当前位置:文档之家› 青海省2021版高考数学二模试卷(理科)B卷

青海省2021版高考数学二模试卷(理科)B卷

青海省2021版高考数学二模试卷(理科)B卷
青海省2021版高考数学二模试卷(理科)B卷

青海省2021版高考数学二模试卷(理科)B卷

姓名:________ 班级:________ 成绩:________

一、选择题 (共12题;共24分)

1. (2分) (2018高二下·辽宁期末) 设集合,,则()

A .

B .

C .

D .

2. (2分)复数在复平面的对应的点位于()

A . 第一象限

B . 第二象限

C . 第三象限

D . 第四象限

3. (2分)(2020·焦作模拟) 如图.四边形是正方形,点,分别在边,上,

是等边三角形,在正方形内随机取一点,则该点取自内的概率为()

A .

B .

C .

D .

4. (2分) (2018高二上·黑龙江月考) 已知双曲线满足 ,且与椭圆

有公共焦点,则双曲线的方程为()

A .

B .

C .

D .

5. (2分)(2019·长春模拟) 如图是计算值的一个程序框图,其中判断框内应填入的条件是()

A .

B .

C .

D .

6. (2分)已知数列的通项公式,设其前n项和为,则使成立的自然数n 有()

A . 最大值15

B . 最小值15

C . 最大值16

D . 最小值16

7. (2分) (2017高三上·太原期末) 将函数f(x)= sinxcosx+sin2x的图象上各点的纵坐标不变,横坐标变为原来的2倍,再沿x轴向右平移个单位,得到函数y=g(x)的图象,则y=g(x)的一个递增区间是()

A .

B .

C .

D .

8. (2分)已知x,y满足,记目标函数z=2x+y的最大值为7,最小值为1,则= ()

A . 2

B . 1

C . -1

D . -2

9. (2分)空间四边形ABCD中,若,则与所成角为()

A .

B .

C .

D .

10. (2分)(2017·黑龙江模拟) 若函数则函数f(x)的图象关于()

A . 原点轴对称

B . x轴对称

C . y轴对称

D . y=x对

11. (2分) (2019高二上·诸暨月考) 设,分别为椭圆的左、右焦点.椭圆上存在一点使得, .则该椭圆的离心率为()

A .

B .

C .

D .

12. (2分)(2019·南平模拟) 刘微(225-295),3世纪杰出的数学家,撞长利用切割的方法求几何体的体积,因些他定义了四种基本几何体,其中将底面是直角三角形的直三棱柱称为“堑堵”,将底面为矩形且一条侧棱垂直于底面的四棱锥称为“阳马”.已知某“堑堵”与某“阳马”组合而成的几何体的三视图如图所示,则该几何体的体积是().

A .

B .

C .

D .

二、填空题 (共4题;共5分)

13. (1分)已知向量,则 =________.

14. (2分) (2017高三上·嘉兴期末) 在的展开式中,含项的二项式系数为________;系数为________.(均用数字作答)

15. (1分) (2015高三上·盐城期中) 已知数列{an}的前n项Sn=(﹣1)n? ,若存在正整数n,使得(an ﹣1﹣p)?(an﹣p)<0成立,则实数p的取值范围是________.

16. (1分) (2020高二下·衢州期末) 当时,不等式恒成立,则a的取值范围是________

三、解答题 (共7题;共65分)

17. (10分) (2019高二上·广州期中) 在中,角,,所对的边分别为,,,

且满足 .

(1)求;

(2)已知,,求的面积.

18. (10分) (2019高二下·闵行期末) 如图,正四棱柱的底面边长,若与底面所成的角的正切值为.

(1)求正四棱柱的体积;

(2)求异面直线与所成的角的大小.

19. (10分) 2016年里约奥运会在巴西里约举行,为了接待来自国内外的各界人士,需招募一批志愿者,要求志愿者不仅要有一定的气质,还需有丰富的人文、地理、历史等文化知识.志愿者的选拔分面试和知识问答两场,先是面试,面试通过后每人积60分,然后进入知识问答.知识问答有A,B,C,D四个题目,答题者必须按A,B,C,D顺序依次进行,答对A,B,C,D四题分别得20分、20分、40分、60分,每答错一道题扣20分,总得分在面试60分的基础上加或减.答题时每人总分达到100分或100分以上,直接录用不再继续答题;当四道题答完总分不足100分时不予录用.假设志愿者甲面试已通过且第二轮对A,B,C,D四个题回答正确的概率依次是,,,,且各题回答正确与否相互之间没有影响.

(1)用X表示志愿者甲在知识问答结束时答题的个数,求X的分布列和数学期望;

(2)求志愿者甲能被录用的概率.

20. (5分)(2017·河北模拟) 已知椭圆C:(a>b>0)的短轴长为2,过上顶点E和右焦点F的直线与圆M:x2+y2﹣4x﹣2y+4=0相切.

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)若直线l过点(1,0),且与椭圆C交于点A,B,则在x轴上是否存在一点T(t,0)(t≠0),使得不

论直线l的斜率如何变化,总有∠OTA=∠OTB (其中O为坐标原点),若存在,求出 t的值;若不存在,请说明理由.

21. (10分) (2016高二下·民勤期中) 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)= (0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.(1)求k的值及f(x)的表达式.

(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.

22. (10分) (2020高二下·长春期末) 已知曲线的极坐标方程为,曲线的参数方程为(为参数).

(1)求曲线,的普通方程并指出它们的形状;

(2)若点M在曲线上,点N在曲线上,求线段长度的最小值.

23. (10分)(2018·成都模拟) 设函数 .

(1)若存在,使得,求实数的取值范围;

(2)若是(1)中的最大值,且,证明: .

参考答案一、选择题 (共12题;共24分)

1-1、

2-1、

3-1、

4-1、

5-1、

6-1、

7-1、

8-1、

9-1、

10-1、

11-1、

12-1、

二、填空题 (共4题;共5分)

13-1、

14-1、

15-1、

16-1、

三、解答题 (共7题;共65分) 17-1、

17-2、

18-1、

18-2、

19-1、19-2、

20-1、

21-1、

21-2、

22-1、

22-2、

23-1、23-2、

2018年高三数学模拟试题理科

黑池中学2018级高三数学期末模拟试题理科(四) 一、选择题:本大题共12小题,每小题5分,共60分. 1.已知集合{}2,101,, -=A ,{} 2≥=x x B ,则A B =I A .{}2,1,1- B.{ }2,1 C.{}2,1- D. {}2 2.复数1z i =-,则z 对应的点所在的象限为 A .第一象限 B.第二象限 C.第三象限 D.第四象限 3 .下列函数中,是偶函数且在区间(0,+∞)上单调递减的函数是 A .2x y = B .y x = C .y x = D .2 1y x =-+ 4.函数 y=cos 2(x + π4 )-sin 2(x + π4 )的最小正周期为 A. 2π B. π C. π2 D. π 4 5. 以下说法错误的是 ( ) A .命题“若x 2 -3x+2=0,则x=1”的逆否命题为“若x≠1,则x 2 -3x+2≠0” B .“x=2”是“x 2 -3x+2=0”的充分不必要条件 C .若命题p:存在x 0∈R,使得2 0x -x 0+1<0,则﹁p:对任意x∈R,都有x 2 -x+1≥0 D .若p 且q 为假命题,则p,q 均为假命题 6.在等差数列{}n a 中, 1516a a +=,则5S = A .80 B .40 C .31 D .-31 7.如图为某几何体的三视图,则该几何体的体积为 A .π16+ B .π416+ C .π8+ D .π48+ 8.二项式6 21()x x +的展开式中,常数项为 A .64 B .30 C . 15 D .1 9.函数3 ()ln f x x x =-的零点所在的区间是 A .(1,2) B .(2,)e C . (,3)e D .(3,)+∞ 10.执行右边的程序框图,若0.9p =,则输出的n 为 A. 6 B. 5 C. 4 D. 3 开始 10n S ==, S p

全国统一高考数学试卷(理科)(全国一卷)

绝密★启用前 全国统一高考数学试卷(理科)(新课标Ⅰ) 一、选择题:本题共12小题, 每小题5分, 共60分。在每小题给出的四个选项中, 只 有一项是符合题目要求的。 1.已知集合}242{60{}M x x N x x x =-<<=--<,, 则M N I = A .}{43x x -<< B .}42{x x -<<- C .}{22x x -<< D .}{23x x << 2.设复数z 满足=1i z -, z 在复平面内对应的点为(x , y ), 则 A .22 +11()x y += B .221(1)x y +=- C .22(1)1y x +-= D .2 2(+1)1y x += 3.已知0.20.32 log 0.220.2a b c ===,,, 则 A .a b c << B .a c b << C .c a b << D .b c a << 4.古希腊时期, 人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是 512-( 51 2 -≈0.618, 称为黄金分割比例), 著名的“断臂维纳斯”便是如此.此外, 最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 51 -.若某人满足上述两个黄金分割比例, 且腿长为105 cm, 头顶至脖子下端的长度为26 cm, 则其身高可能是

A .165 cm B .175 cm C .185 cm D .190 cm 5.函数f (x )= 2 sin cos ++x x x x 在[,]-ππ的图像大致为 A . B . C . D . 6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个 爻组成, 爻分为阳爻“——”和阴爻“— —”, 如图就是一重卦.在所有重卦中随机取一重卦, 则该重卦恰有3个阳爻的概率是 A . 516 B . 1132 C . 2132 D . 1116 7.已知非零向量a , b 满足||2||=a b , 且()-a b ⊥b , 则a 与b 的夹角为 A . π6 B . π3 C . 2π3 D . 5π6 8.如图是求 112122 + +的程序框图, 图中空白框中应填入

(完整版)2018技能高考模拟题(数学部分)

2018技能高考模拟题(数学部分) ―、选择题(本大题共6小题,每小题5分,共30分) 1. 下列四个命题:(1)空集没有子集.(2)空集是任何集合的真子集(3)}0{=? (4)任何集合必有两个或两个以上的子集.其中正确的有( )个 A.0 B. 1 C.2 D.3 2.下列函数:(l )2x y =,(2)3x y =,(3)x x y -+=11lg ,(4)2 1131--=x y 其中奇函数有( )个 A.3 B.2 C.1 D.0 3.下列命题:(l )02sin 2cos >-,(2)若54sin =a ,则53cos =a . (3)在三角形ABC 中,若A A cos 3sin 2=,则角A 为30度角.其中正确的有()个 A.3 B. 2 C.1 D.0 4.下列说法:(1)两个相等的向量起点相同,则终点相同.(2)共线的单位向量相等.(3)不相等的向量一定不平行.(4)与零向量相等的向量一定是零向量. (5)共线向量一定在一条直线上.其 中正确的有( )个 A.2 B.3 C.4 D.5 5. 有点(3,4),(3-,4-),(1,1+3)(1-,31-),其中在直线013=+-y x 上的有()个 A.1 B.2 C.3 D.4 6.下列说法中:⑴数列{112-n }中负项有6项.(2)73为数列{12-n }中的项. (3)数列2.4.6.8可表示为{2. 4. 6.8}.其中正确的有()个 A.0 B.1 C.2 D.3 二、填空题(本大题共4小题,每小题6分,共24分)

1.若数列{n a }中,11++= n n n a a a 对任意正整数都成立,且216=a ,则5a = 。 n a = 。 2. 若a =(3,4),b =(2,1),且(a +xb ))(b a -⊥ = 。 3. 满足2 1sin ≥ a 的角a 的集合为 。 4. 4.函数|3|log 2 1-=x y 的单调减区间为 。 三、解答题(本大题共3小题,每小题12分,共36分) 1.(1)角a 的终边上一点P 的坐标为(t t 3,4-)(t 不为0),求a a cos sin 2+. (2)设2e ,2e 是两不共线的向量,若涵212ke +=,113e e +=,212e e -= 若三点A 、B 、D 共线,求k 的值. 2.(1)求函数)6 2sin(3π-=x y 的单增区间. (2)说出函数)3tan(π-=x y 的周期和单调区间. 3.(1)过点P (1-,1-)的直线与两坐标轴分别相交于A 、B 两点,若P 点为线段AB 的中点,求该直线的方程和倾斜角. (2)已知数列{n a }为等差数列,n S 为其前n 项和,且77=S ,1515=S . ①求n S .②若为数列的{n S n }前n 项和,求n T .

2020-2021高考理科数学模拟试题

高三上期第二次周练 数学(理科) 第Ⅰ卷(选择题,共60分) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.设集合{}=0123A ,,,, {}=21B x x a a A =-∈,,则=( )A B ? A. {}12, B. {}13, C. {}01 , D. {}13-, 2.已知i 是虚数单位,复数z 满足()12i z i +=,则z 的虚部是( ) A. i - B. i C. 1- D. 1 3.在等比数列{}n a 中, 13521a a a ++=, 24642a a a ++=, 则数列{}n a 的前9项的和9S =( ) A. 255 B. 256 C. 511 D. 512 4.如图所示的阴影部分是由x 轴,直线1x =以及曲线1x y e =-围成, 现向矩形区域OABC 内随机投掷一点,则该点落在阴影区域的概率是( ) A. 1e B. 21 e e -- C. 11e - D. 11e - 5.在 52)(y x x ++ 的展开式中,含 2 5y x 的项的系数是( ) A. 10 B. 20 C. 30 D. 60 6.已知一个简单几何体的三视图如右图所示,则该几何体的 体积为 ( ) A. 36π+ B. 66π+ C. 312π+ D. 12 7.已知函数 ())2log(x a x f -= 在 )1,(-∞上单调递减,则a 的取值范围是( ) A. 11<<

全国统一高考数学试卷(理科全国卷1)

2016年全国统一高考数学试卷(理科)(新课标Ⅰ) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)(2016?新课标Ⅰ)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3) 2.(5分)(2016?新课标Ⅰ)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=() A.1 B.C.D.2 3.(5分)(2016?新课标Ⅰ)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.97 4.(5分)(2016?新课标Ⅰ)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是() 《 A.B.C.D. 5.(5分)(2016?新课标Ⅰ)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距 离为4,则n的取值范围是() A.(﹣1,3)B.(﹣1,) C.(0,3) D.(0,) 6.(5分)(2016?新课标Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是() A.17πB.18πC.20πD.28π 7.(5分)(2016?新课标Ⅰ)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()

A.B.C. D. 8.(5分)(2016?新课标Ⅰ)若a>b>1,0<c<1,则() A.a c<b c B.ab c<ba c : C.alog b c<blog a c D.log a c<log b c 9.(5分)(2016?新课标Ⅰ)执行如图的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足() A.y=2x B.y=3x C.y=4x D.y=5x 10.(5分)(2016?新课标Ⅰ)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()

技能高考数学模拟试题(一)

一、选择题(5分×6=30分) 19. 下列命题中错误的个数是( ) ①若A B =?I ,则,A B 中至少一个是空集 ②若A B S =I ,S 为全集,则A B S == ③()()A B A A B ≠≠ ??I U ④22 (2)0(2)0x y x y +-=-=是的必要不充分条件 A.0 B.1 C.2 D.3 20. 不等式(5)(4)14x x -+-≥的解集是( ) A. 32x -≤≤ B. {}|32x x x ≤-≥或 C. {}|32x x -≤≤ D. {}|32x x -<< 21. 下列说法正确个数的是( ) ①1,(,)y x =+∈-∞+∞表示一个函数 ②22()1()sin cos f x t t t ==+和g 表示同一函数 ③设函数()y f x =在区间(,)a b 上有意义.如果有12,(,)x x a b ∈,当12x x <时,12()()f x f x <成立,那么函数()f x 叫作区间(,)a b 上的增函数 ④如果函数2()2(1)31+)f x x a x =-++∞在区间[,是增函数,则a 的取值范围是[3,)+∞ A. 0 B. 1 C. 2 D. 3 22. 下列函数在定义域内为减函数且为奇函数的是( ) A. ()3x f x -= B. 3 ()f x x =- C. ()sin f x x = D. ()cos f x x = 23. 已知向量,a b r r ,且22,56,92,AB a b BC a b CD a b =+=-+=-u u u r r r u u u r r r u u u r r r 则一定三点共线的是() A. A,B,D B. A,B,C C. B,C,D D. A,C,D 24. 小明抛一块质地均匀的硬币两次,出现正反各一次的概率是( ) A 14 B 12 C 34 D 1 二、填空(5分×4=20分) 25. 计算( 34 1 log 50.5330.125+29--+= 26. 函数()f x =的定义域是 27. 在等差数列{}n a 中,已知1110a =,则21S = 28. 已知正四棱柱底面边长为4cm ,侧面积为80cm 2,则它的体积是 xx 北技能高考数学模拟试题(一)

2017年高考理科数学试题及答案

2017年普通高等学校招生全国统一考试(xx卷)数学(理科) 第Ⅰ卷(共50分) 一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2017年xx,理1,5分】设函数的定义域为,函数的定义域为,则()(A)(B)(C)(D) 【答案】D 【解析】由得,由得,,故选D. (2)【2017年xx,理2,5分】已知,是虚数单位,若,,则()(A)1或(B)或(C)(D) 【答案】A 【解析】由得,所以,故选A. (3)【2017年xx,理3,5分】已知命题:,;命题:若,则,下列命题为真命题的是() (A)(B)(C)(D) 【答案】B 【解析】由时有意义,知是真命题,由可知是假命题, 即,均是真命题,故选B. (4)【2017年xx,理4,5分】已知、满足约束条件,则的最大值是()(A)0(B)2(C)5(D)6 【答案】C 【解析】由画出可行域及直线如图所示,平移发现,

当其经过直线与的交点时,最大为 ,故选C. (5)【2017年xx,理5,5分】为了研究某班学生的脚长(单位:厘米)和身高(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出与之间有线性相关关系,设其回归直线方程为,已知,,,该班某学生的脚长为24,据此估计其身高为() (A)160(B)163(C)166(D)170 【答案】C 【解析】,故选C. (6)【2017年xx,理6,5分】执行两次如图所示的程序框图,若第一次输入的值为7,第 二次输入的值为9,则第一次、第二次输出的值分别为()(A)0,0(B)1,1(C)0,1(D)1,0 【答案】D 【解析】第一次;第二次,故选D. (7)【2017年xx,理7,5分】若,且,则下列不等式成立的是()(A)(B)(C)(D) 【答案】B 【解析】,故选B. (8)【2017年xx,理8,5分】从分别标有1,2,…,9的9xx卡片中不放回地随机抽取2次,每次抽取1xx,则抽到在2xx卡片上的数奇偶性不同的概率是() (A)(B)(C)(D)

高考真题理科数学全国卷

2018年普通高等学校招生全国统一考试 数学(理)(全国II 卷) 一.选择题(共12小题,每小题5分,共60分。在每小题列出的四个选项中,选出符合题目要求的一项) 1.1212i i +=-()(A )4355i --(B )4355i -+(C )3455i --(D )3455 i -+ 2.已知集合(){}22,|3,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为() (A )9 (B )8 (C )5(D )4 3.函数()2x x e e f x x --=的图像大致为() 4.已知向量,a b 满足||1a =,1a b ?=-,则() 2a a b ?-=() (A )4(B )3(C )2(D )0 5.双曲线()22 2210,0x y a b a b -=>>的离心率为3,则其渐近线方程为() (A )2y x =±(B )3y x =±(C )22y x =±(D )32 y x =± 6.在ABC ?中,5cos 25 C =,1BC =,5AC =,则AB =() (A )42(B )30(C )29( D )25 7.为计算11111123499100 S =-+-++-,设计了下面的程序框图,则在空白框中应填入() (A )1i i =+ (B )2i i =+ (C )3i i =+ (D )4i i =+ 8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+。在不超过 30的素数中,随机选取两个不同的数,其和等于30的概率是()(A )112(B )114 (C )115(D )118

湖北中职技能高考数学模拟试题及解答十一

湖北中职技能高考数学模拟试题及解答十一 Newly compiled on November 23, 2020

湖北中职技能高考数学模拟试题及解答十一 四、选择题(本大题共6小题,每小题5分,共30分) 在每小题给出的四个备选项中,只有一项是符合题目要求的,请将其选出。未选、错选或多选均不得分。 19. 若集合{}22A x x x =-≤与{}24B y y x ==-,则B C A =( ) A. [) ()4,12,--+∞ B. ()()4,12,--+∞ C. (]()4,12,--+∞ D. [)[)4,12,--+∞ 本题答案:A 20. 下列选项中正确的序号是( ) (1)直线320x ++=与直线0y =的夹角是120°; (2)函数()2016f x x =是幂函数; (3)数列21,-202,2003,-20004,…的一个通项公式为()()11210n n n a n +=-??+。 A. (1)(2) B. (1)(3) C. (2)(3) D. (1)(2)(3) 本题答案:C 21. 下列函数中在定义域内为单调递减的奇函数是( ) A. ()2f x x x =- B. ()f x x =- C. ()2x f x -= D. ()0.5log f x x = 本题答案:B 22. 等比数列{}n a 中,351,4a a ==,则公比q 为( ) A. -2、2 B. -1、1 C. 12-、12 D. 2、12 本题答案:A 23. 下列选项中正确的序号为( ) (1)直径为6cm 的圆中,长度为3cm 的圆弧所对的圆心角为1弧度; (2)函数()tan f x x =在(),-∞+∞上是增函数; (3)点()1,3p -关于原点O 的对称点的坐标为(-1,3)。 A. (1)(2) B. (1)(3) C. (2)(3) D. (1)(2)(3) 本题答案:B 24. 过点(0,-1)且被圆22240x y x y ++-=截得的弦长最大的直线方程是( ) A. 310x y +-= B. 310x y +-= C. 310x y ++= D. 310x y ++=

2018年高考数学(理科)模拟试卷(二)

2018年高考数学(理科)模拟试卷(二) (本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分150分,考试时间120分钟) 第Ⅰ卷(选择题满分60分) 一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2016年北京)已知集合A={x||x|<2},B={-1,0,1,2,3},则A∩B=() A.{0,1} B.{0,1,2} C.{-1,0,1} D.{-1,0,1,2} 2.已知z为纯虚数,且z(2+i)=1+a i3(i为虚数单位),则复数a+z在复平面内对应的点所在的象限为() A.第一象限B.第二象限 C.第三象限D.第四象限 3.(2016年新课标Ⅲ)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图M2-1.图中A点表示十月的平均最高气温约为15 ℃,B 点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是() A.各月的平均最低气温都在0 ℃以上 B.七月的平均温差比一月的平均温差大 C.三月和十一月的平均最高气温基本相同 D.平均气温高于20 ℃的月份有5个 图M2-1 图M2-2

4.已知平面向量a =(1,2),b =(-2,k ),若a 与b 共线,则||3a +b =( ) A .3 B .4 C.5 D .5 5.函数y =1 2x 2-ln x 的单调递减区间为( ) A .(-1,1] B .(0,1] C .[1,+∞) D .(0,+∞) 6.阅读如图M2-2所示的程序框图,运行相应的程序,则输出的结果为( ) A .2 B .1 C .0 D .-1 7.(2014年新课标Ⅱ)如图M2-3,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) 图M2-3 A.1727 B.59 C.1027 D.13 8.已知F 1,F 2分别为双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,离心率为5 3,过原点的直线l 交双曲线左、右两支分别于A ,B ,若|BF 1|-|AF 1|=6,则该双曲线的标准方程为( ) A.x 29-y 216=1 B.x 218-y 2 32=1 C.x 29-y 225=1 D.x 236-y 2 64=1 9.若函数f (x )=???? ? x -a 2x ≤0,x +1x +a x >0的最小值为f (0),则实数a 的取值范围是( ) A .[-1,2] B .[-1,0] C .[1,2] D .[0,2]

2017高考全国Ⅰ卷理科数学试卷及答案(word版)

绝密★启用前 2017年普通高等学校招生全国统一考试 理科数学 注意事项: 1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合A ={x |x <1},B ={x |31x <},则 A. {|0}A B x x =< B. A B =R C. {|1}A B x x => D. A B =? 2.如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A. 14 B. π8 C. 12 D. π4 3.设有下面四个命题 1:p 若复数z 满足1z ∈R ,则z ∈R ; 2:p 若复数z 满足2z ∈R ,则z ∈R ; 3:p 若复数12,z z 满足12z z ∈R ,则12z z =; 4:p 若复数z ∈R ,则z ∈R . 其中的真命题为

A.13,p p B.14,p p C.23,p p D.24,p p 4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,48S =,则{}n a 的公差为 A .1 B .2 C .4 D .8 5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]- B .[1,1]- C .[0,4] D .[1,3] 6.621(1)(1)x x ++展开式中2x 的系数为 A.15 B.20 C.30 D.35 7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为 A.10 B.12 C.14 D.16 8.右面程序框图是为了求出满足3n -2n >1000的最小偶数n ,那么在 和两个空白框中,可以分别 填入

2018年全国各地高考数学(理科试卷及答案)

2018年高考数学理科试卷(江苏卷) 数学Ⅰ 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位......置上.. . 1.已知集合{}8,2,1,0=A ,{}8,6,1,1-=B ,那么=?B A . 2.若复数z 满足i z i 21+=?,其中i 是虚数单位,则z 的实部为 . 3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 . 4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 . 5.函数()1log 2-=x x f 的定义域为 .

6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 . 7.已知函数()??? ??<<-+=22 2sin ππ ?x x y 的图象关于直线3π=x 对称,则?的值 是 . 8.在平面直角坐标系xOy 中,若双曲线()0,0122 22>>=-b a b y a x 的右焦点()0,c F 到一条 渐近线的距离为 c 2 3 ,则其离心率的值是 . 9.函数()x f 满足()()()R x x f x f ∈=+4,且在区间]2,2(-上,()??? ? ???≤<-+≤<=02,2120,2cos x x x x x f π, 则()()15f f 的值为 . 10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 . 11.若函数()()R a ax x x f ∈+-=122 3 在()+∞,0内有且只有一个零点,则()x f 在[]1,1-上 的最大值与最小值的和为 .

高考理科数学模拟试卷(含答案)

高考理科数学模拟试卷(含答案) 本试卷分选择题和非选择题两部分. 第Ⅰ卷(选择题)1至2页,第Ⅱ卷 (非选择题)3至4页,共4页,满分150分,考试时间120分钟. 注意事项: 1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上. 2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号. 3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定位置上. 4.所有题目必须在答题卡上作答,在试题卷上答题无效. 5.考试结束后,只将答题卡交回. 第Ⅰ卷 (选择题,共60分) 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知集合2 {1,0,1,2,3,4},{|,}A B y y x x A =-==∈,则A B =I (A){0,1,2} (B){0,1,4} (C){1,0,1,2}- (D){1,0,1,4}- 2. 已知复数1 1i z = +,则||z = (A) 2 (B)1 (D)2 3. 设函数()f x 为奇函数,当0x >时,2 ()2,f x x =-则((1))f f = (A)1- (B)2- (C)1 (D)2 4. 已知单位向量12,e e 的夹角为 2π 3 ,则122e e -= (A)3 (B)7 5. 已知双曲线22 221(0,0)x y a b a b -=>>的渐近线方程为3y x =±,则双曲线的离心率是 (B) 3 (C)10 (D)10 9 6. 在等比数列{}n a 中,10,a >则“41a a <”是“53a a <”的

(完整版)湖北技能高考数学模拟试题及解答二十

湖北技能高考数学模拟试题及解答二十 一、选择题:(共6小题,每小题5分,共计30分) 1、下列结论中正确的个数为() ①自然数集的元素,都是正整数集的元素; ②a能被3整除是a能被9整除的必要条件; ③不等式组{ 3?x<1 x+3<5 的解集是空集; ④不等式|2x-1|≤3的解集为(-∞,2〕 A、4 B、3 C、2 D、1 答案、C 2、函数f(x)=√x+3 x—2 的定义域为() A、?-3,+∞) B、( -∞,2)∪(2,+ ∞) C、?-3,2)∪(2,+ ∞ ) D、?-3,2) 答案、C 3、下列函数在定义域内为偶函数的是()1 , 2 A、f(x)=(x+1)(x?1) B、f(x)=x 12 C、f(x)=2x2-x+1 D、f(x)=x?1 答案、A 4、下列结论中正确的个数为( ) ①函数f(x)=(1 2) ?x 为指数函数 ②函数f(x)=x3在?0,+∞)内为增函数 ③函数f(x)=log 1 2 x在(0,+∞)内为减函数 ④若log 1 2 x<0则x的取值范围为(-∞,1 ) A、4 B、3 C、2 D、1 答案、B 5、角382o15'的终边落在第()象限。 A、四 B、三 C 、二 D、一 答案、D

6、等差数列{a n}中,若a 1= 14且a n+1-a n=则a 7=( ) A 、74 B 、94 C 、114 D 、134 答案、D 二、填空题(共4小题,每小题6分,共计24分) 7、已知︱a ? ︱=2, ︱b ? ︱=1,?a ? ,b ? ?=60 o ,则a ? ·b ? = 。 答案、1 。 8、已知点A (2,3),点B (x ,-3)且|A B |=62,则x =________ ,线段AB 的中点坐标为________。 答案、8或-4 (5,0)或(-1,0) 9、设点P 的坐标为(-5,3),点Q 的坐标为(-3,1)则直线PQ 的斜率为_______,倾斜角为_______。 答案、-1 3π4 10、在x 轴的截距是3,在轴的截距是-2的直线方程是________。 答案、2x-3y-6=0 三、解答题: 11、(1)求值:sin (-11π6 )·cos 7π3+tan(-15π4) (6分) 答案、原式= sin π6 ·cos π3+ tan π4 ----------( 4 分) = 21x 2 1+1 ----------( 5 分) =45 ----------( 6 分) (2)化简:sin (180°+α)+tan (?α)+tan (α+180°) tan α+cos (180°+α)+cos α (6分) 答案、原式= a a a a a cos cos tan tan tan sin +-+--α ----------( 4 分 =a a tan sin - ----------( 5 分) = ?cos α ----------( 6 分) 12、(1) 写一个圆心为(1,?2),半径为3的圆的一般方程。(5分)

高考理科数学试卷(带详解)

·江西卷(理科数学) 1.[2019·江西卷] z 是z 的共轭复数, 若z +z =2, (z -z )i =2(i 为虚数单位), 则z =( ) A.1+i B.-1-i C.-1+i D.1-i 【测量目标】复数的基本运算 【考查方式】给出共轭复数和复数的运算, 求出z 【参考答案】D 【难易程度】容易 【试题解析】 设z =a +b i(a , b ∈R ), 则z =a -b i , 所以2a =2, -2b =2, 得a =1, b =-1, 故z =1-i. 2.[2019·江西卷] 函数f (x )=ln(2 x -x )的定义域为( ) A.(0, 1] B.[0, 1] C.(-∞, 0)∪(1, +∞) D.(-∞, 0]∪[1, +∞) 【测量目标】定义域 【考查方式】根据对数函数的性质, 求其定义域 【参考答案】C 【难易程度】容易 【试题解析】由2 x -x >0, 得x >1或x <0. 3.[2019·江西卷] 已知函数f (x )=|| 5x , g (x )=2 ax -x (a ∈R ).若f [g (1)]=1, 则a =( ) A.1 B.2 C.3 D.-1 【测量目标】复合函数 【考查方式】给出两个函数, 求其复合函数 【参考答案】A 【难易程度】容易 【试题解析】由g (1)=a -1, 由()1f g ????=1, 得|1| 5 a -=1, 所以|a -1|=0, 故a =1. 4.[2019·江西卷] 在△ABC 中, 内角A , B , C 所对的边分别是a , b , c .若2 2 ()c a b =-+6, C =π 3 , 则△ABC 的面积是( ) A.3 D.【测量目标】余弦定理, 面积 【考查方式】先利用余弦定理求角, 求面积 【参考答案】C 【难易程度】容易 【试题解析】由余弦定理得, 222cos =2a b c C ab +-=262ab ab -=12, 所以ab =6, 所以ABC S V =1 sin 2 ab C . 5.[2019·江西卷] 一几何体的直观图如图所示, 下列给出的四个俯视图中正确的是( )

2020-2021学年新课标Ⅲ高考数学理科模拟试题及答案解析

绝密★启用前 试题类型: 普通高等学校招生全国统一考试 理科数学 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回. 第Ⅰ卷 一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题 目要求的. (1)设集合{}{} (x 2)(x 3)0,T 0S x x x =--≥=> ,则S I T=( ) (A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则 41 i zz =-( ) (A)1 (B) -1 (C) i (D)-i (3)已知向量1(2BA =uu v ,1),2BC =uu u v 则∠ABC=( ) (A)300 (B) 450 (C) 600 (D)1200 (4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图。图中A 点表示十月的平均最高气温约为150 C ,B 点表示四月的平均最低气温约为50 C 。下面叙述不正确的是( )

(A) 各月的平均最低气温都在00 C 以上 (B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均最高气温高于200 C 的月份有5个 (5)若3 tan 4 α= ,则2cos 2sin 2αα+= ( ) (A) 6425 (B) 4825 (C) 1 (D)1625 (6)已知4 3 2a =,25 4b =,13 25c =,则( ) (A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a=4,b=6,那么输出的n=( ) (A )3

2018年高考全国卷一理科数学(含答案)

绝密★启用前 2018年普通高等学校招生全国统一考试 (新课标Ⅰ卷) 理科数学 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。 2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。 3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。 4.考试结束后,请将本试题卷和答题卡一并上交。 一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设,则( ) A .0 B . C . D . 2.已知集合,则 ( ) A . B . C . D . 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图: 此卷 只装 订不密封 班级 姓名 准考证号 考场号 座位号

则下面结论中不正确的是() A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记为等差数列的前项和.若,,则()A.B.C.D.12 5.设函数.若为奇函数,则曲线在点处的切线方程为() A.B.C.D. 6.在中,为边上的中线,为的中点,则() A.B. C.D. 7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为, 则在此圆柱侧面上,从到的路径中,最短路径的长度为() A.B.C.D.2 8.设抛物线的焦点为,过点且斜率为的直线与交于,两点,则() A.5 B.6 C.7 D.8 9.已知函数,,若存在2个零点,则的取值范围是() A.B.C.D. 10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,,的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,

湖北中职技能高考数学模拟试题及解答大全

最新最全湖北中职技能高考数学模拟试题及解答 一、选择题:(本大题共6小题,每小题5分,共30分) 在每小题给出的四个选项中,只有一项是符合题目要求的.请把其选出,未选、错选或多选均不得分 1.已知集合A ={91|<≤∈x N x },B ={x 33|<<-x },则 A ? B =( ) A .{x 31|<x } C .{1,2} D .{1,2,3} 参考答案: C 考查集合的运算 2.已知命题甲为1>x ;命题乙为1>x ,那么( ) A.甲是乙的充分非必要条件 B.甲是乙的必要非充分条件 C.甲是乙的充要条件 D.甲既不是乙的充分条件,也不是乙的必要条件 参考答案: A 考查充要条件 3.不等式312<-x 的解集为( ) A .{ x 2|x } C .{x 1|-x } D .{x 21|<<-x } 参考答案:D 考查含绝对值的不等式 4.某函数图象经过点)1,1(和点)1,1(--,则它的解析式不可能为( ) .

A.x y = B.x y 1= C.x y = D.3x y = 参考答案:D 考查函数的解析式 5.下列函数中既是奇函数又为减函数的是( ) A. x y = B. x y sin = C. x y -= D. x y sin -= 参考答案:C 考查函数的单调性和奇偶性 6.下列命题正确的个数是( ) 1.设集合},4{},6{<=≥=x x N x x M 则=?N M 空集。 2.已知,0sin cos

高考理科数学试卷及答案

绝密★启封并使用完毕前 2019年普通高等学校招生全国统一考试 数学(理)(北京卷) 本试卷共5页, 150分。考试时长120分钟。考生务必将答案答在答题卡上, 在试卷上作答无效。考试结束后, 将本试卷和答题卡一并交回。 第一部分(选择题共40分) 一、选择题共8小题, 每小题5分, 共40分。在每小题列出的四个选项中, 选出符合题目要求的一项。(1)若复数(1–i)(a+i)在复平面内对应的点在第二象限, 则实数a的取值范围是 (A)(–∞, 1) (B)(–∞, –1) (C)(1, +∞) (D)(–1, +∞) (2)若集合A={x|–2x1}, B={x|x–1或x3}, 则AB= (A){x|–2x–1} (B){x|–2x3} (C){x|–1x1} (D){x|1x3} (3)执行如图所示的程序框图, 输出的s值为 (A)2 (B)3 2

(C )53 (D )85 (4)若x, y 满足 , 则x + 2y 的最大值为 (A )1 (B )3 (C )5 (D )9 (5)已知函数1(x)33x x f ?? =- ??? , 则(x)f (A )是奇函数, 且在R 上是增函数 (B )是偶函数, 且在R 上是增函数 (C )是奇函数, 且在R 上是减函数 (D )是偶函数, 且在R 上是减函数 (6)设m,n 为非零向量, 则“存在负数λ, 使得m n λ=”是“m n 0?<”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 (7)某四棱锥的三视图如图所示, 则该四棱锥的最长棱的长度为

2020年高考数学(理科)模拟试卷一附答案解析

2018年高考数学(理科)模拟试卷(一) (本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分150分,考试时间120分钟) 第Ⅰ卷(选择题满分60分) 一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2016年四川)设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是( ) A.6 B. 5 C.4 D.3 1.B 解析:由题意,A∩Z={1,2,3,4,5},故其中的元素的个数为5.故选B. 2.(2016年山东)若复数z满足2z+z=3-2i, 其中i为虚数单位,则z=( ) A.1+2i B.1-2i C.-1+2i D.-1-2i 2.B 解析:设z=a+b i(a,b∈R),则2z+z=3a+b i=3-2i,故a=1,b=-2,则z=1-2i.故选B. 3.(2015年北京)某四棱锥的三视图如图M1-1,该四棱锥最长棱的棱长为( ) 图M1-1 A.1 B. 2 C. 3 D.2 3.C 解析:四棱锥的直观图如图D188:由三视图可知,SC⊥平面ABCD,SA是四

棱锥最长的棱,SA =SC 2+AC 2=SC 2+AB 2+BC 2= 3.故选C. 图D188 4.曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为( ) A.π6 B.π3 C.π4 D.π2 4.C 解析:f ′(x )=3x 2-2,f ′(1)=1,所以切线的斜率是 1,倾斜角为π 4 . 5.设x ∈R ,[x ]表示不超过x 的最大整数. 若存在实数t ,使得[t ]=1,[t 2]=2,…,[t n ]=n 同时成立,则正整数n 的最大值是( ) A .3 B .4 C .5 D .6 5.B 解析:因为[x ]表示不超过x 的最大整数.由[t ]=1,得1≤t <2,由[t 2]=2,得2≤t 2<3.由[t 3]=3,得3≤t 3<4.由[t 4]=4,得4≤t 4<5.所以2≤t 2< 5.所以6≤t 5<4 5.由[t 5] =5,得5≤t 5<6,与6≤t 5<4 5矛盾,故正整数n 的最大值是4. 6.(2016年北京)执行如图M1-2所示的程序框图,若输入的a 值为1,则输出的k 值为( ) 图M1-2

相关主题
文本预览
相关文档 最新文档