当前位置:文档之家› 最新解三角形应用举例练习题

最新解三角形应用举例练习题

最新解三角形应用举例练习题
最新解三角形应用举例练习题

解三角形应用举例练习题

一、选择题

1.某人向正东方向走x km后,他向右转150°,然后朝新方向走3 km,结果他离出发点恰好 3 km,那么x的值为()

A.3B.2 3

C.23或 3 D.3

2.已知船A在灯塔C北偏东85°且到C的距离为2km,船B在灯塔C西偏北25°且到C的距离为3km,则A,B两船的距离为()

A.23km B.32km

C.15km

D.13km

3.已知△ABC的三边长a=3,b=5,c=6,则△ABC的面积是()

A.14 B.214

C.15 D.215

4.两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为()

A.a km B.3a km

C.2a km D.2a km

5.已知△ABC中,a=2、b=3、B=60°,那么角A等于()

A.135°B.90°

C.45°D.30°

6.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时()

A.5海里B.53海里

C.10海里D.103海里

二、填空题

7.(2010~2011·醴陵二中、四中期中)已知A、B两地的距离为10km,BC两地的距离

为20km,经测量∠ABC=120°,则AC两地的距离为________km.

8.如图,为了测量河的宽度,在一岸边选定两点A,B,望对岸的标记物C,测得∠CAB=30°,∠CBA=75°,AB=120 m,则河的宽度是__________.

9.

(2011·北京朝阳二模)如图,一艘船上午在A处测得灯塔S在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午到达B处,此时又测得灯塔S在它的北偏东75°处,且与它相距42n mile,则此船的航行速度是________n mile/h.

三、解答题

10.如图,为了测量河

对岸A,B两点间的距离,在河的这边测得CD=

3

2km,∠ADB=∠CDB=30°,∠ACD=

60°,∠ACB=45°,求A、B两点间的距离.

1.2解三角形应用举例(测量距离、高度、角度)解析 (2)

福建美佛儿学校自主型发展大课堂数学导学案 班级 姓名 设计者 日期 课题:§1.2应用举例(第一课时 测量距离问题) 课时: 3课时 ●教学目标 知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语 过程与方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫。其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,帮助学生掌握解法,能够类比解决实际问题。 情感态度与价值观:激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力 ●教学重点 实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解 ●教学难点 根据题意建立数学模型,画出示意图 ●教学过程 一、课题导入 1、[复习旧知] 复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形? 2、[设置情境] 请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。于是上面介绍的问题是用以前的方法所不能解决的。今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。 二、讲授新课 (1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解 [例题讲解] (2)例1、如图,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是55m ,∠BAC=?51,∠ACB=?75。求A 、B 两点的距离(精确到0.1m)

解三角形应用举例练习高考试题练习

解三角形应用举例练习 班级 姓名 学号 得分 一、选择题 1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α、β的关系为…………………( ) A.α>β B.α=β C.α+β=90° D.α+β=180° 2.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为…..( ) A. 3 400 B. 33400米 C. 2003米 D. 200米 3.在?ABC 中, 已知sinA = 2 sinBcosC, 则?ABC 一定是…………………………………….( ) A. 直角三角形; B. 等腰三角形; C.等边三角形; D.等腰直角三角形. 4.如图,△ABC 是简易遮阳棚,A 、B 是南北方向上两个定点,正东方向射出的太阳光线与地面 成40°角,为了使遮阴影面ABD 面积最大,遮阳棚ABC 与地面所成的角为……………….( ) A C D B 阳光地面 A.75° B.60° C.50° D.45° 5.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A 的正东40 km 处,B 城市处于危险区内的时间为…………………………………..( ) A.0.5 h B.1 h C.1.5 h D.2 h 6.在△ABC 中,已知b = 6,c = 10,B = 30°,则解此三角形的结果是 …………………( ) A 、无解 B 、一解 C 、两解 D 、解的个数不能确定 二、填空题 7. 甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是 8.我舰在敌岛A 南50°西相距12nmile 的B 处,发现敌舰正由岛沿北10°西的方向以10nmile/h 的速度航行,我舰要用2小时追上敌舰,则需要速度的大小为 9.有一两岸平行的河流,水速为1,小船的速度为2,为使所走路程最短,小船应朝_______方 向行驶. C D 12 A B D 6045 0 m o o 10..在一座20 m 高的观测台顶测得地面一水塔塔顶仰角为60°,塔底俯角为45°,那么这座塔的 高为_______.

解三角形-解三角形的应用

解三角形的实际应用 知识点 仰角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平线____方;俯角:目标视线在水平线____方时叫俯角.(如图所示) 正余弦定理应用类型 已知条件定理选用一般解法三边(,, a b c) 两边和夹角 (如,, a b C) 两边和其中一边的对角 正弦定理 (如,, a b A) 两边和其中一边的对角 余弦定理 (如,, a b A) 一边和二角 (如,, a B C) 总结:单角用余弦,两角用正弦

题型一 测量距离的问题 【例1】. 某地出土一块类似三角形刀状的古代玉佩如图,其一角已破损,现测得如下数据:BC=2.57cm ,CE=3.57cm ,BD=4.38cm ,B=45°,C=120°.为了复原,请计算原玉佩两边的长(结果精确到0.01cm). 【例2】. 在某次军事演习中,红方为了准确分析战场形势,在两个相距为 2 3a 的军事基地C 和D 测得蓝方两支精锐部队分别在A 处和B 处,且∠ADB=30°,∠BDC=30°,∠DCA=60°,∠ACB=45°,如图所示,求蓝方这两支精锐部队的距离. 【巩固练习】 1.一蜘蛛向北爬行xcm 捕捉到一只小虫,然后向右转105?,爬行10cm 捕捉到另一只小虫,这时它向右转135?爬行回它的出发点,那么x = . 2.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15?的方向上,且此时货轮与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后到达N 处,又测得灯塔S 在货轮的东北方向,则货轮的速度为 ( ). A .()2062+海里/小时 B.()2062-海里/小时 C.()2063+海里/小时 D.()2063-海里/小时

高中数学-解三角形应用举例练习及答案

高中数学-解三角形应用举例练习 一、选择题 1. △ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为………………………………………………( ) A.直角三角形 B.等腰直角三角形 C.等边三角形 D.等腰三角形 2.海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是……………………………………………………….( ) A.103海里 B.3610海里 C. 52海里 D.56海里 3. 有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要伸长( ) A. 1公里 B. sin10°公里 C. cos10°公里 D. cos20°公里 4. .已知平行四边形ABCD 满足条件0)()(=-?+→ -→-→-→-AD AB AD AB ,则该四边形是………( ) A.矩形 B.菱形 C.正方形 D.任意平行四边形 5. 一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°, 另一灯塔在船的南偏西75°,则这只船的速度是每小时………………………………………………………………………………………… . ( ) A.5海里 B.53海里 C.10海里 D.103海里 6.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离1d 与第二辆车与第三辆车的距离d 2之间的关系为 ………………………………………………………………………..( ) A. 21d d > B. 21d d = C. 21d d < D. 不能确定大小 二、 填空题

最新解三角形应用举例练习题

解三角形应用举例练习题 一、选择题 1.某人向正东方向走x km后,他向右转150°,然后朝新方向走3 km,结果他离出发点恰好 3 km,那么x的值为() A.3B.2 3 C.23或 3 D.3 2.已知船A在灯塔C北偏东85°且到C的距离为2km,船B在灯塔C西偏北25°且到C的距离为3km,则A,B两船的距离为() A.23km B.32km C.15km D.13km 3.已知△ABC的三边长a=3,b=5,c=6,则△ABC的面积是() A.14 B.214 C.15 D.215 4.两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为() A.a km B.3a km C.2a km D.2a km 5.已知△ABC中,a=2、b=3、B=60°,那么角A等于() A.135°B.90° C.45°D.30° 6.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时() A.5海里B.53海里 C.10海里D.103海里 二、填空题 7.(2010~2011·醴陵二中、四中期中)已知A、B两地的距离为10km,BC两地的距离

为20km,经测量∠ABC=120°,则AC两地的距离为________km. 8.如图,为了测量河的宽度,在一岸边选定两点A,B,望对岸的标记物C,测得∠CAB=30°,∠CBA=75°,AB=120 m,则河的宽度是__________. 9. (2011·北京朝阳二模)如图,一艘船上午在A处测得灯塔S在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午到达B处,此时又测得灯塔S在它的北偏东75°处,且与它相距42n mile,则此船的航行速度是________n mile/h. 三、解答题

人教版必修五“解三角形”精选难题及其答案

人教版必修五“解三角形”精选难题及其答案 一、选择题(本大题共12小题,共60.0分) 1.锐角中,已知,,则的取值范围是 A. , B. , C. , D. , 2.在中,角,,的对边分别为,,,且满足,则 的形状为 A. 等腰三角形 B. 直角三角形 C. 等边三角形 D. 等腰直角三角形 3.在中,,,,则的值等于 A. B. C. D. 4.在中,有正弦定理:定值,这个定值就是的外接圆 的直径如图2所示,中,已知,点M在直线EF上从左到右运动点M不与E、F重合,对于M的每一个位置,记的外接圆面积与的外接圆面积的比值为,那么 A. 先变小再变大 B. 仅当M为线段EF的中点时,取得最大值 C. 先变大再变小 D. 是一个定值 5.已知三角形ABC中,,边上的中线长为3,当三角形ABC的面积最大 时,AB的长为 A. B. C. D. 6.在中,,,分别为内角,,所对的边,,且满足若 点O是外一点,,,平面四边形OACB 面积的最大值是 A. B. C. 3 D. 7.在中,,, ,则使有两解的x的范围是 A. , B. , C. , D. , 8.的外接圆的圆心为O,半径为1,若,且,则 的面积为 A. B. C. D. 1 9.在中,若,则是

A. 等边三角形 B. 等腰三角形 C. 直角三角形 D. 等腰直角三角形 10.在中,已知,,分别为, , 的对边,则为 A. B. 1 C. 或1 D. 11.设锐角的三内角A、B、C所对边的边长分别为a、b、c,且,,则b 的取值范围为 A. , B. , C. , D. , 12.在中,内角,,所对边的长分别为,,,且满足 ,若,则的最大值为 A. B. 3 C. D. 9 二、填空题(本大题共7小题,共35.0分) 13.设的内角,,所对的边分别为,,且,则角A的大 小为______ ;若,则的周长l的取值范围为______ . 14.在中,, , 所对边的长分别为,,已知 ,,则______ . 15.已知中,角A、B、C的对边分别是a、b、c,若,则 的形状是______ . 16.在中,若,则的形状为______ . 17.在中,角,,的对边分别为,,,若, 且,则______ .18.如果满足,,的三角形恰有一个,那么k的取值范围 是______ . 19.已知的三个内角,,的对边依次为,,,外接圆半径为1,且满足 ,则面积的最大值为______ . 三、解答题(本大题共11小题,共132.0分) 20.在锐角中,,,是角,,的对边,且. 求角C的大小; 若,且的面积为,求c的值. 21.在中,角,,的对边分别为,,已知. 求角A的大小; 若,,求的面积.

解三角形应用举例

东方中学教案 1.知识与技能: 会在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法;搞清利用解斜三角形可解决的各类应用问题的基本图形和基本等量关系;理解各种应用问题中的有关名词、术语,如:坡度、俯角、仰角、方向角、方位角等;通过解三角形的应用的学习,提高解决实际问题的能力 2.过程与方法: 通过巧妙的设疑,顺利的引导新课,为下节课做好铺垫。结合学生的实际情况,采用“提出问题—引发思考—探索猜想—总结规律—反馈练习”的教学过程,根据大纲要求以及教学内容之间的内在联系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法。 3.情感、态度与价值观: 实际问题中抽象出一个或几个三角形,然后逐个解三角形,得到实际问题的解。

修改简记教学过程: 一、复习引入: 二、讲解范例: 例1 自动卸货汽车的车箱采用液压结构,设计时需要计算 油泵顶杆BC的长度已知车箱的最大仰角为60°,油泵顶点 B与车箱支点A之间的距离为1.95m,AB与水平线之间的夹角 为6°20′,AC长为1.40m,计算BC的长(保留三个有效数字) 分析:求油泵顶杆BC的长度也就是在△ABC内,求边长BC的问题,而根据已知条件, AC=1.40m,AB=1.95 m,∠BAC=60°+6°20′=66°20′相当于已知△ABC 的两边和它们的夹角,所以求解BC可根据余弦定理解:由余弦定理,得 BC2=AB2+AC2-2AB·AC cos A =1.952+1.402-2×1.95×1.40×cos66°20′=3.571 ∴BC≈1.89 (m) 答:油泵顶杆B C约长1.89 m 评述:此题虽为解三角形问题的简单应用,但关键是把未知边所处的三角形找到,在转 换过程中应注意“仰角”这一概念的意义,并排除题目中非数学因素的干扰,将数量关系 从题目准确地提炼出来 例2某渔船在航行中不幸遇险,发出求救信号,我海军舰艇在A处获悉后,立即测出该渔 船在方位角为45°、距离A为10海里的C处,并测得渔船正沿方位角为105°的方向, 以9海里/h的速度向某小岛B靠拢,我海军舰艇立即以21海里/h的速度前去营救, 试问舰艇应按照怎样的航向前进?并求出靠近渔船所用的时间

解三角形应用举例最新衡水中学自用精品教学设计

解三角形应用举例 主标题:解三角形应用举例 副标题:为学生详细的分析解三角形应用举例的高考考点、命题方向以及规律总结。 关键词:距离测量,高度测量,仰角,俯角,方位角,方向角 难度:3 重要程度:5 考点剖析: 能够运用正弦定理、余弦定理等知识解决一些与测量和几何计算有关的实际问题. 命题方向: 1.测量距离问题是高考的常考内容,既有选择、填空题,也有解答题,难度适中,属中档题. 2.高考对此类问题的考查常有以下两个命题角度: (1)测量问题; (2)行程问题. 规律总结: 1个步骤——解三角形应用题的一般步骤 2种情形——解三角形应用题的两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 2个注意点——解三角形应用题应注意的问题 (1)画出示意图后要注意寻找一些特殊三角形,如等边三角形、直角三角形、等腰三角形等,这样可以优化解题过程. (2)解三角形时,为避免误差的积累,应尽可能用已知的数据(原始数据),少用间接求出的量.

知识梳理 1.距离的测量 背景可测元素图形目标及解法 两点均可到达a,b,α 求AB:AB= a2+b2-2ab cos α 只有一点可到达b,α,β 求AB:(1)α+β+B=π; (2) AB sin β= b sin B 两点都不可到达a,α,β, γ,θ 求AB:(1)△ACD中,用 正弦定理求AC; (2)△BCD中,用正弦定理 求BC; (3)△ABC中,用余弦定理 求AB 2.高度的测量 背景可测元素图形目标及解法 底部可 到达 a,α求AB:AB=a tan_α 底部不可到达a,α,β 求AB:(1)在△ACD中用正弦 定理求AD;(2)AB=AD sin_β 3.实际问题中常见的角 (1)仰角和俯角 在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角(如图1).

解三角形应用举例

第7节 解三角形应用举例 最新考纲 能够运用正弦定理、余弦定理等知识方法解决一些与测量、几何计算有关的实际问题. 知 识 梳 理 1.仰角和俯角 在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1). 2.方向角 相对于某正方向的水平角,如南偏东30°,北偏西45°等. 3.方位角 指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图2). 4.坡度:坡面与水平面所成的二面角的正切值. [常用结论与微点提醒] 1.不要搞错各种角的含义,不要把这些角和三角形内角之间的关系弄混. 2.在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易出现错误. 诊 断 自 测 1.思考辨析(在括号内打“√”或“×”) (1)东北方向就是北偏东45°的方向.( ) (2)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.( ) (3)俯角是铅垂线与视线所成的角,其范围为? ?????0,π2.( ) (4)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( )

解析 (2)α=β;(3)俯角是视线与水平线所构成的角. 答案 (1)√ (2)× (3)× (4)√ 2.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( ) A.北偏东15° B.北偏西15° C.北偏东10° D.北偏西10° 解析 如图所示,∠ACB =90°, 又AC =BC , ∴∠CBA =45°,而β=30°, ∴α=90°-45°-30°=15°. ∴点A 在点B 的北偏西15°. 答案 B 3.(教材习题改编)如图所示,设A ,B 两点在河的两岸,一测量 者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m , ∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的 距离为( ) A.50 2 m B.50 3 m C.25 2 m D.2522 m 解析 由正弦定理得AB sin ∠ACB =AC sin B , 又∵B =30°,∴AB =AC sin ∠ACB sin B =50×2212 =502(m). 答案 A 4.轮船A 和轮船B 在中午12时同时离开海港C ,两船航行方向的夹角为120°,两船的航行速度分别为25 n mile/h ,15 n mile/h ,则下午2时两船之间的距离是______n mile. 解析 设两船之间的距离为d , 则d 2=502+302-2×50×30×cos 120°=4 900, ∴d =70,即两船相距70 n mile.

解三角形应用

解三角形应用举例(1)教学目标 (a)知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语 (b)过程与方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫。其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握解法,能够类比解决实际问题。对于例2这样的开放性题目要鼓励学生讨论,开放多种思路,引导学生发现问题并进行适当的指点和矫正 (c)情感与价值:激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力 (2)教学重点、难点 教学重点:由实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解 教学难点:根据题意建立数学模型,画出示意图 (3)学法与教学用具 让学生回忆正弦定理、余弦定理以及它们可以解决哪些类型

的三角形,让学生尝试绘制知识纲目图。生活中错综复杂的问题本源仍然是我们学过的定理,因此系统掌握前一节内容是学好本节课的基础。解有关三角形的应用题有固定的解题思路,引导学生寻求实际问题的本质和规律,从一般规律到生活的具体运用,这方面需要多琢磨和多体会。 直角板、投影仪(多媒体教室) (4)教学设想 1、复习旧知 复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形? 2、设置情境 请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。于是上面介绍的问题是用以前的方法所不能解决的。今天我们开始学习正弦定理、余弦定理在科学实

解三角形应用举例

第三章 三角函数、三角恒等变换及解三角形第8课时 解三角 形应用举例 1. (必修5P 11习题4改编)若海上有A 、B 、C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B 、C 间的距离是________海里. 答案:5 6 解析:由正弦定理, 知 BC sin60°=AB sin (180°-60°-75°) , 解得BC =56(海里). 2. (必修5P 20练习第4题改编)江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m. 答案:10 3 解析:如图,OA 为炮台,M 、N 为两条船的位置,∠AMO =45°,∠ANO =60°,OM =AOtan45°=30,ON =AOtan30°= 3 3 ×30=103,由余弦定理,得 MN = 900+300-2×30×103× 3 2 =300=103(m). 3. (必修5P 18例1改编)如图,要测量河对岸A 、B 两点间的距离,今沿河岸选取相距40 m 的C 、D 两点,测得∠ACB=60°,∠BCD =45°,∠ADB =60°,∠ADC =30°,则AB 的距离是__________ m. 答案:20 6 解析:由已知知△BDC 为等腰直角三角形,故DB =40;由∠ACB=60°和∠ADB=60°知A 、B 、C 、D 四点共圆, 所以∠BAD=∠BCD=45°;

在△BDA 中,运用正弦定理可得AB =20 6. 4. (必修5P 21习题2改编)某人在C 点测得塔顶A 在南偏西80°,仰角为45°,此人沿南偏东40°方向前进10 m 到D ,测得塔顶A 的仰角为30°,则塔高为________m. 答案:10 解析:如图,设塔高为h ,在Rt △AOC 中,∠ACO =45°,则OC =OA =h. 在Rt △AOD 中,∠ADO =30°,则OD =3h. 在△OCD 中,∠OCD =120°,CD =10. 由余弦定理得OD 2=OC 2+CD 2 -2OC·CD cos ∠OCD , 即(3h)2 =h 2 +102 -2h×10×cos120°, ∴ h 2 -5h -50=0,解得h =10或h =-5(舍). 5. 如图,一船在海上自西向东航行,在A 处测得某岛M 的方位角为北偏东α角,前进mkm 后在B 处测得该岛的方位角为北偏东β角,已知该岛周围nkm 范围内(包括边界)有暗礁,现该船继续东行.当α与β满足条件________时,该船没有触礁危险. 答案:mcos αcos β>nsin(α-β) 解析:∠MAB=90°-α,∠MBC =90°-β=∠MAB+∠AMB=90°-α+∠AMB,∴ ∠AMB =α-β.由题可知,在△ABM 中,根据正弦定理得BM sin (90°-α)=m sin (α-β), 解得BM = mcos αsin (α-β).要使船没有触礁危险,需要BMsin(90°-β)=mcos αcos β sin (α-β) >n , 所以α与β满足mcos αcos β>nsin(α-β)时船没有触礁危险. 1. 用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等. 2. 实际问题中的常用角 (1) 仰角和俯角 与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①). (2) 方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等.

解三角形及应用归纳整理

解三角形及应用举例 公式篇 知识点归纳同角关系式 1倒数关系:sin csc 1αα?=,cos sec 1αα?=,tan cot 1αα?= 2商数关系: sin tan cos ααα=,cos cot sin α αα = 3平方关系:22sin cos 1αα+=,221tan sec αα+=,22 1cot csc αα+= 知识点归纳和差倍半 1.和、差角公式 βαβαβαsin cos cos sin )sin(±=±; βαβαβαsin sin cos cos )cos( =±; tan tan tan()1tan tan αβ αβαβ ±±= . 2.二倍角公式 αααcos sin 22sin =; ααααα2222sin 211cos 2sin cos 2cos -=-=-=; 2 2tan tan 21tan α αα = -. 3.降幂公式 ααα2sin 21cos sin = ;22cos 1sin 2αα-= ;2 2cos 1cos 2 αα+=. 4.半角公式 2cos 12 sin αα -± =;2 cos 12cos αα+±=;sin 1cos tan 21cos sin ααα αα -===+. 5.万能公式 2 2tan 2sin 1tan 2 α αα = +;22 1tan 2cos 1tan 2 ααα -= +;2 2tan 2tan 1tan 2 α αα =-. 6.积化和差公式 )]sin()[sin(21cos sin βαβαβα-++=;)]sin()[sin(21 sin cos βαβαβα--+=; )]cos()[cos(21cos cos βαβαβα-++=;)]cos()[cos(2 1 sin sin βαβαβα--+-=. 7.和差化积公式

1.2 解三角形应用举例练习题及答案解析

1.在△ABC 中,A =60°,AB =1,AC =2,则S △ABC 的值为( ) A.12 B.32 C. 3 D .2 3 解析:选B.S △ABC =12AB ·AC ·sin A =sin 60°=3 2 . 2.已知△ABC 的面积为3 2 ,且b =2,c =3,则( ) A .A =30° B .A =60° C .A =30°或150° D .A =60°或120° 解析:选D.∵S =12bc sin A =32,∴12×2×3sin A =3 2. ∴sin A =3 2 .∴A =60°或120°. 3.在△ABC 中,AC =5,AB =2,cos A =25 5 ,则S △ABC =________. 解析:在△ABC 中,cos A =25 5 , ∴sin A =5 5, ∴S △ABC =12AB ·AC ·sin A =12×5×2×55=2 2. 答案:2 2 4.在△ABC 中,已知B =45°,D 是BC 边上一点,AD =5,AC =7,DC =3,求AB . 解:在△ADC 中, cos C =AC 2+DC 2-AD 22·AC ·DC =72+32-522×7×3=11 14 . 又0°<C <180°,∴sin C =53 14 . 在△ABC 中,AC sin B =AB sin C , ∴AB =sin C sin B AC =5314×2×7=56 2. 一、选择题 1.在△ABC 中,a 2=b 2+c 2-bc ,则角A 为( ) A.π3 B.π6 C.2π3 D.π3或2π3 解析:选A.∵a 2=b 2+c 2 -bc , ∴cos A =b 2+c 2-a 22bc =12,即A =π 3 . 2.在△ABC ,下列关系一定成立的是( )

解三角形在实际生活中的应用

解三角形在实际生活中的应用 高一数学教研组冯一波 一、背景说明: 在我国古代就有嫦娥奔月的神话故事。明月高悬,我们仰望星空,会有无限遐想。不禁会问,遥不可及的月球离地球到底有多远?1671年,两个法国天文学家测出大约距离为385400千米。他们是怎样测出的呢?在数学发展史上,受到天文测量、航海测量和地理测量等方面实践活动的推动。解三角形的理论不断发展,并被用于解决许多测量问题方面。 二、课题目的和意义: 三角形是基本的几何图形,三角形中的数量关系是基本的数量关系,有着极其广泛的应用。我们将在以前学习的有关三角形、三角函数和解直角三角形的知识基础上,通过对于任意三角形边角关系的研究,发现并掌握三角形中的变长与角度之间的数量关系,并解决一些实际问题。学而不思则罔,只有通过自己的独立思考才能真正学会数学,同时应当掌握科学的思维方法,特别是学习类比、推广等数学思考方法,提高我们的数学思维能力。三、设计思想 本节重点利用解斜三角形解决相关实际问题.解斜三角形知识在生产实践中有着广泛的应用,解斜三角形有关的实际问题过程,贯穿了数学建模的思想.这种思想就是从实际出发,经过抽象概括,把它转化为具体问题中的数学建模,然后通过推理演算,得出数学模型的解,再还原成实际问题的解.强化上述思维过程,既是本节的重点,

又是本节难点. 解三角形应用题的另一个难点是运算问题,由于将正弦定理、余弦定理看成几个“方程“,那么解三角形的应用题实质上就是把已知信息按方程的思想进行处理,解题时应根据已知和未知合理选择一个“容易解”的方程,从而是解题过程简洁.同时,由于具体问题中给出的数据通常是近似值,故运算过程一般较为复杂,必须借助于计算器计算,因此要加强训练,达到“算法简炼,算式工整,计算准确”的要求. 知识结构: 四、实际应用 1.测量中正、余弦定理的应用 例1 某观测站C 在目标A 南偏西25?方向,从A 出发有一条南偏东35?走向的公路,在C 处测得公路上与C 相距31千米的B 处有一人正沿此公路向A 走去,走20千米到达D ,此时测得CD 距离为21千米,求此人所在D 处距A 还有多少千米? 分析:根据已知作出示意图,分析已知及所求,解CBD ?,求角B .再解ABC ?,求出AC ,再求出AB ,从而求出AD (即为所求). 解:由图知,60CAD ∠=?. 22222231202123cos 22312031 BD BC CD B BC BD +-+-===???, sin 31B =. 在ABC ?中,sin 24sin BC B AC A ?==. 由余弦定理,得2222cos BC AC AB AC AB A =+-??. 即2223124224cos60AB AB =+-????. 整理,得2 243850AB AB --=,解得35AB =或11AB =-(舍). A C D 31 21 20 35? 25? 东 北

(完整版)三角形中的几何计算、解三角形的实际应用举例

三角形中的几何计算、 解三角形的实际应用举例 1.仰角和俯角 在视线和水平线所成的角中,视线在水平线的角叫仰角,在水平线的角叫俯角(如图①). 2.方位角 从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②). 3.方向角 相对于某一正方向的水平角(如图③) (1)北偏东α°即由指北方向顺时针旋转α°到达目标方向. (2)北偏西α°即由指北方向逆时针旋转α°到达目标方向. (3)南偏西等其他方向角类似. 【思考探究】 1.仰角、俯角、方位角有什么区别?

以平面几何图形为背景,求解有关长度、角度、面积、最值和优化等问题,通常是转化到三角形中,利用正、余弦定理加以解决.在解决某些具体问题时,常先引入变量(如边长、角度等),然后把要解的三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,解之. 以平面几何图形为背景,求解有关长度、角度、面积、最值和优化等问题,通常是转化到三角形中,利用正、余弦定理加以解决.在解决某些具体问题时,常先引入变量(如边长、角度等),然后把要解的三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,解之. 如右图,D是直角△ABC斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β. (1)证明:sinα+cos 2β=0; (2)若AC=3DC,求β的值. 【变式训练】 1.如图,在四边形ABCD中,已知AD⊥CD,AD =10,AB=14,∠BDA=60°,∠BCD=135°,则BC的长为________.

求距离问题要注意: (1)选定或确定要创建的三角形,要首先确定所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解. (2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理. 例题2.如图所示,甲船由A 岛出发向北偏东45°的方向作匀速直线航行,速度为152海里/小时,在甲船从A 岛出发的同时,乙船从A 岛正南40海里处的B 岛 出发,朝北偏东θ? ?? ??tan θ=12的方向作匀速直线航行,速度为105海里/小时. (1)求出发后3小时两船相距多少海里? (2)求两船出发后多长时间距离最近?最近距离为多少海里?

解三角形的综合应用

解三角形的综合应用 一抓基础,多练小题做到眼疾手快 1.如图,两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在 观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的 ________方向上. 解析:由条件及图可知,∠A =∠B =40°,又∠BCD =60°,所以∠CBD =30°,所以 ∠DBA =10°,因此灯塔A 在灯塔B 南偏西80°. 答案:南偏西80° 2.(2019·扬州调研)如图,勘探队员朝一座山行进,在前后A ,B 两处观察山顶C 的仰角分别是30°和45°,两个观察点A ,B 之间的距 离是100 m ,则此山CD 的高度为________m. 解析:设山高CD 为x , 在Rt △BCD 中有:BD =CD =x ,在Rt △ACD 中有:AC =2x ,AD =3x . 而AB =AD -BD =(3-1)x =100. 解得x =1003-1 =50(3+1). 答案:50(3+1) 3.(2019·南通模拟)2018年12月,为捍卫国家主权,我国海军在南海海域进行例行巡逻,其中一艘巡逻舰从海岛A 出发,沿南偏东70°的方向航行40海里后到达海岛B ,然后再从海岛B 出发,沿北偏东35°的方向航行40 2 海里后到达海岛C .如果巡逻舰直接从海岛A 出发到海岛C ,则航行的路程为________海里. 解析:根据题意画出图形,如图所示. 在△ABC 中,∠ABC =70°+35°=105°,AB =40,BC =40 2. 根据余弦定理, 得AC 2=AB 2+BC 2-2AB ·BC ·cos ∠ABC =402+(402)2-2×40×402× 2-64 =400(8+43)=400(6+2)2, ∴AC =20(6+2). 故所求航行的路程为20(6+2)海里. 答案:20(6+2)

解三角形及应用举例

5.5 解三角形及应用举例 一. 知识要点归纳: 掌握三角形有关的定理: 正余弦定理:a 2 =b 2 +c 2 -2bccosθ, bc a c b 2cos 222-+=θ;R C c B b A a 2sin sin sin === 利用正弦定理,可以解决以下两类问题: (1)已知两角和任一边,求其他两边和一角; (2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角); 利用余弦定理,可以解决以下两类问题: (1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。 内角和定理:A+B+C=180°,sin(A+B)=sinC, cos(A+B)= -cosC, cos 2C =sin 2B A +, sin 2C =cos 2B A + 面积公式:S=21absinC=21bcsinA=2 1 casinB S= pr =))()((c p b p a p p --- (其中p=2 c b a ++, r 为内切圆半径) 射影定理:a = b cos C + c cos B ;b = a cos C + c cos A ;c = a cos B + b cos A 掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题. 两定理的形式、内容、证法及变形应用必须引起足够的重视,通过向量的数量积把三角形和三角函数联系起来,用向量方法证明两定理,突出了向量的工具性,是向量知识应用的实例.另外,解三角形问题可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角定理及几何作图来帮助理解”。 二.例题讲解: 例1.在ΔABC 中,已知a=3,b=2,B=45°,求A,C 及边c . 解:由正弦定理得:sinA=232 45sin 3sin = ?= b B a ,因为B=45°<90°且b

《§3 解三角形的实际应用举例》教学案1

《§3 解三角形的实际应用举例》教学案1 教学目标 1、掌握正弦定理、余弦定理,并能运用它们解斜三角形。 2、能够运用正弦定理、余弦定理进行三角形边与角的互化。 3、培养和提高分析、解决问题的能力。 教学重点难点 1、正弦定理与余弦定理及其综合应用。 2、利用正弦定理、余弦定理进行三角形边与角的互化。 教学过程 一、复习引入 1、正弦定理:2sin sin sin a b c R A B C === 2、余弦定理: ,cos 2222A bc c b a -+=? bc a c b A 2cos 222-+= ,cos 2222B ca a c b -+=? ca b a c B 2cos 222-+= C ab b a c cos 2222-+=,?ab c b a C 2cos 222-+= 二、例题讲解 引例:我军有A 、B 两个小岛相距10海里,敌军在C 岛,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,为提高炮弹命中率,须计算B 岛和C 岛间的距离,请你算算看。 解:060=A 075=B ∴045=C 由正弦定理知00 45sin 1060sin =BC 6 545sin 60sin 1000 ==?BC 海里 750 600 C B A

例1.如图,自动卸货汽车采用液压机构,设计时需要计算油泵顶杆BC 的长度(如图).已知车厢的最大仰角为60°,油泵顶点B 与车厢支点A 之间的距离为1.95m ,AB 与水平线之间的夹角为/02060,AC 长为1.40m ,计算BC 的长(保留三个有效数字). 分析:这个问题就是在ABC ?中,已知AB=1.95m ,AC=1.4m , 求BC 的长,由于已知的两边和它们的夹角,所以可 根据余弦定理求出BC 。 解:由余弦定理,得 答:顶杠BC 长约为1.89m. 解斜三角形理论应用于实际问题应注意: 1、认真分析题意,弄清已知元素和未知元素。 2、要明确题目中一些名词、术语的意义。如视角,仰角,俯角,方位角等等。 3、动手画出示意图,利用几何图形的性质,将已知和未知集中到一个三角形中解决。 练1.如图,一艘船以32海里/时的速度向正北航行,在A 处看灯塔S 在船的北偏东020, 30分钟后航行到B 处,在B 处看灯塔S 在船的北偏东065方向上,求灯塔S 和B 处的距离.(保留到0.1) 解:16=AB 由正弦定理知 020sin 45sin BS AB = ' 2066'20660?=?+?=∠BAC A AC AB AC AB BC cos 2222?-+=)(89.1571.3'2066cos 40.195.1240.195.122m BC ≈∴= ????-+=D C B A 1.40m 1.95m 6020/ 600 ?S B A 1150 450650200

解三角形之解三角形的应用

解三角形之 第三节解三角形的实际应用 仰角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平线____方;俯角:目标视线在水平线____方时叫俯角.(如图所示) 正余弦定理应用类型 已知条件定理选用一般解法三边(,, a b c) 两边和夹角 (如,, a b C) 两边和其中一边的对角 正弦定理 (如,, a b A) 两边和其中一边的对角 余弦定理 (如,, a b A) 一边和二角 (如,, a B C) 总结:单角用余弦,两角用正弦

题型一 测量距离的问题 【例1】. 某地出土一块类似三角形刀状的古代玉佩如图,其一角已破损,现测得如下数据:BC=2.57cm ,CE=3.57cm ,BD=4.38cm ,B=45°,C=120°.为了复原,请计算原玉佩两边的长(结果精确到0.01cm). 【例2】. 在某次军事演习中,红方为了准确分析战场形势,在两个相距为 2 3a 的军事基地C 和D 测得蓝方两支精锐部队分别在A 处和B 处,且∠ADB=30°,∠BDC=30°,∠DCA=60°,∠ACB=45°,如图所示,求蓝方这两支精锐部队的距离. 【巩固练习】 1.一蜘蛛向北爬行xcm 捕捉到一只小虫,然后向右转105?,爬行10cm 捕捉到另一只小虫,这时它向右转135?爬行回它的出发点,那么x = . 2.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15?的方向上,且此时货轮与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后到达N 处,又测得灯塔S 在货轮的东北方向,则货轮的速度为 ( ). A .()2062+海里/小时 B.()2062-海里/小时 C.()2063+海里/小时 D.()2063-海里/小时

相关主题
文本预览
相关文档 最新文档