当前位置:文档之家› 6.3.5 平面向量数量积的坐标表示

6.3.5 平面向量数量积的坐标表示

6.3.5 平面向量数量积的坐标表示
6.3.5 平面向量数量积的坐标表示

6.3.5 平面向量数量积的坐标表示

学习目标 1.掌握平面向量数量积的坐标表示.2.能够用两个向量的坐标来解决与向量的模、夹角、垂直有关的问题

.

知识点 平面向量数量积的坐标表示

设非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ. 则a ·b

=x 1x 2+y 1y 2

.

(1)若a =(x ,y ),则|a |2=x 2+y 2或|a |=x 2+y 2.

若表示向量a 的有向线段的起点和终点的坐标分别为(x 1,y 1),(x 2,y 2),则a =(x 2-x 1,y 2-y 1),|a |=(x 2-x 1)2+(y 2-y 1)2. (2)a ⊥b ?x 1x 2+y 1y 2=0.

(3)cos θ=a·b |a||b|=x 1x 2+y 1y 2x 21+y 21 x 22+y 22

.

思考 若两个非零向量的夹角满足cos θ<0,则两向量的夹角θ一定是钝角吗? 答案 不一定,当cos θ<0时,两向量的夹角θ可能是钝角,也可能是180°.

1.若a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ?x 1y 2-x 2y 1=0.( × )

2.若两个非零向量的夹角θ满足cos θ>0,则两向量的夹角θ一定是锐角.( × ) 提示 当两向量同向共线时,cos θ=1>0,但夹角θ=0°,不是锐角.

3.两个非零向量a =(x 1,y 1),b =(x 2,y 2),满足x 1y 2-x 2y 1=0,则向量a 与b 的夹角为0°.( × )

4.若向量a =(1,0),b =????

12,12,则|a |=|b |.( × ) 提示 |a |=1,|b |=

????122+????122=22

,显然|a |≠|b |.

一、数量积的坐标运算

例1 已知a =(2,-1),b =(1,-1),则(a +2b )·(a -3b )等于( ) A.10 B.-10 C.3 D.-3 答案 B

解析 a +2b =(4,-3),a -3b =(-1,2),所以(a +2b )·(a -3b )=4×(-1)+(-3)×2=-10.

反思感悟 进行数量积运算时,要正确使用公式a·b =x 1x 2+y 1y 2,并能灵活运用以下几个关系 (1)|a |2=a ·a .

(2)(a +b )·(a -b )=|a |2-|b |2. (3)(a +b )2=|a |2+2a ·b +|b |2.

跟踪训练1 向量a =(1,-1),b =(-1,2),则(2a +b )·a 等于( ) A.-1 B.0 C.1 D.2 答案 C

解析 因为a =(1,-1),b =(-1,2), 所以2a +b =2(1,-1)+(-1,2)=(1,0), 则(2a +b )·a =(1,0)·(1,-1)=1. 二、平面向量的模

例2 已知平面向量a =(3,5),b =(-2,1),求a -2b 及其模的大小. 解 ∵a =(3,5),b =(-2,1),

∴a -2b =(3,5)-2(-2,1)=(3+4,5-2)=(7,3), ∴|a -2b |=72+32=58.

反思感悟 求向量a =(x ,y )的模的常见思路及方法

(1)求模问题一般转化为求模的平方,即a 2=|a|2=x 2+y 2,求模时,勿忘记开方.

(2)a ·a =a 2=|a |2或|a |=a 2=x 2+y 2,此性质可用来求向量的模,可以实现实数运算与向量运算的相互转化.

跟踪训练2 已知向量a =(2,1),a·b =10,|a +b |=52,则|b |等于( ) A. 5 B.10 C.5 D.25 答案 C

解析 ∵a =(2,1),∴a 2=5, 又|a +b |=52,∴(a +b )2=50, 即a 2+2a ·b +b 2=50,

∴5+2×10+b 2=50,∴b 2=25,∴|b |=5. 三、平面向量的夹角、垂直问题

例3 (1)已知|a |=1,b =(0,2),且a ·b =1,则向量a 与b 夹角的大小为( ) A.π6 B.π4 C.π3 D.π2 答案 C

解析 因为|a |=1,b =(0,2),且a ·b =1, 设a 与b 的夹角为θ,

则cos θ=a ·b |a ||b |=11×0+22=1

2.

又因为θ∈[0,π],则θ=π

3.

所以向量a 与b 夹角的大小为π

3

.

(2)设向量m =(2x -1,3),向量n =(1,-1),若m ⊥n ,则实数x 的值为( ) A.-1 B.1 C.2 D.3 答案 C

解析 因为向量m =(2x -1,3),向量n =(1,-1),m ⊥n , 所以m ·n =(2x -1)×1+3×(-1)=2x -1-3=0,解得x =2. 反思感悟 解决向量夹角问题的方法及注意事项

(1)求解方法:由cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22

直接求出cos θ.

(2)注意事项:利用三角函数值cos θ求θ的值时,应注意角θ的取值范围是0°≤θ≤180°.利用cos θ=a ·b

|a ||b |判断θ的值时,要注意cos θ<0时,有两种情况:一是θ是钝角,二是θ为180°;

cos θ>0时,也有两种情况:一是θ是锐角,二是θ为0°.

跟踪训练3 已知向量a =(-1,2),b =(m,1).若向量a +b 与a 垂直,则m =________. 答案 7

解析 ∵a =(-1,2),b =(m,1), ∴a +b =(-1+m,2+1)=(m -1,3). 又a +b 与a 垂直,∴(a +b )·a =0, 即(m -1)×(-1)+3×2=0, 解得m =7.

1.若向量a =(x,2),b =(-1,3),a·b =3,则x 等于( ) A.3 B.-3 C.53 D.-53

答案 A

解析 a·b =-x +6=3,故x =3.

2.已知a =(3,4),b =(5,12),则a 与b 夹角的余弦值为( ) A.6365 B.65 C.13

5 D.13 答案 A

解析|a|=32+42=5,|b|=52+122=13. a·b=3×5+4×12=63.

设a与b的夹角为θ,所以cos θ=63

5×13=

63 65.

3.已知向量a=(1,n),b=(-1,n),若2a-b与b垂直,则|a|等于()

A.1

B. 2

C.2

D.4

答案 C

解析∵(2a-b)·b=2a·b-|b|2

=2(-1+n2)-(1+n2)=n2-3=0,

∴n2=3,∴|a|=12+n2=2.

4.若平面向量a=(1,-2)与b的夹角是180°,且|b|=35,则b等于()

A.(-3,6)

B.(3,-6)

C.(6,-3)

D.(-6,3)

答案 A

解析由题意,设b=λa=(λ,-2λ)(λ<0),

则|b|=λ2+(-2λ)2=5|λ|=35,

又λ<0,∴λ=-3,故b=(-3,6).

5.已知向量a=(x,1),b=(1,-2),且a⊥b,则|a+b|等于()

A. 5

B.10

C.2 5

D.10

答案 B

解析由题意可得a·b=x·1+1×(-2)=x-2=0,解得x=2.

再由a+b=(x+1,-1)=(3,-1),

可得|a+b|=10.

1.知识清单:

(1)平面向量数量积的坐标表示.

(2)a⊥b?x1x2+y1y2=0(a,b为非零向量).

(3)cos θ=

x1x2+y1y2

x21+y21x22+y22

(θ为非零向量a,b的夹角).

2.方法归纳:化归与转化.

3.常见误区:两向量夹角的余弦公式易记错.

1.设向量a =(2,0),b =(1,1),则下列结论中正确的是( ) A.|a |=|b | B.a·b =0 C.a ∥b D.(a -b )⊥b

答案 D

解析 a -b =(1,-1),所以(a -b )·b =1-1=0, 所以(a -b )⊥b .

2.已知a =(3,-1),b =(1,-2),则a 与b 的夹角为( ) A.π6 B.π4 C.π3 D.π2 答案 B

解析 ∵|a |=10,|b |=5,a ·b =5,

∴cos θ=a ·b |a ||b |=510×5=22(θ为a ,b 的夹角).

又∵a ,b 的夹角的范围为[0,π]. ∴a 与b 的夹角为π

4

.

3.已知向量a =(1,2),b =(-1,m ),若a ⊥b ,则m 的值为( ) A.-2 B.2 C.12 D.-1

2

答案 C

解析 因为向量a =(1,2),b =(-1,m ),a ⊥b , 所以a ·b =-1+2m =0,解得m =1

2

.

4.a =(-4,3),b =(5,6),则3|a |2-4a ·b 等于( ) A.23 B.57 C.63 D.83 答案 D

解析 3|a |2-4a ·b =3[(-4)2+32]-4(-4×5+3×6)=83. 5.已知向量a =(1,-2),b =(x,4),且a ∥b ,则|a -b |等于( ) A.5 3 B.3 5 C.2 5 D.2 2 答案 B

解析 因为a ∥b ,所以4+2x =0,所以x =-2, a -b =(1,-2)-(-2,4)=(3,-6), 所以|a -b |=3 5.

6.已知a =(-1,1),b =(1,2),则a ·(a +2b )=________. 答案 4

解析 ∵a +2b =(1,5),∴a ·(a +2b )=4.

7.设向量a =(1,0),b =(-1,m ).若a ⊥(m a -b ),则m =________. 答案 -1

解析 由题意得m a -b =(m +1,-m ),

根据向量垂直的充要条件可得1×(m +1)+0×(-m )=0, 所以m =-1.

8.设向量a =(m,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. 答案 -2

解析 由|a +b |2=|a |2+|b |2,得a ·b =0, 即m +2=0,解得m =-2.

9.已知平面向量a =(1,x ),b =(2x +3,-x )(x ∈R ). (1)若a ⊥b ,求x 的值; (2)若a ∥b ,求|a -b |. 解 (1)∵a ⊥b ,

∴a ·b =0,即1×(2x +3)+x ×(-x )=0, 解得x =-1或x =3.

(2)∵a ∥b ,∴1×(-x )-x (2x +3)=0, 解得x =0或x =-2.

当x =0时,a =(1,0),b =(3,0), ∴a -b =(-2,0),∴|a -b |=2.

当x =-2时,a =(1,-2),b =(-1,2), ∴a -b =(2,-4), ∴|a -b |=2 5. ∴|a -b |=2或2 5.

10.已知a =(1,-1),b =(λ,1),若a 与b 的夹角α为钝角,求实数λ的取值范围. 解 ∵a =(1,-1),b =(λ,1), ∴|a |=2,|b |=1+λ2,a ·b =λ-1. 又∵a ,b 的夹角α为钝角,

∴???

λ-1<0,21+λ2≠1-λ,

即?????

λ<1,λ2+2λ+1≠0.

∴λ<1且λ≠-1.

∴λ的取值范围是(-∞,-1)∪(-1,1).

11.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ等于( ) A.-4 B.-3 C.-2 D.-1 答案 B

解析 因为m +n =(2λ+3,3),m -n =(-1,-1), 由(m +n )⊥(m -n ),

可得(m +n )·(m -n )=(2λ+3,3)·(-1,-1)=-2λ-6=0,解得λ=-3. 12.已知OA →=(-2,1),OB →=(0,2)且AC →∥OB →,BC →⊥AB →

,则点C 的坐标是( ) A.(2,6) B.(-2,-6) C.(2,-6) D.(-2,6)

答案 D

解析 设C (x ,y ),则AC →

=(x +2,y -1), BC →=(x ,y -2),AB →

=(2,1), ∵AC →∥OB →

,∴2(x +2)=0,① ∵BC →⊥AB →

,∴2x +y -2=0,②

由①②可得?

????

x =-2,

y =6,∴C (-2,6).

13.设m =(a ,b ),n =(c ,d ),规定两向量m ,n 之间的一个运算“?”为m ?n =(ac -bd ,ad +bc ),若已知p =(1,2),p ?q =(-4,-3),则q 的坐标为________. 答案 (-2,1)

解析 设q =(x ,y ),则p ?q =(x -2y ,y +2x )=(-4,-3).

∴????? x -2y =-4,y +2x =-3,∴?????

x =-2,

y =1.

∴q =(-2,1). 14.如图所示,在矩形ABCD 中,AB =2,BC =2,点E 在边CD 上,且DE →=2EC →,则AE →·BE →的值是________.

答案

32

9

解析 以A 为原点,AB 所在直线为x 轴、AD 所在直线为y 轴建立如图所示平面直角坐标

系.

∵AB =2,BC =2,

∴A (0,0),B (2,0),C (2,2),D (0,2), ∵点E 在边CD 上,且DE →=2EC →

, ∴E ??

??223,2.∴AE →=????223,2,BE →=???

?

-23,2, ∴AE →·BE →=-49+4=329

.

15.已知向量a =(1,1),b =(1,m ),其中m 为实数,则当a 与b 的夹角在????0,π

12内变动时,实数m 的取值范围是( ) A.(0,1) B.???

?33,3 C.??

?

?

33,1∪(1,3)

D.(1,3)

答案 C

解析 如图,作OA →

=a ,则A (1,1).

作OB 1→,OB 2→,

使∠AOB 1=∠AOB 2=π

12,

则∠B 1Ox =π4-π12=π

6,

∠B 2Ox =π4+π12=π

3,

故B 1?

??

?

1,

33,B 2(1,3).

又a 与b 的夹角不为0,故m ≠1. 由图可知实数m 的取值范围是??

?

?

33,1∪(1,3).

16.已知三个点A (2,1),B (3,2),D (-1,4). (1)求证:AB ⊥AD ;

(2)要使四边形ABCD 为矩形,求点C 的坐标并求矩形ABCD 两条对角线所成的锐角的余弦值.

(1)证明 ∵A (2,1),B (3,2),D (-1,4), ∴AB →=(1,1),AD →

=(-3,3). 又∵AB →·AD →=1×(-3)+1×3=0, ∴AB →⊥AD →

,即AB ⊥AD .

(2)解 ∵AB →⊥AD →

,四边形ABCD 为矩形, ∴DC →=AB →.

设C 点坐标为(x ,y ),则AB →=(1,1),DC →

=(x +1,y -4),

∴????? x +1=1,y -4=1,解得?????

x =0,y =5.

∴C 点坐标为(0,5). 由于AC →=(-2,4),BD →

=(-4,2), ∴AC →·BD →=8+8=16. 又|AC →|=2 5,|BD →

|=2 5, 设AC →与BD →

的夹角为θ, 则cos θ=AC →·BD →|AC →||BD →|

=1620=4

5>0,

∴矩形ABCD 的两条对角线所成的锐角的余弦值为4

5

.

最新25平面向量数量积的坐标表示汇总

25平面向量数量积的 坐标表示

平面向量数量积的坐标表示(1) 教学目的: ⑴要求学生掌握平面向量数量积的坐标表示 ⑵掌握向量垂直的坐标表示的充要条件,及平面内两点间的距离公式。 ⑶能用所学知识解决有关综合问题。 教学重点:平面向量数量积的坐标表示 教学难点:平面向量数量积的坐标表示的综合运用 教学过程: 一、复习引入: 1.两个非零向量夹角的概念 已知非零向量a与b,作?Skip Record If...?=a,?Skip Record If...?=b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角. 2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cosθ叫a与b的数量积,记作a?b,即有a?b = |a||b|cosθ, (0≤θ≤π).并规定0与任何向量的数量积为0。 C 3.向量的数量积的几何意义: 数量积a?b等于a的长度与b在a方向上投影|b|cosθ的乘积。 4.两个向量的数量积的性质: 设a、b为两个非零向量,e是与b同向的单位向量。 1)e?a = a?e =|a|cosθ;2)a⊥b?a?b = 0 3)当a与b同向时,a?b = |a||b|;当a与b反向时,a?b = -|a||b|。 特别的a?a = |a|2或?Skip Record If...? 4)cosθ =?Skip Record If...?;5)|a?b| ≤ |a||b|

5. 平面向量数量积的运算律 交换律:a ? b = b ? a 数乘结合律:(?Skip Record If...?a )?b =?Skip Record If...?(a ?b ) = a ?(?Skip Record If...?b ) 分配律:(a + b )?c = a ?c + b ?c 二、讲解新课: ⒈平面两向量数量积的坐标表示 已知两个非零向量?Skip Record If...?,?Skip Record If...?,试用 ?Skip Record If...?和?Skip Record If...?的坐标表示?Skip Record If...?。 设?Skip Record If...?是?Skip Record If...?轴上的单位向量,?Skip Record If...?是?Skip Record If...?轴上的单位向量,那么 ?Skip Record If...?,?Skip Record If...? 所以?Skip Record If...??Skip Record If...? 又?Skip Record If...?,?Skip Record If...?,?Skip Record If...? 所以?Skip Record If...??Skip Record If...? 这就是说:两个向量的数量积等于它们对应坐标的乘积的和。 即?Skip Record If...??Skip Record If...? 2.平面内两点间的距离公式 (1)设?Skip Record If...?,则?Skip Record If...?或?Skip Record If...?。 (2)如果表示向量?Skip Record If...?的有向线段的起点和终点的坐标分别为?Skip Record If...?、?Skip Record If...?,那么?Skip Record If...?(平面内两点间的距离公式) 3.向量垂直的判定 1)

平面向量数量积

第三节平面向量数量积及应用重点: 1.理解平面向量数量积的含义及其物理意义.了解平面向量的数量积与向量投影的关系. 2.掌握数量积的坐标表达式,会进行平面向量数量积的运算. 3.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系. 4.会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题. 难点: 1.掌握数量积的坐标表达式,会进行平面向量数量积的运算. 2 .会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题. 教学过程: 1.平面向量的数量积 (1)定义:已知两个非零向量a与b,它们的夹角为θ,则数量|a||b|cos__θ叫作a与b的数量积(或内积),记作a·b,即a·b=|a||b|cos__θ,规定零向量与任一向量的数量积为0,即0·a =0. (2)几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积. 2.平面向量数量积的性质及其坐标表示 设向量a=(x1,y1),b=(x2,y2),θ为向量a,b的夹角. (1)数量积:a·b=|a||b|cos θ=x1x2+y1y2. (2)模:|a|=a·a=x21+y21.学-科网 (3)夹角:cos θ=a·b |a||b|= x1x2+y1y2 x21+y21·x22+y22 . (4)两非零向量a⊥b的充要条件:a·b=0?x1x2+y1y2=0. (5)|a·b|≤|a||b|(当且仅当a∥b时等号成立)?|x1x2+y1y2|≤ x21+y21·x22+y22. 3.平面向量数量积的运算律 (1)a·b=b·a(交换律). (2)λa·b=λ(a·b)=a·(λb)(结合律). (3)(a+b)·c=a·c+b·c(分配律).

平面向量的数量积与应用举例专题训练

平面向量的数量积与应用举例专题训练 A组基础题组 1.已知向量a=(2,1),b=(1,m),c=(2,4),且(2a-5b)⊥c,则实数m=( ) A.- B.- C. D. 2.已知向量a=(1,0),|b|=,a与b的夹角为45°,若c=a+b,d=a-b,则c在d方向上的投影为( ) A. B.- C.1 D.-1 3.向量a,b满足|a+b|=2|a|,且(a-b)·a=0,则a,b的夹角的余弦值为( ) A.0 B. C. D. 4.如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O.记 I1=·,I2=·,I3=·,则( ) A.I1

10.已知向量a=(cos x,sin x),b=(3,-∈[0,π]. (1)若a∥b,求x的值; (2)记f(x)=a·b,求f(x)的最大值和最小值以及对应的x的值. B组提升题组 1.已知a、b均为单位向量,且a·b=0.若|c-4a|+|c-3b|=5,则|c+a|的取值范围是( ) A.[3,] B.[3,5] C.[3,4] D.[,5] 2.非零向量m,n的夹角为,且满足|n|=λ|m|(λ>0),向量组x1,x2,x3由一个m和两个n排列而成,向量组 y1,y2,y3由两个m和一个n排列而成,若x1·y1+x2·y2+x3·y3的所有可能值中的最小值为4|m|2,则λ = . 3.在平面直角坐标系xOy中,已知点A(-1,-2),B(2,3),C(-2,-1). (1)求以线段AB,AC为邻边的平行四边形的两条对角线的长; (2)设实数t满足(-t)·=0,求t的值.

第26讲平面向量的数量积及应用

第26讲平面向量的数量积及应用 高三新数学第一轮复习教案〔讲座26〕一平面向量的数量积及应 用 一?课标要求: 1?平面向量的数量积 ①通过物理中"功"等实例,明白得平面向量数量积的含义及其物理意义; ②体会平面向量的数量积与向量投影的关系; ③把握数量积的坐标表达式,会进行平面向量数量积的运算; ④能运用数量积表示两个向量的夹角,会用数量积判定两个平面向量的垂直关系。 2.向量的应用 经历用向量方法解决某些简单的平面几何咨询题、力学咨询题与其他一些实际咨询题的过程,体会向量是一种处理几何咨询题、物理咨询题等的工具,进展运算能力和解决实际咨询题的能力。 二.命题走向 本讲以选择题、填空题考察本章的差不多概念和性质,重点考察平面向量的数量积的概念及应用。重点体会向量为代数几何的结合体,此类题难度不大,分值5~9分。 平面向量的综合咨询题是”新热点〃题型,其形式为与直线、圆锥曲线、三角函数等联系,解决角度、垂直、共线等咨询题,以解答题为主。 推测07年高考: 〔1〕一道选择题和填空题,重点考察平行、垂直关系的判定或夹角、长度咨询题;属于中档题目。 〔2〕一道解答题,可能以三角、数列、解析几何为载体,考察向量的运算和性质;三?要点精讲 1 .向量的数量积 〔1〕两个非零向量的夹角 非零向量a与a,作OA = a , OB = b,那么/ A O A= B〔0 we

2 〔4〕注意在两向量的夹角定义,两向量必须是同起点的,范畴

平面向量的数量积及运算律测试题

平面向量的数量积及运算律同步练习 一、选择题: 1. 若|a |=|b |=1,a ⊥b ,且2a +3b 与k a -4b 也互相垂直,则k 的值为( ) A.-6 B.6 C.3 D.-3 2.若AP 31 = PB ,AB λ=BP ,则λ的值为 ( ) A .41 B .43 C .34 D .3 4- 3.设a 和b 的长度均为6,夹角为 120?,则-|a b|等于 ( ) A .36 B .12 C .6 D .36 4.若| |=2sin15°,| |=4cos375°、 , 夹角为30°,则 · 为( ) A . 2 3 B .3 C .32 D .21 5.若|a |=|b |=|a -b |,则b 与a +b 的夹角为 ( ) A .30° B .60° C .150° D .120° 6.已知向量)sin ,(cos θθ=,向量)1,3(-=则|2|-的最大值,最小值分别( ) A .0,24 B .24,4 C .16,0 D .4,0 7.已知、均为单位向量,它们的夹角为60°,那么|+ 3| = ( ) A .7 B .10 C .13 D .4 8.已知,,为非零的平面向量. 甲:则乙,:,=?=? ( ) A .甲是乙的充分条件但不是必要条件 B .甲是乙的必要条件但不是充分条件 C .甲是乙的充要条件 D .甲既非乙的充分条件也非乙的必要条件 9.已知a 、b 是非零向量且满足(a -2b) ⊥a ,(b -2a ) ⊥b ,则a 与b 的夹角是( ) A .6π B .3π C .32π D .6 5π 10.若向量a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=-,则向量a 的模为( ) A .2 B .4 C .6 D .12 11.设)4 1,cos 1(),cos 1,2(-+=--=θθb a ,且,2 0,||π θ<

平面向量数量积运算专题附答案

. 平面向量数量积运算平面向量数量积的基本运算题型一DCBCEFABCDBAD,,=120°,点的边长为2,∠1 例(1)(2014·天津)已知菱形分别在边→→AFDFAEBCBEDC________. .若λ·上,的值为=3=,1=λ,则→→PBPAPAOPBAB) · (2)已知圆为切点,的半径为1,, 那么为该圆的两条切线,的最小值为,( 2 -43+2 +B.A.-2 3+2C.-4+D.22 -→→→→→OBOAOAABOA________. ·=|=1 变式训练(2015·湖北)已知向量3⊥,则,| 利用平面向量数量积求两向量夹角题型二 22babaababab与+(|,且2-(1)(2015·重庆例2 )若非零向量,则,)⊥(3满足||)=|3的夹 角为( ) ππ3πA. B. C. D.π424πabababab的夹角2-+与=|2,|,则|=32(2)若平面向量与平面向量,的夹角等于|3的余弦值等于( ) 1111A. B.- C. D.-262612121→→→→ABCOAOABACAB与)=(+,则上的三点,若2 变式训练(2014·课标全国Ⅰ)已知,,为圆2→AC的夹角为________. 教育资料. . 利用数量积求向量的模题型三 baababab等于+的夹角为|120°,则|=2,且例3 (1)已知平面向量|2和与,|||=1,) ( B.4 A.2 D.6 5 C.2ABCDADBCADCADBCPDC上的动点,则是腰=,∠1=90°,,=(2)已知直角梯形2中,,∥→→PAPB|的最小值为________. +3|1eeeebbe·.是平面单位向量,且若平面向量·满足变式训练3 (2015·浙江)已知,=beb|=,则=|·________. 112212 =12

平面向量的数量积及其应用

06—平面向量的数量积及其应用 突破点(一) 平面向量的数量积 1.向量的夹角;2.平面向量的数量积;3.平面向量数量积的运算律 平面向量数量积的运算 1.利用坐标计算数量积的步骤 第一步,根据共线、垂直等条件计算出这两个向量的坐标,求解过程要注意方程思想的应用; 第二步,根据数量积的坐标公式进行运算即可. 2.根据定义计算数量积的两种思路 (1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算. (2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义和性质进行计算求解. [典例] (1)设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( ) A .-72 B .-12 C.32 D.52 (2)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且 BE =23 BC , DF =16 DC ,则 AE · AF 的值为________. [解析] (1)a +2b =(-1,2)+2(m,1)=(-1+2m,4),2a -b =2(-1,2)-(m,1)=(-2-m,3),由题意得 3(-1+2m )-4(-2-m )=0,则m =-12,所以b =????-12,1,所以a ·b =-1×????-12+2×1=52. (2)取 BA , BC 为一组基底,则 AE = BE - BA =23 BC - BA , AF = AB + BC + CF =- BA + BC +512 BA =-712 BA + BC ,∴ AE · AF =????23 BC - BA ·????-712 BA + BC =712| BA |2-2518 BA · BC +23| BC |2=712×4-2518×2×1×12+23=2918. [答案] (1)D (2)2918 [易错提醒] (1)解决涉及几何图形的向量数量积运算问题时,一定要注意向量的夹角与已知平面角的关系是相等还是互补.(2)两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不能漏掉其中的“·”. 突破点(二) 平面向量数量积的应用 平面向量的垂直问题 1.第一,计算出这两个向量的坐标; 第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. 2.已知两个向量的垂直关系,求解相关参数的值 根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数. [例1] (1)△ABC 是边长为2的等边三角形,已知向量a ,b 满足 AB =2a , AC =2a +b ,则下列结 论正确的是( ) A .|b |=1 B .a ⊥b C .a ·b =1 D .(4a +b )⊥ BC (2)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A .-92 B .0 C .3 D.152 [解析] (1)在△ABC 中,由 BC = AC - AB =2a +b -2a =b ,得|b |=2,A 错误.又 AB =2a 且| AB |=2,所以|a |=1,所以a ·b =|a ||b |cos 120°=-1,B ,C 错误.所以(4a +b )· BC =(4a +b )·b =4a ·b +|b |2=4×(-1)+4=0,所以(4a +b )⊥ BC , D 正确,故选D. (2)∵(2a -3b )⊥c ,∴(2a -3b )·c =0.∵a =(k,3),b =(1,4),c =(2,1),∴2a -3b =(2k -3,-6). ∴(2k -3,-6)·(2,1)=0,即(2k -3)×2-6=0.∴k =3.[答案] (1)D (2)C [易错提醒] x 1y 2-x 2y 1=0与x 1x 2+y 1y 2=0不同,前者是两向量a =(x 1,y 1),b =(x 2,y 2)共线的充要条件,后者是

6290平面向量的数量积的坐标表示

第十三教时 教材:平面向量的数量积的坐标表示 目的:要求学生掌握平面向量数量积的坐标表示,掌握向量垂直的坐标表示的充要条件。 过程: 一、复习: 1.平面向量的坐标表示及加、减、实数与向量的乘积的坐标表示 2.平面向量数量积的运算 3.两平面向量垂直的充要条件 4.两向量共线的坐标表示: 二、 课题:平面两向量数量积的坐标表示 1.设a = (x 1, y 1),b = (x 2, y 2),x 轴上单位向量i ,y 轴上单位向量j , 则:i ?i = 1,j ?j = 1,i ?j = j ?i = 0 2.推导坐标公式: ∵a = x 1i + y 1j , b = x 2i + y 2j ∴a ?b = (x 1i + y 1j )(x 2i + y 2j ) = x 1x 2i 2 + x 1y 1i ?j + x 2y 1i ?j + y 1y 2j 2 = x 1x 2 + y 1y 2 从而获得公式:a ?b = x 1x 2 + y 1y 2 例一、设a = (5, -7),b = (-6, -4),求a ?b 解:a ?b = 5×(-6) + (-7)×(-4) = -30 + 28 = -2 3.长度、角度、垂直的坐标表示 1?a = (x , y ) ? |a|2 = x 2 + y 2 ? |a | =22y x + 2?若A = (x 1, y 1),B = (x 2, y 2),则=221221)()(y y x x -+- 3? co s θ = | |||b a b a ??2 2 2 22 1 2 12121y x y x y y x x +++= 4?∵a ⊥b ? a ?b = 0 即x 1x 2 + y 1y 2 = 0(注意与向量共线的坐标表示原则) 4.例二、已知A (1, 2),B (2, 3),C (-2, 5),求证:△ABC 是直角三角形。 证:∵=(2-1, 3-2) = (1, 1), = (-2-1, 5-2) = (-3, 3) ∴?=1×(-3) + 1×3 = 0 ∴⊥ ∴△ABC 是直角三角形 三、补充例题:处理《教学与测试》P153 第73课 例三、已知a = (3, -1),b = (1, 2),求满足x ?a = 9与x ?b = -4的向量x 。 解:设x = (t , s ), 由x ?a = 9 ? 3t - s = 9 t = 2 由x ?a = 9 ? 3t - s = 9 s = -3 ∴x = (2, -3) 例四、如图,以原点和A (5, 2)为顶点作等腰直角△OAB ,使∠B = 90?, 求点B 和向量AB 的坐标。 解:设B 点坐标(x , y ),则= (x , y ),= (x -5, y -2) ∵⊥ ∴x (x -5) + y (y -2) = 0即:x 2 + y 2 -5x - 2y = 0 又∵|| = || ∴x 2 + y 2 = (x -5)2 + (y -2)2即:10x + 4y = 29 由??? ?????????= =-==????=+=--+272323272941002522112 2 y x y x y x y x y x 或 ∴B 点坐标)23,27(-或)2 7 ,23(;=)27,23(--或)23,27(- 例五、在△ABC 中,AB =(2, 3),AC =(1, k ),且△ABC 的一个内角为直角, 求k 值。 解:当A = 90?时,?= 0,∴2×1 +3×k = 0 ∴k =2 3 - 当B = 90?时,AB ?BC = 0,BC =AC -AB = (1-2, k -3) = (-1, k -3) ∴2×(-1) +3×(k -3) = 0 ∴k = 3 11 当C = 90?时,AC ?BC = 0,∴-1 + k (k -3) = 0 ∴k =2 13 3± 四、小结:两向量数量积的坐标表示 长度、夹角、垂直的坐标表示 五、作业: P121 练习及习题5.7 《教学与测试》P154 5、6、7、8,思考题 ? A O B

高中数学必修四之知识讲解_平面向量的数量积_基础

平面向量的数量积 【学习目标】 1.理解平面向量数量积的含义及其物理意义; 2.了解平面向量的数量积与向量投影的关系; 3.掌握数量积的坐标表示,会进行平面向量数量积的运算; 4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系; 【要点梳理】 要点一: 平面向量的数量积 1. 平面向量数量积(内积)的定义 已知两个非零向量a 与b ,它们的夹角是θ,则数量cos a b θ叫a 与b 的数量积,记作a b ?,即有 ()cos 0a b a b θθπ?=≤≤.并规定0与任何向量的数量积为0. 2.一向量在另一向量方向上的投影:cos b θ叫做向量b 在a 方向上的投影. 要点诠释: 1. 两个向量的数量积与向量同实数积有很大区别 (1)两个向量的数量积是一个实数,不是向量,符号由cos θ的符号所决定. (2)两个向量的数量积称为内积,写成a b ?;今后要学到两个向量的外积a b ?,而a b ?是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替. (3)在实数中,若0a ≠,且0a b ?=,则0b =;但是在数量积中,若0a ≠,且0a b ?=,不能推出 0b =.因为其中cos θ有可能为0. 2. 投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ=0?时投影为b ;当θ=180?时投影为b -. 要点二:平面向量数量积的几何意义 数量积a b ?表示a 的长度||a 与b 在a 方向上的投影cos b θ的乘积,这是a b ?的几何意义.图(1)(2)(3)所示分别是两向量,a b 夹角为锐角、钝角、直角时向量b 在向量a 方向上的投影的情形,其中 1||cos OB b θ=,它的意义是,向量b 在向量a 方向上的投影是向量1OB 的数量,即11|| a OB OB a =? . 事实上,当θ为锐角时,由于cos 0θ>,所以10OB >;当θ为钝角时,由于cos 0θ<,所以10OB <; 当090θ=时,由于cos 0θ=,所以10OB =,此时O 与1B 重合;当0 0θ=时,由于cos 1θ=,所以

向量数量积专题(总)

平面向量的数量积 【知识点精讲】 一、平面向量的数量积 (1)已知两个非零向量a r 和b r ,记为OA a OB b ==u u u r r u u u r r ,,则)0(πθθ≤≤=∠AOB 叫做向量a r 与b r 的夹角,记作,a b <>r r ,并规定[],0,a b π<>∈r r 。如果a 与b 的夹角是2 π,就称a r 与b r 垂直,记为.a b ⊥r r (2)cos ,a b a b <>r r r r 叫做向量a r 与b r 的数量积(或内积),记作a b ?r r ,即b a ? cos ,a b a b <>r r r r . 规定:零向量与任一向量的数量积为0. 两个非零向量a r 与b r 垂直的充要条件是0.a b ?=r r 两个非零向量a r 与b r 平行的充要条件是.a b a b ?=±r r r r 二、平面向量数量积的几何意义 数量积a b ?r r 等于a r 的长度a r 与b r 在a r 方向上的投影cos b θr 的乘积,即cos a b a b θ ?=r r r r (b r 在a r 方向上的投影为cos a b b a θ?=r r r r );a r 在b r 方向上的投影为 cos .a b a b θ?=r r r r 三、平面向量数量积的重要性质 性质1 cos .e a a e a θ?=?=r r r r r 性质2 0.a b a b ⊥??=r r r r 性质3 当a r 与b r 同向时,a b a b ?=r r r r ;当a r 与b r 反向时,a b a b ?=-r r r r ;22a a a a ?==r r r r 或 a =r 性质4 cos (00)a b a b a b θ?=≠≠r r r r r r r r 且 性质5 a b a b ?≤r r r r 注:利用向量数量积的性质2可以解决有关垂直问题;利用性质3可以求向量长度;利用性质4可以求两向量夹角;利用性质5可解决不等式问题。 四、平面向量数量积满足的运算律 (1)a b b a ?=?r r r r (交换律);

平面向量的数量积及其应用

06—平面向量的数量积及其应用 突破点(一) 平面向量的数量积 1.向量的夹角;2平面向量数量积的运算 1.第一步,根据共线、垂直等条件计算出这两个向量的坐标,求解过程要注意方程思想的应用; 第二步,根据数量积的坐标公式进行运算即可. 2.根据定义计算数量积的两种思路 (1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算. (2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义和性质进行计算求解. [典例] (1)设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( ) A .-72 B .-12 (2)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且BE =23BC ,DF =16 DC ,则AE ·AF 的值为________. [解析] (1)a +2b =(-1,2)+2(m,1)=(-1+2m,4),2a -b =2(-1,2)-(m,1)=(-2-m,3),由题 意得3(-1+2m )-4(-2-m )=0,则m =-12,所以b =? ????-12,1,所以a ·b =-1×? ?? ??-12+2×1=52. (2)取BA ,BC 为一组基底,则AE =BE -BA =23 BC -BA ,AF =AB +BC +CF =-BA +BC +512BA =-712BA +BC ,∴AE ·AF =? ????23 BC -BA ·? ????-712 BA +BC =712 |BA |2-2518BA ·BC +23|BC |2=712×4-2518×2×1×12+23=2918. [答案] (1)D (2)2918 [易错提醒] (1)解决涉及几何图形的向量数量积运算问题时,一定要注意向量的夹角与已知平面角的关系是相等还是互补.(2)两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不能漏掉其中的“·”. 突破点(二) 平面向量数量积的应用 的关系 平面向量的垂直问题 1.第一,计算出这两个向量的坐标; 第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. 2.已知两个向量的垂直关系,求解相关参数的值 根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数. [例1] (1)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB =2a ,AC =2a +b ,则下列结论正确的是( ) A .|b |=1 B .a ⊥b C .a ·b =1 D .(4a +b )⊥BC (2)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A .-92 B .0 C .3 [解析] (1)在△ABC 中,由BC =AC -AB =2a +b -2a =b ,得|b |=2,A 错误.又AB =2a 且|AB |=2,所以|a |=1,所以a ·b =|a ||b |cos 120°=-1,B ,C 错误.所以(4a +b )·BC =(4a +b )·b =4a ·b +|b |2 =4×(-1)+4=0,所以(4a +b )⊥BC ,D 正确,故选D. (2)∵(2a -3b )⊥c ,∴(2a -3b )·c =0.∵a =(k,3),b =(1,4),c =(2,1),∴2a -3b =(2k -3,- 6).

专题二 培优点9 平面向量数量积的最值问题

培优点9 平面向量数量积的最值问题 平面向量部分,数量积是最重要的概念,求解平面向量数量积的最值、范围问题要深刻理解数量积的意义,从不同角度对数量积进行转化. 例 (1)已知AB →⊥AC →,|AB →|=1t ,|AC →|=t ,若点P 是△ABC 所在平面内的一点,且AP →=AB →|AB →|+4AC → |AC →|,则PB →·PC → 的最大值等于( ) A .13 B .15 C .19 D .21 答案 A 解析 建立如图所示的平面直角坐标系,则B ????1t ,0,C (0,t ),AB →=????1t ,0,AC →=(0,t ), AP →=AB →|AB →|+4AC →| AC →|=t ????1t ,0+4t (0,t )=(1,4),∴P (1,4), PB →·PC →=????1t -1,-4· (-1,t -4) =17-????1t +4t ≤17-21t ·4t =13, 当且仅当t =12 时等号成立. ∴PB →·PC →的最大值等于13. (2)如图,已知P 是半径为2,圆心角为π3 的一段圆弧AB 上的一点,若AB →=2BC →,则PC →·P A →的最小值为________. 答案 5-213 解析 以圆心为坐标原点,平行于AB 的直径所在直线为x 轴,AB 的垂直平分线所在的直线为y 轴,建立平面直角坐标系(图略),则A (-1,3),C (2,3),

设P (2cos θ,2sin θ)????π3≤θ≤2π3, 则PC →·P A →=(2-2cos θ,3-2sin θ)·(-1-2cos θ,3-2sin θ)=5-2cos θ-43sin θ=5-213sin(θ+φ), 其中0

求解平面向量数量积的三种方法

龙源期刊网 https://www.doczj.com/doc/372481234.html, 求解平面向量数量积的三种方法 作者:谢伟杰 来源:《读写算》2018年第34期 摘要梅州市高一数学质量抽测题第11题是一道关于平面向量数量积的考题,这道考题引起了笔者的注意。此题很好地考察了学生对数量积概念的理解,也能很好地考察学生对求解平面向量数量积的方法是否掌握到位。 关键词平面向量数量积;解法 中图分类号:O241.7 文献标识码:A 文章编号:1002-7661(2018) 34-0211-01 做题中的“少运算”是建立在对基本概念理解的基础之上的,学生只有对相关的概念、性质有深刻的理解,而不是纯粹的记公式或套方法,才能在做题中真正实现“多思考,少运算”。教师在教学中,要帮助学生去认识相关知识点的核心及实质,而不是认为学生只要能记住相关的公式或会套用某类方法解题就行,否则,在具体的问题情境中,学生极容易在公式与计算中迷失,从而找不到解决问题的有效途径。 一、原题呈现 已知是边长为的等边三角形,点,分别是边,的中点,连接并延长到点,使得,则 的值为() 二、解法展示与对比 解法一:如图1, 解法二:如图2,以点为坐标原点,为轴正方向,建立如图所示的直角坐标系。则,, 解法三:如图3,点在上的投影为点,作點在上的投影,则在是的投影为,由向量数量积的含义可知,易得与相似,所以,又,所以,即 . 故 作为选择题,解法三有明显的优点,即我们只需将在上的投影作出,对图中线段的长度作大致估计,就可迅速判断只有选项才是合理的。笔者认为这样并不是投机取巧,恰恰相 反,在考场上会做这样的思考,并采取此策略的学生,说明该生对数量积的概念有更深刻的理解,并有更好的思维能力。这与高考命题中所提倡的“多思考,少运算”的理念也是一致的。

专题03 “三法”解决平面向量数量积问题(第二篇)-2019年高考数学压轴题命题区间探究与突破(解析

一.方法综述 平面向量的数量积是高考考查的重点、热点,往往以选择题或填空题的形式出现.常常以平面图形为载体,借助于向量的坐标形式等考查数量积、夹角、垂直的条件等问题;也易同三角函数、解析几何等知识相结合,以工具的形式出现.由于命题方式灵活多样,试题内容活泼、新颖,因此,在高考试卷中备受青睐,是一个稳定的高频考点.解决这类问题有三种基本方法:投影法、基底法和坐标法.“三法”的准确定位应是并举!即不应人为地、凭主观划分它们的优劣,而应具体问题具体分析. 本专题举例说明解答解决平面向量数量积问题的方法、技巧. 二.解题策略 类型一投影定义法 【例1】【2018届河南省中原名校高三上第一次考评】已知P是边长为2的正△ABC边BC上的动点,则·(+)=_________. 【答案】6 【解析】设BC的中点为D,则AD⊥BC, 【指点迷津】

1、数量积与投影的关系(数量积的几何定义): 向量,a b 数量积公式为cos a b a b θ?=,可变形为()cos a b a b θ?=?或() cos a b b a θ?=?,进而与向量投影找到联系 (1)数量积的投影定义:向量,a b 的数量积等于其中一个向量的模长乘以另一个向量在该向量上的投影,即a b a b b λ→?=?(记a b λ→为a 在b 上的投影) (2)投影的计算公式:由数量积的投影定义出发可知投影也可利用数量积和模长进行求解: a b a b b λ→?= 即数量积除以被投影向量的模长 2、数量积投影定义的适用范围:作为数量积的几何定义,通常适用于处理几何图形中的向量问题 (1)图形中出现与所求数量积相关的垂直条件,尤其是垂足确定的情况下(此时便于确定投影),例如:直角三角形,菱形对角线,三角形的外心(外心到三边投影为三边中点)学科&网 (2)从模长角度出发,在求数量积的范围中,如果所求数量积中的向量中有一个模长是定值,则可以考虑利用投影,从而将问题转化为寻找投影最大最小的问题 【举一反三】 已知圆M 为直角三角形ABC 的外接圆,OB 是斜边AC 上的高,且6,22AC OB ==,AO OC <,点P 为线段OA 的中点,若DE 是 M 中绕圆心M 运动的一条直径,则PD PE ?=_________ M C A O B P D E Q 【答案】-5 【解析】思路:本题的难点在于DE 是一条运动的直径,所以很难直接用定义求解.考虑到DE 为直径,所以延长EP 交圆M 于Q ,即可得DQ QE ⊥,则PD 在PE 上的投影向量为PQ .所求 PD PE PE PQ ?=-?,而由PE PQ ?联想到相交弦定理,从而PE PQ AP PC ?=?.考虑与已知条 件联系求出直径AC 上的各段线段长度.由射影定理可得:2 8AO CO OB ?==,且

平面向量的数量积运算

考点71 平面向量的数量积运算 1.(13天津T12)在平行四边形ABCD 中, AD = 1, 60BAD ?∠=, E 为CD 的中点. 若1AC BE = , 则AB 的长为 . 【测量目标】向量的线性运算,平面向量的数量积运算. 【难易程度】简单 【参考答案】 12 【试题解析】用,AB AD 表示AC 与BE ,然后进行向量的数量积运算. 由已知得AC =AD AB + ,12 BE BC CE AD AB =+=- , ∴AC BE =221122 AD AB AD AB AD AB -+- 211122AB AD AB =+- 2111cos 60122AB AD AB ? =+-= ,(步骤1) ∴1 2 AB = .(步骤2) jxq59 2.(13新课标Ⅰ T13)已知两个单位向量,a b 的夹角为60 ,c =t a +(1-t )b 若b c =0,则t =__________. 【测量目标】平面向量的数量积. 【难易程度】容易 【参考答案】2t = 【试题解析】∵c =t a +(1-t )b ,∴b c =t a b +(1-t )|b |2.(步骤1) 又∵|a |=|b |=1,且a 与b 夹角为60 ,b ⊥c ,∴0=t |a | |b |cos 60 +(1-t ), 0= 1 2 t +1-t .∴t =2.(步骤2) 3.(13江西T12)设1e ,2e 为单位向量.且1e ,2e 的夹角为π 3 ,若123=+a e e ,12=b e ,则向量a 在b 方向上的射影为 ___________. 【测量目标】平面向量的数量积运算. 【难易程度】容易 【参考答案】 52

6.3.5 平面向量数量积的坐标表示

6.3.5 平面向量数量积的坐标表示 【学习目标】 1.掌握平面向量数量积的坐标表示及其运算.(重点) 2.会运用向量的坐标运算求解向量垂直、夹角等相关问题.(难点) 3.分清向量平行与垂直的坐标表示.(易混点) 4.能用向量方法证明两角差的余弦公式.(重点) 【核心素养】 1.通过平面向量数量积的坐标表示,培养数学运算和数据分析的核心素养. 2.借助向量的坐标运算求向量的夹角、长度以及论证垂直问题,提升逻辑推理和数学运算的核心素养. 【自主学习】 一、设计问题,创设情境 问题1:在平面直角坐标系中,设i,j分别是x轴和y轴方向上的单位向量,a=(3,2),b=(2,1),则a·b的值为多少?a·b的值与a,b的坐标有怎样的关系?若a=(x1,y1),b =(x2,y2),则a·b为多少? 二、学生探索、尝试解决 问题2; 若a=(x, y),则|a|2=x2+y2,或|a|=√x2+y2, 如果表示向量a的有向线段的起点和终点的坐标分别为(x1,y1) ,(x2,y2) ,那你能用坐标表示出|a|吗? 问题3; 设a=(x1,y1),b=(x2, y2),若a⊥b,你能得到什么? 问题4; 设a,b都是非零向量,a=(x1,y1),b=(x2, y2),θ是a与b的夹角,根据向量数量积的定义及坐标表示你能得到什么

三、运用规律,解决问题 例1.若点 A(1, 2) , B(2, 3) , C(-2, 5),则△ABC是什么形状?证明你的猜想。例2 设a=(3, -1) ,b=(1, -2) ,.求a·b及a,b的夹角θ 例3用向量方法证明两角差的余弦公式 cos(α?β)=cosαcosβ+sinαsinβ

平面向量的数量积习题(精品绝对好)

平面向量的数量积(20131119)作业 姓名 成绩 A 组 专项基础训练 一、选择题(每小题5分,共20分) 1. (2012·辽宁)已知向量a =(1,-1),b =(2,x ),若a ·b =1,则x 等于 ( ) A .-1 B .-1 2 C.12 D .1 2. (2012·重庆)设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |等于( ) A. 5 B.10 C .2 5 D .10 3. 已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( ) A.???? 79,73 B.????-73,-79 C.????73,79 D.????-79 ,-7 3 4. 在△ABC 中,AB =3,AC =2,BC =10,则AB →·AC → 等于 ( ) A .-3 2 B .-23 C.23 D.3 2 二、填空题(每小题5分,共15分) 5.已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________. 6.在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=________. 7. 已知a =(2,-1),b =(λ,3),若a 与b 的夹角为钝角,则λ的取值范围是__________. 三、解答题(共22分) 8. (10分)已知a =(1,2),b =(-2,n ) (n >1),a 与b 的夹角是45°. (1)求b ; (2)若c 与b 同向,且a 与c -a 垂直,求c . 9. (12分)设两个向量e 1、e 2满足|e 1|=2,|e 2|=1,e 1、e 2的夹角为60°,若向量2t e 1+7e 2与向量e 1+t e 2的 夹角为钝角,求实数t 的取值范围.

相关主题
文本预览
相关文档 最新文档