当前位置:文档之家› 能源互联网下的源网荷互动体系及应用

能源互联网下的源网荷互动体系及应用

储能技术与能源互联网

储能技术在能源互联网中的应用

能源互联网是一种在现有配电网基础上通过先进的电力电子技术和信息技术,融合了大量分布式可再生能源发电装置和分布式储能装置,能够实现能量和信息流动的新型高效电网结构。它是以可再生能源发电为基础构建的能源互联网络,通过智能能量管理系统实现实时、高速、双向的电力数据读取和可再生能源的接入。 可再生能源是能源互联网的主要能量供应来源。可再生能源发电具有间歇性、波动性, 其大规模接人对电网的稳定性产生冲击, 从而促使传统的能源网络转型为能源互联网。能源互联网关注如何将分布式发电装置、储能装置和负载组成的微型能源网络互联起来, 而传统电网更关注如何将这些要素“接进来”。储能装置是能源互联网系统中重要的组成部分, 已被视为电网运行过程中“采一发一输一配一用一储”六大环节中的重要组成部分。系统中引入储能环节后, 可以有效地实现需求侧管理、消除昼夜间峰谷差、平滑负荷, 不仅可以更有效地利用电力设备,降低供电成本, 还可以促进可再生能源的应用,也可作为提高系统运行稳定性、调整频率、补偿负荷波动的一种手段。储能技术的应用必将在传统的电力系统设计、规划、调度、控制等方面带来重大变革。 储能装置是能源互联网系统中重要的组成部分,其主要作用在3 个方面。(1)改善电能质量,维持系统稳定。应用储能装置是改善发电机输出电压和频率质量的有效途径,同时增加了分布式发电机组与电网并网运行时的可靠性。可靠的分布式发电单元与储能装置的结合是解决诸如电压跌落、涌流和瞬时供电中断等动态电能质量问题的有效手段之一。(2)在分布式发电装置不能正常工作时向用户提供电力。在一些特殊情况下,如太阳能发电的夜间,风力发电无风时,储能装置能够起到过渡的作用,持续向用户供电。(3)提高分布式发电单元拥有者的经济效益。在电力市场的环境下,分布式发电单元与电网并网运行,有了足够的储存电力,分布式发电单元成为可调度的机组单元,发电单元拥有者可以根据不同情况向电力公司卖电,提供调峰和紧急功率支持等服务,获取最大的经济效益。 先进储能技术包括压缩空气储能、飞轮储能、电池储能、超导储能、超级电容器储能、冰蓄冷热、氢存储、P2G 等储能技术;从物理形态上讲,包括可用于大电网调峰、调频辅助服务的储能装备,也包括用于家庭、楼宇、园区级的

能源互联网背景下综合智慧能源的发展

能源互联网背景下综合智慧能源的发展 行宇2016.09.18 什么是能源互联网?能源互联网可以理解为:“综合运用先进的电力电子技术, 信息技术和智能管理技术, 将大量由分布式能量采集装置, 分布式能量储存装置和各种类型负载构成的新型 电力网络、石油网络、天然气网络等能源节点互联起来, 以实现能量双向流动的能量对等交换与共享”。能源互联网有三大内涵:从化石能源走向可再生能源;从集中式产能走向分布式产能;从封闭走向开放。这也意味着,未来能源行业的发、输、用、储及金融交易等环节都将会发生巨大变化。 实际上,能源互联网看似美好,但具体操作起来,从电网公司、发电企业、专门的调度机构等电力从业者,到国家发展改革委、国家能源局等监管部门,都会觉得很头疼。因为新的电力价值链需要新的技术,更需要新的体制以及商业模式来支撑,而这恰恰都是目前能源行业所缺乏的。 综合能源系统是能源互联网的重要物理载体,根据地理因素与能源发/输/配/用特性,综合能源系统分为跨区级、区域级和用户级。区域综合能源系统是探究不同能源内部运行机理、推广能源先进技术的前沿阵地,具有重要的研究意义;稳态分析是该领域研究的基础,是探究多能互补特性、能量优化调度、协同规划、安全管理等方面的核心所在。

综合智慧能源只做一件事情,就是用积极的方式开发建设全新的综合能源,运用互联网创新技术让综合能源系统拥有智慧。综合智慧能源以功能区为单元,对不同能源品种,提供一体化解决方案,实现横向“电热冷气水”多类能源互补,纵向“源网荷储用”多种供应环节的生产协同、管廊协同、需求协同以及生产和消费间的互动。 一、综合智慧能源解决的问题 《关于推进“互联网+”智慧能源发展的指导意见》提出,“互联网+”智慧能源(能源互联网)是一种互联网与能源生产、传输、存储、消费以及能源市场深度融合的能源产业发展新形态,对提高可再生能源比重,促进化石能源清洁高效利用,推动能源市场开放和产业升级具有重要意义“。同时明确能源互联网建设的10大重点任务,一是推动建设智能化能源生产消费基础设施。二是加强多能协同综合能源网络建设。三是推动能源与信息通信基础设施深度融合。四是营造开放共享的能源互联网生态体系,培育售电商、综合能源运营商和第三方增值服务供应商等新型市场主体。五是发展储能和电动汽车应用新模式。六是发展智慧用能新模式。七是培育绿色能源灵活交易市场模式。八是发展能源大数据服务应用。九是推动能源互联网的关键技术攻关。十是建设国际领先的能源互联网标准体系。 作为区域综合能源系统的典型能源形式,源端与受端的能源多样化发展以及能源传输与设备的革新促使能源系统进一步耦合。简单的讲综合智慧能源=多类供能技术集成+分布式能源+互联网技术的创新。本

能源互联网发展趋势及展望

能源互联网发展趋势及展望 一、导论 能源互联网是互联网技术、能源技术与现代电力系统的结合,是信息技术与能源电力技术融合发展的必然趋势。因此如果以开放、互联、对等、分享的原则对电力系统网络进行重构,可以提高电网安全性和电力生产的效率,使得能源互联网内可以跟互联网一样信息分享无比便捷。在能源互联网提出来前,智能电网概念已经得到业内认可,智能电网的理论都已经非常成熟,从手段、理念到目标都非常清晰。正因如此,去年国家发改委和能源局出台了智能电网的有关指导性文件。 在智能电网的基础上,让互联网和智能电网深度融合,才会走向能源互联网。能源互联网不能简单认为是能源修饰互联网。如果简单从字面理解,能源互联网更多指向二次能源甚至新能源的互联网,这不全面。能源互联网应该是让包括新能源、非化石能源在内的更多的创新性能源技术,在互联网背景下的信息时代,整合得更坚实有力。能源互联网是互联网理念在能源领域的应用,但其并非能源与互联网的简单相加,而是一种新型的信息与能源深度融合的“广域网”,它以现有的大电网作为“主干网”,并以微网和分布式能源等能量自治单元为“局域网”,构建开放、互联、对等和分享的信息与能源一体化架构,以真正实现能量的按需分配与动态平衡使用,最大限度地灵活接入分布式可再生能源。通过信息化和智能化,智能电网力图在一定程度上解决电力系统自身的问题,提高设备的利用率、安全可靠性、电能质量等等,而能源互联网的基本出发点则是要解决未来大规模分布式能源和可再生能源与用户之间的开放互联问题,互联式的电网是最可行的方式。因此,能源互联网的核心在于能量的交换,信息通信控制是为了更好地支撑,信息物理融合在能源互联网中也非常重要。 形象地说,其实未来能源互联网的场景也很容易理解,就是源的极端动态(如间歇性的可再生能源达到50%以上)、负载动态加上个性化需求(如电能质量等),那么应如何构建能源互联网?能源互联网在一定程度上可以借鉴互联网的理念和技术,实现能量的交换。事实上,互联网从一开始面对的就是这样的需求——信息随时要求开放的接入(“源”是动态且开放的)、用户要求随时随地获取信息(“用”是动态且内容不断变化的),而且互联网需求的增长也非常迅速,应该说互联网架构演进到今天,虽然还存在很多问题,但基本上满足了这样的需求。 二、用户端 能源互联网,首先用户端就要联上网。“智能电表”的概念应运而生。智能电表是什么?智能电表是智能电网的智能终端和数据入口,为了适应智能电网,智能电表具有双向多种费率计量、用户端实时控制、多种数据传输模式、智能交互等多种应用功能。智能电表在智能电网数据资源整合中扮演着重要角色。在国家的“十二五”规划明确提出,物联网将会在智能电网、智能交通、智能物流等十大领域重点部署,其中智能电网总投资预计达2万亿元,位居首位。2015年8月,发改委7个物联网立项中首个验收工程“国家智能电网管理物联网应用示范工程”验收成功。之后国家能源局印发的《配电网建设改造行动计划(2015—2020年)》提出“推进用电信息采集全覆盖”、“2020年,智能电表覆盖率达到90%”以及“以智能电表为载体,建设智能

全球能源互联网题库(含答案)

全球能源互联网知识测试 一、单选 1.全球清洁能源资源丰富,水能资源超过()亿万千瓦,陆地风能资源超过()亿千 瓦,太阳能资源超过()亿千瓦。A A.100 1万100万 B. 100 100万1万 C. 100万100 1万 D. 1万100 100万 2.()是实施“两个替代”的关键。D A.智能电网 B. 特高压电网 C. 可再生能源 D. 全球能源互联网 3.截止2013年,全球煤炭、石油、天然气剩余探明可采储量分别为8915亿吨、2382亿 吨和186万亿立方米,折合标准煤共计1.2万亿吨,全球煤炭、石油和天然气分别可开采()年,()年和()年。D A.53 55 113 B. 55 53 113 C. 113 55 53 D. 113 53 55 4.目前,全球能源生产与消费结构目前仍以()为主,清洁能源和电力比重增长较快; 由于能源分布不均衡,能源供需分离程度不断加深,全球能源贸易不断扩大。A A.化石能源 B. 可再生能源 C. 清洁能源 D. 分布式能源 5.()是相对洁净的化石能源。世界天然气资源分布很不均匀。天然气资源主要集中在 中东、欧洲及欧亚大陆地区。B A.煤炭 B. 天然气 C. 石油 D. 风能 6.()又称为天然气水合物,具有储量丰富、能量密度大、燃烧利用污染排放少等优点, 通常分布海洋大陆架外的陆坡、深海、深湖及永久冻土带上。中国已先后在南海、东海及青藏高原冻土带发现。页岩质地坚硬,具有孔隙度小、渗透率低等特点。目前全球只有美国等少数国家实现了大规模开发。A A.可燃冰 B. 石油 C. 天然气 D. 页岩气 7.目前,风电是全球增长速度最快的清洁能源发电品种之一,已经成为仅次于水电、核电

北邮-信息网络应用基础开卷考试资料

第一章概述 ? 想出一个信息网络应用系统的例子/你感兴趣的目前还没 答:餐厅供餐网络公示系统。具体实现功能如下: 1.公示校内各个餐厅的开放时间,若有特殊原因关闭,短信通知校内师生; 2.网络主页上列出每餐供应菜肴,供图有真相,以便师生择厅就餐; 3.设定餐后评价交互页面,由师生将个人喜好及对菜肴的评价反馈给餐厅大厨,大厨据此作出调整。 民以食为天,吃饭是人生之一大事。餐厅的使命是神圣的,要为师生负起饮食大责,理应尽早建立起这一信息网络应用系统。 2.1 操作系统概述 ? 你怎么理解操作系统的? 答: 操作系统的本质是系统软件,它是最接近硬件的、最底层的系统软件,它也是系统软件的基本部分。它统一管理计算机资源,协调系统各部分、系统与使用者之间、及使用者与使用者之间的关系,以利于发挥紫铜的效率和方便使用。 从用户的角度看,操作系统是计算机与用户的连接者。它能够提供比裸机功能更强、服务质量更高、更加方便灵活的的虚拟机,为用户提供系统软、硬件资源的良好接口;从计算机的角度看,操作系统则是一个资源分配器。操作系统需要管理所有的软硬件资源,面对许多冲突的资源请求,操作系统必须决定如何为各个程序和用户分配资源,以便计算机系统能有效而公平地运行,并且使资源得到最有效的利用。 ? 多道程序设计与分时系统有什么区别? 答: 多道程序是指在计算机内存中同时存在几道已经运行的但尚未结束的相互独立的作业,这些作业在微观上轮流占有CPU,在宏观上并行;分时系统是多用户共享系统,将CPU的工作时间分别提供给多个用户使用,每个用户依次轮流使用时间片。多道核心在于不同作业轮流占用CPU,而分时核心在于用户轮流占用CPU。前者对象的放在内存中的多道作业,后者的对象是参与时间片划分的各个用户。 多道批量处理操作系统没有提供用户与作业的交互能力,用户无法控制其作业的运行,造成用户响应时间过长。而分时操作系统能够则能够及时响应,提供用户与程序之间的交互能力。 ? 操作系统最典型的特征是什么?为啥? 答:操作系统有具有四个主要特征:并发性,共享性,虚拟性,异步性。其中,并发特征是其最主要的特征,是指在一段时间段内,多道程序“宏观上同时运行”,其他三个特征都是以并发为前提的。 ? 操作系统能做什么? 答;操作系统是计算机做核心系统软件,也是信息网络应用框架中系统环境的基础,它负责计算机资源管理,负责网络节点的资源协调,保证网络通信协议的实现。操作系统充当两个角色,一个是资源管理者,一个是计算机与用户的连接者。 2.2 进程及进程通信 . ? 进程是什么?基本状态?就绪和阻塞的区别? 答:进程是进程实体的运行过程,是系统进行资源分配和调度的一个独立单位。 通常一个进程至少可以划分为3种基本状态:运行状态,就绪状态,阻塞状态。 就绪状态:一个进程得到了CPU以外的所有必要资源,一旦得到处理机就可以运行。 阻塞状态:一个进程因等待某事件发生而暂时无法继续执行,从而放弃处理机,是进程

能源互联网整体解决方案

2 0^2 0 能源互联网整体解决方案

Contents 目录 能源互联网整体解决方案 .... ■ ? ?■????? 3. 大数据在能源互联网中应用 1. 2. 能源互联网的内涵与定位

能源互联网的内涵与定位:

1.能源互联网的基本特征 ?实现能源资源的开发利用和资源运输网络、能量传输网络之间的相互协 调; ?实现电力霁求侧管理进一步扩大化成为全能源领域的"综合用能管理〃 糊见劇 宏观特征 能里 交易 横向多源互补 互补化 自由化 ?横向多源互补"指电力系统、煤炭.石油萦统、供热系统、天然气供应 系统等多种能源资源系统之间的互补协调,突出强调各类能源之间的 〃可替代性/互补性〃 扁平化 支撑 纵向源■网?荷?储协调 透明化

2能源互联网的层次划分 /能源互联网利用ICT 技术实现各类能量单元的 协调运行 /未来能源互联网的建设应该是以电力系统为核 心的 型能源的综合优化。以智能电网为主要技术支 撑的电力互联网将会成为能源互联网的资源配 置中心和枢纽 /能源互联网的发展趋势一定是在当前智能电网 或者电力互联网的基础上,向综合能源系统以 及综合能源交易的方向发展,实现各类型能源 网络的互联互通和资源的整体优化配置 发展层次 发展趋势 /能源互联网绝不是单纯的电力互联网,应该是 多类型能源网络的高度耦合,能够实现不同类 能源互联 智慧城市 网智 多能源耦合的区 域能源互联网

2能源互联网的层次划分 物理以及信息网络支撑看分散化的能源交易,信 息流和能量流影响能源互联网中能量价值。商业 模 式的创新,赋予能源互联网在市场层面开放兼 容的体系 架构,使得能源互联网在物理层面所具 有的开放兼容的 特性能够在价值层面有所反映 能够充分反映能源网络运行的物理和信息过程, 体现两者融合机理和相互作用机制。CPS 系统 构建能够使信息流逐步引导控制能量流,利用 能源大数据,更好地发挥能源互联网中的系统 信息价值 对区域内不同规模的电力、燃料以及供热系统等能 源网络从规划和运行两个层面进行优化。形成一个 洲际的多能源互联系统,为终端用户提供不同类型 的能源服务”推动能源系统与经济社会中其他系统 的整合 信息物理系统(CPS W 运营机制与商业模式 综合能源系统 能源互联网基本架构 价值流

第3章计算机网络体系结构(习题参考答案)

第3章计算机网络体系结构(习题参考答案) -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第3章计算机网络体系结构 三、简答题 1.为什么要采用分层的方法解决计算机的通信问题 通过分层的方法,使得计算机网络复杂的通信处理问题转化成为若干相对较小的层次内的局部问题,对其进行的研究和处理变得相对容易。 2.“各层协议之间存在着某种物理连接,因此可以进行直接的通信。”这句话对吗 不对。物理连接只存在于最底层的下面。各层协议之间只存在着称为“对等层通信”的逻辑连接。 3.请简要叙述服务与协议之间的区别。 通过协议的规定,下一层可以为上一层提供服务,但是对于上一层的服务用户来说下面的协议是透明的。协议是存在于对等层之间的,是水平的;服务存在于直接相邻的两个层次之间,是垂直的。 4.请描述一下通信的两台主机之间通过OSI模型进行数据传输的过程。 发送数据的具体过程为:要进行通信的源用户进程首先将要传输的数据送至应用层并由该层的协议根据协议规范进行处理,为用户数据附加上控制信息后形成应用层协议数据单元再送至表示层;表示层根据本层的协议规范对收到的应用层协议数据单元进行处理,给应用层协议数据单元附加上表示层的控制信息后形成表示层的协议数据单元再将它传送至下一层。数据按这种方式逐层向下传送直至物理层,最后由物理层实现比特流形式的传送。 当比特流沿着传输介质经过各种传输设备后最终到达了目标系统。此后,接收数据的具体过程为:按照发送数据的逆过程,比特流从物理层开始逐层向上传送,在每一层都按照该层的协议规范以及数据单元的控制信息完成规定的操作,而后再将本层的控制信息剥离,并将数据部分向上一层传送,依此类推直至最终的、通信的目的用户进程。 5.请简述虚电路服务的特点。 虚电路服务要求发送分组之前必须建立连接,即虚电路。之后所有的分组都沿着虚电路依次进行传送。在所有分组传送完毕后要释放连接。它可以提供顺序、可靠的分组传输,适用于长报文的通信,一般应用于稳定的专用网络。 6.请简述无连接服务的特点。 无连接服务无需事先建立连接。各个分组携带全部信息,依据网络的实际情况,独立选择路由到达目的端。它只提供尽最大努力的服务,因此不能保证传输的可靠性。独立选择路由的模式也不能保证分组到达的顺序性。但是其操作灵活且鲁棒性较强,适合于短报文传输以及对实时性和可靠性要求不高的环境。

唐西胜:储能运营模式分析学习资料

储能运营模式分析 双登集团股份有限公司副总工唐西胜 今天我讲的储能应用与价值分析,三个方面:一、探讨一下大家都认为储能时代已经到了,我们正在进入储能这个时代。二、在这个储能这个时代,我们怎么构建储能的价值体系。三、想大家汇报一下双登集团这些年在储能方面的工作。我本人是搞科研的,从科研到产业不是特别长,我讲这个话题不是很专业,我讲着就讲到技术方面的,很可能从技术看储能的问题,希望从另外一个方面给大家带来一些参考。 我们国家需要做这个能源结构的转型,更加低碳化,更加清洁化,这个是毫无疑问这是大趋势。 第二个方面,现在都在提互联网+,互联网+智慧能源,也就是能源互联网,这也是国家一个战略方向。 第三个方面,在具体的操作层面上,实际上随着电改9号文的下发,很多地方开始实施了售电市场的放开,尤其一些增量配电网的进入。实际上给储能的应用提供了一些可以展示的平台,大概是这样一个思路。 我想讲储能,储能是能源互联网基石,我觉得话不过分,应该还是说的比较中肯,实际上建能源互联网,它要解决的问题,我觉得是需要让这个电网,因为我们未来的电网它会接纳更多的负荷,用电的上升还是持续的方向,在这样一个条件下,怎么样让电网更加的灵活,这个灵活性是电力系统追求

的目标,调控的灵活性,运行的灵活性,然后经济上的一些灵活性,这是从灵活性角度来讲。 储能,应该说它具有灵活的充放电的控制能力,所以储能在电网当中的作用,解决了发电和用电实施平衡的问题,在局部地区,让发电和用电通过储能做一个解偶,当然时间长短有一个说法的。 所以说从这个方面来讲,能源互联网它要想让这个系统运行的更加灵活和高效,储能在这里面的作用是有所体现的。但是从另外一个方面来讲,我们追求的是电网的发电和用电的平衡,或者产能和用能的平衡,实际上除了储电之外,我还可以储能,这个能像张总讲的,比如说我可以蓄热,我可以蓄冷,这也是一种储能的方式,我可以做负荷的调控,我们可以做需求侧的管理,我们国家有4个城市进行了需求侧响应的试点,在我需要减少负荷的时候,一些签约的负荷主动把负荷用电降下来,对系统用电的平衡产生很好的作用。通过这个能源互联网多能互补的方式的实现,用能和产能之间的匹配关系,可以做多个维度上,多个方式上得到一个解偶。 一般我们现在做了很多的分析,储能在整个电力系统各个环节当中,从发电到输配电到用电都是需要的,但是实际上现在很多的机制,或者市场并不支持这方面的运行。要完全实现各个环节的都能把储能很好的调控进去,其实也是一个很难做的工作,问题就在于实际上电力系统它自身具有很强的调控能力,我们常规的火电机组、水电机组还有燃气机组,它自己的调控能力做的很强,尤其在我们国家,目前这种情况下,应该说电网是非常强大的,再一个火电机组应该说这几年建设存在一个过剩的阶段。

很详细的系统架构图-强烈推荐

很详细的系统架构图--专业推荐 2013.11.7

1.1.共享平台逻辑架构设计 如上图所示为本次共享资源平台逻辑架构图,上图整体展现说明包括以下几个方面: 1 应用系统建设 本次项目的一项重点就是实现原有应用系统的全面升级以及新的应用系统的开发,从而建立行业的全面的应用系统架构群。整体应用系统通过SOA面向服务管理架构模式实现应用组件的有效整合,完成应用系统的统一化管理与维护。 2 应用资源采集 整体应用系统资源统一分为两类,具体包括结构化资源和非机构化资源。本次项目就要实现对这两类资源的有效采集和管理。对于非结构化资源,我们将通过相应的资源采集工具完成数据的统一管理与维护。对于结构化资源,我们将通过全面的接口管理体系进行相应资源采集模板的搭建,采集后的数据经过有效的资源审核和分析处理后进入到数据交换平台进行有效管理。 3 数据分析与展现 采集完成的数据将通过有效的资源分析管理机制实现资源的有效管理与展现,具体包括了对资源的查询、分析、统计、汇总、报表、预测、决策等功能模块的搭建。 4 数据的应用 最终数据将通过内外网门户对外进行发布,相关人员包括局内各个部门人员、区各委办局、用人单位以及广大公众将可以通过不同的权限登录不同门户进行相关资源的查询,从而有效提升了我局整体应用服务质量。 综上,我们对本次项目整体逻辑架构进行了有效的构建,下面我们将从技术角度对相

关架构进行描述。 1.2.技术架构设计 如上图对本次项目整体技术架构进行了设计,从上图我们可以看出,本次项目整体建设内容应当包含了相关体系架构的搭建、应用功能完善可开发、应用资源全面共享与管理。下面我们将分别进行说明。 1.3.整体架构设计 上述两节,我们对共享平台整体逻辑架构以及项目搭建整体技术架构进行了分别的设计说明,通过上述设计,我们对整体项目的架构图进行了归纳如下:

能源革命与能源互联网

曾鸣:能源革命与能源互联网 发表时间:2015-08-10 来源:曾鸣 能源互联网———未来能源利用体系 随着可再生能源技术、通信技术以及自动控制技术的快速发展,一种以电力系统为核心,集中式以及分布式可再生能源为主要能量单元,依托实时高速的双向信息数据交互技术,涵盖煤炭、石油、天然气以及公路和铁路运输等多类型多形态网络系统的新型能源利用体系,即“能源互联网”的基本构想和雏形被提出。在“能源互联”的背景下,传统的以生产顺应需求的能源供给模式将被彻底颠覆,处于能源互联网中的各个参与主体都既是“生产者”,又是“消费者”,互联共享将成为新型能源体系中的核心价值观。 因此,能源互联网是要构建一个以电力系统为核心与纽带,多类型能源网络和交通运输网络的高度整合,具有“横向多能源体互补,纵向源—网—荷—储协调”和能量流与信息流双向流动特性的大能源互联圈,是要实现更广泛意义上的“源—网—荷—储”协调互动。其中,“源”是指煤炭、水能、天然气等各类型一次能源和电力等二次能源,“网”涵盖了天然气和石油管道网、电力网络以及铁路、公路等运输网络,“荷”与“储”则是指各种能源需求以及存储设施。通过“源—网—荷—储”协调互动达到最大限度消纳利用可再生能源,能源需求与生产供给协调优化以及资源优化配置的目的,从而实现整个能源网络的“清洁替代”与“电能替代”,推动整个能源产业以及经济社会的变革与发展。 构建能源互联网的必要性和迫切性 构建能源互联网不仅是能源技术的革新,也是一次能源生产、消费以及政策体制变革,更是对人类社会生活方式的一次根本性革命。当前我国正处在能源革命的关键时期,李克强总理在政府工作报告中提出“能源生产与消费革命,关乎发展与民生,要大力发展风电、光伏发电、生物质能”以及“互联网+”的概念,预示着我国能源行业发展将要进入一个全新的历史阶段。能源互联网的建设不是基于现有的能源生产、消费模式和能源体制,而是要通过能源互联网这种能源技术革命,推动能源生产、消费、体制变革和能源结构的调整,有力地推动我国能源革命,能源互联势在必行。 首先,我国面临着严峻的能源与环境问题。我国的能源结构不尽合理,导致目前我国社会发展与能源消费之间的矛盾日益突出。同时随着我国经济社会的发展以及传统化石燃料的日益枯竭,我国能源依赖进口的比重越来越大,在周边政治环境不稳定的情况下,我国的能源安全问题将无法得到保障。能源互联网能够在最大程度上提高能源利用效率,降低国内经济发展对传统化石能源的依赖程度,从根本上改变当前我国的能源生产和消费模式,从而有效解决我国当前能源消费与经济发展之间的矛盾以及能源安全问题。 其次,我国正处在能源产业结构调整以及体制改革的关键时期。能源互联网作为一次能源技术革命,互联共享将会从根本上改变我国的经济产业布局和能源生产消费模式,其高度开放的特性,也会推动我国能源行业体制的变革,提高我国能源行业的整体开放程度。能源互联网是多类型用能网络的多层耦合,电力作为重要的二次能源,是实现各能源网络有机互联的链接枢纽,电力互联是实现能源互联的重要途径。 能源互联网的建设将会最大程度地推动当前我国电力工业体制改革进程,加速相关政策措施的完善以及智能电网等技术手段的研发速度,从而促进我国新型电力工业体系的建设完善。 能源互联网对未来电力工业体系形成的作用

能源互联网的关键技术有哪些

能源互联网的关键技术有哪些? 2015-11-05 能源互联网关键技术是包括新能源发电技术、大容量远距离输电技术、先进电力电子技术、先进储能技术、先进信息技术、需求响应技术、微能源网技术,也包括关键装备技术和标准化技术。其中先进电力电子技术、先进信息技术是关键技术中的共性技术。 新能源发电技术 能源互联网关键技术是指可再生能源的生产、转换、输送、利用、服务环节中的核心技术,包括新能源发电技术、大容量远距离输电技术、先进电力电子技术、先进储能技术、先进信息技术、需求响应技术、微能源网技术,也包括关键装备技术和标准化技术。其中先进电力电子技术、先进信息技术是关键技术中的共性技术。 新能源不仅包括风能、太阳能和生物质能等传统可再生能源,还包括页岩气和小堆核电等新型能源或资源。新能源发电技术包括各种高效发电技术、运行控制技术、能量转换技术等。 在新能源发电技术方面,研究规模光伏发电技术和太阳能集热发电技术、变速恒频风力发电系统的商业化开发,微型燃气轮机分布式电源技术,以及燃料电池功率调节技术、谐波抑制技术、高精度新能源发电预测技术、新能源电力系统保护技术;研究动力与能源转换设备、资源深度利用技术、智能控制与群控优化技术和综合优化技术。 大容量远距离输电技术 大容量远距离输电是我国及世界能源革命的基础技术,是解决大型能源基地可再生能源发电外送的支撑手段。我国可以发展建设以特高压骨干网为基础,利用高压直流互联可再生能源基地,实现覆盖全国范围的交直流混合超级电网,提高我国供电的灵活性、互补性、安全性与可靠性。大容量远距离输电技术包括:灵活可控的多端直流输电技术、柔性直流输电技术、直流电网技术、海底电缆技术、运行控制技术等。直流电网技术是解决我国能源资源分布不均带来的电能大容量远距离传输问题、大规模陆上及海上新能源消纳及广域并网问题、以及区域交流电网互联带来的安全稳定运行问题有效的技术手段之一。 先进电力电子技术 先进电力电子技术包括高电压、大容量或小容量、低损耗电力电子器件技术、控制技术及新型装备技术。以SiC、GaN为代表的宽禁带半导体材料的发

能源互联网电力系统自动化专业的出路

能源互联网电力系统自动化专业的出路 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

能源互联网:电力系统自动化专业的出路 2016-10-19? 这是我很早就想用心写的一篇文章,所以我决定不往任何一个地方投稿,不具版权,欢迎大家随意转载/讨论。 起因 最近,由于电改和能源互联网的兴起,周围的朋友、同学、小伙伴都在谈论这个话题:电力系统自动化专业的前途在哪里 电力系统及其自动化这个专业应该是个很有中国特色的专业,这个专业的学生多数应该都是电力系统的子弟,他们之中的大多数也会去电厂或者供电公司工作,他们之中的绝大多数也许一辈子都会呆在电力系统内部。在外人看来,他们高薪/稳定/霸气,但实际上他们的辛苦和无可奈何,还有他们的才华,却无人问津。 我就是他们中的一员,在中国德国的电网公司都工作过,不仅甲方乙方也呆过,专业领域也算是经历了继电保护,远动通信,配网自动化,调度和电力交易,不敢说专家,但的确非常热爱这个专业,因此写下一些文字,给我最热爱的这个行业的同仁和老师朋友领导们分享。 我会把这篇文章写的非常专业,非常非常的professional。相信我。 我在硅谷曾经碰到一个是斯坦福的环境工程女博士,她家里就是电力系统的,家里人与很多电力系统的父母一样,对她有个最简单的要求:毕业后回系统内吧。但是这位漂亮的女博士一如各种反抗家庭暴力

的故事一样,并没有遵从父母的愿望,毅然选择了环境工程并跑到了美国,现在在一家光伏行业领军软件服务公司工作。 我问她:你为什么不愿意去电力系统工作 她说:我不喜欢那种封闭的气氛,不自由,一辈子做一样的事情,没有成就感,压抑。30岁就可以看到自己60岁的样子。 我告诉她:可是你现在做的新能源领域工作,根本就是殊途同归。我们现在提的这个能源互联网,就是所有电力系统专业最后的指向。如果你还以为电力系统工作就是画画图纸测测油样拉拉电闸那就错了,这个专业可以蕴藏的潜力和前所未有的高要求根本超乎所有人的想象。 故事 我曾经见过很多人,他们大多数是做光伏和储能或者是风机逆变的,他们只要一提起电网公司电力系统来,既恨且怕,仿佛是在谈论一群霸道的猪。但在我生命中的另一群人,他们却可以对这个世界所有的指责报以不屑,却从不放弃任何学习前进的机会。 我曾经介绍给做旅游的朋友一个来德国考察电力体制和售电公司的团,结束之后我问他:感觉怎样,和其他行业有啥不同他说,我靠我终于知道你为什么整天有这么多东西可以写了,你们这帮搞能源的真的是热爱专业啊,去哪参观我都没看见这么爱学习爱问问题的人,人家都是捣糨糊逛一逛去shopping,你们这真的都是学霸出身。 这就是很多人并不了解的电力系统的同志们的特点:他们其实经常23点半下班,必须完成各种报告考评,突击学习各种专业知识,一秒钟

5G技术及其在能源互联网中应用

5G技术及其在能源互联网中应用 亓峰 北京邮电大学 2019.11

主要内容 ?5G技术内涵及发展 ?能源互联网通信需求 ?5G与能源互联网融合模式

4G IMT-Advanced Likely OFDMA Based Technology GSM GPRS WCDMA R99 EDGE E-EDGE HSDPA/R5HSUPA/R6 MBMS TD-SCDMA R4 HSPA MC-HSPA MBMS CDMA CDMA 2000 CDMA 2000 1X-ED-DO EV-DO Rev. A EV-DO Rev. B UMB 802.16d 802.16e 802.16m LTE/R8 TDD FDD HSPA+/R7 LTE-A/R9 HSPA+/R8(阶段B ) HSPA+/R8(阶段C/D ) 2G 2.5G 2.75G 3G 3.5G 3.75G 3.9G 4G 5G 5G IMT-2020 NR OFDMA NOMA 3GPP 3GPP2 IEEE

IEEE 个域网WPAN 局域网WLAN 城域网WMAN 广域网WWAN RFID UWB(100-500Mb/s) Zigbee(0.02-0.25Mb/s)Bluetooth(<1Mb/s)(IEEE802.15) WiFi(1/2/5/11/54Mb/s) (IEEE802.11)WiMax(15/28/75Mb/s) (IEEE802.16) MBWA(5Mb/s)(IEEE802.20) 1m 10-100m 100-300m 5-50Km N*(1-5Km)/单基站

能源互联网背景下的电力储能技术展望 刘一思

能源互联网背景下的电力储能技术展望刘一思 发表时间:2018-06-19T16:50:13.807Z 来源:《基层建设》2018年第12期作者:刘一思[导读] 摘要:电能存储技术是实现需求侧能量高效管理、有效提高可再生能源入网的关键技术,被认为是智能电网关键要素之一,其在电力系统中的应用涉及到“采、发、输、配、用、储”各个环节。 国核电力规划设计研究院北京市海淀区 100095 摘要:电能存储技术是实现需求侧能量高效管理、有效提高可再生能源入网的关键技术,被认为是智能电网关键要素之一,其在电力系统中的应用涉及到“采、发、输、配、用、储”各个环节。大规模新能源发电和众多分布式可再生能源接入电网给电力系统运行与规划带来了新的问题和挑战。储能是电力系统实现高比例新能源发电消纳不可或缺的资源。在能源互联网中,燃料网、热力网、交通网、电力网几 大重要网络的联合运行、互通互补将成为趋势。储能技术还可以在能源信息、应用运营层中起到举足轻重的作用,对于应用层各种能源业态的开展具有核心的支持作用。 关键词:能源互联网;电力储能;储能技术引言 随着应用领域的扩展,储能技术已被视为电力系统的又一重要组成部分。近年来风电、太阳能发电等新能源技术的迅速发展带动了储能技术的研究,智能电网建设对于电能质量和供电稳定性的更高要求也将依托于储能技术的发展来实现。随着智能电网的进一步建设、间歇性可再生能源人网需求的扩大,储能技术的研究和发展有待进步。 1能源互联网中储能技术现状能源互联网中存在大规模可再生能源发电送出和消纳、局域多能源系统灵活高效和经济运行、能源市场自由交易等应用需求,为储能技术提供了发展机遇。电能可以转换为化学能、势能、动能、电磁能等形态存储,按照其具体方式可分为物理、电磁、电化学和热能储能四大传统类型。其中一些储能技术可实现大规模的能量存储,在广域能源的调配中发挥重要作用,一些储能技术灵活高效并与用户需求紧密结合,是局域多能源系统中的必要元件。 1.1物理储能 物理储能主要包括抽水蓄能、压缩空气储能和飞轮储能等形式。 1.1.1抽水蓄能是目前电力系统中应用最为广泛、循环寿命周期最长、容量最大的一种储能技术,通过水泵将下水库的水抽送到上水库存储电能,通过上水库水流冲击水轮机组发电释放能量。水蓄能电站技术成熟可靠,单位容量成本相对较低,在各国电力系统中不仅发挥了削峰填谷、黑启动、调频调相等作用,还能够优化电源结构、有效提高电网消纳新能源发电的能力。 1.1.2压缩空气储能电站在充电时用电力压缩空气并将其储藏在高压密封设施内,放电时释放高压气体驱动燃气轮机发电。但其能量密度较低,并受岩层等地形条件的限制。近几年,研究人员进一步优化热力循环,改变介质及其状态,开发出先进绝热压缩空气储能系统、液态空气储能系统、超临界压缩空气储能等多种新型的压缩空气储能系统。这些新系统具有储能规模大、效率高、不需要大的储存装置等优点,可用于消纳新能源、削峰填谷、频率调节等。 1.1.3飞轮储能系统由一个圆柱形旋转质量块和通过磁悬浮轴承组成的支撑机构组成。飞轮充电时运行于电动机状态,发电时运行于发电机状态。飞轮储能的突出优点在于运行维护需求小、设备寿命长、环境友好,适用于高功率、短时间的场合。其缺点主要在于受材料性能制约,单个飞轮的容量难以做大。 1.2电磁储能 电磁储能系统包括超导磁储能和超级电容器等。 1.2.1超导磁储能单元的能源来自于超导线圈中电流产生的磁场。存储的能量能够近乎瞬时地通过功率变换系统释放至电力系统,并且可以根据电力系统的需要对储能线圈进行充放电。超导磁储能具有快速响应特性、极高的储能效率、极长的循环寿命和较大的功率等显著优点,适用于暂态稳定控制和电能质量提升等场景。 1.2.2超级电容器采用多孔的碳或其他表面积很大的材料做电极,正负极板距离极小,可提高容量达2个数量级。其与常规电容器相比具有更高的介电常数、更大的表面积或者更高的耐压能力。 1.3储热 储热技术大体可分为显热储能、潜热储能和化学储热3类。显热储能通过提高介质的温度实现热存储。潜热储能,即相变储能,利用材料相变时吸收或放出热量,目前以固—液相变为主。与显热储能相比,相变储能具有较稳定的温度以及较大的能量密度。化学储热利用可逆化学反应储存热能,可实现宽温域梯级储热,能量密度可达显热和潜热储能的10倍以上。化学储热技术要求储热介质具备可逆的化学反应,储热材料选择难度大。目前储热技术仍以显热和潜热储能为主。 1.4氢储能 氢气是一种蓄能密度很高的物质,具有热值高、环保、无碳排放等优点,是优质的二次能源。电解水制氢是一种成熟的制氢方法,其优点在于制氢纯度高,缺点在于成本很高,但是对于可再生能源丰富的地区,电解水不仅可以制得廉价的氢气,还可以实现资源的再生利用,因此利用新能源电解水制氢被认为是最有前景的技术之一。 1.5电化学储能 电化学储能安装灵活、响应速度快,在为电网提供功率服务和能量服务中都可起到重要作用。其在抑制新能源发电快速波动、电网调频、微电网能量管理和稳定性支撑、分布式电源接入等方面具有显著的技术优势。 2储能技术在能源互联网下的应用作为能源互联网的重要元素之一,储能系统能够实现多种能源的融合运转。物理储能、电磁储能和电化学储能本质上均为电力储能,即电能在富余时转化为其他形式的能量,在需要时再转化为电能。而热能储能和制气储能则是“跨系统”的储能形式,热能和氢气、天然气等能源尽管也可以转化为电能,但是更多地直接满足热负荷和化工负荷。因此,物理储能、电磁储能和电化学储能一般仅用于电力系统,而热能储能和制气储能可实现不同能源系统的互联。 3总结与展望

互联网的体系结构

互联网的体系结构 互联网的体系结构包括七层,分别是物理层、数据链路层、网络层、传输层、会话层、表示层、应用层。 第一层:物理层(PhysicalLayer) 规定通信设备的机械的、电气的、功能的和规程的特性,用以建立、维护和拆除物理链路连接。具体地讲,机械特性规定了网络连接时所需接插件的规格尺寸、引脚数量和排列情况等;电气特性规定了在物理连接上传输bit流时线路上信号电平的大小、阻抗匹配、传输速率距离限制等; 第二层:数据链路层(DataLinkLayer) 在物理层提供比特流服务的基础上,建立相邻结点之间的数据链路,通过差错控制提供数据帧(Frame)在信道上无差错的传输,并进行各电路上的动作系列。 第三层:网络层(Network layer) 在计算机网络中进行通信的两个计算机之间可能会经过很多个数据链路,也可能还要经过很多通信子网。网络层的任务就是选择合适的网间路由和交换结点,确保数据及时传送。网络层将数据链路层提供的帧组成数据包,包中封装有网络层包头,其中含有逻辑地址信息- -源站点和目的站点地址的网络地址。 第四层:传输层(Transport layer) 第4层的数据单元也称作处理信息的传输层(Transport layer)。但是,当你谈论TCP等具体的协议时又有特殊的叫法,TCP的数据单元称为段(segments)而UDP协议的数据单元称为“数据报(datagrams)”。这个层负责获取全部信息,因此,它必须跟踪数据单元碎片、乱序到达的数据包和其它在传输过程中可能发生的危险。 第五层:会话层(Session layer) 这一层也可以称为会晤层或对话层,在会话层及以上的高层次中,数据传送的单位不再另外命名,统称为报文。会话层不参与具体的传输,它提供包括访问验证和会话管理在内的建立和维护应用之间通信的机制。如服务器验证用户登录便是由会话层完成的。

中国能源互联网之路 白皮书

互联网之路”白皮书 图1 《能源发展战略行动计划(2014-2020年)》指出,着力优化能源结构,坚持发展非化石能源与化石能源高效清洁利用并举,要大幅增加风电、太阳能、地热能等可再生 能源和核电消费比重,到2020年,非化石能 源将占一次能源消费比重达到15%,到2020 年,风电装机达到2亿千瓦。 图2

图3(3)互联网时代不可逆,互联网对传统行业的改造是不可逆转的 图4 二、能源互联网是什么? 能源互联网在于构造一种能源体系使得能源能像Internet中的信息一样,任何合法 主体都能够自由地接入和分享。从控制角度 看,在于通过信息和能源融合,实现信息主 导、精准控制的能源体系。 图5 图6

图7 能源互联网用先进的传感器、控制和软件应用程序,将能源生产端、能源传输端、能源消费端的数以亿计的设备、机器、系统连接起来,形成了能源互联网的 “物联基础”。智能发电、用电、储电设 备,最终都将接入网络,借助信息流,形 成自我对话。 (1)能源互联网关键结构和层次图8 (2)能源互联网典型构架 图9

图10(3)现在的电力系统:自顶向下的树状结构 图11 图12

图13 一的吗? 目前存在三种观点。 1)侧重信息互联网:借助互联网收集信息,分析决策后指导能源网络的运行调度,信息网络可以认为是能源网络的支撑决策网络,其本质与当前的智能电网类似,以欧洲的e-energy为典型代表。 2)侧重能源网络结构:借助互联网开放对等的理念和体系架构,形成包括骨干网(大电网),局域网(微网)及其连接网络的新型能源网,采用自制或中心控制的方法实现能源的供给平衡,其实质为分布式能源 网络,以美国的freedm为典型代表。 3)革命性能源互联网:互联网技术和 能源网络的深度融合,结构上难以分能源网 络和信息网络;在运行模式上采用区域自治 和骨干管控相结合的方式,能源和信息的双 向通信,信息流支撑能源调度,能源流引导 用户决策,最大限度地利用可再生能源,以 日本的数字电网、电力路由器为代表。 能源互联网与智能电网最大的区别 是,能源互联网最终要走向消费端,例如智 能家庭、智慧社区、电动汽车、家庭能源管 理等,这是智能电网并不涉及的领域。走入 消费端的能源互联网将具备更大的想象空间 和创新的商业模式。 能源互联网不是封闭的“生产-消费” 体系,需要同其他系统融合,成为“泛在 网”的一部分,共同进化。这也给予其他行 业的企业参与甚至主导能源互联网的机会。 三、能源互联网怎么干? 图15 (1)能源互联网:发电 图16

能源互联网技术实现路径及实践的分析

能源互联网技术实现路径及实践的分析本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 在互联网高度发达的今天,信息对个人与公司的决策选择、国家的政策制定均产生影响。信息经济学是运用信息科学和经济学的方法从信息和经济的各个方面研究信息经济的基本理论、发展规律、运行机制和运作方法的一门学科,其主要研究的重点之一是信息对经济的影响。信息经济学认为,市场信息的透明是建立完全竞争市场的基础,市场信息流通越充分,资源将越趋近于最优化配置。 互联网正是一种快捷的传递信息的手段,有助于降低和消除信息的不对称。2015 年国务院发布《关于积极推进“互联网+”行动的指导意见》,希望进一步激发互联网与各领域的融合发展,促进中国经济提质增效升级。由于信息的不对称会产生交易成本,互联网可以提高信息的传播速度和传播量,降低信息不对称,从而降低交易成本,实现信息经济学中的帕累托最优,继而达到市场在资源配置中起决定性作用的目标。目前,在我们身边成功运用互联网改造行业发展业态的案例比比皆是,例如阿里巴巴、京东、滴滴等,其成

功的核心均是利用互联网打造平台战略,通过互联网零边际成本、规模效应的特点,培育客户消费习惯,提高客户对公司产品及服务的需求粘度,降低中间成本和交易成本。 能源是人类活动的物质基础。尽管能源的形式多种多样,但是,经济性始终是能源的首要特征。我国正处于工业化发展阶段,能源需求巨大,而社会、经济的可持续发展对我国能源行业的发展提出了新的要求。鉴于互联网的突出优势和在经济社会各领域的成功实践,互联网与能源的结合也逐渐成为传统能源行业自我改造及转型升级的必然选择。 1 能源互联网的发展历程 能源互联网的提出经历过几个阶段。自20 世纪以来,信息和通信技术领域的大量变革创新,为能源领域的进一步提升和发展提供了技术支持。在各种技术的推动下,能源领域先后出现了智能电网,综合能源系统与多能源系统以及能源互联网。目前较为主流的看法有三种能源互联网模式。 以分布式可再生能源为中心的能源互联网 美国学者里夫金先后在其著作《第三次工业革命》中提到的能源互联网,以可再生能源为主要一次能源,产销一体成为能源生产与消费主要形式,由于可再生

相关主题
文本预览
相关文档 最新文档