当前位置:文档之家› 水轮机的选型设计资料

水轮机的选型设计资料

水轮机的选型设计资料
水轮机的选型设计资料

水轮机的选型设计

水轮机的选型设计

水轮机选型时水电站设计的一项重要任务。水轮机的型式与参数的选择是否合理,对于水电站的功能经济指标及运行稳定性,可靠性都有重要影响。

水轮机选型过程中,一般是根据水电站的开发方式,功能参数,水工建筑物的布置等,并考虑国内外已生产的水轮机的参数及制造厂的生产水平,拟选若干个方案进行技术经济的综合比较,最终确定水轮机的最佳型式与参数。

一:水轮机选型的内容,要求和所需资料

1:水轮机选择的内容

(1)确定单机容量及机组台数。

(2)确定机型和装置型式。

(3)确定水轮机的功率,转轮直径,同步转速,吸出高度及安装高程,轴向水推力,飞逸转速等参数。对于冲击式水轮机,还包括确定射流直径与喷嘴数等。

(4)绘制水轮机的运转综合特性曲线。

(5)估算水轮机的外形尺寸,重量及价格。 wertyp9

ed\结合水轮机在结构、材质、运行等方面的要求,向制造厂提出制造任务书。

2.水轮机选择的基本要求

水轮机选择必须要考虑水电站的特点,包括水能、水文地质、工程地质以及电力系统构成、枢纽布置等方面对水轮机的要求。在几个可能的方案中详细地进行以下几方面比较,从中选择出技术经济综合指标最优的方案。

(1)保证在设计水头下水轮机能发生额定出力,在低于设计水头时机组的受阻容量尽可能小。

(2)根据水电站水头的变化,及电站的运行方式,选择适合的水轮机型式及参数,使电站运行中平均效率尽可能高。

(3)水轮机性能及结构要能够适应电站水质的要求,运行稳定、灵活、可靠,有良好的抗空化性能。在多泥沙河流上的电站,水轮机的参数及过流部件的材质要保证水轮机具有良好的抗磨损,抗空蚀性能。

(4)机组的结构先进、合理,易损部件应能互换并易于更换,便于操作及安装维护。

(5)机组制造供货应落实,提出的技术要求要符合制造厂的设计、试验与制造水平。

(6)机组的最大部件及最重要部件要考虑运输方式及运输可行性。

3.水轮机选型所需要的原始技术材料

水轮机的型式与参数的选择是否合理、是否与水电站建成后的实际情况相吻合,在很大程度上取决于对原始资料的调查、汇集和校核。根据初步设计的深度和广度的要求,通常应具备下述的基本技术资料:

(1)枢纽资料:包括河流的水能总体规划,流域的水文地质,水能开发方式,水库的调节性能,水利枢纽布置,电站类型及厂房条件,上下游综合利用的要求,工程的施工方式和规划等情况。还应包括严格分析与核准的水能基本参数,诸如电站的最大水头Hmax、最小水头Hmin,加权平均水头Ha,设计水头Hr,各种特征流量Qmin、Qmax、Qa,典型年(设计水平年,丰水年,枯水年)的水头、流量过程。此外还应有电站的总装机容量,保证出力以及水电站下游水位流量关系曲线。

(2)电力系统资料:包括电力系统负荷组成,设计水平年负荷图,典型日负荷图,远景负荷;设计电厂在系统中的作用与地位,例如调峰、基荷、调相、事故设备的要求以及与其他电站并列调配运行方式等。

(3)水轮机设备产品技术资料:包括国内外水轮机型谱、产品规范及其特性;同类水电站的水轮参数与运行的经验,问题点等。

(4)运输及安装条件:应了解通向水电站的水陆交通情况,例如公路,水路,及港口的运载能力(吨位及尺寸);设备现场装配条件,大型专用加工设备在现场临时建造的可能性及经济性;大型部件整件出厂与分块运输现场装配的比价等。

除上述资料外,对于水电站的水质应有详细地资料,包括水质的化学成分,含气量,泥沙含量等。

二:水轮机选型的基本方法

目前世界上各国在设计水电站中选择水轮机的方法不尽相同,其主要方法可以概括为以下几种。

1:应用统计资料选择水轮机

这种方法以已建水电站的统计资料为基础,,通过汇集、统计国内外已建水电站的水轮机的基本参数,再把他们按水轮机型式,应用水头,单机容量等参数进行分析归类。在此基础上,用数学统计法作出水轮机的比转速、单位参数与应用水头的关系曲线,ns=f(H)、n11=f(H)、Q11=f(H)以及电站空化系数与比转速的关系曲线qf=f(ns)等,或者数值逼近法得出关于这些参数的经验公式。当确定了水电站的水头与装机容量等基本参数后,可根据统计曲线或经验公式确定水轮机的型式与基本参数。按照选定的水轮机参数向水轮机生产厂提出制造任务书,由制造厂生产出符合用户要求的水轮机。这种方法在国外被广泛采用。2:按水轮机系列型谱选择水轮机

在一些国家,对水轮机设备进行了系列化,通用化与标准化,制定了水轮机型谱,为每一水头段配置了一种或两种水轮机转轮,并通过模拟实验获得了各型号水轮机的基本参数与模型综合特性曲线。这样设计者就可以根据水轮机型谱与模型综合特性曲线选择水轮机的型号与参数。我国与原苏联都曾颁布过水轮机型谱。水轮机型谱可为水轮机的选型设计提供了便利,可使选型工作简化与标准化。但要注意不能局限于已制定的水轮机型谱,当型谱中的转轮性能不能满足设计电站的要求时,要通过认真分析研究提出新的水轮机方案,与生产厂商协商设计、制造出符合要求的水轮机。同时,要不断完善、更新水轮机型谱。

3:要套用法选择水轮机

这种方法是直接套用与拟建电站的基本参数(水头、容量)相近的已建水电站的水轮机型号与参数。这种方法多用于小型水电站的设计,它可以使设计工作大为简化。但要注意必须合理套用,要对拟建电站与已建电站的参数进行详细的分析与比较,还要考虑不同年代水轮机的设计于制造水平的差异,90年代设计的电站若直接套用60年代电站的水轮机,往往会使水轮机的参数偏低。因此必要时对已建电站的水轮机参数作适当修正后再套用。

我国过去应用较多的方法是按照水轮机型谱来选择水轮机,但随着水电开发的进展,旧的水轮机型谱已不能满足目前水电站的设计的要求,设计者常采用不同的选型方法相互结合、相互验证,以保证水轮机选型的科学性与合理性。三:机组台数选择

对于一个确定了总装机容量的水电站,机组台数对的多少将直接影响到电厂的动能经济指标与运行的灵活性,可靠性,还影响到电厂建设的投资等,因此确定机组台数时必须考虑以下有关因素,经过充分的技术经济论证。

1:机组台数对工程建设费用的影响

机组台式的多少直接影响单机容量的大小,单机容量不同时机组的单位千瓦造价不同,一般小机组的单位千瓦造价高于大机组,一方面,小机组的单位千瓦金属消耗大于大机组,另外单位重量的加工费也较大。除主要机电设备外机组台数的增加,要求增加配套设备的台数,主副厂的平面尺寸也需增加,因次在同样的装机容量条件下,水电站的土建工程及动力厂房的成本也随机组的增加而增加。

2:机组台数对电站运行效率的影响

当采用不同的机组台数时,电站的平均效率是不同的。较大单机容量达的机组,其单机效率较高,这对于预计经常满负荷运行的水电站获得的效益较显著。但是对于变动负荷的水电站,若采用过少的机组台数,,虽单机效率高,但在部分负荷时由于负荷不便在机组之间调节,因而不能避开低效率区,这会使电站的平均效率降低。电站的最佳装机台数要通过电厂的经济运行分析来决定。

此外,机组类型不同时,台数对电站的运行效率的影响不同。对于固定叶片式水轮机,尤其是轴流定桨式水轮机,其效率曲线比较陡峭,当出力变化时,效率变化剧烈。若机组台数多一些,则可通过调整开机台数,而避开低负荷运行,从而使电站的运行效率明显提高。但是对于转桨式水轮机或多喷嘴的水斗式水轮机,由于可以通过改变叶片角度或增减使用喷嘴的数目而使水轮机保持高效率运行,因此机组台数对电站运行效率的影响较小。

3:机组台数对电厂运行维护的影响

机组台数较多时,其优点是运行方式灵活,发生事故时对电站及所在系统的影响较小,检修也容易安排。但台数较多时运行人员增加,运行用的材料、消耗品增加,因而运行费用高。同时,较多的设备与较频繁的开停机会使整个电站的事故发生率上升。

4:机组台数对设备制造、运输及安装的影响

机组台数增加时,水轮机和发电机的单机容量减小,则机组的尺寸,制造、运输及现场安装都较容易。反之,台数减少则机组尺寸增大,机组的制造、运输及安装的难度也相应增大。因此最大单机容量的选择要考虑制造厂家的加工水平,及设备的运输,安装条件。此外从发电机转子的机械强度方面考虑,发电机转子的直径必须限制在转子最大线速度的允许值之内,机组的最大容量有时也会因此受到限制。

5:机组台数对电力系统的影响

对于占电力系统容量比重大的水电厂及大型机组,发生事故时对电力系统的影响较大,考虑到电力系统中备用容量的设置及电力系统的安全性,在确定台数时,单机容量不应大于系统的备用容量,即使在容量较小的电网中,单机容量也不宜超过系统容量的1/3。

6:记住台数对电厂主接线的影响

由于水电厂水轮发电机组常采用扩大单元主接线方式,超大型机组除外,故机组台数多采用偶数。同时为了运行方式的机动灵活及保证机组检修时的厂用电可靠,除了特殊情况和农村小电站外,一般都装两台以上机组。

对于装置大型机组的水电厂,由于主变压器的最大容量受到限制,常采用单元接线方式,因此机组台数的选择不必受偶数的限制。

以上与机组台数有关的诸因素,许多是既相互联系又相互矛盾的,在选择时应针对主要因素,进行综合技术经济比较,选择出合理地机组台数。

四、水轮机型式的选择

根据水电站的实际情况正确地选择水轮机型式是水轮机选型设计中的一个重要环节。虽然各类水轮机有明确的适用水头范围,但由于他们的适用范围存在着交叉水头段,因此,必须根据水电站的具体条件对可供选择的水轮机进行分析比较,才能选择出最合适的机型。

(一)各类水轮机的适用范围

大中型水轮机的类型及其适用的水头范围如图所示

各类水轮机的适用范围除了与使用水头有关外,还与水轮机的容量有关,同一类型同一比转速的水轮机,在小容量时使用水头较低,在容量较大时使用水头较高.为了便于选择水轮机的型式,制定了水轮机

从表中可以看出各类水轮机的应用水头范围是交叉的,其中存在着交界水头段。

在水轮机选择时若同一水头段有多种机型可供选择,则需要认真分析各类水轮机的特性并进行技术经济比较以确定最适合的机型。

不同类型的水轮机具有不同的适用范围与特点,各类水轮机的特点可概括如下: 1:冲击式水轮机(以切击式为代表)

(1)ns较低,适用于250m以上的水头,最高可达1700m.

(2)转轮周围的水流是无压的,不存在密封问题。

(3)出力变化时效率的变化平缓,对负荷变化适应性强。

(4)装置多喷嘴时通过调整喷嘴适用数目可获高效运行。

(5)可使用折向器防止飞逸,减少紧急关机时引水管道中水击压力的上升(仅上升15%左右)。若使用制动喷嘴可使水轮机迅速刹车。

(6)易磨损部件更换容易。

2:混流式水轮机

(1)比转速范围广,适用水头范围广,可适用30-1700m.

(2)结构简单,价格低。

(3)装有尾水管,可减少转轮出口水流损失。

3:轴流式水轮机

(1)ns较高,具有较大的过流能力,适用于30-80m水头范围。

(2)转轮可以分解,加工运输方便。

(3)轴流转桨式水轮机可在协联方式运行,在水头、负荷变化时可实现高效运行。

(4)在水头、负荷变化较小,或装机台数较多的电站,可以通过调整运行机组台数使水轮机在高效区运行。轴流定桨式水轮机结构简单,可靠性好,尤其在担负基荷的低水头电站较适用。

4:斜流式水轮机

(1)其ns与应用水头范围介于轴流式和混流式之间。

(2)叶片可调,在水头与负荷变化时可保持高效率。

(3)转轮可以分解,加工运输方便。

(4)中低水头的抽水蓄能电站,常适用斜流式水轮机。

(二)交界水头区水轮机型式的选择

(1)贯流式与轴流式的比较:

1)贯流式的水流条件较好,同样过流面积时,贯流式水流通过容易,单位流量大,无蜗壳和肘醒尾水管,流道水力损失小,运行效率比轴流式高。

2)贯流式水轮机可布置在坝体或闸墩内,可以不要专门的厂房,土建工程量小且适于狭窄的地形条件。

3)对潮汐电站,贯流式水轮机的适应性强,能满足正反向发电,正反向抽水和正反向泄水的需要。

4)贯流式水轮机为了满足安装高程的要求,需从引水室入口至尾水管全部开挖到相应的深度,而轴流式只需对尾水管部分进行深开挖,因此,贯流式的相应开挖量大。

5)灯泡贯流式水轮发电机组全部处于水下,要求有严密的封闭结构及良好的通风防潮措施,维护、检修较困难。

(2)轴流式与混流式的比较

1)轴流转桨式水轮机适用与水头与负荷较大的电站,能在较宽广的工作范围内稳定、高效率运行,平均效率高于混流式水轮机。

2)在相同的水头下,轴流式的ns高于混流式,有利于减小机组的尺寸。

3)轴流式水轮机的空化系数大,约为同水头段混流式水轮机的两倍,为保证空化性能需增加厂房的水下开挖量。

4)当尾水管较长时,轴流式水轮机比混流式水轮机易产生紧急关机时的抬机现象。

5)轴流式水轮机的轴向水推力系数约为混流式的2-4倍,推力轴承负荷大。此外轴流转桨式水轮机的转轮及受油器等部件结构复杂,造价高。

(3)混流式与斜流式比较:

1)同样水头和出力条件下,斜流式水轮机可获得高于混流式水轮机的比转速,因此,斜流式水轮机的转速可高于混流式,应用斜流式水轮机可以减小发电机的尺寸,但同样条件,混流式水轮机的尺寸要小一些。

2)混流式的最高效率要比斜流式高0.5%-1%,但在部分负荷(50%负荷)混流式的效率要比斜流式低约5%。两者比较图

3)同样工作参数下,斜流式水轮机的空化系数大于混流式,为防止空化,斜流式需要较低的安装高程,因此其开挖深度大于混流式。

4)混流式水轮机的结构比斜流式简单,造价低,维护方便,运行可靠。但斜流式转轮可分解,加工,运输方便。

5)混流式水轮机的飞逸转速比斜流式水轮机约高15%,要求混流式水轮机有较高的强度。

水轮机的选型设计说明

水轮机的选型设计 水轮机选型时水电站设计的一项重要任务。水轮机的型式与参数的选择是否合理,对于水电站的功能经济指标及运行稳定性,可靠性都有重要影响。 水轮机选型过程中,一般是根据水电站的开发方式,功能参数,水工建筑物的布置等,并考虑国内外已生产的水轮机的参数及制造厂的生产水平,拟选若干个方案进行技术经济的综合比较,最终确定水轮机的最佳型式与参数。 一:水轮机选型的内容,要求和所需资料 1:水轮机选择的内容 (1)确定单机容量及机组台数。 (2)确定机型和装置型式。 (3)确定水轮机的功率,转轮直径,同步转速,吸出高度及安装高程,轴向水推力,飞逸转速等参数。对于冲击式水轮机,还包括确定射流直径与喷嘴数等。(4)绘制水轮机的运转综合特性曲线。 (5)估算水轮机的外形尺寸,重量及价格。 wertyp9 ed\结合水轮机在结构、材质、运行等方面的要求,向制造厂提出制造任务书。 2.水轮机选择的基本要求 水轮机选择必须要考虑水电站的特点,包括水能、水文地质、工程地质以及电力系统构成、枢纽布置等方面对水轮机的要求。在几个可能的方案中详细地进行以下几方面比较,从中选择出技术经济综合指标最优的方案。 (1)保证在设计水头下水轮机能发生额定出力,在低于设计水头时机组的受阻容量尽可能小。 (2)根据水电站水头的变化,及电站的运行方式,选择适合的水轮机型式及参数,使电站运行中平均效率尽可能高。 (3)水轮机性能及结构要能够适应电站水质的要求,运行稳定、灵活、可靠,有良好的抗空化性能。在多泥沙河流上的电站,水轮机的参数及过流部件的材质要保证水轮机具有良好的抗磨损,抗空蚀性能。 (4)机组的结构先进、合理,易损部件应能互换并易于更换,便于操作及安装维护。 (5)机组制造供货应落实,提出的技术要求要符合制造厂的设计、试验与制造水平。 (6)机组的最大部件及最重要部件要考虑运输方式及运输可行性。 3.水轮机选型所需要的原始技术材料 水轮机的型式与参数的选择是否合理、是否与水电站建成后的实际情况相吻合,在很大程度上取决于对原始资料的调查、汇集和校核。根据初步设计的深度和广度的要求,通常应具备下述的基本技术资料: (1)枢纽资料:包括河流的水能总体规划,流域的水文地质,水能开发方式,水库的调节性能,水利枢纽布置,电站类型及厂房条件,上下游综合利用的要求,工程的施工方式和规划等情况。还应包括严格分析与核准的水能基本参数,诸如电站的最大水头Hmax、最小水头Hmin,加权平均水头Ha,设计水头Hr,各种特征流量Qmin、Qmax、Qa,典型年(设计水平年,丰水年,枯水年)的水头、流量过程。此外还应有电站的总装机容量,保证出力以及水电站下游水位流量关系曲线。 (2)电力系统资料:包括电力系统负荷组成,设计水平年负荷图,典型日负荷

水轮机的选型计算

一、水轮机选型计算的依据及其基本要求.....................................................................1 1 水轮机选型时需由水电勘测设计院提供下列原始数据.................................1 2 水轮机选型计算应满足下述基本要求......................................................1 二、反击式水轮机基本参数的选择计算..................................................................1 1 根据最大水头及水头变化范围初步选定水轮机的型号.................................1 2 按已选定的水轮机型号的主要综合特性曲线来计算转轮参数.................................1 3 效率修正..........................................................................................4 4 检查所选水轮机工作范围的合理性.........................................................4 5 飞逸转速计算....................................................................................5 6 轴向推力计算....................................................................................5 三、水斗式水轮机基本参数的选择计算......................................................10 1 水轮机流量.......................................................................................10 2 射流直径d 0.......................................................................................10 3 确定D1/d 0.......................................................................................10 4 水轮机转速n ....................................................................................10 5 功率与效率................................................................................................11 6 飞逸转速..........................................................................................12 7 水轮机的水平中心线至尾水位距离A ......................................................12 8 喷嘴数Z 0的确定....................................................................................12 9 水斗数目Z1的确定.................................................................................12 10 水斗和喷嘴的尺寸与射流直径的关系...................................................13 11 引水管、导水肘管及其曲率半径.........................................................13 12 转轮室的尺寸..............................................................................14 A 水机流量..........................................................................................17 B 射流直径.............................................................................................17 C 水斗宽度的选择..........................................................................................17 D D/B 的选择.............................................................................................17 E 水轮机转速的选择.......................................................................................17 F 单位流量的计算..........................................................................................17 G 水轮机效率................................................................................................18 H 飞逸转速................................................................................................18 I 转轮重量的计算..........................................................................................18 四、调速器的选择.............................................................................................20 1 反击式水轮机的调速功计算公式.....................................................................20 2 冲击式水轮机的调速功计算公式.....................................................................20 五、阀门型号、大小的选择.................................................................................21 1 球阀的选择................................................................................................21 2 蝴蝶阀的选择 (22) 目 录

水电站厂房参数设计计算书

水电站厂房 第一节几种水头的计算(1) H max=Z蓄—Z单机满出力时下游水位 H r= Z蓄—Z全机满出力时下游水位 H min=Z底—Z全机满出力时下游水位 一、H max的计算。 1 假设H max=84m 由公式Nr=K Q H 公式中 Nr为单机出力50000KW K 为出力系数8.5 H 为净水头=H0—ΔH=0.97H0 (ΔH=0.03H0) Q 为该出力下的流量。 故解出Q=70.028m3/s 查下游流量高程表得下游水位为198.8m 上游水位为284m ΔH=0.03 (284—198.8)=2.6m 又因为284—84—2.6= 197.4 2 重新假设Hmax=83m 由公式Nr=K Q H 解出Q=70.87m3/s 查下游流量高程表得下游水位为199.3m 上游水位为284m ΔH=0.03 (284—199.3)=2.5m

又因为284—83—2.5=198.5 故H max=83m 二、H min的计算。 1 假设H min=60m 由公式Nr=K Q H 公式中 Nr为全机出力200000KW K 为出力系数8.5 H 为净水头=H0—ΔH=0.97H0 (ΔH=0.03Ho) Q 为该出力下的流量。 故解出Q=392.16m3/s 查下游流量高程表得下游水位为203.50m 上游水位为264m ΔH=0.03 (264—203.50)=1.80m 又因为264—60—1.80=202.20< 203.50 2 重新假设Hmin=59m 由公式Nr=K Q H 解出Q=398.80m3/s 查下游流量高程表得下游水位为203.58m 上游水位为264m ΔH=0.03 (264—203.58)=1.77m 又因为264—59—1.77=203.23 = 203.58 故H min=59m 三、H r的计算。

冲击式水轮机“毕业设计”

冲击式水轮机毕业设计任务书、基本资料和指示书 河海大学水电学院动力系 二○○六年三月

冲击式水轮机毕业设计 任务书 一、设计内容 根据给定的原始资料,对指定的电站、指定的原始参数进行该电站的机电初步设计,包括:电站装机机型的比较设计和参数选择,调节保证计算及调速设备选择,该电站的辅助系统设计和电气一次系统初步设计。 二、时间安排 1、电站装机机型比较设计4周 2、调节保证系统1周 3、辅助系统2周 4、专题 1.0周 5、电气部分2周 6、成果整理1周 7、评阅答辩1周 8、机动0.5周 总计12.5周 三、成果要求 1、设计说明书:说明设计思想,方案比较,参考资料及最终结果。 2、设计计算书:设计计算过程,计算公式,参数选取的依据,计算结果。 3、图纸:主机部分厂房纵剖图,配水环管装配图,水系统图,气系统图和油系统图,电气主接线图及专题部分图纸,规格为1号图,其中主机部分厂房纵剖图及配水环管图要求既要画出手工图纸又要CAD图,其他全部CAD图。 冲击式水轮机毕业设计 资本资料 一、田湾河电站 田湾河位于四川甘孜州康定县、雅安市石棉县境内,为大渡河中游的一级支流,发源于贡嘎山西侧,主源莫溪沟由北向南流,在魏石达先后有贡嘎沟和腾增沟分别自左、右岸汇入后始称田湾河。下行至界碑石进入石棉县境内并有环河自右岸汇入,经草科、田湾在两河口注入大渡河。 整个田湾河开发方案规划为干、支流“两库四级”开发。整个梯级从上至下依次由巴王海、仁宗海、金窝和大发四级水电站组成。业主提出整体开发田湾河的思想,计划在2007年内完成仁宗海、金窝、大发三个梯级水电站的建设。 仁宗海水库水电站位于康定县和石棉县交界处,工程为混合式开发。电站龙头水库坝址位于仁宗海口上游约400m处,水库正常蓄水位2930m,总库容1.09亿m3,调节库容0.91亿m3,水库具有年调节性能;引水隧洞长约7.5km;地下厂房厂址位于界碑石下游约650m,距田湾河河口约30km。仁宗海水库电站工程已于2003年开工,第一台机组计划投产日期2007

水电站水轮机选型设计1

院校:河北工程大学水电学院专业班级:水利水电建筑工程01班姓名:苏华 学号: 093520101 指导老师:简新平

水电站水轮机的选型设计 摘要 本说明书共七个章节,主要介绍了大江水电站水轮机选型,水轮机运转综合特性曲线的绘制,蜗壳、尾水管的设计方案和工作原理以及调速设备和油压装置的选择。主要内容包括水电站水轮机、排水装置、油压装置所满足的设计方案及控制要求和设计所需求的相关辅助图和设计图。系统的阐明了水电站相关应用设备和辅助设备的设计方案的步骤和图形绘制的方法。 关键词: 水轮机、综合运转特性曲线图、蜗壳、尾水管、调速器、油压装置。 【abstract】 Curriculum project of hydrostation is a important course and practical process in curriculum provision of water-power engineering major . There are more contents and specialized knowledge in the curriculum project , which make students not to adapt themselves quickly to complete the design . In this paper , characteristic of the curriculum project is analyzed , causes of inadaptation to the curriculum project in students are found , rational guarding method are proposed , and a example of applying the guarding method is given . The results show that using provided method to guard student design is a good method , when teaching mode and time chart are given , students are guarded from mode of thinking and methodology , and design step are discussed and given . After the curriculum project of hydrostation , the capability of students to solve practical engineering problems is improved , and the confidence to engage in design is strengthened . 【Keyword】 Curriculum project of hydrostation ; guarding method ; mode of thinking ; methodology; design step.

水轮机选型设计

第六章水轮机选型设计 由于各开发河段的水力资源和开发利用的情况不同,水电站的工作水头和引用流量范围也不同,为了使水电站经济安全和高效率的运行,就必须有很多类型和型式的水轮机来适应各种水电站的要求。 水轮机由于它自身能量特性、汽蚀特性和强度条件的限制,每种水轮机适用的水头和流量范围比较窄,要作出很多系列和品种(尺寸)的水轮机,设计、制造任务繁重,生产费用和成本也大。因此有必要使水轮机生产系列化、标准化和通用化,尽可能减少水轮机系列,控制系列品种,以便加速生产、降低成本。在水电站设计中按自己的运行条件和要求选择合适的水轮机。 一、水轮机选型设计的任务及内容 1.任务 水轮机是水电站中最主要动力设备之一,影响电站的投资、制造、运输、安装、安全运行、经济效益,因此根据H、N的范围选择水轮机是水电站中主要设计任务之一,使水电站充分利用水能,安全可靠运行。每一种型号水轮机规定了适用水头范围。水头上限是根据该型水轮机的强度和汽蚀条件限制的,原则上不允许超过;下限主要是考虑到使水轮机的运行效率不至于过低。 2.内容 (1) 确定机组台数及单机容量 (2) 选择水轮机型式(型号)及装置方式 (3) 确定水轮机的额定功率、转轮直径D1、同步转速n、吸出高度H s、安装高程Z a 、飞逸转速、轴向水推力;冲锤式水轮机,还包括喷嘴数目Z0、射流直径d0等。 (4) 绘制水轮机运转特性曲线 (5) 估算水轮机的外形尺寸、重量及价格、蜗壳、尾水管的形式、尺寸、调速器及油压装置选择 (6) 根据选定水轮机型式和参数,结合水轮机在结构上、材料、运行等方面的要求,拟定并向厂家提出制造任务书,最终由双方共同商定机组的技术条件,作为进一步设计的依据。 二、选型设计 1.水轮机选型设计一般有三种基本方法 (1) 水轮机系列型谱方法: 中小型水电站水轮机选多此种方法或套用法。

毕业设计水电站的水轮机设计

1前言 (4) 2水电站的水轮机选型设计 (5) 2.1水轮机的选型设计概述 (5) 2.2 水轮机选型的任务 (6) 2.3水轮机选型的原则 (6) 2.4水轮机选型设计的条件及主要参数 (7) 2.5确定电站装机台数及单机功率 (7) 2.6选择机组类型及模型转轮型号 (8) 2.7初选设计(额定)工况点 (11) 2.8 确定转轮直径D1 (12) 2.9 确定额定转速 n (12) 2.10效率及单位参数的修正 (13) 2.11核对所选择的真机转轮直径D1 (14) 2.12确定水轮机导叶的最大开度、最大可能开度、最优开度 (18) 2.13计算水轮机额定流量q v,r (19) 2.14确定水轮机允许吸出高度H s (20) 2.15计算水轮机的飞逸转速 (25) 2.16计算轴向水推力P oc (25) 2.17估算水轮机的质量 (26) 2.18绘制水轮机运转综合特性曲线 (26) 3水轮机导水机构运动图的绘制 (35) 3.1导水机构的基本类型 (35) 3.2导水机构的作用 (36) 3.3导水机构结构设计的基本要求 (36)

3.4导水机构运动图绘制的目的 (37) 3.5导水机构运动图的绘制步骤 (37) 4水轮机金属蜗壳水力设计 (41) 4.1蜗壳类型的选择 (41) 4.2金属蜗壳的水力设计计算 (41) 5尾水管设计 (49) 5.1 尾水管概述 (49) 5.2尾水管的基本类型 (49) 5.3弯肘形尾水管中的水流运动 (49) 6水轮机结构设计 (50) 6.1概述 (50) 6.2水轮机主轴的设计 (50) 6.3水轮机金属蜗壳的设计 (51) 6.4水轮机转轮的设计 (52) 6.5导水机构设计 (55) 6.6水轮机导轴承结构设计 (58) 6.7水轮机的辅助装置 (61) 7金属蜗壳强度计算 (63) 7.1金属蜗壳受力分析 (63) 7.2蜗壳强度计算 (63) 7.3计算程序及结果 (66) 8结论 (71)

水轮机选型设计计算书 原稿

第一章 水轮机的选型设计 第一节 水轮机型号选定 一.水轮机型式的选择 根据原始资料,该水电站的水头范围为18-34m , 二.比转速的选择 水轮机的设计水头为m H r 5.28= 适合此水头范围的有HL240和ZZ450/32a 三.单机容量 第二节 原型水轮机主要参数的选择 根据电站建成后,在电力系统的作用和供电方式, 初步拟定为2台,3台,4台三种方案进行比较。 首先选择HL240 n11=72r/min 一.二台 1、计算转轮直径 水轮机额定出力:kw N P G G r 67.66669 .0106.04 =?== η 上式中: G η-----发电机效率,取0.9 G N -----机组的单机容量(KW ) 由型谱可知,与出力限制线交点的单位流量为设计工况点单位流量,则Q 11r =1.155m 3 /s,对应的模型效率ηm =85.5%,暂取效率修正值 Δη=0.03,η

=0.855+0.03=0.885。模型最高效率为88.5%。 m H Q P D r r 09.2885 .05.28155.181.967 .666681.95 .15.1111=???== η 按我国规定的转轮直径系列(见《水轮机》课本),计算值处于标准值2m 和2.25m 之间,且接近2m ,暂取D 1=2m 。 2、计算原型水轮机的效率 914.02 46 .0)885.01(1)1(155 110max =--=--=D D M M ηη Δη=η max -ηM0=0.914-0.885=0.0.029 η=ηm +Δη=0.855+0.029=0.884 3、同步转速的选择 min /18.1972 95 .0/5.2872av 1110r D H n n =?== min /223.11855 .0884 .07210 M 0 T 11011r n n =-?=-=?)( )( ηηmin /223.73223.172n 1111r 11r n n m =+=?+= 4、水轮机设计单位流量Q11r 的计算 r Q 11= r r r H D η5 .12181.9P =884.05.28281.967.66665.12???=1.2633 m /s 5、飞逸转速的计算 r n = 1 11max D H n r =73.223×28.33=212.851r/min 6、计算水轮机的运行范围 最大水头、平均水头和最小水头对应的单位转速 min)/609.66223.18.332 180.19711max 1min 11r n H nD n =-?=?-= min)/(777.70223.195 .0/5.282180.19711av 111r n H nD n a =-?=?-=

水轮机主机选型

摘要 水电站机电部分设计主要根据获得的设计材料中给定的水头范围进行的主机选型,根据选择的三方案中择优进行模型综合特性曲线的绘制,即选出一方案进行绘制,再根据效率,转速等选其一进行蜗壳、尾水管、水轮发电机外形的计算和绘图,最后进行水轮机的调节保证计算和调速器设备选择。 关键字:水轮机主机选型;水电站机电设备初步计算;外形设计;调节保证计算。

前言 毕业设计是高等教育教学中的最后一个教学环节,是实践性教育的环节。 毕业设计与其他教学环节构成有机的整体,也是各个教学环节的继续、深化补充和检验,是将分散、局部的知识内容加以全面的结合,这次设计提高了我们运用知识的综合能力,将知识化为能力,巩固和加深所学知识,培养知识,综合了系统化的运用。 目前,我国大陆水力资源理论蕴藏在1万KW以上的河流共3886条,水力资源理论蕴藏年发电量6082.9Tw·h;技术可开发装机容量541.64GW。经济可开发装机容量401.8GW。我国水力资源具有三个鲜明特点:第一、在地域上分布极不平衡,西部多,东部少。西部水利资源开发出了满足西部电力市场的需要,更重要的是考虑东部电力市场。第二、大多数河流年内、年际经流分布不均。第三、水力资源集中于大江大河,有利于集中开发和规模外送。 本次设计的主要内容为主机选型、蜗壳、尾水管、发电机确定和调节保证计算。设计过程中,依据资料水电站水头,单机引水流量,总装机,对水轮机发电进行初选,并根据单位转速,模型综合特性曲线,对水轮机型号,转速,效率出力等进行认真计算,校验,对选择方案的蜗壳水管,水轮机选型和绘图。对水轮机进行调节保证机算。

通过这次对相关专业知识的课题设计,更加深入的认识知识和实际应用,学会知识与实际结合、与实践结合,得以充分利用知识为以后工作打下了坚实的基础。 编者 2012年5月 目录 摘要 (1) 前言 (2) 目录 (3) 第一章水轮机型号选择 (5) 第一节水轮机型的选择 (5) 第二节初选水轮机基本参数的计算 (6) 第三节水轮机运转综合特性曲线的绘制 (17) 第四节待选方案的综合比较和确定 (19) 第二章蜗壳计算 (21) 第一节蜗壳形式、进口断面参数选择 (21) 第二节蜗壳各断面参数计算 (23) 第三节金属蜗壳图 (25) 第三章尾水管选型 (26) 第四章水轮发电机的初步选择计算 (27) 第五章调节保证计算及设备的选择 (33) 第一节调节保证计算 (33)

水轮机毕业设计 开题报告

毕业设计(论文) 开题报告 题目电站水轮机结构设计 专业热能与动力工程 班级 学生 指导教师

一、毕业设计(论文)课题来源、类型 本课题来源于越南DongNai5 水电项目,设计类型为水轮机结构设计。DongNai5电站,位于越南DongNai 省的DongNai 河。它配备了两台75MW混流式水轮发电机组,总装机容量150MW。电站预计2015年投入商业运行,年发电量达616万kW·h。该题目属于工程设计类题目。 二、选题的目的及意义 水轮机对于电站而言,是重中之重。它配合发电机组实现了,机械能转化为电能这一核心任务。因此,使水轮机最优化,对提高电站的效率至关重要。它的性能优劣,结构完善与否,直接涉及到水电事业发展的程度。进行水轮机的结构设计,综合考虑水轮机性能、效率、成本等,对学生个人也是一种总结和学习的过程的。通过水轮机结构设计,使得自己对大学所学的专业知识进一步掌握并运用,将书本知识实用化,为自己以后继续学习专业知识或者就业,有很大的帮助。 三、本课题在国内外的研究状况及发展趋势 电力是现代化工业生产和生活不可或缺的动力能量,水力发电是电力工业的一个门类。建国50多年来,我国的水电事业有了长足的发展,取得了令人瞩目的成绩。水电在我国的兴起是有其深刻的背景的。 我国河流众多,径流丰沛,落差巨大,蕴藏着丰富的水能资源。2000~2004年, 中国水电工程顾问集团公司组织了全国水力资源复查, 水电资源理论蕴藏量为6.94亿kW,年发电量6.08万亿kW·h, 其中技术可开发容量为5.42亿kW, 年发电量2.47万亿kW·h; 经

济可开发容量为4.02亿kW,年发电量1.75万亿kW·h。 首先,我国有大规模利用水能资源的条件和必要性。我国水能资源丰富,不论是水能资源蕴藏量,还是可能开发的水能资源,在世界各国中均居第一位。但是目前我国水能的利用率仅为13%,水力发电前景广阔。随着我国经济的快速增长,能源消耗总量也大幅度增长,煤炭、石油和天然气这些常规能源的消耗量越来越大,甚至需要依靠进口。 水力发电经过一个多世纪的发展,其工程建设技术、水轮发电机组制造技术和输电技术趋于完善,单机容量也不断增大。并且水力发电成本低廉,运行的可靠性高,故其发展极为迅速。近一个世纪,特别是建国以来,经过几代水电建设者的艰苦努力,中国的水电建设从小到大、从弱到强不断发展壮大。改革开放以来,水电建设更是迅猛发展,工程规模不断扩大。 据电工行业统计数据表明,2009年我国发电设备和大中型电机的产量分别为:水轮发电机组2303万kW,汽轮发电机8654万kW,成套发电设备11993万kW,大中型电机约为7500万kW,其中大型电机约为3000万kW(含风电1380万kw的70% )。 调查表明,全世界发电设备市场的订货量从1991年的70GW 增加到了1996年的100GW,其中水电只占16%。在水电设备订货量方面,亚洲国家的订货量要占一半以上,如1996年的总订货量为18GW,其中中国占23%。 水轮机是一种流体机械。所谓流体机械就是以流体作为工作介质的机器。它是实现流体功能和热能转换的机械。( 热能转换的流体机械在此不作介绍) 。对于功和能转换的流体机械主要分为两大类,一类是流体能量对流体机械作功而提供动力; 另一类则是通过流体机械将原动力传递给流体, 使流体的能量得以提高。当然还有一种液力传动功能的机械( 如液力变矩器、液力耦合器以及流体与流体、流体与固体分离的机械) 也称为流体机械。 水力发电用的水轮机有着100 年以上的历史,一般认为是已

水电站课程设计计算书

水电站厂房课程设计计算书 1.蜗壳单线图的绘制 1.1 蜗壳的型式 根据给定的基本资料和设计依据,电站设计水头Hp=46.2m ,水轮机型号 :HL220-LJ-225。可知采用金属蜗壳。又Hp=46.2m>40m ,满足《水电站》(第4版)P32页对于蜗壳型式选择的要求。 1.2 蜗壳主要参数的选择 金属蜗壳的断面形状为圆形,根据《水电站》(第4版)P35页可知:为了获得良好的水力性能及考虑到其结构和加工工艺条件的限制,一般取蜗壳的包角为0345?=。 通过计算得出最大引用流量m ax Q 值,计算如下: ○ 1水轮机额定出力:15000 156250.96 f r f N N KW η= = = 式中:60000150004 f KW N KW = =,0.96f η=。 ○ 2'31max 3 3 2222115625 1.11 1.159.819.81 2.2546.20.904 r p N Q m s D H η = = =

水轮机的选型设计资料

水轮机的选型设计

水轮机的选型设计 水轮机选型时水电站设计的一项重要任务。水轮机的型式与参数的选择是否合理,对于水电站的功能经济指标及运行稳定性,可靠性都有重要影响。 水轮机选型过程中,一般是根据水电站的开发方式,功能参数,水工建筑物的布置等,并考虑国内外已生产的水轮机的参数及制造厂的生产水平,拟选若干个方案进行技术经济的综合比较,最终确定水轮机的最佳型式与参数。 一:水轮机选型的内容,要求和所需资料 1:水轮机选择的内容 (1)确定单机容量及机组台数。 (2)确定机型和装置型式。 (3)确定水轮机的功率,转轮直径,同步转速,吸出高度及安装高程,轴向水推力,飞逸转速等参数。对于冲击式水轮机,还包括确定射流直径与喷嘴数等。 (4)绘制水轮机的运转综合特性曲线。 (5)估算水轮机的外形尺寸,重量及价格。 wertyp9 ed\结合水轮机在结构、材质、运行等方面的要求,向制造厂提出制造任务书。 2.水轮机选择的基本要求 水轮机选择必须要考虑水电站的特点,包括水能、水文地质、工程地质以及电力系统构成、枢纽布置等方面对水轮机的要求。在几个可能的方案中详细地进行以下几方面比较,从中选择出技术经济综合指标最优的方案。 (1)保证在设计水头下水轮机能发生额定出力,在低于设计水头时机组的受阻容量尽可能小。 (2)根据水电站水头的变化,及电站的运行方式,选择适合的水轮机型式及参数,使电站运行中平均效率尽可能高。 (3)水轮机性能及结构要能够适应电站水质的要求,运行稳定、灵活、可靠,有良好的抗空化性能。在多泥沙河流上的电站,水轮机的参数及过流部件的材质要保证水轮机具有良好的抗磨损,抗空蚀性能。 (4)机组的结构先进、合理,易损部件应能互换并易于更换,便于操作及安装维护。 (5)机组制造供货应落实,提出的技术要求要符合制造厂的设计、试验与制造水平。 (6)机组的最大部件及最重要部件要考虑运输方式及运输可行性。 3.水轮机选型所需要的原始技术材料 水轮机的型式与参数的选择是否合理、是否与水电站建成后的实际情况相吻合,在很大程度上取决于对原始资料的调查、汇集和校核。根据初步设计的深度和广度的要求,通常应具备下述的基本技术资料: (1)枢纽资料:包括河流的水能总体规划,流域的水文地质,水能开发方式,水库的调节性能,水利枢纽布置,电站类型及厂房条件,上下游综合利用的要求,工程的施工方式和规划等情况。还应包括严格分析与核准的水能基本参数,诸如电站的最大水头Hmax、最小水头Hmin,加权平均水头Ha,设计水头Hr,各种特征流量Qmin、Qmax、Qa,典型年(设计水平年,丰水年,枯水年)的水头、流量过程。此外还应有电站的总装机容量,保证出力以及水电站下游水位流量关系曲线。

水轮机计算

水电站作业 水轮机型号及主要参数的选择: 已知某水电站最大水头H max=245m,加权平均水头H av=242.5m,设计水头H r=240m,最小水头H min=235m,水轮机的额定出力为12500kw,水电站的海拔高程为2030m,最大允许吸出高Hs≥-4.0m。 要求: 1、选择两种机型(HL120-38,HL100-40)进行选择。 2、对选择的机型进一步绘制其运转特性曲线,

` (一)水轮机型号的选择 根据题目条件已知要用HL120-38和HL100-40型水轮机进行选择,对比计算分别如下: (二)水轮机主要参数的计算 HL120-38型水轮机方案主要参数的计算 1、转轮直径的计算 1D = 式中: '3112500;240; 380/0.38/r r N kW H m Q L s m s ==== 同时在附表1中查得水轮机模型在限制工况的效率=88.4%M η,由此可初步假定水轮机在该工况的效率为90.4% 将以上各值代入上式得 10.999D m = = 选用与之接近而偏大的标准直径1 1.00D m =。 2、效率修正值的计算 由附表一查得水轮机模型在最优工况下的max =90.5%M η,模型转轮直径10.38M D m =,则原型水轮机的最高效率max η可依下式计算,即 max max =1M ηη-(1- 1(10.93593.5%=--== 考虑到制造工艺水平的情况取11%ε=;由于水轮机所应用的蜗壳和尾水管的型式与模型基本相似,故认为20ε=,则效率修正值η?为: max max 10.9350.9050.010.02M ηηηε?=--=--=

水轮发电机组选型设计_毕业设计

水轮发电机组选型设计 第1章 水轮发电机组选型设计 1.1、机组台数及型号选择 1.1.1、水轮机型式的选择 已知参数 6.25max =H , 8.22min =H , 3.23av =H , MW 200=N 保证出力:MW 35=b N ,利用小时数:h 2225 取设计水头3.23av r ==H H 按我国水轮机的型谱推荐的设计水头与比转速的关系, 混流式水轮机的比转速s n : )(kW m H n s ?=-=-= 394203 .232000 202000 轴流式水轮机的比转速s n : )(4773 .232300 2300kW m H n s ?=== 根据原始资料,适合此水头范围的水轮机类型有轴流式和混流式。 轴流式和混流式水轮机优点: (1)混流式结构紧凑,运行可靠,效率高,能适应很宽的水头范围,是目前应用最广泛的水轮机之一。 (2)轴流式水轮机s n 较高,具有较大的过流能力,轴流转桨式水轮机可在协联方式下运行,在水头、负荷变化时可实现高效率运行 根据表本电站水头变化范围m H 6.25~8.22=查《水电站机电设计手册—水力机械》 选择适合的水轮机有244/260A HL 、503JK 和500ZZ 。三个水轮机参数如下: 转轮型号 推荐使用水头 H(m) 模型转轮直径 1 D cm 最优工况 限制工况 ' 10 n r/mi n ' 10 Q s m /3 η % ' 10 Q s m /3 η % σ 模型试验水头 H(m) 单位飞逸转速' R n 1 (r/min) 水推力系数K HL260/A244 35~60 35 80 1.08 91.7 1.275 86.5 0.15 3 158.7 0.34~0.41 JK503 26 35 135 903 90.8 1800 87 0.63 10 340 0.87 ZZ500 18~30 46 128 0.98 89.5 1.65 86.7 0.585 3 352 0.87 1.1.2、拟订机组台数并确定单机容量 因为设计电站是无调节电站,所以工作容量等于保证出力MW 35=b N 选用混流式机组的单机容量不得超过 MW 8.7745.035 = 选用轴流式机组的单机容量不得超过 MW 10035 .035 = 确定机组台数4台和5台 方案列表如下: 水轮机组选型及台数汇总表

水轮发电机选择

水轮发电机的选择计算 一、 发电机型式的选择 水轮发电机按其轴线位置可分为立式布置和卧式布置两类,大中型机组一般采用立式布置,卧式布置通常用于中小型机组及贯流式机组。本电站采用立式布置,立式布置又分为悬式和伞式两种。悬式布置和伞式布置的适用条件,查参考【2】P 149表3-1,悬式适用于转速大于150/min r ,伞式适用于转速小于150/min r 。因为水轮机的标准转速为166.7r/min ,所以水轮发电机选用悬式布置。水轮发电机的冷却方式采用径向通风密闭式空气循环冷却。 二、 主要尺寸估算 待选水轮发电机的有关参数如下: 发电机型式:悬式 标准转速:166.7r/min 磁极对数:18 外形尺寸计算如下: 1、极距τ 根据统计资料分析,极距与每极的容量关系如下: 42p s K f j =τ cm 参考【2】P 159公式3-2 式中 9 ,,,10~8,:18 ;:); (:本设计中取线速度高的取上限容量大一般为系数磁极对数发电机额定容量j f K P p KVA s = f s =N f /cos &, cos &为功率因数角,取cos &取0.875。 f s =247423/ 0.875=282769KV A 。 4 18 *2282769 *9=τ=84.73 cm

由上求出τ后,尚应校核发电机在飞逸状态下,转子飞逸线速度V f 是否在转子材料允许范围内。 V K V f f = 参考【2】P 160公式3-3 式中 飞逸线速度 秒时在数值上等于极距周当频率转子额定线速度的比值确定与额定转速机组的飞逸转速与水轮机型式有关或按飞逸系数:;/50,:;,:f e f f V f V n n K τ= f K = f n /e n =308.4/166.7=1.85; V =τ=84.73 cm. V K V f f ==1.85*84.73=156.75m /s 查参【2】P 160,转子磁轭的材料用整圆叠片。 2、定子内径i D 计算公式: τπ p D i 2== 3.784*18 *2π =971.43 cm 参考【2】P 160公式3-4 3、定子铁芯长度t l 计算公式: e i f t n CD S l 2= cm 参考【2】P 160公式3-5 式中: 冷却方式为空冷 取表见参考系数定子内径额定转速发电机额定容量,107,53]2[,:); (:);(:); (:6160-?=-C P C cm D rpm n KVA S i e f .7 166*3.4971*107282769 26-?= t l =256.79 cm

水轮机选型

水轮机型号选择 根据已知的水能参数初选水轮机型号 最大工作水头:H max =Z 上max -Z 下min -△h=609.86-573.12-1.732=35 m 最小工作水头:H min =Z 上min -Z 下max -△h=607.78-574.27-1.732=31.77m 平 均 水 头:H a =12 (H max +H min )= 1 2 ×(35.85+31.35)=33.4 m 查水电站机电设备手册根据我国小型反击式水轮机适应范围参考表初选水轮机型号。 初选水轮机型号:HL240-LJ-140 水轮机类型 混流式 转轮型号 HL240 最大水头 35m 最小水头 31.77m 设计水头 33m 出力 3400kw 校核机组的稳定性 水轮机主要参数的计算: HL240-LJ-140型水轮机方案主要参数的计算: 转轮直径计算 Nr=3400/0.95=3368.42kw Hr=33.4m D 1= M Hr Q Nr η23 181.9' (1-3) 式中: Nr-为水轮机的额定出力(kw ) D 1 -为水轮机的转轮直径(m ) ηM -为水轮机的效率 Hr-为设计水头(m ) Q 1′--为水轮机的单位流量(m 3/s ) 由水力机械课本附表1中查得Q 1′=12.4 L/s=1.24m 3/s,同时在附表1中查得

水轮机模型在限制工况下的效率ηM =90.4%,由此可初步假定水轮机在该工况的效率为92.0% 将Nr=3400kw, Q 1′=1.24 m 3/s, Hr=33.4m, ηM =92%得 m D 12.192 .04.3324.181.942 .33682 31=???= 选择与之接近而偏大的标准直径D 1=1.40m 效率的修正值计算 由水力机械课本附表1查得水轮机模型在最优工况下的效率ηMmax =89.6%,模 型转轮直径D 1M =0.46m, 则原型水轮机的最高效率η max ,即: η max =1-(1-η Mmax )5 1 1D D M (1-4) 式中: ηmax --为原型水轮机的最高效率 η Mmax --为水轮机模型在最优工况下的效率 D 1M --为模型转轮直径 (m ) D 1 --为原型转轮直径 (m ) 将η Mmax =91.0% ,D 1M =0.46m, D 1=1.4m 带入得: η Mmax =1-(1-η max )5 1 1D D M =1-(1-0.91)54 .146.0 =92.8% 考虑到制造工艺水平的情况取ε1=1%由于水轮机所应用的蜗壳和尾水管的型式与模型基本相似,故认为ε2=0,则效率修正值Δη为: Δη=ηmax -η Mmax -ε 1 式中: Δη--为效率修正值 ηmax --为原型水轮机的最高效率 η Mmax --为水轮机模型在最优工况下的效率 将ηmax=0.928,ηMmax=0.91,ε1= 0.01带入上式得:

相关主题
文本预览
相关文档 最新文档