当前位置:文档之家› 迈达斯PSC变截面箱梁施工阶段及PSC设计例题

迈达斯PSC变截面箱梁施工阶段及PSC设计例题

迈达斯PSC变截面箱梁施工阶段及PSC设计例题
迈达斯PSC变截面箱梁施工阶段及PSC设计例题

PSC变截面箱梁施工阶段及PSC设计例题

北京迈达斯技术有限公司

2007年3月19日

一、结构描述 (2)

二、结构建模 (4)

三、分步骤说明 (4)

1、定义材料和截面特性 (4)

2、建立上部梁单元并赋予单元截面属性 (7)

3、定义结构组并赋予结构组单元信息 (11)

4、定义边界组并定义边界条件 (12)

5、定义荷载工况和荷载组 (13)

6、定义施工阶段 (14)

7、分阶段定义荷载信息 (14)

8、分析及后处理查看 (20)

9、按照JTG D62规范的要求对结构进行PSC设计 (21)

PSC变截面箱梁施工阶段及PSC设计例题

对于常规的PSC连续梁桥我们通常可以参考建模助手建立的模型,对于特殊的桥型或有特殊要求的结构我们需要按照一般方法建立有限元模型,施加边界和荷载进行分析。这个例题主要说如何使用一般方法建立PSC连续梁桥并定义施工阶段进行施工阶段分析和按照JTG D62规范对结构进行设计验算。

一、结构描述

这是一座50+62+50的三跨预应力混凝土连续箱梁桥,这里仅模拟其上部结构。施工方法采用悬臂浇注,跨中截面和端部截面如图1所示。

图1-1 跨中截面示意

图1-2 支座截面示意

桥梁立面图如图2所示。

图2 连续梁立面图

图3 钢束布置形状

二、结构建模

对于施工阶段分析模型,通常采用的建模方法是:

1、定义材料和截面特性(包括混凝土收缩徐变函数定义);

2、建立上部梁单元并赋予单元截面属性;

3、定义结构组并赋予结构组信息;

4、建立边界组并定义边界条件;

5、定义荷载工况和荷载组;

6、定义施工阶段;

7、分阶段定义荷载信息(分施工阶段荷载和成桥荷载两部分);

8、分析,分析完成后定义荷载组合进行后处理结果查看;

9、定义设计验算参数按照JTG D62对结构进行长短期及承载能力验算。

下面就每个步骤分别详述如下——

三、分步骤说明

1、定义材料和截面特性

本模型中涉及的材料包括混凝土主梁(C40)、预应力钢绞线(Strand1860)。如下图4所示。

图4 材料列表

通常对于预应力混凝土结构(PSC结构)按照现浇施工时,要考虑混凝土的收缩徐变效应,因此需要在建模前要定义混凝土的收缩徐变函数,按照如下图所示定义混凝土收缩徐变函数。

图5 混凝土收缩徐变函数定义

主梁截面为变截面箱梁,共有两个控制截面,一个是跨中截面,一是支座位置处截面。以跨中截面和支座处截面定义变截面。截面列表如图6所示。其中跨中截面和支座截面在前面的结构描述中都有图示。“跨中-支座”以及“支座-跨中”的变截面定义通过分别导入跨

中截面和支座截面来定义就可以了。如图6所示。

图6-1 截面列表

图6-2 跨中-支座段变截面

图6-3 支座-跨中段变截面

2、建立上部梁单元并赋予单元截面属性

建立桥梁模型时,如果要同时进行施工阶段分析,要针对施工的特点建立有限元模型,例题中所示结构按照悬臂法施工,悬臂施工段为每段3m ,因此在建立模型时考虑按1.5m 或3m 长度单元建立模型,本例题中主梁是直梁结构,因此建模方式可选性很广,可以通过扩展单元的方式建立、或者从AutoCAD 导入已划分节段的主梁中心线、或者通过逐个建立单元的方式,这里采用扩展单元的方式建立一半主梁,然后通过镜像单元生成另一半主梁。

首先在(0,0,0)位置上建立主梁端部节点,然后通过对该节点进行扩展生成左半部主梁结构。如下图所示——

图7 扩展生成左半边主梁

然后对生成的左半边主梁进行镜像生成另一半主梁,如下图所示,

扩展单元时输入的间距: 6@3,2,8@3,2,1,3@2,1,2,8@3,1

图8 镜像生成另一半主梁

生成全桥单元后,因为由镜像生成的梁单元的编号顺序也是镜向的,因此要对所有梁单元进行重新编号,以便于后续的单元选择(保证单元编号有规律的连续性对单元的选择操作很有帮助)。

上述步骤生成全桥单元时使用的是跨中截面,因此对生成的全桥单元应根据其实际对应的截面信息修改单元的截面信息,可以通过修改单元参数修改单元信息,也可以通过MIDAS 特有的拖放功能赋予单元截面信息,这里以拖放的方式赋予每段单元实际的截面信息。

首先选择支座附近单元,修改其截面类型为“支座”截面,打开单元编号显示,选择单元“18to20,43to45”,如下图——

图9 拖放功能修改支座附近单元的截面信息

同样的方法,选择单元“9to17,34to42”,将截面“3:跨中-支座”拖放至模型窗口,得到如下图所示的模型——

图10 修改截面高度由低变高段(跨中-支座)

同样的方法,选择单元“21to29,46to54”,将截面“4:支座-跨中”拖放至模型窗口,得到如下图所示的模型——

通过拖放功能对选择的单元修改其截面信息 拖放:将鼠标放置在树形菜单“支座截面”

处,按住不放将鼠标拖到模型窗口中

图11修改截面高度由低变高段(支座-跨中)

赋予变高梁段变截面信息后,发现桥梁模型显示都是锯齿状,此时需要将同类的变截面定义为一个变截面组,保证单元截面变化的连续性。在树形菜单双击“跨中-支座”,在变截面组信息中定义名称为“跨中-支座”,z 轴变化选择2项式变化,对称轴为单元组的i 端;

图12-1 变截面组“跨中-支座”定义图示

在树形菜单双击“支座-跨中”,在变截面组信息中定义名称为“支座-跨中”,z轴变化选择2项式变化,对称轴为单元组的j端;

3、定义结构组并赋予结构组单元信息

结构组名称及结构组单元信息如下表所示——

*注:“左支座处梁段”、“右支座处梁段”、“左侧满堂支架区段”、“右侧满堂支架区段”还应包括在步

骤4中建立的支座节点。

建立好模型后,就可以对执行程序自动修改构件理论厚度的功能了。

如图选择所有梁单元,在“模型〉材料和截面特性〉修改时间依存材料特性”中选择修改构件理论厚度——

图13 修改构件理论厚度

4、定义边界组并定义边界条件

边界采用一般支承来模拟,因为截面选择的是顶对齐,因此需要在梁底支座支承的位置处建立支座节点,然后将支座节点和主梁节点通过弹性连接〉刚性连接起来。

选择中部节点19、20、44、45,选择节点〉复制移动,对选择的两个节点向下复制5.9m ,生成新节点64~67;选择边跨端部节点1和63,选择节点〉复制移动,对选择的两个节点向下复制3.05m ,生成新节点68、69。(新生成的支座节点要按照步骤3的注释中说明的将节点放置在对应的结构组中。)

定义边界组和边界信息如下表所示。

得到结构的边界条件如下图所示——

点击得到

*注:约束、荷载及其他模型中内容可以在“视图〉显示”中定义显示,如上述边界条件的显示,在显示菜单中选择要显示内容进行显示即可——

5、定义荷载工况和荷载组

6、定义施工阶段

本模型采用悬臂浇注施工方法,从施工零号块开始,对称浇注两端悬臂段,直至全桥合

7、分阶段定义荷载信息

本例题主要模拟5种荷载作用:结构自重、挂篮荷载、预应力荷载、混凝土收缩徐变荷载、公路一级车道荷载。以上5种荷载,除收缩徐变由程序根据已定义的收缩徐变函数自动计算外,其他的都要定义荷载信息。下面分述如下——

1)自重:在荷载中选择自重,按照下图指定荷载工况名称、荷载组、自重系数添加即可。

2)挂篮荷载:主梁合龙前,在悬臂端都有挂篮荷载的作用,由于结构是对称施工,而且结构本身也是对称结构,因此施工过程中的等效挂篮荷载也是对称的。在这里通过节点荷载来模拟。挂篮作用在悬臂端外 2.452m处m处,挂篮换算荷载为10KN及附加弯矩24.52KNm。

以第一阶段挂篮1为例,定义挂篮荷载如下图所示——

选择显示第一施工阶段,然后选择两个零号块的右端节点22和47,选择荷载工况为“模架移动装置”,荷载组选择“挂篮1”,添加节点荷载值Fz=-10KN,My=24.52KNm适用,然后再选择节点17和42,选择荷载工况为“模架移动装置”,荷载组选择“挂篮1”,添加节

点荷载值Fz=-10KN,My= -24.52KNm适用。

3)预应力荷载:定义预应力荷载分三步骤,钢束特性值——钢束布置形状——钢束预应力荷载。钢束布置形状只能在基本状态下添加,而预应力荷载可以在施工阶段添加。

例题中的结构顶板和底板均配预应力钢束,因此涉及两种钢束特性值,如下图所示——

钢束布置形状首先定义一对顶板束和一对底板束作为标准钢束,其他位置的钢束通过钢束的复制移动功能生成。将第一施工阶段顶板束作为顶板的标准束。底板束采用第11阶段边跨合龙时的左侧底板束作为底板标准束。

*注:只有“单元”类型钢束支持复制移动钢束时重新分配单元以及根据分配单元长度自动调整钢束长度的功能。所以选择钢束坐标轴为“单元”类型,方便使用钢束的复制移动功能建立其他钢束形状。

其他钢束形状的建立通过钢束复制移动建立,复制钢束时最重要的是要保证钢束位置准确。

顶板束1-2:在钢束布置形状中选择钢束“顶板束1-1”,建立第二阶段顶板束——

*注:如果选择了“自动调整钢束长度”功能,程序根据重新分配单元的长度通过调整钢束的直束部分来调整建立新钢束。然后对复制生成的钢束名称更名为顶板束01-02。重新分配单元编号可通过查看每个施工阶段主梁段的单元编号即可。

对于顶板上的钢束形状可以通过复制功能很快的生成,钢束复制移动的时候可以一次复制或移动生成多根钢束,以顶板束01-01为例,以此钢束为源钢束,可以一次性生成主梁顶部所有靠近主梁右侧的钢束。如下图所示——

在复制底板束时,仅通过对源钢束形状的复制移动对于变高度梁单元的底板束是不足的,还需要使用钢束布置形状中的另一项功能,即程序根据底板变化形状自动调整钢束在x 向的布置形状。

对上述定义好的底板束中,钢束深入到变截面单元10及其后面单元的钢束,其形状需作改动,改动方式如下图所示,

定义好钢束布置形状后,就可以定义钢束预应力荷载了,这项内容建议在施工阶段执行。如第一施工阶段要张拉零号块顶板两根钢束,在阶段显示第一施工阶段,然后选择荷载〉预应力荷载〉钢束预应力,荷载工况选择“预应力”,荷载组选择钢束1-0,如下图所示——

4

)公路一级车道荷载:按照“选择移动荷载规范——定义车道——定义车道——定义

显然底板钢束布置形状在右侧深入主梁内部的z 向位置偏上,需要按照底板的变化向下弯曲。

移动荷载工况”的顺序定义移动荷载。移动荷载属于成桥荷载,必须在基本状态下定义。

在定义车道时,可以指定车轮间距,来模拟车辆或车道的三维布载形式,如果车轮间距输入为0,则该荷载即为规范规定的等效二维荷载。

8、分析及后处理查看

定义好以上各项荷载后,就可以选择执行分析了,但在进行分析计算之前,首先要在主菜单分析中定义相应的分析控制选项,这里要定义的是移动荷载分析控制选项和施工阶段分析控制选项,前者包括定义移动荷载分析输出内容和冲击系数计算方法,后者包括施工阶段分析 的各项参数。

在查看后处理结果之前,要先定义荷载组合,在分析结果查看时,可以在任何一栏内定义荷载组合中,可以选择按照规范自动生成组合,也可根据经验自定义荷载组合。

后处理的查看除常规的反力、位移、内力、应力查看外,对于移动荷载分析还可利用一旦荷载追踪功能查看移动荷载的最不利布置情况,并可将这种荷载布置形式转化为静力荷载,在动力分析、非线性分析中代替移动荷载使用。还可查看每个施工阶段的分析结果,以及预应力损失计算的详细结果,在结果〉分析结果表格〉预应力钢束〉预应力损失...结果表格中按照施工阶段查看每项预应力损失。

注:图中绿色圆点标志即为荷载加载位置,程序默

认在单元的二分点上加载,如果增大要求加载

梁柱截面设计

第5章截面设计5.1框架梁 材料:1层用C35 2-7层及屋顶间用C30。 表5-1 框架梁纵向钢筋计算表 层次截 面 实配钢筋 (%) 八层支 座 -92.53 0.006 461 504 414(615) 0.82 0.37 -76.03 <0 461 414 414(615) 0.82 0.37 跨间 45.91 0.006 237 314(461) 0.28 -30.36 <0 461 272 414(615) 0.82 0.58 跨间 28.61 0.02 226 314(461) 0.43 四层支 座 -237.98 0.012 1256 1296.2 520(1570) 0.8 0.94 -207.17 <0 1256 1128.4 520(1570) 0.8 0.94 跨间 97.73 0.012 473.54 420(1256) 0.75 -106.94 <0 1256 1198.21 520(1570) 0.8 1.26 跨间 133.72 0.012 1105.6 420(1256) 1.18 一层 支 座 -266.29 0.02 1256 1450.38 520(1570) 0.8 0.81 -241.12 <0 1256 1313.29 520(1570) 0.8 0.81 跨间 153.39 0.017 783.45 420(1256) 0.65 -139.87 <0 1520 1253.31 520(1570) 0.97 1.26 跨间 174.14 0.103 1436.01 422(1520) 1.22 表5-2 框架梁箍筋计算表 层 次 截 面 实配箍筋() 加密区() 非加密区( )

第七章.框架梁柱截面设计及构造措施

第七章 框架梁柱截面设计及构造措施 7.1 框架梁的截面设计 选取首层梁进行计算,梁控制截面的内力如图7-1所示。 从框架梁内力组合表中选出AC 跨和CD 跨跨间截面及支座截面的最不利内力,并将支座中心处的弯矩换算为支座边缘控制截面的弯矩进行配筋计算;梁端弯矩: V b M M x 2-= (7-1) 图7-1梁控制截面图 7.1.1 梁的正截面受弯承载力计算 1、首层A-C 框架横梁计算: 支座边缘弯矩: 84.17075.0)26.085.053.11675.069.201(A =??-=上M kN ?m 51 .20075.0)2 6.085 .068.11275 .034.230( =??-=上C M kN ?m 对于梁下部配筋,选用最大正弯矩处为支座边缘处,相应的剪力44.19=V kN 33 .16675.0)2 6.085 .044.1975 .048.171( max =??-=M kN ?m 当梁上部受拉时,按矩形截面计算,当梁下部受拉时按T 形截面计算。 根据《混凝土结构设计规范》表5.2.4规定的翼缘的计算宽度的确定:(取较小值) ①按计算跨度l 0考虑时:2000 3 600 660030'=-= = l b f mm

②按梁(肋)净距S n 考虑时:2300)3003300(300'=-+=+=n f S b b mm ③按翼缘厚度'h f 考虑时:150010012300h 12b ''=?+=+=f f b mm 注:肋形梁在梁跨内设有间距小于纵肋间距的横梁时,可不考虑③的规定。 故取2100'=f b mm 梁内纵向钢筋选HRB400级钢筋(360=y f N/mm 2),箍筋选HPB300级钢筋(270=y f N/mm 2);梁混凝土强度等级为C30(3.14=c f N/mm 2 , f t =1.43N/mm 2);相对界限受压区高度和截面最大抵抗矩系数查《钢筋混凝土设计原理》表4-3可知:518 .0=b ξ。截面最大抵抗矩系数 384.0518.05.0-1518.05.0-1b b max s =??=?=)()(,ξξα。 《混凝土结构设计规范》表11.3.6-1,规定梁最小配筋率: 表7-1梁最小配筋率 由于梁下部配筋由跨中最大正弯矩控制,即m kN M C ?=48.171A ,支座边缘处33.166max =M kN ?m ,计算截面按T 形截面计算(梁的纵向受力钢筋按一排布置),则: 555 45-600a -h h s 0===mm )2 (' 0'' 1f f f c h h h b f - α=1.0×14.3×2000×100×(555-100/2)=1516.52kN ?m> 33 .166max =M kN ?m 故属于第一类T 形截面。 018.0555 20003.140.110 33.1662 6 20 ' 1=????= = h b f M f c s αα 550.0029.0018.02-11211=<=?-=--=b s ξαξ

截面设计(梁柱)

截面设计(梁柱)

截面设计 1.1 框架梁 以第1层BC 跨框架梁为例计算。 1 梁正截面受弯承载力计算 支座弯矩:支座B r :γRE M max =172.23kN.m 支座C :γRE M max =197.31kN.m 跨间弯矩取控制截面,即离支座处4.48m 处的正弯矩: γRE M max =236.56kN.m (1)考虑跨间最大弯矩处: 梁下部受拉时,按T 形截面设计;当梁上部受拉时,按矩形截面设计。 翼缘计算宽度当: 1)按跨度考虑,mm 2700m 7.231.83===='l b f 2)按梁间距考虑,mm 30002700300=+=+='n f S b b 3)按翼缘厚度考虑 m m 66535700s 0=-=-=a h h ,1 .0150.06651000>==h h f 此种情况不起主要控制作用,故取mm 2700='f b 梁内纵向钢筋选用HRB400级钢筋(2mm N 360='=y y f f ),518 .0=b ξ ,混凝土等级选用C30 (2 mm N 3.14=c f ),m m 66535700s =-=-=a h h ,因为 ()[]()m kN 52.2374210066510027003.140.121 1?=-????='-''f f f c h h h b f α 上式大于236.56kN.m ,故属于第一类T 形截面。

[] 014.0665 27003.140.11056.23626 12 01=????='= h b f M f c s αα 014.0012.0211211=?--=--=s αξ [] 2 101mm 50.99866527003.14014.00.1=????='=y f c s f h b f A ξα 实配钢筋4C 18(A s =1018mm 2)。 配筋率% 25.0%51.0665 3001018 >=?= =bh A s ρ,满足要求。 梁端截面受压区相对高度: [] 35 .002.0665 27003.140.11018 36010 1<=????= '= h b f A f f c s y αξ,符合三级抗震要 求。 (2)考虑两支座处: 将下部跨间截面的4C 18钢筋伸入支座,作为支座负弯矩作用下的受压钢筋,再计算相应的受拉钢筋A s 。 1)支座B r 上部: () ()003 .06653003.140.13566510183601056.2362 62 010=???-??-?='-''-= bh f a h A f M c s s y s αα 1053.02518.0003.0003.02112110='<=<=?--=--=h a s b s 且ξαξ () ()2 6 0mm 39.759356653601023.172=-??='-=s y s a h f M A 实配钢筋4C 18(A s =1018mm 2)。 配筋率% 25.0%51.0665 3001018 >=?= =bh A s ρ,满足要求。

柱截面设计

14框架柱截面设计 14.1 框架柱设计条件 各层柱均选用C35,f c =16.7N/mm 2,f t =1.57N/mm 2,柱主筋选用HRB400,f y = f’y =360N/mm 2,箍筋选用HPB300,f y = f’y =270N/mm 2。 各层柱截面尺寸都为400mm ×400mm , 混凝土临界相对受压区高度: 本工程为现浇钢筋混凝土结构,抗震设防烈度为6度(0.05g ),高度<24m ,按规范, 抗震等级取为四级。查抗震规范得,柱的轴压比应小于轴压比限值[0.90]。本设计不考虑地震作用,且柱轴压比皆小于限值[0.90]。 14.2 框架柱正截面设计 计算说明: ①偏心受压构件不需要考虑附加弯矩影响(P-δ效应,挠曲二阶效应)的条件: ? 9.02 1 ≤M M ; ?设计轴压比不大于0.9; ?长细比满足:)/(1234/21M M i l c -≤ 式中:21M M 、——分别为已考虑侧移影响的偏心受压构件两端截面按结构弹性分析确定 的对同一主轴的组合弯矩设计值,绝对值较大的为2M ,绝对值较小端 为1M ,当构件按单曲率弯曲时,21/M M 取正值,否则取负值; l c ——构件的计算长度,近似取偏心受压构件相应主轴方向上下支撑点之间 的距离; i ——偏心方向的截面回转半径。 ②偏心受压构件,考虑轴向压力在挠曲杆件中产生的二阶效应后控制截面弯矩设计值计,应按下列公式计算: 2M C M ns m η= 21/3.07.0M M C m +=

c c a ns h l h e N M ?η202)(/)/(13001 1++ = N A f c c /5.0=? 式中:m C ——构件端截面偏心调节系数,当小于0.7时取0.7; ns η——弯矩增大系数; N ——弯矩设计值2M 相应的轴向压力设计值; c ?——截面曲率修正系数,当计算值大于1.0时取1.0; a e ——附加偏心距,取20mm 和h /30两者中的较大值; h ——截面高度; 0h ——截面有效高度; A ——构件截面面积; 当ns m C η小于1.0时取1.0。 ③轴向力对截面重心的偏心距e 0=M /N ;附加偏心距e a 取20mm 和h /30两者中的较大值;则初始偏心距a i e e e +=0。 ④由于柱为对称配筋截面,则界限破坏时的轴向压力为b 01b ξαbh f N c =,当N ≤N b 时为大偏心受压柱;当N >N b 时为小偏心受压柱。 ⑤大偏心受压时,b f N x c 1α= ;当x ≥2a s ′时,()() ' 0'02/'s y s s a h f x h N Ne A A ---==;x <2a s ′时,() ' 0'' 's y s s a h f Ne A A -= =。 ○ 6大小偏压时,按照规范建议的近似公式求x : 001' 012 010010))((43.0h bh f a h bh f Ne bh f N x c s b c b c b ???? ????????+----+=αξβαγξαγξ,)a h (f ) 2/bx (h f -Ne 'A A 's 0'y 0c 10s s --==x αγ 考虑框架柱同一截面可能承受正负向弯矩,故采用对称配筋,配筋计算见表6.2-7。

梁板截面设计与验算

梁(板)截面设计与验算(LJM-2) 项目名称构件编号日期 设计校对审核 执行规范: 《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》 《建筑抗震设计规范》(GB 50011-2010), 本文简称《抗震规范》 钢筋:d - HPB300; D - HRB335; E - HRB400; F - RRB400; G - HRB500; P - HRBF335; Q - HRBF400; R - HRBF500 ----------------------------------------------------------------------- 梁截面设计: 1 已知条件及计算要求: (1)已知条件:矩形梁 b=1500mm,h=700mm。 砼 C30,fc=mm2,ft=mm2,纵筋 HRB335,fy=300N/mm2,fy'=300N/mm2,箍筋 HRB335, fy=300N/mm2。 弯矩设计值 M=,剪力设计值 V=,扭矩设计值 T=。 (2)计算要求: 1.正截面受弯承载力计算 2.斜截面受剪承载力计算 3.裂缝宽度计算。 2 抗弯计算: (1)求相对界限受压区高度ξb εcu=(f cu,k-50)×10-5=(30-50)×10-5= εcu>,取εcu= 按《混凝土规范》公式b 1 f E s cu (2)双筋计算基本公式,按《混凝土规范》公式≤1f() h (3)求截面抵抗矩系数αs h0=h-as=700-35=665mm = s

(4)求受拉钢筋As及受压钢筋As' αs < αsmax=ξbξb)= 受压钢筋按构造配筋As'=ρsmin bh=%×1500×700=2100mm2 M s=As'f y'(h0-a s')=2100××(665-35)=0 = s = A s1=ξα1f c bh0/f y=×××1500×665/=1029mm2 A s2=As'f y'/f y=2100×=2100mm2 As=A s1+A s2=1029+2100=3129mm2 (5)配筋率验算 受拉钢筋配筋率 ρ=As/(bh)=3129/(1500×700)=% > ρsmin=max{,f y=×300=}= 3 抗剪计算: (1)截面验算,按《混凝土规范》公式V=βc f c bh0=×××1500×665=3566063N= > V=775kN 截面尺寸满足要求。 (2)配筋计算,按混凝土规范公式V < αcv f t bh0+f yv(A sv/s)h0 A sv/s = (V-αcv f t bh0)/(f yv h0) = ×××1500×665)/(300×665) = mm=m 配箍率ρsv=A sv/s/b=1500=% < ρsvmin=% 不满足最小配箍率 抗剪箍筋按构造配筋: A sv/s = ρsvmin×b=%×1500=mm=m 4 配置钢筋: (1)上部纵筋:计算As=2100mm2, 实配11D16(2212mm2ρ=%),配筋满足 (2)腰筋:计算构造As=b*hw*%=1995mm2, 实配10d16(2011mm2ρ=%),配筋满足 (3)下部纵筋:计算As=3129mm2, 实配16D16(3217mm2ρ=%),配筋满足 (4)箍筋:计算Av/s=1716mm2/m, 实配D10@100四肢(3142mm2/m ρsv=%),配筋满足 5 裂缝计算: (1)截面有效高度: - = h0h a s 70035665mm = - = (2)受拉钢筋应力计算, 根据《混凝土规范》式 sq (3)按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率, 根据《混凝土规范》式 ? A te0.5b h? 0.51500700525000mm2 = = =

(完整版)梁柱布置

二、关于结构平面布置: 2.1 框架柱 2.1.1 柱平面布置 (1)各柱宜分布均匀 ①柱分布均匀,亦及各区域侧移刚度接近,水平力作用时,扭转作用减弱。 ②每个柱所分担竖向荷载比较接近 ③梁跨度接近相等,不会形成长短跨,梁受力更合理 (2)各柱宜成排布置,X、Y向分别对齐 ①框架梁易贯通,梁柱之间易于形成典型框架,使得传力明确 ②框架梁易于形成连续梁(当转角>15°时,一般不再认为是连续梁) (3)柱间距考虑梁的经济跨度,柱经济间距6m~9m ①若跨度太小,梁截面有下限(一般框架梁最小高度500,最小宽度250),造成梁配筋 均为构造配筋 ②若跨度太大:从梁的角度,一方面梁截面大,影响使用净高;另一方面,可能使梁设 计由挠度控制,非强度控制。从柱角度,可能柱承担竖向力大,柱截面大,影响功能使用,或者带来基础处理等其他方面问题。 (4)在能够通过计算的情况下,柱能少布,尽量少布置。 ①可以使得使用空间更为灵活 ②多一根柱意味着多一个基础,尤其对于桩基础,可能造成造价大幅提高 (5)柱布置应充分尊重建筑使用功能(结构服务于建筑) ①竖向构件不应挡门,挡窗等其他立面洞口 ②不应占交通通道(过道、走廊、楼梯间等),或者影响交通通道宽度 ③柱布置,除非使用功能允许,不应设置在功能房间中间(优先布置在墙角,或墙内) ④柱间距应结合不同建筑物,不用功能特点,进行布置。例如带地下车库,应考虑停车 位距离,按模数布置,避免空间浪费。 (6)柱布置在安全的前提下,应充分考虑甲方要求。 ①例如,增加竖向构件,则建筑面积按全面积计算,悬挑按半面积计算 ②例如,甲方为偷面积,需要楼板开洞,此中间不能有竖向构件,否则应计算面积(7)其他因素 2.1.2 框架柱截面 (1)柱截面计算控制因素: ①框架柱截面一般受轴压比控制 由:μ=N/FA,当轴压比不满足要求时,一般采用提高混凝土强度或者采用加大截面两种方式;当然综合考虑由于布置不合理时,应重新进行结构布置,以减小柱轴力。 结合:SATWE计算结果轴压比,进行查看 但注意:不宜同时在某层既改变截面又改变混凝土强度等级,应错开操作。 同时在控制轴压比时应注意,当结构较高,柱截面较大时,往往每层柱剪跨比较大,此时轴压比控制值,应根据规范适当减小(柱截面越大表现越突出)。

一般梁的设计方法与步骤

一般梁的设计方法与步骤 一、梁截面的确定根据建筑功能的要求,确定梁系的布置形式后,按照建筑外立面造型、室内净高、外观要求、使用功能等需要,并结合结构受力和变形所需,综合确定梁截面的高度。当某梁高度因受力或变形所需而大于典型梁高时,需判断是否会对建筑使用功能造成影响,可能存在影响时,则必须跟建筑专业协商后确定最终解决方案。 二、有关梁的基本计算参数的确定 SATWE中与梁有关的主要有如下参数: 1.梁端负弯矩调幅系数:因混凝土本身就是一种非纯弹性的材料,在梁的裂缝宽度没有超出规范限制的情况下,砼也会进入弹塑性的工作状态,故在竖向荷载作用下,钢筋混凝土框架梁设计允许考虑混凝土的塑性变形内力重分布,适当减小支座负弯矩,相应增大跨中正弯矩。为避免梁支座处出现过宽裂缝,对现浇结构,梁端负弯矩调幅系数可在0.8~0.9的范围内取值,一般可取0.85。 2.梁设计弯矩放大系数:通过此参数可将梁的正负设计弯矩均放大,提高其安全储备。工程设计一般取1.0,不必高于规范的标准而对梁弯矩进行专门的放大。 3.梁扭距折减系数:对于现浇楼板结构,当采用刚性楼板假定时,可以考虑楼板对梁抗扭的作用而对梁的扭距进行折减。折减系数一般可取0.4。 4.连梁刚度折减系数:结构设计允许连梁开裂,开裂后连梁的刚度有所降低,程序中通过连梁刚度折减系数来反映开裂后的连梁刚度。取值大小以尽量使连梁不超筋为宜,程序限定不小于0.5。 5.中梁刚度增大系数:

当采用刚性楼板假定时,可用此系数来考虑楼板对梁刚度的贡献。按《高规》第 5.2.2条的条文说明,通常现浇楼面的中梁可取2.0,边梁由程序自动计算为1.5。 6.梁柱重叠部分简化为刚域:一般点选该项,以使计算模型较接近实际。 7.梁主筋及箍筋强度:按实际情况取用。 8.梁箍筋间距:为加密区间距,对实际配箍没有影响,仅会影响计算配筋简图中输出的数值,为便于以统一的标准对计算配箍值进行判断,现规定设计时均取为100。此外,还需在计算模型中,准确地定义框架梁的抗震等级、框支梁、需进行刚度折减的连梁、需设置的计算铰等,才会得到较符合实际的、合理的计算结果。 三、按计算配筋简图及规范的构造要求配置梁钢筋对于一个标准层对应多个计算层的平面,需经比较后选出一个配筋普遍较大的计算层作为配筋的基准平面,以该平面为依据完成配筋设计后,再对其它计算层中配筋较大的部位进行局部的修正。 配筋的具体步骤按以下顺序进行: 1.配置梁箍筋 一般设计人员习惯上往往较专注于梁纵筋的配置,而容易忽略梁计算箍筋超过说明中的箍筋缺省值的部位,从而造成若干部位配箍不足的情况时有发生。配箍不足会带来较不利的后果, 原因为:(1)由于抗剪计算的复杂性,其结果的准确性远没有抗弯计算成熟,各国对抗剪承载力的计算还没有得出统一的计算模式,故某些部位即使按计算箍筋配足,亦不一定有太大的富裕(相对于受弯),因此当实际配箍与计算箍筋相差较大时,可能会在正常使用或经受风及小震作用时即发生剪切破坏或出现过宽

第七章 框架梁柱截面设计

第七章 框架梁柱截面设计 ㈠框架梁截面设计 7.1 框架梁设计规范说明 7.1.1抗震规范梁的钢筋配置,应符合下列各项要求: 1 梁端纵向受拉钢筋的配筋率不应大于2.5%,且计入收压钢筋的梁端混凝土受压区高度和有效高度之比,一级不应大于0.25,二、三级不应大于0.35。 2梁端截面的底面和顶面纵向钢筋配筋量的比值,除按计算确定外,一级不应小于0.5,二、三级不应小于0.3。 3 梁端箍筋加密区的长度、箍筋最大间距和最小直径应按表6.3.3采用,当梁端纵向受拉钢筋的配筋率大于2.%时,表中箍筋最小直径数值应增大2mm 。本建筑工程抗震等级为三级,加密区长度为1.5b h 和500中取大值,为1050mm ,箍筋最大间距为150mm ,最小直径为8mm 。 设计参数:混凝土强度等级C30,=c f 14.3N/2m m ,t f =1.43 N/2m m .柱采用C30混凝土,梁采用C30混凝土;保护层厚度:梁为25mm ,柱为35mm 7.1.2框架梁界面设计: 设计说明:支座外梁上部受拉,按矩形梁计算,跨中下部受拉,按T 形梁计算,根据混凝土结构构件抗震设计规范要求,7度设防的框架结构,高度≤30m 时,为三级抗震等级,承载力抗震调整系数75.0=RE γ,抗震设防要求纵向受拉筋的锚固长度 a aE l l 05.1=,箍筋o 135弯钩,平直长度≥10d 梁端混凝土受压区高度035.0h x ≤,梁端纵向受拉筋%5.2≤ρ 斜截面受剪承载力 )25.142.0(1 00h s A f bh f r V sv yv t RE b +≤ (均布荷载) 纵向钢筋配筋率min ρ: 支座 0.25%和55y t f f /取大 跨中 0.2%和45y t f f /取大(抗震规范) 至少两根通长钢筋 直径>12mm

(完整版)梁柱布置

二、关于结构平面布置: 2.1框架柱 2.1.1柱平面布置 (1)各柱宜分布均匀 ①柱分布均匀,亦及各区域侧移刚度接近,水平力作用时,扭转作用减弱。②每个柱所 分担竖向荷载比较接近③梁跨度接近相等,不会形成长短跨,梁受力更合理 (2)各柱宜成排布置,X、Y 向分别对齐 ①框架梁易贯通,梁柱之间易于形成典型框架,使得传力明确 ②框架梁易于形成连续梁(当转角>15°时,一般不再认为是连续梁) 3)柱间距考虑梁的经济跨度,柱经济间距6m~9m ①若跨度太小,梁截面有下限(一般框架梁最小高度500,最小宽度250),造成梁 配筋均为构造配筋 ②若跨度太大:从梁的角度,一方面梁截面大,影响使用净高;另一方面,可能使梁设 计由挠度控制,非强度控制。从柱角度,可能柱承担竖向力大,柱截面大,影响功能使用,或者带来基础处理等其他方面问题。 4)在能够通过计算的情况下,柱能少布,尽量少布置。①可以使得使用空间更为灵活②多一根柱意味着多一个基础,尤其对于桩基础,可能造成造价大幅提高 5)柱布置应充分尊重建筑使用功能(结构服务于建筑)①竖向构件不应挡门,挡窗等其他立面洞口②不应占交通通道(过道、走廊、楼梯间等),或者影响交通通道宽度 ③柱布置,除非使用功能允许,不应设置在功能房间中间(优先布置在墙角,或墙内) ④柱间距应结合不同建筑物,不用功能特点,进行布置。例如带地下车库,应考虑停车 位距离,按模数布置,避免空间浪费。 (6)柱布置在安全的前提下,应充分考虑甲方要求。 ①例如,增加竖向构件,则建筑面积按全面积计算,悬挑按半面积计算②例如,甲方为 偷面积,需要楼板开洞,此中间不能有竖向构件,否则应计算面积 (7)其他因素 2.1.2框架柱截面 (1)柱截面计算控制因素: ①框架柱截面一般受轴压比控制 由:μ =N/FA,当轴压比不满足要求时,一般采用提高混凝土强度或者采用加大截面两种方式;当然综合考虑由于布置不合理时,应重新进行结构布置,以减小柱轴力。 结合:SATWE计算结果轴压比,进行查看但注意:不宜同时在某层既改变截面又改变混凝土强度等级,应错开操作。同时在控制轴压比时应注意,当结构较高,柱截面较大时,往往每层柱剪跨比较大,此时轴压比控制值,应根据规范适当减小(柱截面越大表现越突出)。

截面设计(梁柱)

截面设计 1.1 框架梁 以第1层BC 跨框架梁为例计算。 1 梁正截面受弯承载力计算 支座弯矩:支座B r :γRE M max =172.23kN.m 支座C :γRE M max =197.31kN.m 跨间弯矩取控制截面,即离支座处4.48m 处的正弯矩: γRE M max =236.56kN.m (1)考虑跨间最大弯矩处: 梁下部受拉时,按T 形截面设计;当梁上部受拉时,按矩形截面设计。 翼缘计算宽度当: 1)按跨度考虑,mm 2700m 7.231.83===='l b f 2)按梁间距考虑,mm 30002700300=+=+='n f S b b 3)按翼缘厚度考虑 m m 66535700s 0=-=-=a h h ,1.0150.06651000>==h h f 此种情况不起主要控制作用,故取mm 2700='f b 梁纵向钢筋选用HRB400级钢筋(2mm N 360='=y y f f ),518.0=b ξ,混凝土等级 选用C30(2 mm N 3.14=c f ),m m 66535700s 0=-=-=a h h ,因为 ()[]()m kN 52.2374210066510027003.140.12101?=-????='-''f f f c h h h b f α 上式大于236.56kN.m ,故属于第一类T 形截面。 []014.0665 27003.140.11056.236261201=????='=h b f M f c s αα 014.0012.0211211=?--=--=s αξ []2101mm 50.99866527003.14014.00.1=????='=y f c s f h b f A ξα 实配钢筋4C 18(A s =1018mm 2)。 配筋率%25.0%51.0665 30010180>=?==bh A s ρ,满足要求。 梁端截面受压区相对高度:

梁柱截面确定)

板厚一般取板跨的40分之一,或者30分之一,不全面,具体可参见《砼规》GB50010-2010第9.1.2条,想必你应该很容易弄到规范吧。 板的经济跨度一般为2-3米,次梁的经济跨度一般为4-7米,主梁的经济跨度一般为5-8米。梁的截面确定:先根据梁的跨度来确定梁截面的高度。 次梁的截面高度一般取跨度的十五分之一,主梁一般取十二分之一。然后根据高度不超过宽度的四分之一来确定宽度,主梁宽不要小于250,次梁宽度不要小于200为宜。 切记,结构设计的每一个步骤几乎都可以在规范上找到相关规定。你所做的每一个步骤中的数据、计算公式都要到规范中去找。 荷载其实相对于来说是比较简单的了,主要是其中的几个组合值系数、频遇值系数神马的,其它的到没什么。 说一下荷载的布置,荷载分为恒载和活载,恒载好办,主要是板,梁,柱以及其它建筑层的重量,比如填充墙、门窗、抹灰等。这个荷载是除了钢筋混凝土的梁板柱以外都是要自己手算然后用到建模里面的。活载主要分成楼面均布活载、集中荷载。具体工程的活载是不一样的,主要参见《荷载规范》GB50009-2001,现在要出新的荷载规范了。 1、柱截面尺寸宜符合下列要求: 1 矩形截面柱的边长,非抗震设计时不宜小于250mm,抗震设计时不宜小于300mm;圆柱截面直径不宜小于350mm 2 柱剪跨比宜大于2; 3 柱截面高宽比不宜大于3。 2、梁截面尺寸选择取决于梁的跨度,框架结构的主梁截面高度hb可按(1/10~1/18)lb确定,lb为主梁计算跨度;梁净跨与截面高度之比不宜小于4。梁的截面宽度不宜小于200mm,梁截面的高宽比不宜大于4。 与跨度有关, 主梁 H= 1/12~1/16跨度,B=1/2~1/3H; 次梁 H= 1/12跨度,B=1/2~1/3H; 柱B=1/15跨度,H= 1~1.5B; 1、梁的截面尺寸 (1) 梁的一般要求 在设计钢筋混凝土梁时,首先要确定梁的截面尺寸。其一般步骤是:先由梁的高跨比h/l0确定梁的高度h,再由梁的高宽比h/b确定梁的宽度b(b为矩形截面梁的宽度或T形、I形截面梁的腹板宽度),并将其模数化。对变形和裂缝宽度要求严格的梁,尚应按规定进行扰度验算及裂缝宽度验算。 ①梁的高跨比 下表列出了梁的高跨比下限值,该值可以满足一般正常使用下的变形要求。但对变形要求高的梁,尚应进行扰度验算。 梁的高跨比下限值 构件类型/支承情形简支一端连续两端连续悬臂 独立梁及整体肋形梁的主梁1/12 1/3.5 1/15 1/6 整体肋形梁的次梁1/16 1/8.5 1/20 1/8 注:1. 表中数值适用于普通混凝土和fy<=400N/mm2的普通钢筋;

钢-混凝土组合梁计算原理及截面设计

钢-混凝土组合梁计算原理及截面设计 钢-混凝土组合梁计算原理及截面设计 钢-混凝土组合梁是在钢结构和混凝土结构基础上发展起来的一种新型结构型式。它主要通过在钢梁和混凝土翼缘板之间设置剪力连接件(栓钉、槽钢、弯筋等),抵抗两者在交界面处的掀起及相对滑移,使之成为一个整体而共同工作。 钢-混凝土组合梁同钢筋混凝土梁相比,可以减轻结构自重,减小地震作用,减小截面尺寸,增加有效使用空间,节省支模工序和模板,缩短施工周期,增加梁的延性等。同钢梁相比,可以减小用钢量,增大刚度,增加稳定性和整体性,增强结构抗火性和耐久性等。 近年来,钢-混凝土组合梁在我国城市立交桥梁及建筑结构中已得到了越来越广泛的应用,并且正朝着大跨方向发展。钢-混凝土组合梁在我国的应用实践表明,它兼有钢结构和混凝土结构的优点,具有显著的技术经济效益和社会效益,适合我国基本建设的国情,是未来结构体系的主要发展方向之一。 计算原理 在钢-混凝土组合梁弹性分析中,采用以下假定: 1、钢材与混凝土均为理想的弹性体。 2、钢筋混凝土翼缘板与钢梁之间有可靠的连接交互作用,相对滑移很小,可以忽略不计。

3、平截面假定依然成立。 4、不考虑混凝土翼缘板中的钢筋(该假设只在正弯矩承载力计算时成立,负弯矩承载力计算式需考虑钢筋作用[1])。 钢-混凝土组合梁弹性分析采用换算截面法。(a)表示换算前截面,(b)表示换算后截面。换算截面法的基本原理是:混凝土翼缘板按照总力不变及应变相同条件,换算成弹性模量为Es、应力为бs的与钢等价的换算截面面积。具体计算时,为了混凝土截面重心高度换算前后保持不变,换算时混凝土翼缘板厚度不变而仅将翼缘板有效翼缘宽度be除以α E(钢材弹性模量与混凝土弹性模量的比值。 求得等价的钢梁截面后,可以按照材料力学的方法来计算截面的抗弯承载力。设换算后截面的惯性矩为 I换算,换算截面形心轴距离钢梁底部为y 换算,组合梁总高为y换算作用在截面上的弯矩为M,而组合梁挠度的计算,则按照换算截面惯性矩计算组合梁截面刚度后,再由结构力学的方法计算梁的挠度。 截面设计 根据《公路桥涵钢结构及木结构设计规范》(JTJ025-86),对钢-混凝土组合梁进行了设计。如图4所示,为该工程选用的组合梁截面图。钢梁选为Q345B钢,混凝土翼缘板用 C40混凝土,剪力连接件采用[10槽钢。组合梁总高为1650mm,高跨比约为31.5。组合梁截面换算惯性矩为8.576×1010mm^4,而纯钢梁的截面惯性矩只有5.228×10 10mm^4,组合梁截面惯性矩是纯钢梁的1.64倍,大大提高了组合梁的刚度,减小了组合梁在荷载作用下的挠度

梁的截面尺寸的确定

梁的截面尺寸的确定 1、梁的宽度取1/2~1/3梁高,宽度不大于支撑柱在该方向的宽度。通常梁高取跨度的1/8~ 1/14。 2. 经验公式,在采用二级钢作为梁纵向钢筋时,梁高/弯矩=4.2~4.6是最经济的,如: 梁弯矩为120KN/m则梁高=502~552是最省钱的,混凝土与钢筋最省。本经验公式是在C25造价为216元/方,二级钢3200元/t下统计的,如混凝土标号高于C25则可以取靠近4.2的经验值,如低于C25 可取靠近4.6的经验值。 在设计中,可以照平时建模方法先建模计算一遍,再把弯矩图提出来看看,以一个跨度内的最大弯矩为控制,参照上面的经验公式进行一遍调整,这样设计出来的梁会是最省的。注意不要发生次梁比主梁高的情况。 梁高的小幅度改变对梁线刚度改变很小,梁高调整后再计算的弯矩与第一次的弯矩差值很小,可以忽略。 最后,上述经验公式不适用与一级或三级钢作为梁纵筋的情况。 最后还要注意下,梁高的取值还受限于建筑净空要求等其他因素,要灵活处理。 2、柱截面尺寸计算 3、柱截面的确定,在高层的情况下,往往是由轴压比控制,而多层不见得是。层数越少, 越可能不是轴压比控制。这是个概念问题,首先应当明确。对高层(或者层数较多的多层),在柱截面估算时,应当先明确几点:混凝土的强度等级、结构的抗震等级、轴压比限值。只有知道这几点,估算轴力才可能确定截面。柱轴力的估算,首先确定每层柱受荷的面积。此部分的面积,可简单的取柱左右(上下)两个跨度之和的一半进行计算。 再根据结构型式及活荷载的情况,确定每层的自重。这个自重是个经验值,在各种手册上都有相关的介绍。一般是框架结构14~16KN/m^2,剪力墙结构15~18KN/m^2。值得提醒的是,这里的自重是标准值,而在算柱轴压比时应当采用设计值。最后,对每层的受荷载面积累加并乘以结构的自重,可算出柱轴力,柱轴力除以轴压比限值可得出柱截面面积。 4、以上情况,仅是对柱截面的估算。最后应当整体的计算结果进行调整。 5、框架柱截面的估算 6、1、估算公式:Ac>=Nc/(a*fc) 7、其中:a----轴压比(一级0.7、二级0.8、三级0.9,短柱减0.05) 8、fc---砼轴心抗压强度设计值 9、Nc---估算柱轴力设计值

梁柱截面尺寸的定义

梁柱截面尺寸的取值 一、面、尺寸的调整设计人员根据教科书建议的梁、柱截面尺寸的取值范围,结合自己的经验先对所有构件的大小初步确定一个尺寸。此时须注意尽可能使柱的线刚度与梁的线刚度的比值大于1.这是为了实现在罕遇地震作用下,让梁端形成塑性铰时,柱端仍可处于非弹性工作状态而没有屈服,但节点还处于弹性工作阶段的目的。即“强柱弱梁强节点”。将初步确定的尺寸输入计算机进行试算,一般可得到下述三种结果:1)部分梁柱仅为构造配筋。此时可根据电算显示的梁的裂缝宽度和柱的轴压比大小,适当减小梁、柱的截面尺寸再试算。2)部分梁显示超筋或裂缝宽度>0.3mm,部分柱的轴压比超限或配筋过大(试算时可控制柱的配筋率不大于3%)。此时可适当放大这部分梁、柱的截面尺寸再试算。3)梁、柱的截面尺寸均合适,勿需调整,此时要进一步观察梁、柱的配筋率是否合适。二、梁、柱的适宜配筋率原则:掌握配筋率“适中”为宜。这个“适中”指在规范规定的区域内取中间段,其值约相当于定额含钢量。规范规定框架梁的纵向受拉钢筋最小配筋率为0.2%,最大配筋率为2.5%;框架柱的纵向钢筋配筋率区间为0.6%~5%。建议:对于框架梁,其纵向受拉钢筋的配筋率取0.4%-1.5%较适宜。对于框架柱,其全部纵向受力钢筋的配筋率取1%~3%较适宜。梁、柱配筋率的上限在试算在试算阶段宜留有一定余地,因为下一部梁、柱配筋的调整还需要一定空间。三、框架梁配筋的调整框架梁显示的配筋是梁按强度计算的配筋量,调整的目的是解决梁的裂缝宽度超限和“强剪弱弯”的问题。(一)缝宽度超限问题在配筋率一定时,选用小直径的钢筋可以增加混凝土的握裹面积、减少梁的裂缝宽度。增大配筋率是减小梁裂缝宽度的直接方法。提高混凝土的强度等级,亦可减小梁的裂缝宽度,但影响较小。设计人如不注意框架梁的裂缝宽度是否超限即出施工图,这样的图纸存在有不符合规范的缺陷。仔细检查梁的裂缝宽度,如果改用小直径的钢筋后梁的裂缝宽度仍然超限,就要增加梁的配筋或加大梁的截面尺寸,调整至满足规范要求。(二)强剪弱弯问题框架结构设计中,应力求做到在地震作用下框架梁的梁端斜截面受剪承载力应高于正截面受弯承载力,即“强剪弱弯”。建议:具体在调整梁的配筋时,可做以下几项调整:1)梁端负弯矩钢筋可不放大(系数采用1);2)梁的跨中受拉钢筋可放大1.1-1.3倍;3)梁端箍筋的直径可增加2mm;4)按构造要求对于跨度大于6m的框架梁设弯起钢筋。四、框架柱配筋的调整框架柱的配筋率一般都很低,电算结果往往是构造配筋即可。按柱的构造配筋率0.8%配筋,只相当于定额指标的1/2~1/3,有经验的设计人是不会采用的。因为受地震作用的框架柱,尤其是角柱和大开间、大进深的边柱,一般均处于双向偏心受压状态,而电算程序则是按两个方向分别为单向偏心受压的平面框架计算配筋,结果往往导致配筋不足。建议:框架柱配筋的调整可做以下几项1)应选择最不利的方向进行框架计算,也可两个方向均进行计算后比较各柱的配筋,取其教大值,并采用对称配筋。2)调整柱单边钢筋的最小根数:柱宽<=450mm时3根,450<柱宽<=750mm时4根,750mm<柱<=900mm时5根。(注意:柱单边配筋率不小于0.2%)3)将框架柱的配筋放大1.2~1.6倍。其中角柱放大大些(不小于1.4倍),边柱次之,中柱放小些(1.2倍)4)由于多层框架时电算常不考虑温度应力和基础不均匀沉降问题,

14-截面设计(梁)

截面设计 一、承载力抗震调整系数 1.如何理解: ①满足中震可修要进行弹塑性变形验算,为了符合设计习惯,将变形验算转化为承载力验算,γRE体现了二者之间的转换关系(保证可靠度相同); ②地震作用相当于短期动态加载,承载力比静载时的承载力高。 2.规范规定: 二、梁的截面设计和构造要求 1.截面尺寸要求: ①梁宽≥200mm(防止截面过小);②截面高宽比≥4(防止薄腹梁,平面外失稳);③跨高比(静跨/截面高度)≥4(防止发生剪切破坏)。 2.控制截面受压区高度x(满足延性要求): 注:计算受压区高度x值时要考虑受压钢筋。 3.控制梁端底面钢筋数量:

注:梁端底面钢筋对梁的变形能力有较大影响。作用:①梁端承受负弯矩时,可增加转动能力(双筋相当于减小x);②地震时梁端可能会出现正弯矩。 4.配筋率要求: max{0.2%,0.45f t/f y }<ρ<2.5% 5.贯通中柱纵筋直径(保证强节点): 6.斜截面设计时,根据主导荷载(集中力或均布荷载)选择计算公式。 7.箍筋加密区: 注:①在端部取计算值和加密区构造要求的较大者;②在非加密区取计算值(加密区边缘截面)和普通梁的估计构造要求中的较大者; 9.2.1梁中箍筋的配置应符合下列规定(非加密区的): 1 按承载力计算不需要箍筋的梁,当截面高度 h300mm时,应沿梁全长设置构造箍筋;

当截面高度=h 150~300mm 时,可仅在构件端部0l /4范围内设置构造箍筋,0l 为跨度。但当在构件中部0l /2范围内有集中荷载作用时,则应沿梁全长设置箍筋。当截面高度

吊车梁截面的设计

吊车梁截面的设计 摘要:本文根据吊车的载荷情况,对吊车梁的截面进行了深入的分析。通过对吊车梁截面进行验算,进行合理地设计,保证了吊车梁结构的安全和可靠,同时又节省了用钢量。 关键词:动力作用,制动结构,截面验算 abstract: according to the load carried by the crane,the cross section of the crane beam is deeply analysised in tis article. the safty and reliability of the structure of the crane beam will be ensured by the checking computations and rational design on the cross section of the crane beam, which will reduce the quantity of the steel needed at the same time. keywords:dynamical effect; brake structure; section checking computations 中图分类号:s611文献标识码: a 文章编号: 1 引言 吊车梁是吊车的路基,吊车梁上有吊车轨道,吊车就通过轨道在吊车梁上来回行驶。在吊车梁的设计中,主要是吊车梁截面的设计。吊车梁承受吊车的动力作用,合理设计的吊车梁有利于吊车的稳定运行。本文主要从以下几个方面对吊车梁截面的设计进行详细的描述。 2 吊车梁的载荷 吊车梁直接承受吊车载荷,计算其强度及稳定时,应考虑吊车载

梁截面尺寸的确定

梁截面尺寸的确定 1、梁的截面尺寸 (1) 梁的一般要求 在设计钢筋混凝土梁时,首先要确定梁的截面尺寸。其一般步骤是:先由梁的高跨比h/l0确定梁的高度h,再由梁的高宽比h/b确定梁的宽度b(b为矩形截面梁的宽度或T 形、I形截面梁的腹板宽度),并将其模数化。对变形和裂缝宽度要求严格的梁,尚应按规定进行扰度验算及裂缝宽度验算。 ①梁的高跨比 下表列出了梁的高跨比下限值,该值可以满足一般正常使用下的变形要求。但对变形要求高的梁,尚应进行扰度验算。 梁的高跨比下限值 构件类型/支承情形简支一端连续两端连续悬臂 独立梁及整体肋形梁的主梁1/12 1/3.5 1/15 1/6 整体肋形梁的次梁1/16 1/8.51/20 1/8 注:1. 表中数值适用于普通混凝土和fy<=400N/mm2的普通钢筋; 2. 当梁的跨度超过9m时,表中系数宜乘1.2; 3. 对比重γ为15~20kN/m3的轻质混凝土结构,表中系数宜乘以(1.65-0.03γ)且不小于1的系数。 ②梁截面的高宽比 梁截面的高宽比h/b对矩形截面,可选2.0~3.5;对T形截面,可选2.5~4.0。 ③模数要求 当梁高h<=800mm时,h为50mm的倍数;当h>800mm时,h为100mm的倍数。当梁宽b>=200mm时,梁的宽度为50mm的倍数;200mm以下宽度的梁,有b=100mm、

150mm、180mm三种。 ④主、次梁的截面尺寸关系 在现浇混凝土结构中,主梁的宽度不应小于200mm,通常为250mm及以上;次梁宽度不应小于150mm。主梁的高度应至少比次梁高50mm或100mm(当主梁下部可能为双排钢筋时)。 (2) 框架梁的截面尺寸 除满足梁的一般要求外,框架梁的截面高度h一般在(1/12~1/8)l0间,截面宽度b可取(1/2~1/4)h;截面宽度b不宜小于200mm;截面高度和截面宽度之比不宜大于4,梁净跨度ln与截面高度之比不宜小于4。 为了确定框架梁的截面尺寸是否选择合适,可在截面尺寸选择后作简单验算:将初步估算的竖向荷载设计值的0.8倍,作用于相应简支梁,进行受弯受剪计算,若其配筋适中,则截面选择合理;配筋过大或过小时,均宜调整截面尺寸。 2、框架柱的截面尺寸 (1) 截面尺寸的一般规定 在抗震设计中,框架柱的截面宽度和高度均不宜小于300mm,圆柱的截面直径不宜小于350mm;柱的截面高度与宽度的比值不宜大于3;柱的剪跨比宜大于2。 柱截面宽度一般不小于框架主梁截面宽度+100mm,通常在(1/15~1/20)H之间,其中H 为底层柱柱高,可取基础顶面至一层楼板面间距离。 (2) 截面尺寸验算 按一般规定初步确定柱截面尺寸之后,尚可按下述方法进行底柱的验算。 框架内柱可选为方形截面柱,近似按轴心受压柱计算:其轴压力设计值可取柱受力的几何面积乘以单位面积的竖向荷载设计值(该值可假定为 楼面活荷载设计值+11kN/m2,此值含各构件自重),再乘以框架层数和扩展系数1.1,算出的纵向受压钢筋配筋率不宜超过3%,也不宜小于1%,否则宜调整截面尺寸。

相关主题
文本预览
相关文档 最新文档