当前位置:文档之家› 各种滤波器及其典型电路

各种滤波器及其典型电路

各种滤波器及其典型电路
各种滤波器及其典型电路

第一章滤波器

1.1 滤波器的基本知识

1、滤波器的基本特性

定义:滤波器是一种通过一定频率的信号而阻止或衰减其他频率信号的部件。

功能:滤波器是具有频率选择作用的电路或运算处理系统,具有滤除噪声和分离各种不同信号的功能。

类型:

按处理信号形式分:模拟滤波器和数字滤波器。

按功能分:低通、高通、带通、带阻、带通。

按电路组成分:LC无源、RC无源、由特殊元件构成的无源滤波器、RC有源滤波器

按传递函数的微分方程阶数分:一阶、二阶、…高阶。

如图1.1中的a、b、c、d图分别为低通滤波器、高通滤波器、带通滤波器、带阻滤波器传输函数的幅频特性曲线。

图1.1 几种滤波器传输特性曲线

.2、模拟滤波器的传递函数与频率特性

(一)模拟滤波器的传递函数

模拟滤波电路的特性可由传递函数来描述。传递函数是输出与输入信号电压或电流拉氏变换之比。经分析,任意个互相隔离的线性网络级联后,总的传递函数等于各网络传递函数的乘积。这样,任何复杂的滤波网络,可由若干简单的一阶与二阶滤波电路级联构成。

(二)模拟滤波器的频率特性

模拟滤波器的传递函数H(s)表达了滤波器的输入与输出间的传递关系。若滤波器的输入信号Ui是角频率为w的单位信号,滤波器的输出Uo(jw)=H(jw)表达了在单位信号输入情况下的输出信号随频率变化的关系,称为滤波器的频率特性函数,简称频率特性。频率特性H(jw)是一个复函数,其幅值A(w)称为幅频特性,其幅角∮(w)表示输出信号的相位相对于输入信号相位的变化,称为相频特性

(三)滤波器的主要特性指标

1、特征频率:

(1)通带截止频f p=wp/(2π)为通带与过渡带边界点的频率,在该点信号增益下降到一个人为规定的下限。

(2)阻带截止频f r=wr/(2π)为阻带与过渡带边界点的频率,在该点信号衰耗(增益的倒数)下降到一人为规定的下限。

(3)转折频率f c=wc/(2π)为信号功率衰减到1/2(约3dB)时的频率,在很多情况下,常以fc作为通带或阻带截频。

(4)固有频率f0=w0/(2π)为电路没有损耗时,滤波器的谐振频率,复杂电路往往有多个固有频率。

2、增益与衰耗

(1)对低通滤波器通带增益Kp一般指w=0时的增益也用A(0)表示;高通指w→∞时的增益也用()

A∞表示;带通则指中心频率处的增益。

(2)对带阻滤波器,应给出阻带衰耗,衰耗定义为增益的倒数。

(3)通带增益变化量△Kp指通带内各点增益的最大变化量,如果△Kp以dB 为单位,则指增益dB值的变化量。

3、阻尼系数与品质因数

阻尼系数是表征滤波器对角频率为w0信号的阻尼作用,是滤波器中表示能量衰耗的一项指标我们用 表示。

阻尼系数的倒数称为品质因数,是评价带通与带阻滤波器频率选择特性的一个重要指标,Q= w0/△w。式中的△w为带通或带阻滤波器的3dB带宽,w0为中心频率,在很多情况下中心频率与固有频率相等。

4、灵敏度

滤波电路由许多元件构成,每个元件参数值的变化都会影响滤波器的性能。

滤波器某一性能指标y对某一元件参数x变化的灵敏度记作Sxy,定义为:Sxy=(dy/y)/(dx/x)。该灵敏度与测量仪器或电路系统灵敏度不是一个概念,该灵敏度越小,标志着电路容错能力越强,稳定性也越高。

5、群时延函数

当滤波器幅频特性满足设计要求时,为保证输出信号失真度不超过允许范围,对其相频特性∮(w)也应提出一定要求。在滤波器设计中,常用群时延函数d∮(w)/dw评价信号经滤波后相位失真程度。群时延函数d∮(w)/dw越接近常数,信号相位失真越小。

(四)二阶滤波器的传输特性

1、二阶低通滤波器

二阶低通滤波器的传递函数的一般形式为

(1-1)它的固有频率为a01/2,通带增益Kp=b0/a0,阻尼系数为a1/w0。其幅频特性与相频特性为:

(1-2)

(1-3)

2、二阶高通滤波器

二阶低通滤波器的传递函数的一般形式为

(1-4)其幅频特性与相频特性为

(1-5)

(1-6)3、二阶带通滤波器

二阶带通滤波器的传递函数的一般形式为

(1-7)其幅频特性与相频特性分别为

(1-8)

(1-9)

4、二阶带阻滤波器

二阶带阻滤波器的传递函数的一般形式为

(1-10)其幅频特性和相频特性为

(1-11 )

5、二阶全通滤波电路(移相电路)

二阶全通滤波电路的传递函数的一般形式为

(1-12)其幅频特性为常数,相频特性为

(1-13)

1.2 滤波器的逼近

低通滤波器是一个通过低频信号而衰减或抑制高频信号的部件。理想的低通滤波器幅度响应如图1.2.1,可以实现的近似理想特性的幅度响应如图1.2.2所示。在理想情况下,可以清楚的指出通带(0wc);但在实际情况下,必须定义截止角频率wc。Wc定义为当H(jw)下降到最大值的0.707倍时的频率。

图1.2 理想特性曲线图1.3 实际逼近曲线

当然理想低通滤波器要求幅频特性A(w)在通带内为一常数,在阻带内为零,没

有过渡带,还要求群延时函数在通带内为一常量,这在物理上是无法实现的。实践中往往选择适当逼近方法,实现对理想滤波器的最佳逼近。可以用下面的传递函数对理想特性加以逼近

110

....o

n n i

n u Gb u s b s b --=

+++ (1-14)

上式表示一个n 阶全极点近似式,,其所以这样称呼是因为他的分母多项式为n 次幂而分子为常数(因而它没有有限零点,只有有限极点)。低通滤波器的增益是传递函数在s=0时的值,很明显在上式里增益就是G 。有许多种低通滤波器,它们的传递函数为上式的类型。如巴特沃兹逼近、切比雪夫逼近、贝塞尔逼近。而其它几种滤波器都可由低通滤波器变换得到,我们在这儿不赘述具体变换方法。

(一)巴特沃斯逼近

这种逼近的基本原则是使幅频特性在通带内最为平坦,并且单调变化,但过渡带衰减较为缓慢。其幅频特性为

(1-15)

n 阶巴特沃斯低通滤波器的传递函数为

(1-16)

其中 (1-17) 其幅频特性与相频特性如图:

图1.4 巴特沃兹滤波器的幅频及相频特性曲线

(二)切比雪夫逼近

这种逼近方法的基本原则是允许通带内有一定的波动量△Kp,其特点为等起伏波动,但过渡带衰减陡峭。其幅频特性为

(1-18)幅频特性曲线如图:

图1.5 切比雪夫滤波器的幅频特性曲线

(三)贝赛尔逼近

这种逼近与前两种不同,它主要侧重于相频特性,其基本原则是使通带内相频特性线性度最高,群时延函数最接近于常量,从而使相频特性引起的相位失真最小。

其特点是各频率分量具有线性相移,即群延迟d /dw接近于常数,相位失真小,

但幅频特性过度带很长,带外衰减缓慢;

图1.6 贝塞尔滤波器的幅频及相频特性曲线

1.3 几种RC 滤波器的常见电路

1.3.1 低通滤波器 1、一阶RC 低通滤波器 下图所示RC 串联电路

图1.7 一阶RC 低通滤波器

其负载端开路时电容电压对输入电压的转移电压比即传输函数为:

RC C R C

U U H ωωωωj 11j 1j 1

)j (12+=

+

== (1-19)

截止频率:

01

ωRC =

(1-20)

幅频特性:

(

)H jw (1-21)

相频特性为:

()0arctan w

w w θ= (1-22)

2、二阶RC 低通滤波电路

图1.8 二阶RC 低通滤波器

传输函数:

)(|)j (|j311

)j (22212ωθωωωω∠=+-==H RC C R U U H (1-23)

幅频特性:

|(j )|H ω=

(1-24)

相频特性:

2223 ()arctan 1RC R C ωθωω??=- ?-?? (1-25)

3、一阶有源低通滤波器

图1.9 一阶有源低通滤波器

其传递函数为:0(0)

()1/A H jw jw w =-+ (1-26)

幅频特性:

()H jw (1-27)

其中021/w R C =。 (1-28) 相频特性:

2()arctan jw R C ?π=-- (1-29)

一阶低通滤波器的优点是简单,缺点是特性偏离理想特性过远,阻带区衰减太慢,衰减斜率仅为-20db/十倍频程,使用于要求不高的场所。

4、二阶有源低通滤波器

图1.10 二阶有源低通滤波器

传递函数为

2

022

00(0)()A w H s w

s s w Q =++ (1-30)

该传递函数有两个共轭极点而没有零点,上式中 R1=R2=R 、01w RC =

、431R K R =+、1

3Q k

=-。

二阶低通滤波器可增加阻带区得衰减速度,在阻带区,它能提供-4db/

十倍频程

的衰减。

1.3.2 高通滤波器

与低通滤波器相反,高通滤波器用来通过高频信号,抑制或衰减低频信号。理想高通滤波器的特性如图。实际特性只能接近理想特性如图。

图1.11 理想特性 图1.12 实际逼近

1、一阶RC 无源高通滤波电路

对下图所示 RC 串联电路,电阻电压对输入电压的转移电压比为

图1.13 无源高通滤波器

RC RC C R R U U H ωωωωj 1j j )j (12

+=+

==

(1-31)

01ωRC == (1-32)

2、二阶R 无源高通滤波电路

图1.14 二阶无源高通滤波器 其传递函数为

RC C R C R U U H ωωωωj31)j (2222221

2

+--== (1-33)

3、一阶有源高通滤波器

图1.15 一阶有源高通滤波器

其传递函数为: 21

0/()1/R R H jw jw w =-

- (1-34)

式中 01

11/w R C = (1-35)

幅频特性为:

()H jw =

(1-36)

相频特性为:

0()arctan(/)w w w ?π=-+ (1-37)

4、二阶有源高通滤波器

图1.16 二阶有源高通滤波器

其传递函数

200()

()1(/)2/A H jw w w j w w ε∞=

-- (1-38)

幅频特性:

()H jw =

(1-39)

相频特性:

0202/()arctan

1(/)w w

w w w ε?=- (1-40)

式中43()1/A R R ∞=+、12R R R ==、12C C C ==、01/w RC =

1/2(24/3)R R ε=-。.

1.3.3 带通滤波器

带通滤波器用来通过某一频段的信号,将此频段两端以外的信号加以抑制或衰减,带通滤波器的理想特性和实际特性可用下图说明

图1.17 理想特性 图1.18 实际特性

1、 RC 无源带通滤波器

图1.19 RC 无源带通滤波器

RC C R RC

U U H ωωωωj31j )j (22212+-== (1-41)

仿真得到他的幅频特性曲线为:

2、有源带通滤波器

图1.20 有源带通滤波器

其传递函数为

000()

()1(//)A w H jw iQ w w w w -=

+- (1-42)

幅频特性

()H jw =

(1-43)

相频特性

00()arctan (//)w Q w w w w ?π=--- (1-44) 式中12C C C ==、031()/2A w R R =、

0w =

(1-45)

1/Q = (1-46)

:

1.3.4 带阻滤波器

与带通滤波器相反,带阻滤波器专门用来抑制或衰减某一频段的信号,而让该频段以外的所有信号通过,带阻滤波器抑制的频段带宽叫阻带带宽,简称频宽,用B表示,抑制频带中点所在角频率叫做中心角频率,用w0表示。B越窄,Q值越高,滤波器的抑制选择性越好。理想带阻特性在阻带内的增益为零,实际上,只能获得近似的抑制特性,带阻滤波器的理想特性与实际特性如下图

图1.21 理想特性曲线

图1.22 实际特性曲线

1、带阻滤波器可以由一个带通滤波器与一个减法器组成原理如下:

图1.23 带阻滤波器实现方法

图1.24 带阻滤波器 它的传输函数为:

02

2

00

()

()1w A w s Q

H s w s s w Q =+

++ (1-47)

式中0()A w =-1,则:

22

22

00

()s w H s w s s w Q +=

++ (1-48)

其中:0w =

1.3.5 全通滤波器

全通滤波器又叫移相器,它能通过所有频率的信号,其增益幅度为常数,仅相位是频率的函数。常见得有一阶全通滤波器,二阶全通滤波器如图和图所示

A B

图1.25 一阶全通滤波器

上面为两个一阶移相滤波器,它们能提供180度得相移。电路A 的移相范围可这样看出,当输入信号频率为零时,电容C 相当于开路,同相端电压为输入电压,电路成为电压跟随器,相移为零;当信号频率很高时,C 几乎短路,同相端电压为零,电路成为反相比例运算放大器,相移为-180度。同理,信号频率为零时,图b 电路的电容C 开路,电路为反相比例运算放大器,相移-180度。当信号频率很高时,C 几乎短路,电路成为电压跟随器相移为零即-360度。

A 图的传输函数为: 2

2

1()1jwcR H jw jwcR -=

+ (1-49)

幅频特性为 : ()1

H j w = (1-50)

相频特性为:

2()2a r c t a n j w R c ?=- (1-51)

图b 的传输函数为: 2

21()1jwcR H jw jwcR -=-

+ (1-52)

幅频特性为: ()1

H j w = (1-53)

相频特性为: 2()2a r c t a n j w R c ?π=-- (1-54)

二阶全通滤波器

图1.26 二阶全通滤波器 图中C1=C2,R3/R4=4R1/R2

传输函数为:200200

1()()1()()()1w w

A j j w Q w H jw j j w Q w ??-+??

??=-+ (1-55)

幅频特性为:()H jw A = (1-56)

相频特性为:001

()2arctan (//)w Q w w w w ???=-??

-?? (1-57)

式中1/Q =01/w =

=2

2

1Q A Q

=+。 二阶移相滤波器它的优点是简单,移相较好,它的移相范围为0——-360度。

1.4 几种典型RC 滤波电路

1、压控电压源型滤波电路

压控电压源,又叫萨-伦电路。1955年由MIT 林肯实验室的R. P. Sallen 和 E. L. Key 最先发表,是应用最为广泛的滤波器结构之一,如图下所示。它流行的其中一

绝对经典的低通滤波器设计报告

经典 无源低通滤波器的设计

团队:梦知队 团结奋进,求知创新,追求卓越,放飞梦想 队员: 日期:2010.12.10 目录 第一章一阶无源RC低通滤波电路的构建 (3) 1.1 理论分析 (3) 1.2 电路组成 (4) 1.3 一阶无源RC低通滤波电路性能测试 (5) 1.3.1 正弦信号源仿真与实测 (5) 1.3.2 三角信号源仿真与实测 (10) 1.3.3 方波信号源仿真与实测 (15) 第二章二阶无源LC低通滤波电路的构建 (21) 2.1理论分析 (21) 2.2 电路组成 (22) 2.3 二阶无源LC带通滤波电路性能测试 (23) 2.3.1 正弦信号源仿真与实测 (23) 2.3.2 三角信号源仿真与实测 (28)

2.3.3 方波信号源仿真与实测 (33) 第三章结论与误差分析 (39) 3.1 结论 (39) 3.2 误差分析 (40) 第一章一阶无源RC低通滤波电路的构建1.1理论分析 滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。 低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。 图1 RC低通滤波器基本原理图 当输入是直流时,输出电压等于输入电压,因为Xc无限大。当输入

频率增加时,Xc减小,也导致Vout逐渐减小,直到Xc=R。此时的频率为滤波器的特征频率fc。 解出,得: 在任何频率下,应用分压公式可得输出电压大小为: 因为在=时,Xc=R,特征频率下的输出电压用分压公式可以表述为: 这些计算说明当Xc=R时,输出为输入的70.7%。按照定义,此时的频率称为特征频率。 1.2电路组成

各种滤波器及其典型电路

第一章滤波器 1.1 滤波器的基本知识 1、滤波器的基本特性 定义:滤波器是一种通过一定频率的信号而阻止或衰减其他频率信号的部件。功能:滤波器是具有频率选择作用的电路或运算处理系统,具有滤除噪声和分离各种不同信号的功能。 类型: 按处理信号形式分:模拟滤波器和数字滤波器。 按功能分:低通、高通、带通、带阻、带通。 按电路组成分:LC无源、RC无源、由特殊元件构成的无源滤波器、RC有源滤波器 按传递函数的微分方程阶数分:一阶、二阶、…高阶。 如图1.1中的a、b、c、d图分别为低通滤波器、高通滤波器、带通滤波器、带阻滤波器传输函数的幅频特性曲线。

图1.1 几种滤波器传输特性曲线 .2、模拟滤波器的传递函数与频率特性 (一)模拟滤波器的传递函数 模拟滤波电路的特性可由传递函数来描述。传递函数是输出与输入信号电压或电流拉氏变换之比。经分析,任意个互相隔离的线性网络级联后,总的传递函数等于各网络传递函数的乘积。这样,任何复杂的滤波网络,可由若干简单的一阶与二阶滤波电路级联构成。 (二)模拟滤波器的频率特性 模拟滤波器的传递函数H(s)表达了滤波器的输入与输出间的传递关系。若滤波器的输入信号Ui是角频率为w的单位信号,滤波器的输出Uo(jw)=H(jw)表达了在单位信号输入情况下的输出信号随频率变化的关系,称为滤波器的频率特性函数,简称频率特性。频率特性H(jw)是一个复函数,其幅值A(w)称为幅频特性,其幅角∮(w)表示输出信号的相位相对于输入信号相位的变化,称为

相频特性 (三)滤波器的主要特性指标 1、特征频率: (1)通带截止频f p=wp/(2)为通带与过渡带边界点的频率,在该点信号增益下降到一个人为规定的下限。 (2)阻带截止频f r=wr/(2)为阻带与过渡带边界点的频率,在该点信号衰耗(增益的倒数)下降到一人为规定的下限。 (3)转折频率f c=wc/(2)为信号功率衰减到1/2(约3dB)时的频率,在很多情况下,常以fc作为通带或阻带截频。 (4)固有频率f0=w0/(2)为电路没有损耗时,滤波器的谐振频率,复杂电路往往有多个固有频率。 2、增益与衰耗 (1)对低通滤波器通带增益Kp一般指w=0时的增益也用A(0)表示;高通指w→∞时的增益也用() A∞表示;带通则指中心频率处的增益。 (2)对带阻滤波器,应给出阻带衰耗,衰耗定义为增益的倒数。 (3)通带增益变化量△Kp指通带内各点增益的最大变化量,如果△Kp以dB 为单位,则指增益dB值的变化量。 3、阻尼系数与品质因数 阻尼系数是表征滤波器对角频率为w0信号的阻尼作用,是滤波器中表示能量衰耗的一项指标我们用α表示。 阻尼系数的倒数称为品质因数,是评价带通与带阻滤波器频率选择特性的

简单低通滤波器设计及matlab仿真

东北大学 研究生考试试卷 考试科目: 课程编号: 阅卷人: 考试日期: 姓名:xl 学号: 注意事项 1.考前研究生将上述项目填写清楚. 2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交研究生院培养办公室, 专业课成绩单与试卷交各学院,各学院把成绩单交研究生院培养办公室. 东北大学研究生院培养办公室

数字滤波器设计 技术指标: 通带最大衰减: =3dB , 通带边界频率: =100Hz 阻带最小衰减: =20dB 阻带边界频率: =200Hz 采样频率:Fs=200Hz 目标: 1、根据性能指标设计一个巴特沃斯低通模拟滤波器。 2、通过双线性变换将该模拟滤波器转变为数字滤波器。 原理: 一、模拟滤波器设计 每一个滤波器的频率范围将直接取决于应用目的,因此必然是千差万别。为了使设计规范化,需要将滤波器的频率参数作归一化处理。设所给的实际频 率为Ω(或f ),归一化后的频率为λ,对低通模拟滤波器令λ=p ΩΩ/,则1 =p λ, p s s ΩΩ=/λ。令归一化复数变量为p ,λj p =,则p p s j j p Ω=ΩΩ==//λ。所以巴 特沃思模拟低通滤波器的设计可按以下三个步骤来进行。 (1)将实际频率Ω规一化 (2)求Ωc 和N 11010/2-=P C α s p s N λααlg 1 10 110lg 10 /10/--= 这样Ωc 和N 可求。 p x fp s x s f

根据滤波器设计要求=3dB ,则C =1,这样巴特沃思滤波器的设计就只剩一个参数N ,这时 N p N j G 222 )/(11 11)(ΩΩ+= += λλ (3)确定)(s G 因为λj p =,根据上面公式有 N N N p j p p G p G 22)1(11 )/(11)()(-+= += - 由 0)1(12=-+N N p 解得 )221 2exp(πN N k j p k -+=,k =1,2, (2) 这样可得 1 )21 2cos(21 ) )((1 )(21+-+-= --= -+πN N k p p p p p p p G k N k k 求得)(p G 后,用p s Ω/代替变量p ,即得实际需要得)(s G 。 二、双线性变换法 双线性变换法是将s 平面压缩变换到某一中介1s 平面的一条横带里,再通过标准变换关系)*1exp(T s z =将此带变换到整个z 平面上去,这样就使s 平面与z 平面之间建立一一对应的单值关系,消除了多值变换性。 为了将s 平面的Ωj 轴压缩到1s 平面的1Ωj 轴上的pi -到pi 一段上,可以通过以下的正切变换来实现: )21 tan(21T T Ω= Ω 这样当1Ω由T pi -经0变化到T pi 时,Ω由∞-经过0变化到∞+,也映射到了整个Ωj 轴。将这个关系延拓到整个s 平面和1s 平面,则可以得到

无源滤波器设计

长沙学院 模电课程设计说明书 题目 系(部) 电子与通信工程系 专业(班级) 姓名 学号 指导教师 起止日期

数字电子技术课程设计任务书(11)系(部):电子与通信工程系专业:电子信息工程

长沙学院课程设计鉴定表

目录 一.无源滤波器的简介 (5) 1.无源滤波器定义 (5) 2.无源滤波器的优点 (5) 3.滤波器的分类 (5) 4.无源滤波器的发展历程 (5) 二.无源滤波器的工作原理与电路与电路分析 (6) 1.工作原理 (6) 2.电路分析 (7) 三.设计思路及电路仿真 (11) 1.无源低通滤波器 (11) 2.无源高通滤波器 (11) 3.无源带通滤波器 (12) 4.无源带阻滤波器 (13) 四.设计心得与体会 (15) 五.参考文献 (15)

一.无源滤波器的简介 1.无源滤波器定义 无源滤波器,又称LC滤波器,是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最普通易于采用的无源滤波器结构是将电感与电容串联,可对主要次谐波(3、5、7)构成低阻抗旁路;单调谐滤波器、双调谐滤波器、高通滤波器都属于无源滤波器。 2.无源滤波器的优点 无源滤波器具有结构简单、成本低廉、运行可靠性较高、运行费用较低等优点,至今仍是应用广泛的被动谐波治理方法。 3.滤波器的分类 ⑴按所处理的信号 按所处理的信号分为模拟滤波器和数字滤波器两种。 ⑵按所通过信号的频段 按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。 低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。 高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。 带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。 带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。 ⑶按照阶数来分 通过传递函数的阶数来确定滤波器的分类。 4.无源滤波器的发展历程 (1)1917年美国和德国科学家分别发明了LC滤波器,次年导致了美国第一个多路复用系统的出现。 (2)20世纪50年代无源滤波器日趋成熟。 (3)自60年代起由于计算机技术、集成工艺和材料工业的发展,滤波器发展上了一个新台阶,并且朝着低功耗、高精度、小体积、多功能、稳定可靠和价廉方向努力,其中小体积、多功能、高精度、稳定可靠成为70年代以后的主攻方向。导致RC有源滤波器、数字滤波器、开关电容滤波器和电荷转移器等各种滤波器的飞速发展; (4)到70年代后期,上述几种滤波器的单片集成已被研制出来并得到应用。 (5)80年代,致力于各类新型滤波器的研究,努力提高性能并逐渐扩大应用范围。 (6)90年代至现在主要致力于把各类滤波器应用于各类产品的开发和研制。 当然,对滤波器本身的研究仍在不断进行。

各种滤波器

设计一个九级集总参数低通滤波器,电路结构如图所示,要求截止频率为450MHz,通带内增益大于-1dB,阻带内650M以上增益小于-50dB。通带内反射系数要求小于-15dB。要求优化参数Cost<0.5(最佳为 5(波长线长为相对值)。计算线长Z为2.5和3.5两处的输入阻抗、反射系数。并画出Z为2.5时的阻抗与导纳圆图。 低通滤波器===== 设计具体要求 ====== 通带频率范围:0MHz-300MHz 增益参数S21:通带内0MHz-300MHz S21>-0.5dB ;阻带内420MHZ以上 S21<-50dB 反射系数S11:通带内0MHz-300MHz S11<-10dB ; 2、为了节省成本,计划将该滤波器设计为7级结构。你能把它设计出来吗?根据你的优化仿真结果,探讨滤波器级数与其性能的关系。 低通滤波器===== 设计具体要求 ====== 通带频率范围:0MHz-350MHz 增益参数S21:通带内 S21>-1dB 阻带内550MHZ以上 S21<-45dB 反射系数S11:通带内 S11<-15dB 2、简述功分器的基本技术要求及其主要特性参数。

通带频率范围:0MHz-400MHz 增益参数S21:通带内0MHz-400MHz S21>-0.2dB 阻带内600MHZ以上 S21<-50dB 反射系数S11:通带内0MHz-400MHz S11<-10dB 要求优化参数 2、简述HFSS的特点及其主要应用的范围。 IVCURVEI来测量非线性器件——三极管GBJT3的特性曲线并加入调谐,分析其变化。 高通滤波器===== 设计具体要求 ====== 通带频率范围:550MHz以上 增益参数S21:通带内S21>-2dB ;阻带内0-400MHz,S21<-50dB 反射系数S11:通带内S11<-20dB; 2、你会添加Marker吗?试在S21曲线上,添加一横坐标为600MHz的Marker。添加后需请老师签字。 3、使用TXLine工具计算微带线εr=12.9,t/h=0.1,分别计算W/h=2.5,3.0以及3.5时的特性阻高通滤波器 ===== 设计具体要求 ====== 设计一个九级集总参数高通滤波器,电路结构如图所示,要求截止频率为550MHz,通带内增益大于-1dB,阻带内0-350MHz增益小于-45dB。通带内反射系数要求小于-15dB。 2、如果要设计低通滤波器,与前面相比,有哪些步骤需要变化?并画出结构简图。 MicrowaveOffice的Optimize功能选择框中的优化算法,并画出优化算法框图。

fir低通滤波器设计(完整版)

电子科技大学信息与软件工程学院学院标准实验报告 (实验)课程名称数字信号处理 电子科技大学教务处制表

电 子 科 技 大 学 实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间:14-18 一、实验室名称:计算机学院机房 二、实验项目名称:fir 低通滤波器的设计 三、实验学时: 四、实验原理: 1. FIR 滤波器 FIR 滤波器是指在有限范围内系统的单位脉冲响应h[k]仅有非零值的滤波器。M 阶FIR 滤波器的系统函数H(z)为 ()[]M k k H z h k z -==∑ 其中H(z)是k z -的M 阶多项式,在有限的z 平面内H(z)有M 个零点,在z 平面原点z=0有M 个极点. FIR 滤波器的频率响应 ()j H e Ω 为 0 ()[]M j jk k H e h k e Ω -Ω ==∑ 它的另外一种表示方法为 () ()()j j j H e H e e φΩΩΩ=

其中 () j H e Ω和()φΩ分别为系统的幅度响应和相位响应。 若系统的相位响应()φΩ满足下面的条件 ()φαΩ=-Ω 即系统的群延迟是一个与Ω没有关系的常数α,称为系统H(z)具有严格线性相位。由于严格线性相位条件在数学层面上处理起来较为困难,因此在FIR 滤波器设计中一般使用广义线性相位。 如果一个离散系统的频率响应 ()j H e Ω 可以表示为 ()()()j j H e A e αβΩ-Ω+=Ω 其中α和β是与Ω无关联的常数,()A Ω是可正可负的实函数,则称系统是广义线性相位的。 如果M 阶FIR 滤波器的单位脉冲响应h[k]是实数,则可以证明系统是线性相位的充要条件为 [][]h k h M k =±- 当h[k]满足h[k]=h[M-k],称h[k]偶对称。当h[k]满足h[k]=-h[M-k],称h[k]奇对称。按阶数h[k]又可分为M 奇数和M 偶数,所以线性相位的FIR 滤波器可以有四种类型。 2. 窗函数法设计FIR 滤波器 窗函数设计法又称为傅里叶级数法。这种方法首先给出()j d H e Ω, ()j d H e Ω 表示要逼近的理想滤波器的频率响应,则由IDTFT 可得出滤波器的单位脉冲响应为 1 []()2j jk d d h k H e e d π π π ΩΩ-= Ω ? 由于是理想滤波器,故 []d h k 是无限长序列。但是我们所要设计的FIR 滤波 器,其h[k]是有限长的。为了能用FIR 滤波器近似理想滤波器,需将理想滤波器的无线长单位脉冲响应 []d h k 分别从左右进行截断。 当截断后的单位脉冲响应 []d h k 不是因果系统的时候,可将其右移从而获得因果的FIR 滤波器。

(完整word版)基于巴特沃斯的低通滤波器的设计原理

课程设计报告 ——基于虚拟仪器的幅频特性自动测试系统的实现 2010年12月25日 一、实验内容 基于虚拟仪器的幅频特性自动测试系统的实现 二、实验目的 1、通过对滤波器的设计,充分了解测控电路中学习的各种滤波器的工作原理以及工作机制。学习幅频特性曲线的拟合,学会基本MATLAB操作。 2、进一步掌握虚拟仪器语言LabVIEW设计的基本方法、常用组件的使用方法和设计全过程。以及图形化的编程方法;学习非线性校正概念和用曲线拟合法实现非线性校正;练习正弦波、方波、三角波产生函数的使用方法;掌握如何使用数据采集卡以及EIVIS产生实际波形信号。了解图形化的编程方法;练习DIO函数的

使用方法;学习如何使用数据采集卡以及EIVIS产生和接受实际的数字信号。 3、掌握自主化学习的方法以及工程设计理念等技能。 三、实验原理 滤波器是具有频率选择作用的电路或运算处理系统。滤波处理可以利用模拟电路实现,也可以利用数字运算处理系统实现。滤波器的工作原理是当信号与噪声分布在不同频带中时,可以在频率与域中实现信号分离。在实际测量系统中,噪声与信号的频率往往有一定的重叠,如果重叠不严重,仍可利用滤波器有效地抑制噪声功率,提高测量精度。 任何复杂地滤波网络,可由若干简单地、相互隔离地一阶与二阶滤波电路级联等效构成。一阶滤波电路只能构成低通和高通滤波器,而不能构成带通和带阻。可先设计一个一阶滤波电路来熟悉电路设计思路以及器件使用要求和软件地进一步学习。 滤波器主要参数介绍: ①通带截频f p=w p/(2π)为通带与过渡带边界点的频率,在该点信号增益下降到一个人为规定的下限。 ②阻带截频f r=w r/(2π)为阻带与过渡带边界点的频率,在该点信号衰耗(增益的倒数)下降到一人为规定的下限。 ③转折频率f c=w c/(2π)为信号功率衰减到1/2(约3dB)时的频率,在很多情况下,常以f c作为通带或阻带截频。 ④固有频率f0=w0/(2π)为电路没有损耗时,滤波器的谐振频率,复杂电路往往有多个固有频率。 有源滤波器地设计,主要包括确定传递函数,选择电路结构,选择有源器件

微带低通滤波器的设计

微带低通滤波器的设计 朱晶晶 摘要:本文通过对国内外文献的查看和整理,对课题的研究意义及滤波器目前的发展现状做了阐述,然后介绍了微带线的基本理论,以及滤波器的基本结构,归纳了微带滤波器的作用和特点。之后对一个七阶微带低通滤波器进行了详细的研究,最后利用三维电磁场仿真软件ANSYS HFSS 进行仿真验证,经过反复调试,结果显示满足预期的性能指标。 关键字:微带线;低通滤波器;HFSS Abstract:View and finishing this article through to the domestic and foreign literature, the research significance and the filter to the current development status of, and then introduces the basic theory of microstrip line, and the basic structure of the filter, summarizes the function and characteristics of microstrip filter.After a seven step microstrip low-pass filter has carried on the detailed research, the use of 3 d electromagnetic field simulation software ANSYS HFSS simulation verification, after repeated testing, the results show that meet the expected performance index. Key word: microstrip line; low-pass filter; HFSS 1.引言 随着无线通信技术的快速发展,微波滤波器已经被广泛应用于各种通信系统,如卫星通信、微波中继通信、军事电子对抗、毫米波通信、以及微波导航等多种领域,并对微波滤波器的要求也越来越高。滤波器是一种重要的微波通信器件,它具有划分信道、筛选信号的功能,是一种二端口网络。整个通信系统的性能指标直接受它的性能优劣的影响[1]。主要技术指标要求有高阻带抑制、低通带插损、高功率、宽频带和带内平坦群时延等。同时,体积、成本、设计时间也是用户较为关心的话题。滤波器已经成为许多设计问题的关键,微带滤波器的设计技术是无线通信系统中的关键技术。传统方法设计出来的滤波器结构尺寸都比较大,在性能指标上也存在一定程度上的局限性,往往不能够满足现代无线通信系统的要求。目前,微带低通滤波器具有高性能、尺寸较小、易于集成、易于加工等优点因而得到了广泛的应用。 本论文以切比雪夫低通滤波器的研究作为实例,设计出一款七阶的微带低通滤波器,要求符合现代个人移动通信系统多需求的射频产品,覆盖一定的通信频率范围,使之掌握工程开发的相关步骤以及当前技术发展与需求。 2. 微带线的基本理论与参数 ε和导线厚度t、基板的介质损耗角正切函数,接地板和导线所用的金属 (1) 基板参数[2]:基板高度h、基板相对介电常数 r 通常为铜、银、铝。 (2) 电特性参数:特性阻抗、工作频率和波长、波导波长和电长度。 (3) 微带线参数:宽度W、长度L 和微带线单位长度衰减的量AdB。微带线的基本结构如1所示。 (a)结构示意图(b)横截面示意图 图1 微带线结构图 微带滤波器的参数: (1) 带宽 带宽指信号所占据的频带宽度,在被用来描述信道时,带宽是指能够有最大频带宽度。带宽在信息论、无线电、通信、信号处理和波谱学等领域都是一个核心概念。 (2) 带外衰减 由于要抑制无用信号,因此越大的带外衰减特性就越好,此项指标一般取通带外与截止频率为一定比值的某点频率的衰减值[3]。 (3) 通带插损 由于网络端口和元件自身损耗的不良匹配会造成一些能量损耗,造成在通带内引入的噪声过高以至于有用信号通过系统后产生信号失真,为了解决通信系统的这方面问题,就用插损IL 来表示滤波器的损耗特性。 (4) 带内驻波 滤波器的输入端口和输出端口与外加阻抗匹配的程度由带内驻波表示。驻波越小则说明匹配越好,反过来,则不然。 3. 运用HFSS 软件进行设计模拟仿真 3.1 微带低通滤波器的设计参数 滤波器工作频段:f1 =10MHz—f2=2500MHz =0.1dB 滤波器通带衰减:L Ar 滤波器带外抑制:在3500~5000MHz 的频率之间有35dB 的衰减 滤波器输入、输出端微带线特性阻抗:Z0=50 ε=3.66mm,h=0.508mm,t=0.004 所选介质基板指标为: r 可以计算得到7 阶切比雪夫低通滤波电路各微带传输线的结构参数[4-5]得到各尺寸如表1所示:

低通滤波器的设计

低通滤波器的设计 模拟滤波器在各种预处理电路中几乎是必不可少的,已成为生物医学仪器中的基本单元电路。有源滤波器实质上是有源选频电路,它的功能是允许指定频段的信号通过,而将其余频段上的信号加以抑制或使其急剧衰减。各种生物信号的低噪声放大,都是首先严格限定在所包含的频谱范围之内。 最常用的全极点滤波器有巴特沃斯滤波器和切比雪夫滤波器。就靠近ω=0处的幅频特性而言,巴特沃斯滤波器比切比雪夫滤波器平直,即在频率的低端巴特沃斯滤波器幅频特性更接近理想情况。但在接近截止频率和在阻带内,巴特沃斯滤波器则较切比雪夫滤波器差得多。本设计中要保证低频信号不被衰减,而对高频要求不高,因此选择了巴特沃斯滤波器。巴特沃思滤波电路(又叫最平幅度滤波电路)是最简单也是最常用的滤波电路,这种滤波电路对幅频响应的要求是:在小于截止频率ωc。的范围内,具有最平幅度响应,而在ω>ωc。后,幅频响应迅速下降。 因为本设计中要保证低频信号不被衰减,而对高频要求不高,所以选择 二阶滤波器即可。本系统采用二阶Butterworth低通滤波器,截止频率f H=100HZ,其电路原理图如1: 图1 低通滤波器图 根据matlab软件算得该设计适合二阶低通滤波器,FSF=628选Z=10000,则

Z R R FSF Z ?=?=的归一值的归一值 C C 3.2脉象信号的的前置放大 由于人体信号的频率和幅度都比较低,很容易受到空间电磁波以及人体其它生理信号的干扰,因此在对其进行变换、分析、存储、记录之前,应该进行一些预处理,以保证测量结果的准确性。因此需要对信号进行放大,“放大”在信号预处理中是第一位的。根据所测参数和所用传感器的不同,放大电路也不同。用于测量生物电位的放大器称为生物电放大器,生物电放大器比一般放大器有更严格的要求。 在本研究中放在传感器后面的电路就是前置放大电路,由于从传感器取得的信号很微弱,且混杂了一些其他的干扰信号。因此前置放大电路的主要功能是,滤除一些共模干扰信号,同时进行一定的放大。该电路由4部分构成:并联型双运放仪器放大器,阻容耦合电路,由集成仪用放大器构成的后继放大器和共模信号取样电路。并联型双运放仪器放大器的优点是不需要精密的匹配电阻,理论上它的共模抑制比为无穷大,且与其外围电阻的匹配程度无关。集成仪用放大器将由并联型双运放仪器放大器输出的双端差动信号转变为单端输出信号,并采用阻容耦合电路隔离直流信号,可以使集成仪用放大器取得较高的差模增益,从而得到很高的共模抑制比。共模取样驱动电路由两个等值电阻和一只由运放构成的跟随器构成,能够使共模信号不经阻容耦合电路的分压直接加在集成放大器的输入端,避免了由于阻容耦合电路的不匹配而降低电路整体的共模抑制比。此电路中也采用了右腿驱动电路来抑制位移电流的影响。前置放大电路参数选择:此部分总的增益取为1000,其中并联型双运放仪器放大器的增益为5,集成仪用放大器的增益为200。具体设计电路如图2所示

基于ADS设计2GHz阶跃阻抗低通滤波器讲解

课程设计说明书 题目:基于ADS设计2GHz阶跃阻抗低通滤波器 学院(系): 年级专业: 学号: 学生姓名: 指导教师: 教师职称:

基于ADS设计2GHz阶跃阻抗低通滤波器 摘要:用微带或带状线实现低通滤波器的一种相对容易的方法是用很高和很低特征阻抗的传输线交替排列的结构。这种滤波器通常称为阶跃阻抗或高Z-低Z滤波器,由于它结构紧凑且较容易设计,因此是首选设计方法。在设计2GHz阶跃阻抗低通滤波器时,核心之一是采用阻抗和频率定标公式,用低阻抗和高阻抗线代替串联电感和并联电容。 关键词:阶跃阻抗低通滤波器;微带线;定标公式; Based on the ADS design 2 GHZ step impedance low pass filter Abstract: Using microstrip or stripline low pass filter is a relatively easy way with high and low characteristic impedance of the transmission structure arranged alternately. This filter is usually called step impedance is low or high Z - Z filter, due to its compact structure, and is easier to design, so design method is preferred. In design 2 GHZ step impedance low pass filter, one of the core is the impedance and frequency calibration formula, with low impedance and high impedance line instead of series inductance and the shunt capacitance. Key words: Step impedance low pass filter; Microstrip line. Scaling formula;

低通滤波器电路设计与实现

低通滤波器电路设计与实现 摘要 滤波器是一种二端口网络。它具有选择频率的特性,即可以让某些频率顺利通过,而对其它频率则加以阻拦。目前由于在雷达、微波、通讯等部门,多频率工作越来越普遍,对分隔频率的要求也相应提高,所以需用大量的滤波器。再则,微波固体器件的应用对滤波器的发展也有推动作用,像参数放大器、微波固体倍频器、微波固体混频器等一类器件都是多频率工作的,都需用相应的滤波器。低通滤波器是一个通过低频信号而衰减或抑制高频信号的部件。理想滤波器电路的频响在通带内应具有一定幅值和线性相移,而在阻带内其幅值应为零。有源滤波器是指由放大电路及RC网络构成的滤波器电路,它实际上是一种具有特定频率响应的放大器。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络节数越多,元件参数计算越繁琐,电路的调试越困难。根据指标,本次设计选用有源二阶巴特沃斯低通滤波器可达到本次设计要求的指标,可调增益部分通过电压跟随器和反相放大器来实现可调增益。 关键词:低通滤波器,巴特沃斯滤波器,频率响应

Low-pass filter circuit design and Achieve Author: Shang Shiwei Tutor: Song Jiayou Abstract Filter is a kind of two-port network. It has the characteristics of frequency choice, that can make some frequency pass, but to other frequency is to stop, because now in radar, microwave, communication, and other departments, more work frequency is becoming more and more common, the requirements of the frequency of space also increase; So need a lot of filter. Moreover, the application of microwave solid device for the development of the filter can boost, as parameters amplifiers, microwave solid times frequency device, microwave solid mixers, kind of device is working frequency, need corresponding filter. Low pass filter is a through the low frequency signal and attenuation or inhibit the high frequency signal components. Ideal filter circuit frequency response in bandpass should have certain amplitude and linear phase shift, and in which the amplitude with inner resistance should be zero. Active filter is to point to by amplifying circuit and network structure of RC filter circuit, it is actually a particular frequency response of the amplifier. The order number of filter, the higher amplitude frequency characteristics of the attenuation rate faster, but RC network's day, more component parameters are calculated the more detailed, the more difficult the commissioning of the circuit. According to the index, the design choose active second order bart wo low-pass filter can achieve the design requirements of the index, adjustable gain through the voltage of follow and reversed-phase amplifier to achieve adjustable gain. Key words:Low-pass filter,Butterworth filter,Frequency response

滤波器分类及原理

滤波器原理 滤波器是一种选频装置,可以使信号中特定的频率成分通过,而极大地衰减其它频率成分。在测试装置中,利用滤波器的这种选频作用,可以滤除干扰噪声或进行频谱分析。 广义地讲,任何一种信息传输的通道(媒质)都可视为是一种滤波器。 因为,任何装置的响应特性都是激励频率的函数,都可用频域函数描述其 传输特性。因此,构成测试系统的任何一个环节,诸如机械系统、电气网 络、仪器仪表甚至连接导线等等,都将在一定频率范围内,按其频域特性, 对所通过的信号进行变换与处理。 本文所述内容属于模拟滤波范围。主要介绍模拟滤波器原理、种类、 数学模型、主要参数、RC滤波器设计。尽管数字滤波技术已得到广泛应 用,但模拟滤波在自动检测、自动控制以及电子测量仪器中仍被广泛应用。带通滤波器二、滤波器分类 ⒈根据滤波器的选频作用分类 ⑴低通滤波器 从0~f2频率之间,幅频特性平直,它 可以使信号中低于f2的频率成分几乎不受衰 减地通过,而高于f2的频率成分受到极大地 衰减。 ⑵高通滤波器 与低通滤波相反,从频率f1~∞,其幅 频特性平直。它使信号中高于f1的频率成分 几乎不受衰减地通过,而低于f1的频率成分 将受到极大地衰减。 ⑶带通滤波器 它的通频带在f1~f2之间。它使信号中 高于f1而低于f2的频率成分可以不受衰减地 通过,而其它成分受到衰减。 ⑷带阻滤波器 与带通滤波相反,阻带在频率f1~f2之间。它使信号中高于f1而低于f2的频率成分受到衰减,其余频率成分的信号几乎不受衰减地通过。 低通滤波器和高通滤波器是滤波器的两种最基本的形式,其它的滤波器都可以分解为这两种类型的滤波器,例如:低通滤波器与高通滤波器的串联为带通滤波器,低通滤波器与高通滤波器的并联为带阻滤波器。

设计数字低通滤波器(用matlab实现)

DSP 设计滤波器报告 姓名:张胜男 班级:07级电信(1)班 学号:078319120 一·低通滤波器的设计 (一)实验目的:掌握IIR 数字低通滤波器的设计方法。 (二)实验原理: 1、滤波器的分类 滤波器分两大类:经典滤波器和现代滤波器。 经典滤波器是假定输入信号)(n x 中的有用成分和希望取出的成分各自占有不同的频带。这样,当)(n x 通过一个线性系统(即滤波器)后可讲欲去除的成分有效的去除。 现代滤波器理论研究的主要内容是从含有噪声的数据记录(又称时间序列)中估计出信号的某些特征或信号本身。 经典滤波器分为低通、高通、带通、带阻滤波器。每一种又有模拟滤波器(AF )和数字滤波器(DF )。对数字滤波器,又有IIR 滤波器和FIR 滤波器。 IIR DF 的转移函数是: ∑∑=-=-+==N k k k M r r r z a z b z X z Y z H 10 1)()()( FIR DF 的转移函数是: ∑-=-=10)()(N n n z n h z H FIR 滤波器可以对给定的频率特性直接进行设计,而IIR 滤波器目前最通用的方法是利用已经很成熟的模拟滤波器的设计方法进行设计。 2、滤波器的技术要求 低通滤波器: p ω:通带截止频率(又称通带上限频率) s ω:阻带下限截止频率 p α:通带允许的最大衰减 s α:阻带允许的最小衰减 (p α,s α的单位dB ) p Ω:通带上限角频率 s Ω:阻带下限角频率 (s p p T ω=Ω,s s s T ω=Ω)即 C p p F ωπ2=Ω C s s F ωπ2=Ω 3、IIR 数字滤波器的设计步骤:

低通无源滤波器设计详细

低通无源滤波器仿真与分析 、滤波器定义 所谓滤波器( filter ),是一种用来消除干扰杂讯的,对输入或输出的信号中特定频率的频点或该频点以外的频率进行有效滤除的,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。一般可实为一个可实现的线性时不变系统。 二、滤波器的分类 常用的滤波器按以下类型进行分类。 1) 按所处理的信号: 按所处理的信号分为和两种。 2) 按所通过信号的频段 按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。 高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。 带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。 3) 按所采用的元器件 按所采用的分为无源和两种。 :仅由(R、L 和C)组成的滤波器,它是利用电容和电感元件的随频率的变化而变化的构成的。这类滤波器的优点是:电路比较简单,不需要直流电源供电,可靠性高;是:通带内的信号有能量损耗,负载效应比较明显,使用电感元件时容易引起电磁感应,当电感L 较大时滤波器的和重量都比较大,在低频域不适用。 有源滤波器:由无源元件(一般用R和C)和(如集成运算放大器) 组成。这类滤波器的优点是:通带内的信号不仅没有能量损耗,而且还可以放大,负载效应不明显,多级相联时相互影响很小,利用级联的简单方法很容易构成高阶滤波器,并且滤波器的体积小、重量轻、不需要磁屏蔽(由于不使用电感元件) ;缺点是:通带范围受有源器件(如集成运算放大器)的带宽限制,需要直流电源供电,可靠性不如无源滤波器高,在、高频、大功率的场合不适用。 4) 按照阶数来分 通过传递函数的阶数来确定滤波器的分类。 三、网络的频率响应 在时域中,设输入为 x(t) ,输出为 y(t ) ,滤波器的脉冲响应函数为 h(t ) 。转换到频域,激励信号为 X(j ) ,经过一个线性网络得到的响应信号为 Y( j )

直流电源滤波电路及电子滤波器原理分析

直流电源滤波电路及电子滤波器原理分析 整流电路是将交流电变成直流电的一种电路,但其输出的直流电的脉动成 分较大,而一般电子设备所需直流电源的脉动系数要求小于0.01。故整流输出 的电压必须采取一定的措施。尽量降低输出电压中的脉动成分,同时要尽量保 存输出电压中的直流成分,使输出电压接近于较理想的直流电,这样的电路就 是直流电源中的滤波电路。常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。有源滤波的主要形式是有源RC滤波,也被称 作电子滤波器。直流电中的脉动成分的大小用脉动系数来表示,此值越大,则 滤波器的滤波效果越差。脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流 的输出电压的脉动系数S≈0.67。对于全波和桥式整流电路采用C型滤波电路后,其脉动系数S=1/(4(RLC/T-1)。(T为整流输出的直流脉动电压的周期。)RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组成的。如图 1虚线框即为加的一级RC滤波电路。若用S’表示C1两端电压的脉动系数,则输出电压两端的脉动系数S=(1/ωC2R’)S’。由分析可知,在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就越好。而R值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的 电容量,又会增大电容器的体积和重量,实现起来也不现实。为了解决这个矛盾,于是常常采用有源滤波电路,也被称作电子滤波器。电路如图2。它是由 C1、R、C2组成的π型RC滤波电路与有源器件--晶体管T组成的射极输出器 连接而成的电路。由图2可知,流过R的电流IR=IE/(1+β)=IRL/(1+β)。流 过电阻R的电流仅为负载电流的1/(1+β).所以可以采用较大的R,与C2配合

低通滤波器设计整理

1、低通滤波器(LPF) 低通滤波器是用来通过低频信号,衰减或抑制高频信号。 如图13-2(a)所示,为典型的二阶有源低通滤波器。它由两级RC滤波环节与同相比例运算电路组成,其中第一级电容C接至输出端,引入适量的正反馈,以改善幅频特性。 图13-2(a)二阶低通滤波器电路图 图13-2(b)二阶低通滤波器电路仿真图 电路性能参数: 二阶低通滤波器的通带增益

截止频率,它是二阶低通滤波器通带与阻带的界限频率。 品质因数,它的大小影响低通滤波器在截止频率处幅频特性的形状。 2、高通滤波器(HPF) 与低通滤波器相反,高通滤波器用来通过高频信号,衰减或抑制低频信号。 只要将图13-2低通滤波电路中起滤波作用的电阻、电容互换,即可变成二阶有源高通滤波器,如图13-3所示。高通滤波器性能与低通滤波器相反,其频率响应和低通滤波器是“镜象”关系,仿照LPH分析方法,不难求得HPF的幅频特性。 图13-3 二阶高通滤波器电路图 电路性能参数A uf、f0、Q各量的函义同二阶低通滤波器 3、带通滤波器(BPF)

图13-4 二阶带通滤波器 这种滤波器的作用是只允许在某一个通频带范围内的信号通过,而比通频带下限频率低和比上限频率高的信号均加以衰减或抑制。这种滤波器的作用是只允许在某一个通频带范围内的信号通过,而比通频带下限频率低和比上限频率高的信号均加以衰减或抑制。 典型的带通滤波器可以从二阶低通滤波器中将其中一级改成高通而成。如图13-4所示。 电路性能参数: 通带增益中心频率 通带宽度选择性 的比例就可改变频宽而不影响中心频率。 此电路的优点是改变R f和R 4 4、带阻滤波器(BEF) 如图13-5所示,这种电路的性能和带通滤波器相反,即在规定的频带内,信号不能通过(或受到很大衰减或抑制),而在其余频率范围,信号则能顺利通过。

分布参数低通滤波器的仿真

第11章分布参数低通滤波器的仿真 当频率不高时,集总元器件滤波器工作良好,但当频率达到或接近GHz时,滤波器通常由分布参数元器件构成,这是由于两个原因造成的,其一是频率高时电感和电容应选的元器件值过小,由于寄生参数的影响,如此小的电感和电容已经不能再使用集总参数元器件;其二是此时工作波长与滤波器元器件的物理尺寸相近,滤波器元器件之间的距离不可忽视,需要考虑分布参数效应。 本章讨论由分布参数构成的低通滤波器,分布参数低通滤波器可以由阶梯阻抗低通滤波器或短截线低通滤波器实现,本章主要介绍利用ADS软件设计分布参数低通滤波器的方法。本章将首先给出分布参数低通滤波器的理论基础,然后讨论如何利用ADS软件设计、仿真、调谐与优化分布参数低通滤波器,针对微带线阶梯阻抗低通滤波器和短截线低通滤波器,本章将完成符合技术指标的滤波器原理图和布局图。 11.1 微带阶梯阻抗低通滤波器的仿真 阶梯阻抗低通滤波器也称为高低阻抗低通滤波器,它是一种结构简洁的电路,其由很高和很低特性阻抗的传输线段交替排列而成,结构紧凑,便于设计和实现。本节将给出符合技术指标的微带线阶梯阻抗低通滤波器原理图,并由原理图给出阶梯阻抗低通滤波器版图。 11.1.1 微带阶梯阻抗低通滤波器的理论基础 1.短传输线段的近似等效电路 阶梯阻抗低通滤波器是由特性阻抗很高或很低的短传输线段构成,短传输线段的近似等效电路需要讨论。一段特性阻抗为、长度为的传输线的Z矩阵为 一段传输线的网络参量与集总元器件T形网络的网络参量有等效关系,集总元器件T 形网络的构成如图11.1所示。 集总元器件T形网络的Z矩阵为

假定集总元器件T 形网络由电感和电容构成,如图11.2(a )所示,若假定传输线有大的特性阻抗和短的长度( ),一段短传输线与集总元器件T 形网络的等效关系为 若假定传输线有小的特性阻抗和短的长度( ),一段短传输线与集总元器件T 形网络的等效关系为 2Z i1 1Z i2 3Z _ + + _ 1V 2V

相关主题
文本预览
相关文档 最新文档