之间发生相对滑动以后,仍可保持这种相互作用,因而即使在外力作用下,发生形变也不易断裂。因此,金属都有良好的延展性。【练习】 1.金属晶体的形成是因为晶体中存在

金属工艺学试题及答案

1.影响金属充型能力的因素有:金属成分、温度和压力和铸型填充条件。 2.可锻性常用金属的塑性和变形抗力来综合衡量。 3.镶嵌件一般用压力铸造方法制造,而离心铸造方法便于浇注双金属铸件。 4.金属型铸造采用金属材料制作铸型,为保证铸件质量需要在工艺上常采取的措施包括:喷刷涂料、保持合适的工作温度、严格控制开型时间、浇注灰口铸铁件要防止产生白口组织。 5.锤上模锻的锻模模膛根据其功用不同,可分为模锻模膛、制坯模膛两大类。 6.落料件尺寸取决于凹模刃口尺寸,冲孔件的尺寸取决于凸模刃口(冲子)尺寸。(落料件的光面尺寸与凹模的尺寸相等的,故应该以凹模尺寸为基准,冲孔工件的光面的孔径与凸模尺寸相等,故应该以凸模尺寸为基准。)7.埋弧自动焊常用来焊接长的直线焊缝和较大直径的环形焊缝。 8.电弧燃烧非常稳定,可焊接很薄的箔材的电弧焊方法是等离子弧焊。 9.钎焊可根据钎料熔点的不同分为软钎焊和硬钎焊。

二、简答题 1.什么是结构斜度?什么是拔模斜度?二者有何区别? 拔模斜度:铸件上垂直分型面的各个侧面应具有斜度,以便于把模样(或型芯)从型砂中(或从芯盒中)取出,并避免破坏型腔(或型芯)。此斜度称为拔模斜度。 结构斜度:凡垂直分型面的非加工表面都应设计出斜度,以利于造型时拔模,并确保型腔质量。 结构斜度是在零件图上非加工表面设计的斜度,一般斜度值比较大。 拔模斜度是在铸造工艺图上方便起模,在垂直分型面的各个侧面设计的工艺斜度,一般斜度比较小。有结构斜度的表面,不加工艺斜度。 2.下面铸件有几种分型面?分别在图上标出。大批量生产时应选哪一种?为什么?

分模两箱造型,分型面只有一个,生产效率高; 型芯呈水平状态,便于安放且稳定。 3.说明模锻件为什么要有斜度和圆角? 斜度:便于从模膛中取出锻件; 圆角:增大锻件强度,使锻造时金属易于充满模膛,避免锻模上的内尖角处产生裂纹,减缓锻模外尖角处的磨损,从而提高锻模的使用寿命。 4.比较落料和拉深工序的凸凹模结构及间隙有什么不同? 落料的凸凹模有刃口,拉深凸凹模为圆角;

金属工艺学课后习题参考答案

第一章(p11) 1.什么是应力什么是应变 答:应力是试样单位横截面的拉力;应变是试样在应力作用下单位长度的伸长量2.缩颈现象 在拉伸实验中当载荷超过拉断前所承受的最大载荷时,试样上有部分开始变细,出现了“缩颈”。 缩颈发生在拉伸曲线上bk段。 不是,塑性变形在产生缩颈现象前就已经发生,如果没有出现缩颈现象也不表示没有出现塑性变形。 4.布氏硬度法和洛氏硬度法各有什么优缺点下列材料或零件通常采用哪种方 法检查其硬度 库存钢材硬质合金刀头 锻件台虎钳钳口 洛氏硬度法测试简便,缺点是测量费时,且压痕较大,不适于成品检验。 布氏硬度法测试值较稳定,准确度较洛氏法高。;迅速,因压痕小,不损伤零件,可用于成品检验。其缺点是测得的硬度值重复性较差,需在不同部位测量数次。硬质合金刀头,台虎钳钳口用洛氏硬度法检验。 库存钢材和锻件用布氏硬度法检验。 5.下列符号所表示的力学性能指标名称和含义是什么 σb抗拉强度它是指金属材料 在拉断前所能承受的最大应力. σs屈服点它是指拉伸试样产生屈服时的应力。 σ2.0规定残余拉伸强度 σ1-疲劳强度它是指金属材料 在应力可经受无数次应力循环不发生疲劳断裂,此应力称为材料的疲劳强度。σ应力它指试样单位横截面的拉力。 a K冲击韧度它是指金属材料断 裂前吸收的变形能量的能力韧性。HRC 洛氏硬度它是指将金刚石圆锥体施以100N的初始压力,使得压头与试样始终保持紧密接触,然后,向压头施加主载荷,保持数秒后卸除主载荷。以残余压痕深度计算其硬度值。HBS 布氏硬度它是指用钢球直径为10mm,载荷为3000N为压头测试出的金属的布氏硬度。 HBW 布氏硬度它是指以硬质合金球为压头的新型布氏度计。 第二章(p23) (1)什么是“过冷现象”过冷度指什么 答:实际结晶温度低于理论结晶温度(平衡结晶温度),这种线性称为“过冷”。理论结晶温度与实际结晶温度之差,称为过冷度。 (2)金属的晶粒粗细对其力学性能有什么影响细化晶粒的途径有哪些 答:金属的晶粒粗细对其力学性能有很大影响。一般来说,同一成分的金属,晶粒愈细,其强度、硬度愈高,而且塑性和韧性也愈好。 细化铸态晶粒的主要途径是:

高二化学金属晶体与离子晶体学案

高二化学金属晶体与离子晶体学案 【自学目标】 1、知道离子晶体、金属晶体的结构微粒、微粒间作用力的区别。 2、能说明离子键的形成,能根据离子化合物的结构特征解释其物理性质。 3、了解晶格能的应用,知道晶格能的大小可以衡量离子晶体中离子键的强弱。 4、能列举金属晶体的基本堆积模型。制作典型的离子晶体结构模型。比较氯化钠、氯化铯等离子晶体的结构特征 【自学助手】 1、由于金属键没有性和性,所以金属晶体最常见的结构形式具有堆积密度、原子的配位数、能充分利用空间等特点的最密堆积。如Cu、Au属于,配位数是;Mg、Zn属于,配位数是。但是有些金属晶体的堆积方式不是最密堆积,而是采用A2密堆积,也叫堆积,如常见金属,其配位数是。 2、金属晶体中金属原子的价电子数越,原子半径越,金属阳离子与自由电子静电作用越强,金属键越强,熔沸点越高,反之越低。如:熔点Na Mg Al;Li Na K Rb Cs。 3、晶格能是指。晶格能越大,表示离子键越,离子晶体越。

4、(1)金属能导电的原因是 _____________________________________ 。(2)离子晶体在固态时不能导电的原因_____________________________________,但在熔化状态下或水溶液中能导电的原因是 _____________________________________。 5、离子晶体的熔沸点与离子所带电荷、核间距有关。离子所带电荷越,核间距越,离子晶体的熔沸点越。 6、离子晶体一般易溶于,难溶于溶剂。 【思维点拨】 【例题1】 金属晶体的形成是因为晶体中存在 A、金属离子间的相互作用 B、金属原子间的相互作用 C、金属离子与自由电子间的相互作用 D、金属原子与自由电子间的相互作用 【答案】 C 【例题2】 科学家发现的钇钡铜氧化合物在90K具有超导性,若该化合物晶体的晶胞结构如图所示,则该化合物的化学式可能是 A、YBa2Cu3O4 B、YBa2Cu2O5

金属工艺学含答案图文稿

金属工艺学含答案 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

铸造 一、填空题 1.通常把铸造方法分为____砂型铸造_____ 和_____特种铸造_____ 两类. 2.特种铸造是除_____砂型铸造____ 以外的其他铸造方法的统称, 如 _压力铸造__、____ ___离心铸造___ ____金属型铸造___ ____熔膜铸造____及连续铸造等。 3.制造砂型和芯用的材料,分别称为____型砂____和_____芯沙 _____,统称为造型材料。 4.为保证铸件质量,造型材料应有足够的_____强度______,和一定 ___耐火性____ 、____透气性____、____退让性_____、等性能。 5.用_____芯沙_____和____芯盒_____制造型芯的过程叫造芯。 6.为填充型腔和冒口儿开设于铸型中的系列通道称为浇注系统,通常 由 ___浇口杯_____ _____内浇道______ ______横浇道____ ______直浇道_____组成。 7._____落沙_____使用手工或机械使铸件或型砂、砂箱分开的操作。 二、单向选择题 1.下列使铸造特点的是 ( B ) A成本高 B 适应性广 C 精度高 D 铸件质量高

2.机床的床身一般选 ( A ) A 铸造 B 锻造 C 焊接 D 冲压 3.造型时上下型的结合面称为 ( D ) A 内腔 B 型芯 C 芯头 D 分型面 4.型芯是为了获得铸件的 ( C ) A 外形 B 尺寸 C 内腔 D 表面 5.造型时不能用嘴吹芯砂和 ( C ) A 型芯 B 工件 C 型砂 D 砂箱 6. 没有分型面的造型是 ( A ) A 整体模造型 B 分开模造型 C 三箱造型 D 熔模造型 7.冒口的主要作用是排气和 ( B ) A 熔渣 B 补缩 C 结构需要 D 防沙粒进入

[苏教版]选修3金属键 金属晶体教案

普通高中课程标准实验教科书-化学选修3[苏教版] 专题3微粒间作用力与物理性质 第一单元金属键金属晶体 [学习目标] 1.了解金属晶体模型和金属键的本质 2.认识金属键与金属物理性质的辨证关系 3.能正确分析金属键的强弱 4.结合问题讨论并深化金属的物理性质的共性 5.认识合金及其广泛应用 [课时安排] 3课时 第一课时 [学习内容] 金属键的概念及金属的物理性质 【引入】 同学们我们的世界是五彩缤纷的,是什么组成了我们的世界呢? 学生回答:物质 讲述:对!我们的自然世界是有物质组成的,翻开我们的化学课本的最后一页我们可以看到一张化学元素周期表,不论冬天美丽的雪花,公路上漂亮的汽车。包括你自己的身体都是有这些元素的一种或几种构成的。那么我们现在就来认识一下占周期表中大多数的金属。【板书】 §3-1-1 金属键与金属特性 大家都知道晶体有固定的几何外形、有确定的熔点,水、干冰等都属于分子晶体,靠范德华力结合在一起,金刚石、金刚砂等都是原子晶体,靠共价键相互结合,那么我们所熟悉的铁、铝等金属是不是晶体呢?它们又是靠什么作用结合在一起的呢? 【展示】 几种金属的应用的图片,有金属导线(铜或铝)、铁丝、镀铜金属片等,并将铁丝随意弯曲,引导观察铜的金属光泽。叙述应用部分包括电工架设金属高压电线,家用铁锅炒菜,锻压机把钢锭压成钢板等。 【讨论】 请一位同学归纳,其他同学补充。 1.金属有哪些物理共性? 2.金属原子的外层电子结构、原子半径和电离能?金属单质中金属原子之间怎样结合的?【板书】 一、金属共同的物理性质 容易导电、导热、有延展性、有金属光泽等。

二、金属键 【动画演示并讲解】 金属原子的电离能低,容易失去电子而形成阳离子和自由电子,阳离子整体共同整体吸引自由电子而结合在一起。这种金属离子与自由电子之间的较强作用就叫做金属键。金属晶体的组成粒子:金属阳离子和自由电子。金属离子通过吸引自由电子联系在一起, 形成金属晶体.经典的金属键理论把金属键形象地描绘成从金属原子上“脱落”下来的大量自由电子,金属原子则“浸泡”在“自由电子”的“海洋”之中。金属键的形象说法: “失去电子的金属离子浸在自由电子的海洋中”. 金属键的特征是成键电子可以在金属中自由流动,使得金属呈现出特有的属性在金属单质的晶体中,原子之间以金属键相互结合。金属键是一种遍布整个晶体的离域化学键。这种键既没有方向性也没有饱和性, 【板书】 1.构成微粒:金属阳离子和自由电子 2.金属键:金属阳离子和自由电子之间的较强的相互作用 3.成键特征:自由电子被许多金属离子所共有;无方向性、饱和性 【板书】 三、金属键对金属通性的解释 【学生分组讨论】如何应用金属键理论来解释金属的特性?请一位同学归纳,其他同学补充。【板书】 1.金属导电性的解释 在金属晶体中,充满着自由电子,而自由电子的运动是没有一定方向的,但在外加电场的条件下自由电子就会发生定向移动,因而形成电流,所以金属容易导电。 【强调】: 金属受热后,金属晶体中离子的振动加剧,阻碍着自由电子的运动。所以温度升高导电性下降。 2. 金属导热性的解释 金属容易导热,是由于自由电子在热的作用下与金属原子频繁碰撞从而把能量从温度高的部分传到温度低的部分,从而使整块金属达到相同的温度。 3.金属延展性的解释 当金属受到外力作用时,晶体中的各原子层就会发生相对滑动,但不会改变原来的排列方式,弥漫在金属原子间的电子气可以起到类似轴承中滚珠之间润滑剂的作用,所以在各原子层之间发生相对滑动以后,仍可保持这种相互作用,因而即使在外力作用下,发生形变也不易断裂。因此,金属都有良好的延展性。 4.金属晶体结构具有金属光泽和颜色 由于自由电子可吸收所有频率的光,然后很快释放出各种频率的光,因此绝大多数金属具有银白色或钢灰色光泽。而某些金属(如铜、金、铯、铅等)由于较易吸收某些频率的光而呈现较为特殊的颜色。当金属成粉末状时,金属晶体的晶面取向杂乱、晶格排列不规则,吸收可见光后辐射不出去,所以成黑色。 【问题解决】 1.金属晶体的形成是因为晶体中存在() A.金属离子间的相互作用B.金属原子间的相互作用

《金属晶体》名师教学设计

第三节金属晶体 教学三维目标 1、知识与技能 (1)理解金属键的概念和电子气理论,初步学会用电子气理论解释金属的物理性质。 (2)了解金属晶体内原子的几种常见排列方式 (3)训练学生的动手能力、计算能力和空间想象能力。 2、过程与方法 (1)通过学生动手操作,主动探究,让学生总结出金属晶体的几种堆积方式。 (2)在探究活动中培养学生分析问题解决问题的能力。 3、情感态度与价值观 (1)通过本节课的学习,学生能从晶体结构的微观视角去认识物质,感受化学微观世界的奇妙与和谐; (2)让学生体验科学探究的艰辛和乐趣,活动激发学生学习化学的积极性;同时培养同学间合作意识和能力。 (3)渗透思想,“人应该用两只眼睛看世界,一只属于感性、童真,一只属于了理性、科学。” 教学重点 1、金属键和电子气理论、金属具有共同物理性质的解释。 2、金属晶体内原子的空间排列方式 教学难点 1、金属具有共同物理性质的解释。 2、金属晶体内原子的空间排列方式 教学过程设计 【引入】师:在电影《终结者2》中,那个能变化为任何人,用枪怎么也打不死的液态金属机器人T1000,无疑是整部影片的亮点。当然,艺术高于生活,艺术也源于生活,T1000源于生活中金属的哪些物理通性呢?让我们首先做两个小体验①拉长盒子里的金属丝②握住课桌下的金属管

生:动手体验 【问题】师:请一位同学谈谈体验, 生:金属丝能拉长(延展性)、感觉到冷 师:好,课桌面和金属管温度应该相等,为什么手放在桌面没感到冷,握住金属管却很冷呢? 生:金属有较好的导热性 师:除了延展性、导热性、金属还有哪些物理通性呢? 【总结】一、金属的物理通性:延展性、导热性、导电性、金属光泽 【过渡】师:很好,结构决定性质,这些宏观的性质是由怎样的微观结构决定的呢?请大家带着这两个问题阅读教材73页:①金属晶体中存在何种作用力?②如何由“电子气”理论理解金属的延展性、导电性、导热性?2min 【引导】二、金属键(“电子气”理论) 师:存在的作用力是?金属键,对,其定义为: 1、金属键:金属晶体中,金属阳离子和电子之间的强烈作用。而对其描述最简单的理论就是电子气理论,请大家齐读第二段。 2、“电子气”理论:金属原子脱落下来的价电子形成遍布整块晶体的“电子气”,被所有原子共有,从而维系所有金属原子。 师:非常好,如何由电子气理论来解释金属的导热性、导电性、延展性呢? 生:分析,回答。 【过渡】影片片段1源于金属的物理通性,电子起了关键作用,我们看看片段2,台词里说到:液态金属机器人,能变化成任何和它等体积的物体。这句台词可以再改动,原因就藏在金属原子的堆积模型里,让我们接着学习:三、金属晶体的原子堆积模型 【投影】三、金属晶体的原子堆积模型 师: 1、如果把金属原子看成等径相切小球,在二维空间(平面)有几种堆积?)。 师:可以展示两种平面模型 2、已知:配位数是指晶体中每个原子周围最近的原子的个数。请问这两种堆积的配位数分别为?

《3-3 金属晶体》 教案3

《金属晶体》教案 第1课时 教材内容分析: 在必修2中,学生已初步了解了物质结构和元素周期律、离子键、共价键、分子间作用力等知识。本节内容是在介绍了分子晶体和原子晶体等知识的基础上,再介绍金属晶体的知识,可以使学生对于晶体有一个较全面的了解,也可使学生进一步深化对所学的知识的认识。教材从介绍金属键和电子气理论入手,对金属的通性作出了解释,并在金属键的基础上,简单的介绍了金属晶体的几种常见的堆积模型,让学生对金属晶体有一个较为全面的认识。 教学目标: 1.理解金属键的概念和电子气理论 2.初步学会用电子气理论解释金属的物理性质 重点: 金属键和电子气理论 难点: 金属具有共同物理性质的解释。 教学过程设计: 引入:大家都知道晶体有固定的几何外形、有确定的熔点,水、干冰等都属于分子晶体,靠范德华力结合在一起,金刚石、金刚砂等都是原子晶体,靠共价键相互结合,那么我们所熟悉的铁、铝等金属是不是晶体呢?它们又是靠什么作用结合在一起的呢? 板书:一、金属键 金属晶体中原子之间的化学作用力叫做金属键。 讲解:金属原子的电离能低,容易失去电子而形成阳离子和自由电子,阳离子整体共同整体吸引自由电子而结合在一起。这种金属离子与自由电子之间的较强作用就叫做金属键。金属键可看成是由许多原子共用许多电子的一种特殊形式的共价键,这种键既没有方向性也没有饱和性,金属键的特征是成键电子可以在金属中自由流动,使得金属呈现出特有的属性在金属单质的晶体中,原子之间以金属键相互结合。金属键是一种遍布整个晶体的离域化学键。 强调:金属晶体是以金属键为基本作用力的晶体。 板书:二、电子气理论及其对金属通性的解释

2019-2020学年苏教版化学选修三新素养同步学案:专题3 第一单元 金属键 金属晶体 Word版含答案

第一单元金属键金属晶体 1.了解晶胞的概念。2.了解金属晶体模型和金属键的本质。3.认识金属键与金属物理性质的辩证关系。 4.了解金属晶体内原子的几种常见排列方式。5.认识合金及其广泛应用。 金属键与金属特性

1.金属键 (1)金属离子和自由电子的形成 通常情况下,金属原子的部分或全部外围电子受原子核的束缚比较弱,在金属晶体内部,它们可以从原子上“脱落”下来,形成自由流动的电子。金属原子失去部分或全部外围电子形成金属离子。 (2)概念 金属离子与自由电子之间强烈的相互作用称为金属键。 2.金属特性 (1)导电性 通常情况下,金属内部自由电子的运动不具有固定的方向性,但在外电场作用下,自由电子在金属内部会发生定向运动,从而形成电流。 (2)导热性 当金属某一部分受热时,该区域里自由电子的能量增加,运动速率加快,自由电子与金属离子(或金属原子)的碰撞频率增加,自由电子把能量传给金属离子(或金属原子)。从而把能量从温度高的区域传到温度低的区域,从而使整块金属达到同样的温度。 (3)延展性 金属键没有方向性。在外力作用下,金属原子之间发生相对滑动时,各层金属原子间仍然保持金属键的作用。

1.判断正误(正确的打“√”,错误的打“×”)。 (1)不存在只有阳离子,而没有阴离子的物质。() (2)金属键是金属阳离子和自由电子之间存在的强烈的静电吸引作用。() (3)金属晶体在外力作用下,各层之间发生相对滑动,金属键也被破坏。() (4)金属有导热性。() (5)金属原子半径越小,价电子数越多,其金属单质熔、沸点越高,硬度越大。() 答案:(1)×(2)×(3)×(4)√(5)√ 2.下列关于金属键的叙述中不正确的是() A.金属键是金属阳离子和“自由电子”这两种带异性电荷的微粒间强烈的相互作用B.金属键可以看作是许多原子共用许多电子所形成的强烈的相互作用,所以有方向性和饱和性 C.金属键无饱和性和方向性 D.金属锂中的金属键比金属钠中的金属键强 答案:B

金属工艺学含答案

铸造 一、填空题 1.通常把铸造方法分为____砂型铸造_____ 和_____特种铸造_____ 两类. 2.特种铸造是除_____砂型铸造____ 以外的其他铸造方法的统称, 如_压力铸造__、 ____ ___离心铸造___ ____金属型铸造___ ____熔膜铸造____及连续铸造等。 3.制造砂型和芯用的材料,分别称为____型砂____和_____芯沙_____,统称为造型材料。 4.为保证铸件质量,造型材料应有足够的_____强度______,和一定___耐火性____ 、 ____透气性____、____退让性_____、等性能。 5.用_____芯沙_____和____芯盒_____制造型芯的过程叫造芯。 6.为填充型腔和冒口儿开设于铸型中的系列通道称为浇注系统,通常由 ___浇口杯_____ _____内浇道______ ______横浇道____ ______直浇道_____组成。 7._____落沙_____使用手工或机械使铸件或型砂、砂箱分开的操作。 二、单向选择题 1.下列使铸造特点的是(B ) A成本高 B 适应性广 C 精度高 D 铸件质量高 2.机床的床身一般选( A ) A 铸造 B 锻造 C 焊接 D 冲压 3.造型时上下型的结合面称为( D ) A 内腔 B 型芯 C 芯头 D 分型面 4.型芯是为了获得铸件的( C ) A 外形 B 尺寸 C 内腔 D 表面 5.造型时不能用嘴吹芯砂和( C ) A 型芯 B 工件 C 型砂 D 砂箱 6. 没有分型面的造型是( A ) A 整体模造型 B 分开模造型 C 三箱造型 D 熔模造型 7.冒口的主要作用是排气和( B ) A 熔渣 B 补缩 C 结构需要 D 防沙粒进入 8.浇铸时产生的抬箱跑火现象的原因是(C ) A 浇铸温度高 B 浇铸温度低 C 铸型未压紧 D 为开气孔 9.把熔炼后的铁液用浇包注入铸腔的过程时( D ) A 合箱 B 落砂 C 清理 D 浇铸 10.铸件上有未完全融合的缝隙,接头处边缘圆滑是(B ) A 裂缝 B 冷隔 C 错型 D 砂眼 11.落砂后冒口要( A ) A 清除 B 保留 C 保留但修毛刺 D 喷丸处理 12. 制造模样时尺寸放大是为了( A ) A 留收缩量 B 留加工余量 C 造型需要 D 取模方便 13.型芯外伸部分叫芯头,作用是(D ) A 增强度 B 工件需要 C 形成工件内腔 D 定位和支撑芯子 14.手工造型时有一工具叫秋叶,作用是(C )

金属工艺学课后习题参考答案

第一章(p11) 1.什么是应力?什么是应变? 答:应力是试样单位横截面的拉力;应变是试样在应力作用下单位长度的伸长量2.缩颈现象 在拉伸实验中当载荷超过拉断前所承受的最大载荷时,试样上有部分开始变细,出现了“缩颈”。 缩颈发生在拉伸曲线上bk段。 不是,塑性变形在产生缩颈现象前就已经发生,如果没有出现缩颈现象也不表示没有出现塑性变形。 4.布氏硬度法和洛氏硬度法各有什么优缺点?下列材料或零件通常采用哪种 方法检查其硬度? 库存钢材硬质合金刀头 锻件台虎钳钳口 洛氏硬度法测试简便,缺点是测量费时,且压痕较大,不适于成品检验。 布氏硬度法测试值较稳定,准确度较洛氏法高。;迅速,因压痕小,不损伤零件,可用于成品检验。其缺点是测得的硬度值重复性较差,需在不同部位测量数次。硬质合金刀头,台虎钳钳口用洛氏硬度法检验。 库存钢材和锻件用布氏硬度法检验。 5.下列符号所表示的力学性能指标名称和含义是什么? σb抗拉强度它是指金属材料 在拉断前所能承受的最大应力. σs屈服点它是指拉伸试样产生屈服时的应力。 σ2.0规定残余拉伸强度 σ1-疲劳强度它是指金属材料在 应力可经受无数次应力循环不发生疲劳断裂,此应力称为材料的疲劳强度。σ应力它指试样单位横截面的拉力。a K冲击韧度它是指金属材料断 裂前吸收的变形能量的能力韧性。HRC 洛氏硬度它是指将金刚石圆锥体施以100N的初始压力,使得压头与试样始终保持紧密接触,然后,向压头施加主载荷,保持数秒后卸除主载荷。以残余压痕深度计算其硬度值。HBS 布氏硬度它是指用钢球直径为10mm,载荷为3000N为压头测试出的金属的布氏硬度。 HBW 布氏硬度它是指以硬质合金球为压头的新型布氏度计。 第二章(p23) (1)什么是“过冷现象”?过冷度指什么? 答:实际结晶温度低于理论结晶温度(平衡结晶温度),这种线性称为“过冷”。理论结晶温度与实际结晶温度之差,称为过冷度。 (2)金属的晶粒粗细对其力学性能有什么影响?细化晶粒的途径有哪些? 答:金属的晶粒粗细对其力学性能有很大影响。一般来说,同一成分的金属,晶粒愈细,其强度、硬度愈高,而且塑性和韧性也愈好。

《金属晶体》教案

资料范本 本资料为word版本,可以直接编辑和打印,感谢您的下载 《金属晶体》教案 地点:__________________ 时间:__________________ 说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容

示范课 金属晶体(第二课时) 大同县一中刘华 金属晶体(第二课时) 【教学目标】 知识与技能:1.了解金属晶体内原子的几种常见排列方式 过程与方法:1. 活动探究 情感态度与价值观:1.训练学生的动手能力和空间想象能力。 2.培养学生的合作意识 【教学重点难点】 金属晶体内原子的空间排列方式 【教学过程设计】 【引入】分子晶体中,分子间的范德华力使分子有序排列;原子晶体中,原子之间的共价键使原子有序排列;金属晶体中,金属键使金属原子有序排列。今天,我们一起讨论有关金属原子的空间排列问题。 【分组活动】 利用20个大小相同的玻璃小球,有序地排列在水平桌面上(二维平面上),要求小球之间紧密接触。可能有几种排列方式。讨论每一种方式的配位数。(配位数:同一层内与一个原子紧密接触的原子数) 【学生活动1】 学生分四组活动,各由一人汇报结果。利用多媒体展示,学生排列结果主要介绍以下两种方式。(配位数:同一层内与一个原子紧密接触的原子数)非密置层,配位数4 密置层,配位数6 我们继续讨论,原子在三维空间的排列。首先讨论非密置层这种情况。 【学生活动2】

非密置层排列的金属原子,在空间内可能的排列。汇总各类情况逐一讨论。 (一)简单立方体堆积 这种堆积方式形成的晶胞是一个立方体,每个晶胞含1个原子,被称为简单立方堆积。这种堆积方式的空间利用率太低(52%),只有金属钋采取这种堆积方式。 (二)体心立方堆积(钾型) 如果是非密置层上层金属原子填入下层的金属原子形成的凹穴中,每层均照此堆积,如下图: 这种堆积方式的空间利用率显然比简单立方堆积的高多了(68%),许多金属是这种堆积方式,如碱金属,简称为钾型。 【学生活动3】 密置层的原子按钾型堆积方式堆积,会得到两种基本堆积方式,镁型和铜型。镁型如下图左侧,按ABABABAB……的方式堆积;铜型如图右侧,按ABCABCABC……的方式堆积.这两种堆积方式都是金属晶体的最密堆积,配位数均为12,空间利用率均为74℅,但所得的晶胞的形式不同. (三)六方最密堆积(镁型) (四)面心立方最密堆积(铜型) B C A [归纳与整理]金属晶体的四种堆积模型对比 (五)资料卡片 混合晶体 石墨不同于金刚石,这的碳原子不像金刚石的碳原子那样呈sp3杂化.而是呈sp2杂化,形成平面六元并环结构,因此石墨晶体是层状结构的,层内的碳原子

262.高中化学 3.3 金属晶体(第2课时)习题课 新人教版选修3

【步步高学案导学设计】2014-2015学年高中化学 3.3 金属晶体(第2课时)习题课新人教版选修3 练基础落实 知识点1 石墨晶体的结构特点及性质 1.石墨晶体是层状结构,在每一层内,每一个碳原子都跟其他3个碳原子相结合,下图是其晶体结构的俯视图,则图中7个六元环完全占有的碳原子数是( ) A.10个 B.18个 C.24个 D.14个 2.下列有关石墨晶体的说法正确的是( ) A.由于石墨晶体导电,所以它是金属晶体 B.由于石墨的熔点很高,所以它是原子晶体 C.由于石墨质软,所以它是分子晶体 D.石墨晶体是一种混合晶体 知识点2 金属晶体和金属键 3.下列晶体中由原子直接构成的单质有( ) A.金属钾 B.氢气 C.金刚石 D.白磷 4.金属晶体的形成是因为晶体中存在( ) ①金属原子②金属离子③自由电子④阴离子 A.① B.③ C.②③ D.②④ 5.下列有关物质结构的叙述正确的是( ) A.有较强共价键存在的物质熔、沸点一定很高 B.由电子定向移动而导电的物质是金属晶体 C.含有共价键的物质不一定是共价化合物 D.在离子化合物中不可能存在非极性共价键 6.下列有关金属键的叙述错误的是( ) A.金属键没有饱和性和方向性 B.金属键是金属阳离子和自由电子之间存在的强烈的静电吸引作用 C.金属键中的自由电子属于整块金属 D.金属的性质和金属固体的形成都与金属键有关 7.关于金属性质和原因的描述不正确的是( ) A.金属一般具有银白色光泽是物理性质,与金属键没有关系 B.金属具有良好的导电性,是因为在金属晶体中共享了金属原子的价电子,形成了“电子气”,在外电场的作用下自由电子定向移动便形成了电流,所以金属易导电C.金属具有良好的导热性能,是因为自由电子在受热后,加快了运动速率,自由电子通过与金属离子发生碰撞,传递了能量 D.金属晶体具有良好的延展性,是因为金属晶体中的原子层可以滑动而不破坏金属键知识点3 金属晶体的物理特征及其规律 8.下列有关金属晶体的说法中正确的是( ) A.常温下都是晶体

(完整版)金属工艺学题库及答案

金属材料热处理与加工应用题库及答案 目录 项目一金属材料与热处理 (2) 一、单选(共46 题) (2) 二、判断(共 2 题) (4) 三、填空(共15 题) (4) 四、名词解释(共12 题) (5) 五、简答(共 6 题) (5) 项目二热加工工艺 (7) 一、单选(共32 题) (7) 二、判断(共18 题) (8) 三、填空(共16 题) (9) 四、名词解释(共 5 题) (9) 五、简答(共14 题) (10) 项目三冷加工工艺 (13) 一、填空(共 3 题) (13) 二、简答(共 2 题) (13)

项目一 金属材料与热处理 一、单选(共 46 题) 1?金属a —Fe 属于(A )晶格。 A.体心立方 B 面心立方 C 密排六方晶格 D 斜排立方晶格 2?铁与碳形成的稳定化合物 Fe 3C 称为:(C ) A.铁素体 B 奥氏体 C 渗碳体 D 珠光体 3.强度和硬度都较高的铁碳合金是 :( A )° A.珠光体 B 渗碳体 C 奥氏体 D.铁素体 4.碳在丫一Fe 中的间隙固溶体, 称为:( B )° A.铁素体 B 奥氏体 C 渗碳体 D.珠光体 4.硬度高而极脆的铁碳合金是: C )。 A.铁素体 B 奥氏体 C 渗碳体 D.珠光体 5.由丫一Fe 转变成a —Fe 是属于:( D )° A.共析转变 B 共晶转变 C 晶粒变 D.同素异构转变 6.铁素体(F ) 是:( D )。 A.纯铁 B 混合物 C 化合物 D.固溶体 7.金属结晶时, 冷却速度越快,其实际结晶温度将:( B )。 A. 越高 B 越低 C 越接近理论结晶温度 D 固溶体 8.为细化晶粒, 可采用:( B 。 A.快速浇注 B 加变质剂 C.以砂型代金属型 D.固溶体 9.晶体中的位错属于:( C )。 A.体缺陷 B 面缺陷 C 线缺陷 D.点缺 陷 10. 下列哪种是 高级优质钢:( C )。 A.10 号钢 B.T 7 C.T 8 A D.30Cr 11. 优质碳素结构钢“ 4 5”,其中钢的平均含碳量为:( C )。 A.45% B0.O45 % C0.45 % D4.5 % 12. 优质碳钢的钢号是以( A )命名。 A.含碳量 B 硬度 C 抗拉强度 D 屈服极限 13. 优质碳素钢之所以优质,是因为有害成分( B )含量少。 A.碳 B.硫 C.硅 D.锰 14. 碳素工具钢的钢号中数字表示钢中平均含碳量的( C )。 A.十分数 B.百分数 C.千分数 D.万分数 1 5 .碳钢中含硫量过高时,将容易引起( B )。 A.冷脆 B 热脆 C 氢脆 D.兰脆 16.选用钢材应以( C )为基础。 A.硬度 B 含碳量 C 综合机械性能 D 价格 17.属于中碳钢的是(B )° A.20 号钢 B.30号钢 C.60 号钢 D.70 号 钢 18.下列金属中, 焊接性最差的是( D )。 A. 低碳钢 B 中碳钢 C.高碳钢 D.铸铁

2019-2020年高中化学《金属晶体》教案22 新人教版选修3

2019-2020年高中化学《金属晶体》教案22 新人教版选修3 【教学目标】 1.了解金属晶体内原子的几种常见排列方式 2.训练学生的动手能力和空间想象能力。 3.培养学生的合作意识。 【教学重点】金属晶体内原子的空间排列方式 【教学难点】金属晶体内原子的空间排列方式 【教学方法】讲授法、探究法、实验法。 【教学具备】铁架台、烧杯、铁圈、分液漏斗(球形、锥形)、试管、试管架、胶头滴管;四氯化碳、碘水、油水混合物 【教学过程】

两种排列方式小球的配位数分别

2019-2020年高中化学《金属晶体》教案5 新人教版选修3教学目标: 1. 知道金属键的涵义,能用金属键理论解释金属的一些物理性质。 2.能列举金属晶体的基本堆积模型。 教学重点、难点:能用金属键理论解释金属的一些物理性质。 探究建议: 1,讨论:为什么金属晶体具有导电性、导热性和金属光泽? 2、讨论:模型方法在探索原子结构中的应用。 3、用橡皮泥制作三种晶体的模型。 课时划分:一课时 教学过程: [设问]同学们都知道金属能导电、导热、有延展性,金属为什么具有这些性质?金属中的自由电子来源于哪里? [板书]第三节金属晶体 一、金属键 [讲述]要想解释金属的各种物理性质,让我们先来认识“金属键与电子气理论”。 [板书]1、金属键与电子气理论: [讲解]描述金属键本质的最简单理论是“电子气理论”。该理论把金属键描述为金属原子脱落下来的价电子形成遍布整块晶体的“电子气”,被所有原子所共用,从而把所有的金属原子维系在一起。由此可见,金属晶体跟原子晶体一样,是一种“巨分子”。金属键的强度差别很大。例如,金属钠的熔点较低、硬度较小,而钨是熔点最高、硬度最大的金属,这 [板书]金属键为金属原子脱落下来的价电子形成遍布整块晶体的“电子气”。脱落下来的价电子又称自由电子。 [思考]怎样用电子气理论解释的各种物理性质呢? [讲解]电子气理论还可以用来解释金属材料良好的延展性。当金属受到外力作用时,晶体中的各原子层就会发生相对滑动,但不会改变原来的排列方式,而且弥漫在金属原子间的电子气可以起到类似轴承中滚珠之间润滑剂的作用,所以金属都有良好的延展性。当向金属晶体中掺人不同的金属或非金属原子时,就像在滚珠之间掺人了细小而坚硬的砂土或碎石一样,会使这种金属的延展性甚至硬度发生改变,这也是对金属材料形成合金以后性能发生改变的一种比较粗浅的解释。 [ [

第三节-金属晶体-学案-答案

第三节金属晶体 学业要求素养对接 1.认识金属晶体的结构和性质。 2.能利用金属键、“电子气理论”解释金属的一些物理性质。微观探析:金属晶体的结构特点。 模型认知:能说明金属晶体中的微粒及其微粒间的相互作用。 [知识梳理] 一、金属键与金属晶体 1.金属键 (1)定义:在金属单质晶体中原子之间金属阳离子与自由电子之间强烈的相互作用。 (2)成键微粒:金属阳离子和自由电子。 (3)成键条件:金属单质或合金。 (4)成键本质 电子气理论:金属原子脱落下来的价电子形成遍布整块晶体的“电子气”,被所有原子共用,从而把所有金属原子维系在一起,形成像共价晶体一样的“巨分子”。 2.金属晶体 (1)通过金属离子与自由电子之间的较强作用形成的单质晶体,叫做金属晶体。 (2)用电子气理论解释金属的物理性质 二、混合晶体——石墨晶体

1.晶体模型 2.结构特点——层状结构 (1)同层内碳原子采取sp2杂化,以共价键(σ键)结合,形成平面六元并环结构。由于所有的p轨道平行且相互重叠,使p轨道中的电子可在整个碳原子平面中运动。 (2)层与层之间靠范德华力维系。 3.晶体类型 石墨晶体中,既有共价键,又有金属键和范德华力,属于混合晶体。 4.性质 熔点很高、质软、易导电等。 [自我检测] 1.判断正误,正确的打“√”;错误的打“×”。 (1)常温下,金属单质都以晶体形式存在。() (2)金属键可以看作许多原子共用许多电子的相互作用,故也有方向性和饱和性。() (3)金属晶体的熔点一定比共价晶体低。() (4)晶体中有阳离子,必然含有阴离子。() (5)同主族金属元素自上而下,金属单质的熔点逐渐降低,体现金属键逐渐减弱。() (6)金属晶体的堆积模型仅与金属原子半径有关。() (7)金属晶体中体心立方堆积,配位数最多,空间利用率最大。() (8)石墨为混合晶体,因层间存在分子间作用力,故熔点低于金刚石。() 答案(1)×(2)×(3)×(4)×(5)√(6)×(7)×(8)× 2.根据物质的性质,判断下列晶体类型:

相关主题
文本预览
相关文档 最新文档