当前位置:文档之家› 数值分析习题六解答

数值分析习题六解答

数值分析习题六解答
数值分析习题六解答

习 题 六 解 答

1、在区间[0,1]上用欧拉法求解下列的初值问题,取步长h=0.1。

(1)210(1)(0)2y y y '?=--?=?(2)sin (0)0x y x e y -'?=+?=?

解:(1)取h=0.1,本初值问题的欧拉公式具体形式为

21(1)(0,1,2,)n n n y y y n +=--=

由初值y 0=y(0)=2出发计算,所得数值结果如下: x 0=0,y 0=2;

x 1=0.1,2100(1)211y y y =--=-= x 2=0.2,2211(1)101y y y =--=-= 指出:

可以看出,实际上求出的所有数值解都是1。 (2)取h=0.1,本初值问题的欧拉公式具体形式为

21(sin )(0,1,2,)n x n n n y y h x e n -+=++=

由初值y 0=y(0)=0出发计算,所得数值结果如下: x 0=0,y 0=0; x 1=0.1,

02

1000

(sin )00.1(sin 0)00.1(01)0.1x y y h x e e -=++=+?+=+?+=

x 2=0.2,

122110.1

(sin )0.10.1(sin 0.1)0.10.1(0.10.9)0.2

x y y h x e e --=++=+?+=+?+=

指出:

本小题的求解过程中,函数值计算需要用到计算器。

2、用欧拉法和改进的欧拉法(预测-校正法)求解初值问题,取步长h=0.1。

22(00.5)

(0)1

y x y x y '?=-≤≤?

=? 解:(1) 取h=0.1,本初值问题的欧拉公式具体形式为

2

1(2)(0,1,2,)n n n n y y h x y n +=+-=

由初值y 0=y(0)=1出发计算,所得数值结果如下:

x 0=0,y 0=1;

x 1=0.1,2

2100

0(2)10.1(021)0.8y y h x y =+-=+?-?= x 2=0.2,222111(2)0.80.1(0.120.8)0.641y y h x y =+-=+?-?=

(2)由预测校正公式11(,)

[(,)(,)]2n n n n n n n n y hf x y h

y f x y f x y ++?=+?

?=++??n+1n+1y y , 取h=0.1,本初值问题的预测-校正公式的具体形式为

12

22

10.1(2)0.05[(2)(2)]

n

n n n n n n n y x y y x y x y ++?=+?-??=+-+-??n+1n+1y y 由初值y 0=y(0)=1出发计算,所得数值结果如下: x 0=0,y 0=1; x 1=0.1,

2000220001120.1(2)0.8,0.05[(2)(2)]10.05[(02)(0.120.8]0.8205y x y y x y x y =+?-==+?-+-=+?-+-?=11y y

x 2=0.2,

2111222

11122220.1(2)

0.82050.1(0.120.8205)0.6574

0.05[(2)(2)]

0.82050.05[(0.120.8205)(0.220.0.6574]0.6752

y x y y x y x y =+?-=+?-?==+?-+-=+?-?+-?=22y y

3、试导出解一阶常微分方程初值问题

000

(,)

()

()y f x y x a x b y x y '==≤≤??

=?

的隐式欧拉格式

111(,)(0,1,2,)n n n n y y hf x y n +++=+=

并估计其局部截断误差。

解:在区间[x n ,x n+1]上对常微分方程y /(x)=f(x,y)两端同时积分,得

1

1(,())n n

x n n x y y f x y x dx ++-=?

由右矩形公式得

1

11(,())(,)n n

x n n x f x y x dx hf x y +++≈?

所以有差分格式

111(,)(0,1,2,)n n n n y y hf x y n +++=+=

这是所谓隐式欧拉公式。

对于隐式欧拉法111(,)(0,1,2,)n n n n y y hf x y n +++=+= 假定y n =y(x n ),上式右边的y n +1=y(x n +1),则

111111(,)()(,())()()n n n n n n n n n y y hf x y y x hf x y x y x hy x ++++++'=+=+=+

将y /(x n +1) 按泰勒公式展开,上式为 11()()

()()

()[()()]

n n n n n n n n y y x hy x y x hy x h y x h y x hy x ++'=+'=++'''=+++ 将y(x n +1)按泰勒公式展开,得

123

()()

()()()()2!3!

n n n n n n y x y x h h h y x hy x y x y x +=+''''''=+++

+

两式相减,得

23

112

3()[()()()()]()[()()]

2!3!

()()

2!

n n n n n n n n n n h h y x y y x hy x y x y x y x h y x hy x h y x O h ++'''''''''-=++++

--++

''=-+即

2

311()()()2!

n n n h y x y y x O h ++''-=-+

所以,

211()()n n y x y O h ++-=

指出:

可以用多种方法导出,其中差商法、数值积分方法是简单的方法。 4、验证改进的欧拉公式对任何不超过二次的多项式

2y ax bx c =++

准确成立,并说明理由。

分析:①本题所说的改进的欧拉法,是指梯形公式

111((,)(,))2

i i i i i i h

y y f x y f x y +++=++。

②在初值问题000

(,)

()

()y f x y x a x b y x y '==≤≤??

=?中,y 是解函数。

③本题要证明的是,如果解函数是2y ax bx c =++,则用梯形公式求出的数值解n y 等于相应的解函数的函数值()n y x ,而2()n n n y x ax bx c =++,即要证明

2n n n y ax bx c =++。

④为了证明结论成立,先建立求解格式。

⑤注意,2y ax bx c =++,所以(,)2f x y y ax b '==+。 解:因为2y ax bx c =++ 所以2y ax b

y ex f ''=+=+。

记()f x ex f =+,设,0,1,2,i x ih i =

=

改进的欧拉公式为

1

1110((,)(,))2

(()())(0,1,2,)2i i i i i i i

i i h y y f x y f x y h y ex f ex f i y c ++++?=++??

?=++++=??

=???

将上式对i 从0到n -1求和并利用初值条件得

1

1011

100221

11

000

2210

(()())2()((1))22(1)((1))2

21(2)(2(1))222(n n i i i n n i i i i n n n i i i n i h

y ex f ex f c

eh eh x x nfh c ih i h nfh c eh eh i i nfh c i i nfh c eh eh i n nfh c n n n nfh c e nh -+=--+==---===-==++++=+++=++++=++++=++++=+++=?-+++=∑∑∑∑∑∑∑2222)1()221

2

n n n n fnh c e nh fnh c

ex fx c ax bx c ++=++=++=++

则2()n n n n y ax bx c y x =++=

所以,改进的欧拉法对任何不超过二次的多项式

2y ax bx c =++

准确成立。 指出:

通过累加,把递推关系变成了函数关系。 5、对于初值问题

2(01)

(0)1

y xy x y '?=≤≤?

=? 试用(1)欧拉法;(2)改进的欧拉法;(3)四阶经典龙格-库塔法分别求解,并比较之,取0.2h =。

解:(1)取0.2h =,本初值问题的欧拉公式具体形式为

2

1(0,1,2,)n n n n y y hx y n +=+=

由初值y 0=y(0)=1出发计算,所得数值结果如下: x 0=0,y 0=1;

x 1=0.2,2110.2011y =+??= x 2=0.4,2210.20.21 1.04y =+??=

x 2=0.6,23 1.040.20.4 1.04 1.126528y =+??=

(2)由预测校正公式11(,)[(,)(,)]2n n n n n n n n y hf x y h

y f x y f x y ++?=+?

?=++??n+1n+1y y , 取0.2h =,本初值问题的预测-校正公式的具体形式为

12

22

1[]2

n

n n n n n n n y hx y h y x y x y ++?=+?

?=++??n+1n+1y y 由初值y 0=y(0)=1出发计算,所得数值结果如下: x 0=0,y 0=1; x 1=0.2,

00120022220011

0.2[]1[010.21] 1.02

22y hx y h y x y x y =+==++=+?+?=11y y x 2=0.4,

11222112222

1121.020.20.2 1.02 1.061616

0.2[] 1.02[0.2 1.020.4 1.061616] 1.085752

22

y hx y h y x y x y =+=+??==++=+?+?=22y y (3) 四阶经典龙格-库塔公式为

1

123411223

43(22)6

(,)(,)22(,)22

(,)i i i i i i

i i i i h y y k k k k k f x y hk h k f x y hk h k f x y k f x h y hk +?=++++??

=???

=++??

?

=++??=++?? 在本题中,2(,)f x y xy =, 取0.2,(0)1h y ==,计算得

2

10000221120000

2222300002243003(,)00.20(,)()()(0)(1)0.1

2222220.20.20.1(,)()()(0)(1)0.10201222222(,)()()(00.2)(10.20.10201)i i k f x y x y hk hk h h k f x y x y hk hk h h k f x y x y k f x h y hk x h y hk ====++=++=++=?=++

=++=++==++=++=++?1012340.208240.2(22)1(020.120.102010.20824) 1.0204166h y y k k k k ??

????

??

?=?

?=++++=+?+?+?+=??

6、用经典四阶龙格-库塔方法求下列初值问题的数值解。

(1)31(0)1(01,0.2)

y

y x

y x h ?'=

?+??=≤≤=?(2)23(1)1(12,0.2)y x x y y x h '?=+?=≤≤=? 解(1)四阶经典龙格-库塔公式为

1

123411223

43(22)6

(,)(,)22(,)22

(,)i i i i i i i i i i h y y k k k k k f x y hk h k f x y hk h k f x y k f x h y hk +?

=++++??

=???

=++

??

?

=++??=++?? 在本题中,3(,)1y

f x y x

=

+, 取0.2,(0)1h y ==,计算得

7、选取参数p 、q ,使得下列公式

1111(,)

i i i i k f x ph y qhk y y hk +=++??

=+? 具有二阶精度。 解:

112121(,)

(,)(,)(,)()()(,)(,)()i i i i x i i y i i i x i i y i i k f x ph y qhk f x y phf x y qhk f x y O h y x phf x y qhk f x y O h =++=+++'=+++ 所以

2121(1(,))()(,)()()(,)

()

1(,)

y i i i x i i i x i i y i i qhf x y k y x phf x y O h y x phf x y k O h qhf x y '-=++'+?=

+-

311()(,)

()1(,)

i x i i i i i y i i y x phf x y y y hk y h

O h qhf x y +'+=+=++-

而y(x i+1)泰勒展开得

2

312

3()()()()()

2

()()((,)(,))()

2

i i i i i i x i i y i i h y x y x hy x y x O h h

y x hy x f x y f x y y O h +'''=+++''=++++ …… 指出:

显然,两个式子不能逐项对比。实际上,11(,)i i k f x ph y qhk =++不形成递推而形成循环,本题应为错题。

7*、选取参数p 、q ,使得下列公式

1211

2(,)(,)i i i i i i k f x y k f x ph y qhk y y hk

+=??

=++??=+? 具有二阶精度。

解:因为1(,)()i i i k f x y y x '==

21212(,)

(,)(,)(,)()()(,)()(,)()i i i i x i i y i i i x i i i y i i k f x ph y qhk f x y phf x y qhk f x y O h y x phf x y qhy x f x y O h =++=+++''=+++ 则

12

2223(()(,)()(,)())()(,)()(,)()i i i i x i i i y i i i i x i i i y i i y y hk y h y x phf x y qhy x f x y O h y hy x ph f x y qh y x f x y O h +=+''=++++''=++++ 而y(x i+1)泰勒展开得

2

3122

3()()()()()

2

()()(,)(,)()

22

i i i i i i x i i y i i h y x y x hy x y x O h h h

y x hy x f x y f x y y O h +'''=+++''=++++ 比较上面两个关系式,如果三项相等,此方法是二阶数值方法,此时

1

2

p q ==

。 8、用亚当姆斯预报-校正系统求解初值问题

1(01)

(0)0

dy

y x dx

y ?=-≤≤???=? 取步长h=0.1计算。

解:四阶的亚当姆斯预测—校正系统为

11231111112

111(5559379)24(,) (9195)

24(,)i i i i i i i i i i i i i i i i i i h y y y y y y y f x y h y y y y y y y f x y +---+++++--+++?

''''=+-+-??

'?

?

?''''=++-+??'?

预测:=校正:= 解:将(,)1,0.1y f x y y h '==-=,代入预报-校正系统得 预报:

11230.1

(245559379)24

i i i i i i y y y y y y +---=+?--+-+ 校正:

11120.1

(249195)24

i i i i i i y y y y y y ++--''''=+

?--+- 用龙格-库塔法先求出123,,y y y ,再用亚当姆斯预测-校正法计算得

补充题(一)

1、用欧拉公式求解初值问题

0.9(01)12(0)1

y y x x y ?'=-≤≤?

+?

?=? 当x 取步长为h=0.02,用欧拉公式解初值问题0,0.02,0.04,…,0.10时的解。 2、取步长为h=0.2,用欧拉公式解初值问题

2(00.6)

(0)1

y y xy x y '?=--≤≤?

=?。 答 案

1. 解:将0.9

(,)12f x y y x

=-+代入欧拉公式,得本初值问题的欧拉公式的具体形式为:

10.9

12n n n n y y h

y x +=-+0.018112n n y x ??=- ?+??

,(0,1,2,3,4,5n =) 取0.02h =由初值y 0=y(0)=0出发计算,所得数值结果如下: 用欧拉公式求解的计算结果

事实上,利用变量分离法,很容易求得该初值问题的准确解为:0.45()(12)y x x -=+

表中()n y x 的第一列就是精确解()y x 在n x x =处的值。()n n

y x y -表示n y 的局部截

断误差,从表中可以看出,随着n 的增大,()n n

y x y -的值也在增大。所以,欧拉

公式虽然计算简便,对一些问题有一定的使用价值,但是它的误差较大,所得的

数值解精度较低。

2. 解:将2

(,)f x y y xy =--代入欧拉公式,得本初值问题的欧拉公式的具

体形式为:

2

1(,)0.2()n n n n n n n n y y hf x y y y x y +=+=+--

2

0.80.2n n n y x y =-

取步长为h=0.2由初值y 0=y(0)=1出发计算,所得数值结果如下:

221000(0.2)0.80.20.810.2010.8y y y x y ≈=-=?-??=

222111(0.4)0.80.20.80.80.20.20.80.6144y y y x y ≈=-=?-??=

223222(0.6)0.80.20.80.61440.20.40.61440.4613

y y y x y ≈=-=?-??=

补充题(二)

1、证明对任意的参数t ,如下的龙格-库塔方法是二阶的。

1

231

2131()2

(,)

(,)((1),(1))

n n n n n n n n h y y k k k f x y k f x th y thk k f x t h y t hk +?

=++???=??=++?=+-+-?? 分析与解答

1、证明:

因为1(,)()n n n k f x y y x '==

21212(,)

(,)(,)(,)()()(,)()(,)()n n n n x n n y n n n x n n n y n n k f x th y thk f x y thf x y thk f x y O h y x thf x y thy x f x y O h =++=+++''=+++ 31212((1),(1))

(,)(1)(,)(1)(,)()()(1)(,)(1)()(,)()

n n n n x n n y n n n x n n n y n n k f x t h y t hk f x y t hf x y t hk f x y O h y x t hf x y t hy x f x y O h =+-+-=+-+-+''=+-+-+

12322

22

3()

2(()(,)()(,)()

2()(1)(,)(1)()(,)())()(,)()(,)()

22

n n n n x n n n y n n n x n n n y n n n n x n n n y n n h

y y k k h

y y x thf x y thy x f x y O h y x t hf x y t hy x f x y O h h h y hy x f x y y x f x y O h +=++''=++++''++-+-+''=++++

而y(x n+1)泰勒展开得

2

312

3()()()()()

2

()()((,)(,))()

2

n n n n n n x n n y n n h y x y x hy x y x O h h

y x hy x f x y f x y y O h +'''=+++''=++++ 比较上面两个关系式,前三项总相等。

所以,无论t 取何值,此龙格-库塔法总是二阶数值方法。

数值分析典型习题

特别声明:考试时需带计 算器作辅助计算 1.2015x *=是经四舍五入得到的近似值,则其相对误差* r e ≤-31 104 ?. 2. 01(),(), ,()n l x l x l x 是以01,, ,n x x x 为节点的拉格朗日插值基函数,则 3.设(0)1(1)3(2)4(3)2f =,f =,f =,f =,[0123]f =,,,1 3 - . 4. 利用Simpson 公式求?2 1 2dx x = 7.3 5. 设求积公式1 0()d (),(1)n k k k f x x A f x n ≈≥∑?=是Gauss 型求积公式,则3 n k k k A x == ∑1 .4 6. 数值微分公式(2)(2) ()i i i f x h f x h f x h +≈ --'的截断误差为 2().O h 7. 设1101A ?? = ??? ,则A 的谱半径()A ρ= 1 ,A 的条件数1cond ()A = 4. 8. 用牛顿下山法求解方程3 03 x x -=根的迭代公式是 2 13 3(1),3n n n n x x x x x λ+-=-- 下山条件是 1()().n n f x f x +< 9.对任意初始向量(0)x 及任意向量f ,线性方程组的迭代公式(1)()(0,1,2,)k k k +=+=x Bx f ,迭代序列()k x 收敛于方程组的精确解x *的充分必要条件是()1.ρ

最新第六章习题答案-数值分析

第六章习题解答 2、利用梯形公式和Simpson 公式求积分2 1 ln xdx ? 的近似值,并估计两种方法计算值的最大 误差限。 解:①由梯形公式: 21ln 2 ()[()()][ln1ln 2]0.3466222 b a T f f a f b --= +=+=≈ 最大误差限 3''2 ()111 ()()0.0833******** T b a R f f ηη-=-=≤=≈ 其中,(1,2)η∈ ②由梯形公式: 13()[()4()()][ln14ln()ln 2]0.38586262 b a b a S f f a f f b -+= ++=++≈ 最大误差限 5(4)4()66 ()()0.0021288028802880 S b a R f f ηη-=-=≤≈, 其中,(1,2)η∈。 4、推导中点求积公式 3''()()()()() ()224 b a a b b a f x dx b a f f a b ξξ+-=-+<

数值分析试题及答案汇总

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位 有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当 系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收 敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。 12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差 r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。 13. 在非线性方程f (x )=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且f (x )

数值分析典型例题

第一章典型例题 例3 ln2=0.…,精确到10-3的近似值是多少 解 精确到10-3=,即绝对误差限是=, 故至少要保留小数点后三位才可以。ln2 第二章典型例题 例1 用顺序消去法解线性方程组 ??? ??1 -=4+2+4=+2+31 -=4++2321 321321x x x x x x x x x 解 顺序消元 ?? ?? ??????---???→???????????---????→???????????--=-?+-?+-?+1717005.555.00141 25.025.105.555.001412142141231412]b A [)3()2/1()2/3(231312r r r r r r M 于是有同解方程组 ?? ? ??-==--=++17175.555.0142332321x x x x x x 回代得解 x 3=-1, x 2=1,x 1=1,原线性方程组的解为X =(1,1,-1)T 例2 取初始向量X (0)=(0,0,0)T ,用雅可比迭代法求解线性方程组 ??? ??5 =+2+23=++1=2-2+321 321321x x x x x x x x x 解 建立迭代格式 ???????+--=+--=++-=+++5223122) (2)(1)1(3 ) (3)(1)1(2 ) (3)(2)1(1k k k k k k k k k x x x x x x x x x (k =1,2,3,…)

第1次迭代,k =0 X (0)=0,得到X (1)=(1,3,5)T 第2次迭代,k =1 ???????-=+?-?-=-=+--==+?+?-=3 532123 351515232)2(3) 2(2)2(1x x x X (2)=(5,-3,-3)T 第3次迭代,k =2 ???????=+-?-?-==+---==+-?+-?-=1 5)3(2521 3)3(511)3(2)3(2)2(3) 3(2)3(1x x x X (3)=(1,1,1)T 第4次迭代,k =3 ???????=+?-?-==+--==+?+?-=1 512121 311111212)2(3) 2(2)2(1x x x X (4)=(1,1,1)T 例4 证明例2的线性方程组,雅可比迭代法收敛,而高斯-赛德尔迭代法发散。 证明 例2中线性方程组的系数矩阵为 A =?? ?? ? ?????-122111221 于是 D =?? ?? ??????100010001 D -1=D ??????????=022001000L ~ ????? ?????-=000100220U ~ 雅可比迭代矩阵为

数值分析习题与答案

第一章绪论 习题一?1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。 解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有 已知x*的相对误差满足,而 ,故 即 2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。 解:直接根据定义和式(1.2.2)(1.2.3)则得?有5位有效数字,其误差限,相对误差限 有2位有效数字, 有5位有效数字, 3.下列公式如何才比较准确? (1)?(2) 解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。

(1)?(2) 4.近似数x*=0.0310,是 3 位有数数字。 5.计算取,利用 :式计算误差最小。 四个选项: 第二、三章插值与函数逼近 习题二、三 1. 给定的数值表 用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newto n插值,并应用误差估计(5.8)。线性插值时,用0.5及0.6两点,用Newton插值??误差限 ,因,

故? 二次插值时,用0.5,0.6,0.7三点,作二次Newton插值 ?误差限,故? 2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h应取多少? 解:用误差估计式(5.8), ?令 因?得 3. 若,求和.

解:由均差与导数关系 ?于是 4. 若互异,求 的值,这里p≤n+1. 解:,由均差对称性 可知当有?而当P=n +1时 ?于是得 5. 求证. 解:解:只要按差分定义直接展开得 ? 6. 已知的函数表

数值分析课后题答案

数值分析 第二章 2.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20 ()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23 537623 l x l x x x x x x x =-+=---+ -+= +- 6.设,0,1,,j x j n =L 为互异节点,求证: (1) 0()n k k j j j x l x x =≡∑ (0,1,,);k n =L (2) ()()0n k j j j x x l x =-≡∑ (0,1,,);k n =L 证明 (1) 令()k f x x = 若插值节点为,0,1,,j x j n =L ,则函数()f x 的n 次插值多项式为0 ()()n k n j j j L x x l x == ∑。

插值余项为(1)1() ()()()()(1)! n n n n f R x f x L x x n ξω++=-= + 又,k n ≤Q (1)()0 ()0 n n f R x ξ+∴=∴= 0()n k k j j j x l x x =∴=∑ (0,1,,);k n =L 0 000 (2)()() (())()()(()) n k j j j n n j i k i k j j j i n n i k i i k j j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑ 0i n ≤≤Q 又 由上题结论可知 ()n k i j j j x l x x ==∑ ()()0 n i k i i k i k C x x x x -=∴=-=-=∑原式 ∴得证。 7设[]2 (),f x C a b ∈且()()0,f a f b ==求证: 21 max ()()max ().8 a x b a x b f x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为 10 101010 ()() ()x x x x L x f x f x x x x x --=+-- =() ()x b x a f a f b a b x a --=+-- 1()()0()0 f a f b L x ==∴=Q 又

数值分析典型习题资料

数值分析典型习题

特别声明:考试时需带计 算器作辅助计算 1.2015x *=是经四舍五入得到的近似值,则其相对误差* r e ≤ -31 104 ?. 2. 01(),(),,()n l x l x l x L 是以01,,,n x x x L 为节点的拉格朗日插值基函数,则 3.设(0)1(1)3(2)4(3)2f =,f =,f =,f =,[0123]f =,,,1 3 - . 4. 利用Simpson 公式求?2 1 2dx x = 7.3 5. 设求积公式1 0()d (),(1)n k k k f x x A f x n ≈≥∑?=是Gauss 型求积公式,则3 n k k k A x == ∑1 .4 6. 数值微分公式(2)(2) ()i i i f x h f x h f x h +≈ --'的截断误差为 2().O h 7. 设1101A ?? = ??? ,则A 的谱半径()A ρ= 1 ,A 的条件数1cond ()A = 4. 8. 用牛顿下山法求解方程3 03 x x -=根的迭代公式是 2 13 3(1),3n n n n x x x x x λ+-=-- 下山条件是 1()().n n f x f x +< 9.对任意初始向量(0)x 及任意向量f ,线性方程组的迭代公式(1)()(0,1,2,)k k k +=+=L x Bx f ,迭代序列()k x 收敛于方程组的精确解x *的充分必要条件是()1.ρ

华南理工大学数值分析试题-14年下-C

华南理工大学研究生课程考试 《数值分析》试卷C (2015年1月9日) 1. 考前请将密封线内各项信息填写清楚; 所有答案请按要求填写在本试卷上; 课程代码:S0003004; 4. 考试形式:闭卷; 5. 考生类别:硕士研究生; 本试卷共八大题,满分100分,考试时间为150分钟。 一、(12分)解答下列问题: 1)设近似值0x >,x 的相对误差为δ,试证明ln x 的绝对误差近似为δ。 2)利用秦九韶算法求多项式 542()681p x x x x x =-+-+ 在3x =时的值(须写出计算形式),并统计乘法次数。 (12分)解答下列问题: 1)设()235f x x =+,求[]0,1,2f 和[]0,1,2,3f 。 2)利用插值方法推导出恒等式: 33220,0[]j j i i x j i x i j =≠=-=-∑∏ 。

(1)设{}∞ =0)(k k x q 是区间[]1,0上带权1=ρ而最高次项系数为1的正交多项式族,其中1)(0=x q ,求1()q x 和2()q x 。 (2)求形如2y a bx =+的经验公式,使它与下列数据拟合: 四、(14分)对积分()10I f x dx = ?,试 (1)构造一个以012113,,424 x x x ===为节点的插值型求积公式; (2)指出所构造公式的代数精度; (3)用所得数值求积公式计算积分1 203x dx ?的精确值; (4)指出所得公式与一般的Newton-Cotes 型公式在形式上的重要区别。

(1)设?? ????=4321A ,计算1A 、()Cond A ∞和()A ρ。 (2)用列主元Gauss 消去法解方程组: 12312315410030.112x x x ????????????=????????????-?????? 六、(13分)对2阶线性方程组 11112212112222 a x a x b a x a x b +=??+=? (11220a a ≠ ) (1)证明求解此方程组的Jacobi 迭代与Gauss-Seidel 迭代同时收敛或同时发散; (2)当同时收敛时,试比较它们的收敛速度。

数值分析试题及答案

一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4 2. 已知求积公式 ()()2 1 121 1()(2)636f x dx f Af f ≈ ++? ,则A =( ) A . 16 B .13 C .12 D .2 3 3. 通过点 ()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( ) A . ()00l x =0, ()110l x = B . ()00l x =0, ()111l x = C .() 00l x =1,()111 l x = D . () 00l x =1,()111 l x = 4. 设求方程 ()0 f x =的根的牛顿法收敛,则它具有( )敛速。 A .超线性 B .平方 C .线性 D .三次 5. 用列主元消元法解线性方程组 1231231 220223332 x x x x x x x x ++=?? ++=??--=? 作第一次消元后得到的第3个方程( ). A . 232 x x -+= B .232 1.5 3.5 x x -+= C . 2323 x x -+= D . 230.5 1.5 x x -=- 单项选择题答案 1.A 2.D 3.D 4.C 5.B 得 分 评卷人 二、填空题(每小题3分,共15分)

1. 设T X )4,3,2(-=, 则=1||||X ,2||||X = . 2. 一阶均差 ()01,f x x = 3. 已知3n =时,科茨系数()()() 33301213,88C C C ===,那么 () 33C = 4. 因为方程()420 x f x x =-+=在区间 []1,2上满足 ,所以()0f x =在区间 内有根。 5. 取步长0.1h =,用欧拉法解初值问题 ()211y y y x y ?'=+?? ?=? 的计算公式 . 填空题答案 1. 9和29 2. ()() 0101 f x f x x x -- 3. 1 8 4. ()()120 f f < 5. ()12 00.1 1.1,0,1,210.11k k y y k k y +???? ?=+? ?=+???? =??L 得 分 评卷人 三、计算题(每题15分,共60分) 1. 已知函数 21 1y x = +的一组数据: 求分 段线性插值函数,并计算 () 1.5f 的近似值. 计算题1.答案 1. 解 []0,1x ∈, ()1010.510.50110x x L x x --=?+?=---% []1,2x ∈,()210.50.20.30.81221x x L x x --=?+?=-+--%

数值分析典型例题

第一章典型例题 例3…,精确到10-3的近似值是多少? 解 精确到10-3=,即绝对误差限是?=, 故至少要保留小数点后三位才 可以。ln2? 第二章典型例题 例1 用顺序消去法解线性方程组 解 顺序消元 于是有同解方程组 回代得解 x 3=-1, x 2=1,x 1=1,原线性方程组的解为X =(1,1,-1)T 例2 取初始向量X (0)=(0,0,0)T ,用雅可比迭代法求解线性方程组 解 建立迭代格式 ??? ????+--=+--=++-=+++5223122)(2)(1)1(3) (3)(1)1(2 )(3)(2)1(1k k k k k k k k k x x x x x x x x x (k =1,2,3,…) 第1次迭代,k =0 X (0)=0,得到X (1)=(1,3,5)T 第2次迭代,k =1 X (2)=(5,-3,-3)T 第3次迭代,k =2 X (3)=(1,1,1)T 第4次迭代,k =3

X (4)=(1,1,1)T 例4 证明例2的线性方程组,雅可比迭代法收敛,而高斯-赛德尔迭 代法发散。 证明 例2中线性方程组的系数矩阵为 A =?? ?? ? ?????-122111221 于是 D =?? ?? ??????100010001 D -1 =D ?? ?? ? ?????=022001000L ~ ?? ?? ? ?????-=000100220U ~ 雅可比迭代矩阵为 B 0=?? ?? ? ?????--=??????????-??????????-=+--022101220022101220100010001)U ~L ~(D 1 得到矩阵B 0的特征根03,2,1=λ,根据迭代基本定理4,雅可比迭代法收敛。 高斯-赛德尔迭代矩阵为 G =-U ~ )L ~D (1-+ =-?? ?? ??????----=??????????-??????????---=??????????-??????????-2003202200001002201200110010001002201220110011 解得特征根为?1=0,?2,3=2。由迭代基本定理4知,高斯-赛德尔迭代发散。 例5 填空选择题: 1. 用高斯列主元消去法解线性方程组 作第1次消元后的第2,3个方程分别为 。

数值分析整理版试题及答案

数值分析整理版试题及答案

例1、 已知函数表 x -1 1 2 ()f x -3 0 4 求()f x 的Lagrange 二次插值多项式和Newton 二次插值多项式。 解: (1)k x -1 1 2 k y -3 0 4 插值基函数分别为 ()()()()()()()()()() 1200102121()1211126 x x x x x x l x x x x x x x ----= ==-------- ()()()()()()()() ()()021******* ()1211122x x x x x x l x x x x x x x --+-= ==-+---+- ()()()()()()()()()()0122021111 ()1121213 x x x x x x l x x x x x x x --+-= ==-+--+- 故所求二次拉格朗日插值多项式为 () ()()()()()()()()()()2 20 2()11131201241162314 121123537623k k k L x y l x x x x x x x x x x x x x ==?? =-? --+?-+-+?+-????=---++-=+-∑ (2)一阶均差、二阶均差分别为

[]()()[]()()[][][]010********* 011201202303 ,11204 ,412 3 4,,5 2,,126 f x f x f x x x x f x f x f x x x x f x x f x x f x x x x x ---===-----= = =----=== --- k x ()k f x 一阶 二阶 -1 -3 1 0 3/ 2 2 4 4 5/6 故所求Newton 二次插值多项式为 ()()[]()[]()() ()()()20010012012,,,35 311126537623P x f x f x x x x f x x x x x x x x x x x x =+-+--=-+ +++-=+- 例2、 设2 ()32f x x x =++,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{} span 1,x Φ=的最佳平方逼近多项式。 解: 若{}span 1,x Φ=,则0()1x ?=,1()x x ?=,且()1x ρ=,这样,有

数值分析典型例题

数值分析典型例题 例1 对下列各数写出具有5位有效数字的近似值。236.478, 0.00234711, 9.000024, 9.0000343 10?. 解:按照定义,以上各数具有5位有效数字的近似值分别为:236.478, 0.0023471, 9.0000, 9.0000310?。 注意: *x =9.000024的5位有效数字是9.0000而不是9,因为9 是1位有效数字。 例2 指出下列各数具有几位有效数字。2.0004, -0.00200, -9000, 9310?, 23 10-?。 解:按照定义,以上各数的有效数字位数分别为5, 3, 4,1,1 例3 已测得某物体行程* s 的近似值s=800m ,所需时间* s 的近似值为t=35s ,若已知m s s s t t 5.0||,05.0||**≤-≤-,试求平均速度v 的绝对误差和相对误差限。 解:因为t s v /=,所以)()(1)()()(2t e t s s e t t e t v s e s v v e -=??+??≈ 从 而 05.00469.035 800 5.0351|)(||||)(|1|)(|22≤≈+?≤+≤t e t s s e t v e 同样v v e v e r )()(≈)()()()(t e s e t e v t t v s e v s s v r r r -=??+??= 所以00205.035 05 .08005.0|)(||)(||)(|≈+≤+≤t e s e v e r r r 因此绝对误差限和相对误差限分别为0.05和0.00205。 例4试建立积分20,,1,05 =+=n dx x x I n n 的递推关系,并研究它的误差 传递。 解:151 --= n n I n I ……………………………………………..…...(1) 5ln 6ln 0-=I ,计算出0I 后可通过(1)依次递推计算出1I ,…,20I 。 但是计算0I 时有误差0e ,由此计算出的1I ,…,20I 也有误差,由(1)可 知近似值之间的递推关系为 151 --= n n I n I ……………………………………………….…..(2) (1)-(2)可得 01)5(5e e e n n n -=-=-,由0I 计算n I 时误差被放大了n 5倍。所以(1)不稳 定。 (1) 可以改写为 n I I n n 51 511+ -=- ……………………………………… (3) 如果能先求出20I ,则依次可以求出19I ,…,0I ,计算20I 时有误差,这样根据(3)计算19I ,…,0I 就有误差,误差传播为 n n n e e ?? ? ??-=-511 ,误差依次减少。 例5 用二分法求解方程012)(23=+--=x x x x f 在区间[0,1]内的1个实根,要求有3为有效数字。 解:因为0)1()0(

数值分析习题集及答案Word版

数值分析习题集 (适合课程《数值方法A 》和《数值方法B 》) 长沙理工大学 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字27.982). 8. 当N 充分大时,怎样求2 1 1N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对 误差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算6 1)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?

数值分析第四版习题及答案

第四版 数值分析习题 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字. 8. 当N 充分大时,怎样求 2 11N dx x +∞ +? ? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±秒的误差,证明当t 增加时S 的绝对误 差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 ln(ln(x x =- 计算,求对数时误差有多大?

数值分析习题

习题一 1.1 求下列各数的具有四位有效数字的近似值, 并指出其绝对误差限和相对误差限 )1.0ln(,121,101 1,1014321== = = x x x x 1.2 下列各数都是对准确值进行四舍五入得到的近似值, 指出它们的绝对误差限、相对误差限和有效数字的位 数。 3 * 5* 4* 3* 2* 1100.5,5000,50.31,3015.0,0315.0?=====x x x x x 1.3 为了使 3 1的近似值的相对误差不超过0.1%, 问应取几位有效数字? 1.4 怎样计算下列各题才能使得结果比较精确? (1) x x sin )sin(-+ε,其中ε充分小 (2) ? ++1 2 1N N x dx ,其中N 是充分大的正数 (3) x x sin cos 1-,其中x 充分小 (4) o 1cos 1- (5) 1001.0-e (6) )11010ln(84-- 1.5 求方程01562=+-x x 的两个根, 使至少具有四位有效数字。 习题二 2.1 证明方程043 =-+x x 在区间[1,2]内有且仅有一个根。如果用二分法求它具有五位有效数字的根,试问需对 分多少次?(不必求根) 2.2 用二分法求方程0134 =+-x x 在[0.3, 0.4]内的一个根, 精度要求2 10 2 1-?= ε。 2.3 找出下列方程的有根区间,选择适当的初始点用二分法求方程的根,精度要求2 10 -=ε。 (1) 02 =--x x ; (2) 06cos 2 =-++-x e x x ; (3) 01tan =--x x ; (4) 0sin 2=--x e x 。 2.4 考虑方程032 =-x e x ,将其改写为3 x e x ± =,取00=x ,用两种迭代公式迭代,分别收敛到1.0和-0.5附 近的两个根(取精度要求3 10-=ε)。

数值分析试题1

数值分析试卷1 一、填空题(每空2分,共30分) 1. 近似数231.0=*x 关于真值229.0=x 有____________位有效数字; 2. 设)(x f 可微,求方程)(x f x =根的牛顿迭代格式是_______________________________________________; 3. 对1)(3++=x x x f ,差商=]3,2,1,0[f _________________; =]4,3,2,1,0[f ________; 4. 已知??? ? ??-='-=1223,)3,2(A x ,则=∞||||Ax ________________,=)(1A Cond ______________________ ; 5. 求解线性方程组?????=+=+045 11532121x x x x 的高斯—赛德尔迭代格式为_______________________________________;该迭代格式迭代矩阵的谱半径=)(G ρ_______________; 二、(12分)(1)设LU A =,其中L 为下三角阵,U 为单位上三角阵。已知 ?????? ? ??------=2100121001210012A ,求L ,U 。 (2)设A 为66?矩阵,将A 进行三角分解:LU A =,L 为单位下三角阵,U 为上三角阵,试写出L 中的元素65l 和U 中的元素56u 的计算公式。 三、给定数据表如下 x 0.20.40.60.81 1.2f(x)212523202124 (1) 用三次插值多项式计算f ( 0.7 ) 的近似值; (2) 用二次插值多项式计算f ( 0.95 ) 的近似值: (3) 用分段二次插值计算 f ( x ) )2.12.0(≤≤x 的近似值能保证有几位有

数值分析试题及答案

数值分析试题及答案 一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为的近似数具有()和()位有效数字. A.4和3 B.3和2 C.3和4 D.4和4 2. 已知求积公式,则=() A. B.C.D. 3. 通过点的拉格朗日插值基函数满足() A.=0,B.=0, C.=1,D.=1, 4. 设求方程的根的牛顿法收敛,则它具有()敛速。 A.超线性B.平方C.线性D.三次 5. 用列主元消元法解线性方程组作第一次消元后得到的第3个方程(). A.B. C.D. 单项选择题答案 1.A 2.D 3.D 4.C 5.B 得分评卷 人 二、填空题(每小题3分,共15分) 1. 设, 则, . 2. 一阶均差 3. 已知时,科茨系数,那么 4. 因为方程在区间上满足,所以在区间内有根。 5. 取步长,用欧拉法解初值问题的计算公式.填空题答案

1. 9和 2. 3. 4. 5. 得分评卷 人 三、计算题(每题15分,共60分) 1. 已知函数的一组数据:求分段线性插值函数,并计算的近似值. 计算题1.答案 1. 解, , 所以分段线性插值函数为 2. 已知线性方程组 (1)写出雅可比迭代公式、高斯-塞德尔迭代公式; (2)对于初始值,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算(保留小数点后五位数字). 计算题2.答案 1.解原方程组同解变形为 雅可比迭代公式为 高斯-塞德尔迭代法公式 用雅可比迭代公式得 用高斯-塞德尔迭代公式得 3. 用牛顿法求方程在之间的近似根 (1)请指出为什么初值应取2? (2)请用牛顿法求出近似根,精确到0.0001. 计算题3.答案

数值分析教案

数值分析教案 土建学院 工程力学系 2014年2月 一、课程基本信息 1、课程英文名称:Numerical Analysis

2、课程类别:专业基础课程 3、课程学时:总学时32 4、学分:2 5、先修课程:《高等数学》、《线性代数》、《C 语言》 6、适用专业:工程力学 二、课程的目的与任务: 数值分析是工程力学专业的重要理论基础课程,是现代数学的一个重要分支。其主要任务是介绍进行科学计算的理论方法,即在计算机上对来自科学研究和工程实际中的数学问题进行数值计算和分析的理论和方法。通过本课程的学习,不仅使学生初步掌握数值分析的基本理论知识,而且使学生具备一定的科学计算的能力、分析问题和解决问题的能力,为学习后继课程以及将来从事科学计算、计算机应用和科学研究等工作奠定必要的数学基础。 三、课程的基本要求: 1.掌握数值分析的常用的基本的数值计算方法 2.掌握数值分析的基本理论、分析方法和原理 3.能利用计算机解决科学和工程中的某些数值计算应用问题,增强学生综合运用知识的能力 4.了解科学计算的发展方向和应用前景 四、教学内容、要求及学时分配: (一) 理论教学: 引论(2学时) 第一讲(1-2节) 1.教学内容: 数值分析(计算方法)这门课程的形成背景及主要研究内容、研究方法、主要特点;算法的有关概念及要求;误差的来源、意义、及其有关概念。数值计算中应注意的一些问题。 2.重点难点: 算法设计及其表达法;误差的基本概念。数值计算中应注意的一些问题。3.教学目标: 了解数值分析的基本概念;掌握误差的基本概念:误差、相对误差、误差限、相对误差限、有效数字;理解有效数字与误差的关系。学会选用相对较好的数值计算方法。

数值分析 第六章 习题

第六章 习 题 1. 计算下列矩阵的1A ,2A ,A ∞三种范数。 (1)1101A ???=????,(2)312020116A ????=??????? . 2. 用Jacobi 方法和Gauss-Seidel 迭代求解方程组 1231231 238322041133631236x x x x x x x x x ?+=??+?=??++=? 要求取(0)(0,0,0)T x =计算到(5)x ,并分别与精确解(3,2,1)T x =比较。 3. 用Gauss-Seidel 迭代求解 12312312 35163621122x x x x x x x x x ??=??++=???+=?? 以(0)(1,1,1)T x =?为初值,当(1)() 310k k x x +?∞?<时,迭代终止。 4. 已知方程组121122,2,x x b tx x b +=?? +=? (1)写出解方程组的Jacobi 迭代矩阵,并讨论迭代收敛条件。 (2)写出解方程组的Gauss-Seidel 迭代矩阵,并讨论迭代收敛条件. 5. 设有系数矩阵 122111221A ?????=?????? , 211111112B ?????=??????? , 证明:(1)对于系数矩阵A ,Jacobi 迭代收敛,而Gauss-Seidel 迭代不收敛. (2)对于矩阵B ,. 6. 讨论方程组 112233302021212x b x b x b ?????????????=??????????????????? 用Jacobi 迭代和Gauss-Seidel 迭代的收敛性;如果都收敛,比较哪种方法收敛更快.

相关主题
文本预览
相关文档 最新文档