当前位置:文档之家› 隔热保温材料导热系数影响因素

隔热保温材料导热系数影响因素

隔热保温材料导热系数影响因素
隔热保温材料导热系数影响因素

影响导热材料导热系数

一:材料类型隔热材料(绝热材料)类型不同,导热系数不同。隔热材料的物质构成不同,其物理热性能也就不同;隔热机理存有区别,其导热性能或导热系数也就各有差异。即使对于同一物质构成的隔热材料,内部结构不同,或生产的控制工艺不同,导热系数的差别有时也很大。对于孔隙率较低的固体隔热材料,结晶结构的导热系数最大,微晶体结构的次之,玻璃体结构的最小。但对于孔隙率高的隔热材料,由于气体(空气)对导热系数的影响起主要作用,固体部分无论是晶态结构还是玻璃态结构,对导热系数的影响都不大。

二:工作温度温度对各类绝热材料导热系数均有直接影响,温度提高,材料导热系数上升。因为温度升高时,材料固体分子的热运动增强,同时材料孔隙中空气的导热和孔壁间的辐射作用也有所增加。但这种影响,在温度为0-50℃范围内并不显著,只有对处于高温或负温下的材料,才要考虑温度的影响。

三:含湿比率绝大多数的保温绝热材料都具有多孔结构,容易吸湿。材料吸湿受潮后,其导热系数增大。当含湿率大于5%-10%时,导热系数的增大在多孔材料中表现得最为明显。这是由于当材料的孔隙中有了水分(包括水蒸气)后,孔隙中蒸汽的扩散和水分子的运动将起主要传热作用,而水的导热系数比空气的导热系数大20倍左右,故引起其有效导热系数的明显升高。如果孔隙中的水结成了冰,冰的导热系数更大,其结果使材料的导热系数更加增大。所以,非憎水型隔热材料在应用时必须注意防水避潮。

四:孔隙特征在孔隙率相同的条件下,孔隙尺寸越大,导热系数越大;互相连通型的孔隙比封闭型孔隙的导热系数高,封闭孔隙率越高,则导热系数越低。

五:容重大小容重(或比重、密度)是材料气孔率的直接反映,由于气相的导热系数通常均小于固相导热系数,所以保温隔热材料往往都具有很高的气孔率,也即具有较小的容重。一般情况下,增大气孔率或减少容重都将导致导热系数的下降。但对于表观密度很小的材料,特别是纤维状材料,当其表观密度低于某一极限值时,导热系数反而会增大,这是由于孔隙率增大时互相连通的孔隙大大增多,从而使对流作用得以加强。因此这类材料存在一个最佳表观密度,即在这个表观密度时导热系数最小。

六:材料粒度常温时,松散颗粒型材料的导热系数随着材料粒度的减小而降低。粒度大时,颗粒之间的空隙尺寸增大,其间空气的导热系数必然增大。此外,粒度越小,其导热系数受温度变化的影响越小。

七:热流方向导热系数与热流方向的关系,仅仅存在于各向异性的材料中,即在各个方向上构造不同的材料中。纤维质材料从排列状态看,分为方向与热流向垂直和纤维方向与热流向平行两种情况。传热方向和纤维方向垂直时的绝热性能比传热方向和纤维方向平行时要好一些。一般情况下纤维保温材料的纤维排列是后者或接近后者,同样密度条件下,其导热系数要比其它形态的多孔质保温材料的导热系数小得多。对于各向异性的材料(如木材等),当热流平行于纤维方向时,受到阻力较小;而垂直于纤维方向时,受到的阻力较大。以松木为例,当热流垂直于木纹时,导热系数为0.17w/(m·K),平行于木纹时,导热系数为0.35W/(m·K)。气孔质材料分为气泡类固体材料和粒子相互轻微接触类固体材料两种。具有大量或无数多开口气孔的隔热材料,由于气孔连通方向更接近于与传热方向平行,因而比具有大量封闭气孔材料的绝热性能要差一些。

八:填充气体隔热材料中,大部分热量是从孔隙中的气体传导的。因此,隔热材料的热导率在很大程度上决定于填充气体的种类。低温工程中如果填充氦气或氢气,可作为一级近似,认为隔热材料的热导率与这些气体的热导率相当,因为氦气和氢气的热导率都比较大。

九:比热容热导率=热扩散系数×比热×密度。在热扩散系数和密度条件相同的情况下,比热越大,导热系数越高。隔热材料的比热对于计算绝热结构在冷却与加热时所需要冷量(或热量)有关。在低温下,所有固体的比热变化都很大。在常温常压下,空气的质量不超过隔热材料的5%,但随着温度的下降,气体所占的比重越来越大。因此,在计算常压下工作的隔热材料时,应当考虑这一因素。对于常用隔热材料而言,上述各项因素中以表观密度和湿度的影响最大。因而在测定材料的导热系数时,必须同时测定材料的表观密度。至于湿度,对于多数隔热材料可取空气相对湿度为80%一85%时材料的平衡湿度作为参考状态,应尽可能在这种湿度条件下测定材料的导热系数。

十:真空热传导的方式有三种:对流、传导和辐射。其中对流方式导热为最重要的。通过真空阻绝了对流导热系数就大大的降低了,原理就像是热水瓶一样。而作为骨架的填充材料可能会通过传导方式导热,所以采用导热系数低的玻璃纤维做骨架。外表加上铝膜包装袋对辐射进行阻隔。所以这种材料是导热系数最小的。

导热系数、传热系数、热阻值概念及热工计算方法(简述实用版)

导热系数、传热系数、热阻值概念及热工计算方法 导热系数λ[W/(m.k)]: 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,℃),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处的K可用℃代替)。导热系数可通过保温材料的检测报告中获得或通过热阻计算。 传热系数K [W/(㎡?K)]: 传热系数以往称总传热系数。国家现行标准规范统一定名为传热系数。传热系数K值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,℃),1小时内通过1平方米面积传递的热量,单位是瓦/平方米?度(W/㎡?K,此处K可用℃代替)。传热系数可通过保温材料的检测报告中获得。 热阻值R(m.k/w): 热阻指的是当有热量在物体上传输时,在物体两端温度差与热源的功率之间的比值。单位为开尔文每瓦特(K/W)或摄氏度每瓦特(℃/W)。 传热阻: 传热阻以往称总热阻,现统一定名为传热阻。传热阻R0是传热系数K的倒数,即R0=1/K,单位是平方米*度/瓦(㎡*K/W)围护结构的传热系数K值愈小,或传热阻R0值愈大,保温性能愈好。 (节能)热工计算: 1、围护结构热阻的计算 单层结构热阻:R=δ/λ 式中:δ—材料层厚度(m);λ—材料导热系数[W/(m.k)] 多层结构热阻: R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn 式中: R1、R2、---Rn—各层材料热阻(m.k/w) δ1、δ2、---δn—各层材料厚度(m) λ1、λ2、---λn—各层材料导热系数[W/(m.k)] 2、围护结构的传热阻 R0=Ri+R+Re 式中: Ri —内表面换热阻(m.k/w)(一般取0.11) Re —外表面换热阻(m.k/w)(一般取0.04) R —围护结构热阻(m.k/w) 3、围护结构传热系数计算 K=1/ R0 式中: R0—围护结构传热阻 外墙受周边热桥影响条件下,其平均传热系数的计算 Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3) 式中:Km—外墙的平均传热系数[W/(m.k)] Kp—外墙主体部位传热系数[W/(m.k)]

影响绝热材料导热系数的主要因素.

影响绝热材料导热系数的主要因素 1、温度 温度对各类绝热材料导热系数均有直接影响,温度提高,材料导热系数上升。 2、含湿率 所有的保温材料都具有多孔结构,容易吸湿。当含湿率大于5%~10%,材料吸湿后湿份占据了原被空气充满的部分气孔空间,引起其有效导热系数明显升高。 3、容重 容重是材料气孔率的直接反映,由于气相的导热系数通常均小于固相导热系数,所以保温材料都具有很大的气孔率即很小的容重。一般情况下,增大气孔或减少容重都将导致导热系数的下降。 4、松散材料的粒度 常温时,松散材料材料的导热系数随着材料粒度减小而降低,粒度大时,颗粒之间的空隙尺寸增大,其间空气的导热系数必然增大。粒度小者,导热系数的温度系数小。 5、热流方向 导热系数与热流方向的关系,仅仅存在于各向异性的材料中,即在各个方向上构造不同的材料中。传热方向和纤维方向垂直时的绝热性能比传热方向和纤维方向平行时要好一些;同样,具有大量封闭气孔的材料的绝热性能也比具大有开口气孔的要好一些。 气孔质材料又进一步分成固体物质中有气泡和固体粒子相互轻微接触两种。纤维质材料从排列状态看,分为方向与热流向垂直和纤维方向与热流向平行两种情况,

一般情况下纤维保温材料的纤维排列是后者或接近后者,同样密度条件一,其导热系数要比其它形态的多孔质保温材料的导热系数小得多。 6、填充气体的影响 绝热材料中,大部分热量是从孔隙中的气体传导的。因此,绝热材料的热导率在很大程度上决定于填充气体的种类。低温工程中如果填充氦气或氢气,可作为一级近似,认为绝热材料的热导率与这些气体的热导率相当,因为氦气或氢气的热导率都比较大。 7、比热容 绝热材料的比热容对于计算绝热结构在冷却与加热时所需要冷量(或热量有关。在低温下,所有固体的比热容变化都很大。 在常温常压下,空气的质量不超过绝热材料的5%,但随着温度的下降,气体所占的比重越来越大。因此,在计算常压下工作的绝热材料时,应当考虑这一因素。 8、线膨胀系数 计算绝热结构在降温(或升温过程中的牢固性及稳定性时,需要知道绝热材料的线膨胀系数。如果绝热材料的线膨胀系数越小,则绝热结构在使用过程中受热胀冷缩影响而损坏的可能性就越小。大多数绝热材料的线膨胀系数值随温度下降下降而显著下降。

保温材料导热系数

建筑材料热物理性能计算参数 顺序材料名称表观密度ρ (kg/m3) 导热系数λ [W/(m·K)] 比热容c [kJ/(kg·K)] 1 混凝土2400 1.50 1.00 2 钢筋混凝土2500 1.74 1.05 3 陶粒混凝土1500 0.77 1.05 4 加气混凝土600 0.21 0.84 5 水泥砂浆1800 0.93 1.05 6 混合砂浆1700 0.8 7 1.05 7 砖砌体1800 0.81 0.88 8 钢材7850 58.00 0.48 9 木材550 0.17 2.51 10 陶粒500 0.21 0.84 11 膨胀珍珠岩250 0.04 0.84 12 水泥珍珠岩制品400 0.07 0.84 13 蛭石制品500 0.14 0.66 14 泡沫水泥400 0.088 0.84 15 矿棉100 0.035 0.75 16 矿棉板100 0.04 0.75 17 岩棉板150 0.04 0.75 18 岩棉毡100 0.04 0.75 19 聚苯乙烯板30 0.038 1.47 20 聚氨酯泡沫塑料50 0.025 1.46 21 聚乙烯泡沫塑料100 0.047 1.38 22 钙塑120 0.049 1.59 23 软木板200 0.065 2.10 24 木丝板500 0.084 2.51 25 锯末250 0.09 2.51 26 草帘120 0.06 1.46 27 稻草垫120 0.06 1.51 28 麦桔笆320 0.09 1.51 29 芦苇板350 0.14 1.67 30 毛毡150 0.06 1.88 31 石油沥青1400 0.27 1.68 32 沥青油毡600 0.17 1.47 33 帆布1500 0.23 1.47 34 石棉水泥板1900 0.35 0.84 35 粘土2000 0.93 0.84 36 炉渣1000 0.29 0.75 37 粉煤灰1000 0.23 0.92 38 砂1600 0.87 0.84 39 石子1800 1.16 0.84 40 水1000 0.58 4.19 41 冰900 2.33 2.14 42 雪300 0.23 2.14

导热硅脂导热系数影响因素试验方案

导热硅脂导热系数影响因素试验方案 一、试验目标 通过试验探究出基体料、填料复配体系对导热系数的影响。 二、试验思路与分析 导热硅脂中体现出来的导热能力不仅与材料本身的热导率有关,还与其在体系中的填充量、堆砌紧密程度以及填料与硅油的浸润程度等因素密切相关。 石逸夫等在硅油及填料对导热硅脂接触热阻的影响中分别对二甲基硅油、乙烯基硅油、羟基硅油及含氢硅油进行热失重分析和导热系数、热阻测试,得出二甲基硅油最适合作为基体料。但是,他并没有测试用不同硅油制备的导热硅脂的导热系数。而现有的文献主要讲述不同类型高性能导热填料的开发,而对基体料的研究甚少。 复配体系有利于导热系数的提高已得到公认,此次试验中通过不同粒径的复配,得到最优复配体系。再以此体系试验不同规格的硅油的导热系数,确定最优规格硅油,进而探究出影响导热系数的因素。 三、试验设计

四、试验步骤 1.准备好密炼机、直流调速搅拌器、水浴锅、电子称、烘箱等相关试验设 备。将二甲基硅油、苯基硅油、球形Al2O3、BN、改性ZnO、石墨烯、硅烷偶联剂KH550、乙醇等原材料准备到位; 2.称取60%质量份导热填料倒入装有导热填料质量25%的100mL烧杯内, 手工搅拌10min。再加入填料重量3%的硅烷偶联剂KH550于烧杯中; 3.将装有填料的烧杯置于水浴锅内,60℃恒速搅拌3h,后放入烘箱内120℃ 烘烤1h; 4.称取40%质量份二甲基硅油,将硅油和改性好的填料置于密炼机内密炼 10min; 5.将制得导热硅脂进行导热性能分析; 6.依次对四个复配体系进行试验,确定出导热系数最高的复配体系; 7.选择以上得出的最优复配体系,分别采用二甲基硅油、苯基硅油为基体 料制备导热硅脂; 8.将不同基体料的导热硅脂进行导热系数的测试。 五、试验数据记录

隔热材料导热系数

挤塑板导热系数一般小于0.030(25℃,W/m·k ); 聚氨酯导热系数一般小于0.020(25℃,W/m·k ); 50mm厚聚氨酯,传热系数是0.506317W/(m^2·K) 50mm厚挤塑板,传热系数是0.719683W/(m^2·K) 参考资料:济南亚布力聚氨酯有限公司百科栏目 计算公式如下: 围护结构热阻的计算单层结构热阻R=δ/λA (m2.K/w) 式中:δ—材料层厚度(m)λ—材料导热系数[W/(m.k)] 多层结构热阻 A—平壁的面积,m2R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn 式中: R1、R2、---Rn—各层材料热阻(m2.k/w)δ1、δ2、---δn—各层材料厚度(m)λ1、λ2、---λn—各层材料导热系数[W/(m.k)] 2、围护结构的传热阻R0=Ri+R+Re 式中: Ri —内表面换热阻(m2.k/w)(一般取0.11)Re—外表面换热阻(m2.k/w)(一般取0.04)R —围护结构热阻(m2.k/w)3、围护结构传热系数计算K=1/ R0 (w/(m2.k)) 式中: R0—围护结构传热阻外墙受周边热桥影响条件下,其平均传热系数的计算Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3) 式中: Km—外墙的平均传热系数[W/(m2.k)] Kp—外墙主体部位传热系数[W/(m2.k)] Kb1、Kb2、Kb3—外墙周边热桥部位的传热系数[W/(m2.k)] Fp—外墙主体部位的面积Fb1、Fb2、Fb3—外墙周边热桥部位的面积 4、铝合金门窗的传热系数的计算Uw =(Af*Uf+Ag*Ug+Lg*Ψg)/(Af+Ag) 式中: Uw —整窗的传热系数W/m·K Ug —玻璃的传热系数W/m·K Ag —玻璃的面积m Uf —型材的传热系数W/m·K Af —型材的面积m Lg —玻璃的周长m Ψg —玻璃周边的线性传热系数W/m·K

导热高分子影响热导率因素(精)

导热高分子 影响热导率的因素 学校名称:华南农业大学 院系名称:材料与能源学院 时间:2017年2月27日

1.影响热导率的因素 1.1树脂基体 虽然有聚乙炔、聚亚苯基硫醚、聚噻吩等本征型导电、导热高分子材料,但绝大多数高分子材料本身属于绝热材料。赋予其优异的导热性的主要途径是通过共混(如机械共混、熔体共混或溶液共混等)的方法在高分子材料中填充导热性能好的填料,从而得到导热性能优良、价格低廉、易加工成型的导热高分子材料。表1是一些材料的热导率: 1.2导热填料 1.2.1填料的种类及填充量 填料主要包括金属填料和非金属填料。填料的种类不同,其导热机理、热导率及适用范围也不同。一般来说,在特定条件下,填充量越大,导热效果越好

1.2.2.填料的尺寸 填料填充复合材料的热导率随粒径增大而增加,在填充量相同时,大粒径填料填充所得到的复合材料热导率均比小粒径填料填充的要高。但是,导热填料经过超细微化处理可以有效提高其自身的导热性能;譬如在丁苯橡胶中分别添加纳米氧化铝或微米氧化铝,在相同填充量下,发现纳米氧化铝填充丁苯橡胶的热导率和物理力学性能均优于微米氧化铝填充的丁苯橡胶,且丁苯橡胶的热导率随着氧化铝填充量的增加而增大。 1.2.3.填料的形状 分散于树脂基体中的填料可以是粒状、片状、球形、纤维等形状,填料的外形直接影响其在高分子材料中的分散及热导率。在相同的情况下,热导率最低的是粉状,其次是纤维,最高的则是以晶须形态填加的复合材料。 1.2.4.基体与填料的界面 导热高分子复合材料是由导热填料和聚合物基体复合而成的多相体系,在热量传递(即晶格振动传递)过程中,必然要经过许多基体一填料界面,因此界面间的结合强度也直接影响整个复合材料体系的热导率。 基体和填料界面的结合强度与填料的表面处理有大关系,取决于颗粒表面易湿润的程度。这是因为为填料表面润湿程度影响填料与基体的粘结程度、基体与填料界面的热障、填料的均匀分散、填料的加入量等一些直接影响体系热导率的因素。增加界面结合强度能提高复合材料的热导率。表面处理剂的加入既可以改善填料的分散能力,又可以减少硅橡胶受外力作用时填料粒子与基体间产生的空隙,减少应力集中导致的基体破坏。 表面处理剂对热导率的影响应该是“桥联”和“包覆”共同作用的结果。一方面,其“桥联”作用改善了填料与基体的界面相容性,减少了界面缺陷及可能

保温隔热绝热材料性能检测导热系数检测方法

保温隔热绝热材料性能检测导热系数检测方法 1.1 适用范围及引用标准 1.1.1 适用范围 本规程规定了保温、隔热、绝热材料导热系数的检测方法。本规程适用于保温、隔热、绝热材料干燥匀质试件导热2·K/W)的测定,且所系数(被测试件的热阻应大于0.1 m测定的结 果均为在给定平均温度和温差下试件的导热系数。 1.1.2 引用标准 下列标准所包含的条文,通过在本规程中引用而构成为本规程的条文。使用本规程的各方应探讨使用下列标准最新版本的可能性。 GB 4132 绝热材料名词术语 GB 10294-1988 绝热材料稳态热阻及有关特性的测定 防护热板法 GB 10295-1988 绝热材料稳态热阻及有关特性的测定 热流计法 GB 10296-1988 绝热材料稳态热阻及有关特性的测定 圆管法 GB 10297-1988 非金属固体材料导热系数的测定方法 热线法 护热平板法塑料导热系数试验方法GB 3399-1982

1.2 仪器设备 1.2.1 量具 应符合GB6342规定。 1.2.2 导热系数仪 导热系数仪根据测试原理不同可分为分为防护热板式导热系数仪、热流计式导热系数仪等。防护热板式导热系数仪示意图见图1.1,热流计式导热系数仪示意图见图1.2。

置装件试a双 b 单试件装置 1.1 防护热板式导热系数仪示意图图 a 单热流计不对称布置

b 双热流计对称布置 式件c 双试装置热流计式导热系数仪示意图图1.2 检测程序1.3 导热系数检测程EPS)1.3.1 绝热用模塑聚苯乙烯泡沫塑料(序GB 10294-1988GB 或按测数热板EPS导系的定。GB 10294-1988规定进行;仲裁方法时执行10295-1988.1.3.1.1 状态调节 样品应去掉表皮并自生产之日起在自然条件下放置28d后进测试。样品按GB/T 2918-1998中23/50二级环境条件进行,在温度(23±2)℃,相对湿度45%~55%的条件下进行16 h状态调节。 1.3.1.2厚度测量

各种材料的导热系数

220kV交联聚乙烯绝缘电力电缆 最高额定温度 电缆导体长期允许最高工作温度为90℃,短时过负载最高工作温度为130℃,短路时(短路时间为5S)最高工作温度为250℃。 电缆使用特性: (1)电缆导体长期允许温度为90℃。 (2)短路时(最长持续时间不超过5秒),导体最高温度不超过250℃,电缆线路中间有接头时,锡焊接头不超过120℃,压接接头不超过150℃,电焊或气焊接头不超过250℃。 (3)电缆敷设时,在保证足够机械拉力的情况下不受落差限制,但不允许敷设于铁质管道中,也不允许沿电缆周围形成环状的铁质金具固定电缆。 (4)电缆敷设时,其温度应不低于零度,当电缆温度低于零度时应采用适当的方法将电缆加热至零度有以上。 高密度聚乙烯HD 980 密度0.50导热系数 热传导和热导率物体内部分子和原子微观运动所引起的热量传递过程称为热传导,又称导热。在单位时间内从tω1的高温壁面传递到tω2的低温壁面的热流量φ(W)的大小,和壁的面积F(m2)与两壁温差(tω1-tω2)(℃)成正比,与壁的厚度δ(m)成反比。此外,还与壁的材料性质等因素有关。因此由上面的比例关系, 导热量 = f(两壁温差) / 壁的厚度 * 导热系数 聚乙烯(PE)的导热系数 0.4 W / K-Meter PVC 0.231 ABS 0.245 PP 0.138 Cu 365

SUS 16 Steel 86 水的导热系数0.54 空气的导热系数 0.024 pvc的导热系数 0.14W/MK 殷钢 11 拌石水泥 1.5 海砂 20 0.03 对某一特定物质而言,只考虑热传递时,热量与温度之间存在一个线性关系,即 变化的内能(亦即传递的热量)=该物质的比热容*质量*该物质变化的温度 导热系数 指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,℃),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处为K可用℃代替)。导热系数与材料的组成结构、密度、含水率、温度等因素有关。非晶体结构、密度较低的材料,导热系数较小。材料的含水率、温度较低时,导热系数较小。通常把导热系数较低的材料称为保温材料,而把导热系数在0.05瓦/米?度以下的材料称为高效保温材料。 材料的厚度加大则材料的导热系数如何变化?

传热系数与给热系数(特选内容)

传热系数K 和给热系数α的测定 一. 实验目的 1. 了解间壁式传热元件的研究和给热系数测定的实验组织方法; 2. 掌握借助于热电偶测量壁温的方法; 3. 学会给热系数测定的试验数据处理方法; 4. 了解影响给热系数的因素和强化传热的途 径。 二. 基本原理 1.传热系数K 的理论研究 在工业生产和科学研究中经常采用间壁式换热装置 来达到物料的冷却和加热。这种传热过程系冷、热流体 通过固体壁面进行热量交换。它是由热流体对固体壁面 的 对流给热,固体壁面的热传导和固体对冷流体的对 流给热三个传热过程所组成。如图1所示。 由传热速率方程知,单位时间所传递的热量 Q=()t T KA - (1) 而对流给热所传递的热量,对于冷、热流体均可由牛顿冷却定律表示 Q=()1w h h t T A -α (2) 或 Q=()t t A w c c -2α (3) 对固体壁面由热传导所传递的热量,则由傅立叶定律表示为 Q ()21w w m t t A -?=δ λ (4) 由热量平衡和忽略热损失,可将(2)、(3)、(4)式写成如下等式 Q=KA t T A t t A t t A t T c c w m w w h h w 1 112211-=-=-=-αλδα (5)所以 c c m h h A A A K αλδα111 ++= (6) 图1传热过程示意图

()22222111111,,,,,,,,,,,,u c u c d f K p p λμρδλλμρ==()5,2,6f (7) 从上式可知,除固体的导热系数和壁厚对传热过程的传热性能有影响外,影响传热过程的参数还有12个,这不利于对传热过程作整体研究。根据因次分析方法和π定理,热量传递范畴基本因次有四个:[L],[M],[T],[t] ,壁面的导热热阻与对流给热热阻相比可以忽略 K ≈()21,ααf (8) 要研究上式的因果关系,尚有π=13-4=9个无因次数群,即由正交网络法每个水平变化10次,实验工作量将有108次实验,为了解决如此无法想象的实验工作量,过程分解和过程合成法由此诞生。该方法的基本处理过程是将(7)式研究的对象分解成两个子过程如(8)式所示,分别对21,αα进行研究,之后再将21,αα合并,总体分析对K 的影响,这有利于了解影响传热系数的因素和强化传热的途径。 当1α>>2α时,2α≈K ,反之当1α<<2α时,1α≈K 。欲提高K 设法强化给热系数小的一侧α,由于设备结构和流体已定,从(9)式可知,只要温度变化不大,1α只随1u 而变, ()1111111,,,,,λμραp c u d f = (9) 改变1u 的简单方法是改变阀门的开度,这就是实验研究的操作变量。同时它提示了欲提高K 只要强化α小的那侧流体的u 。而流体u 的提高有两种方法: (1)增加流体的流量; (2)在流体通道中设置绕流内构件,导致强化给热系数。 由(9)式,π定理告诉我们,π=7-4=3个无因次数群,即: ()1111111,,,,,λμραp c u d f = ? ??? ? ??=λμμρλαp c du f d , (10) 经无因次处理,得: c b o a Nu Pr Re = (11)

隔热保温材料导热系数影响因素

影响导热材料导热系数 一:材料类型隔热材料(绝热材料)类型不同,导热系数不同。隔热材料的物质构成不同,其物理热性能也就不同;隔热机理存有区别,其导热性能或导热系数也就各有差异。即使对于同一物质构成的隔热材料,内部结构不同,或生产的控制工艺不同,导热系数的差别有时也很大。对于孔隙率较低的固体隔热材料,结晶结构的导热系数最大,微晶体结构的次之,玻璃体结构的最小。但对于孔隙率高的隔热材料,由于气体(空气)对导热系数的影响起主要作用,固体部分无论是晶态结构还是玻璃态结构,对导热系数的影响都不大。 二:工作温度温度对各类绝热材料导热系数均有直接影响,温度提高,材料导热系数上升。因为温度升高时,材料固体分子的热运动增强,同时材料孔隙中空气的导热和孔壁间的辐射作用也有所增加。但这种影响,在温度为0-50℃范围内并不显著,只有对处于高温或负温下的材料,才要考虑温度的影响。 三:含湿比率绝大多数的保温绝热材料都具有多孔结构,容易吸湿。材料吸湿受潮后,其导热系数增大。当含湿率大于5%-10%时,导热系数的增大在多孔材料中表现得最为明显。这是由于当材料的孔隙中有了水分(包括水蒸气)后,孔隙中蒸汽的扩散和水分子的运动将起主要传热作用,而水的导热系数比空气的导热系数大20倍左右,故引起其有效导热系数的明显升高。如果孔隙中的水结成了冰,冰的导热系数更大,其结果使材料的导热系数更加增大。所以,非憎水型隔热材料在应用时必须注意防水避潮。 四:孔隙特征在孔隙率相同的条件下,孔隙尺寸越大,导热系数越大;互相连通型的孔隙比封闭型孔隙的导热系数高,封闭孔隙率越高,则导热系数越低。 五:容重大小容重(或比重、密度)是材料气孔率的直接反映,由于气相的导热系数通常均小于固相导热系数,所以保温隔热材料往往都具有很高的气孔率,也即具有较小的容重。一般情况下,增大气孔率或减少容重都将导致导热系数的下降。但对于表观密度很小的材料,特别是纤维状材料,当其表观密度低于某一极限值时,导热系数反而会增大,这是由于孔隙率增大时互相连通的孔隙大大增多,从而使对流作用得以加强。因此这类材料存在一个最佳表观密度,即在这个表观密度时导热系数最小。 六:材料粒度常温时,松散颗粒型材料的导热系数随着材料粒度的减小而降低。粒度大时,颗粒之间的空隙尺寸增大,其间空气的导热系数必然增大。此外,粒度越小,其导热系数受温度变化的影响越小。 七:热流方向导热系数与热流方向的关系,仅仅存在于各向异性的材料中,即在各个方向上构造不同的材料中。纤维质材料从排列状态看,分为方向与热流向垂直和纤维方向与热流向平行两种情况。传热方向和纤维方向垂直时的绝热性能比传热方向和纤维方向平行时要好一些。一般情况下纤维保温材料的纤维排列是后者或接近后者,同样密度条件下,其导热系数要比其它形态的多孔质保温材料的导热系数小得多。对于各向异性的材料(如木材等),当热流平行于纤维方向时,受到阻力较小;而垂直于纤维方向时,受到的阻力较大。以松木为例,当热流垂直于木纹时,导热系数为0.17w/(m·K),平行于木纹时,导热系数为0.35W/(m·K)。气孔质材料分为气泡类固体材料和粒子相互轻微接触类固体材料两种。具有大量或无数多开口气孔的隔热材料,由于气孔连通方向更接近于与传热方向平行,因而比具有大量封闭气孔材料的绝热性能要差一些。 八:填充气体隔热材料中,大部分热量是从孔隙中的气体传导的。因此,隔热材料的热导率在很大程度上决定于填充气体的种类。低温工程中如果填充氦气或氢气,可作为一级近似,认为隔热材料的热导率与这些气体的热导率相当,因为氦气和氢气的热导率都比较大。 九:比热容热导率=热扩散系数×比热×密度。在热扩散系数和密度条件相同的情况下,比热越大,导热系数越高。隔热材料的比热对于计算绝热结构在冷却与加热时所需要冷量(或热量)有关。在低温下,所有固体的比热变化都很大。在常温常压下,空气的质量不超过隔热材料的5%,但随着温度的下降,气体所占的比重越来越大。因此,在计算常压下工作的隔热材料时,应当考虑这一因素。对于常用隔热材料而言,上述各项因素中以表观密度和湿度的影响最大。因而在测定材料的导热系数时,必须同时测定材料的表观密度。至于湿度,对于多数隔热材料可取空气相对湿度为80%一85%时材料的平衡湿度作为参考状态,应尽可能在这种湿度条件下测定材料的导热系数。 十:真空热传导的方式有三种:对流、传导和辐射。其中对流方式导热为最重要的。通过真空阻绝了对流导热系数就大大的降低了,原理就像是热水瓶一样。而作为骨架的填充材料可能会通过传导方式导热,所以采用导热系数低的玻璃纤维做骨架。外表加上铝膜包装袋对辐射进行阻隔。所以这种材料是导热系数最小的。

导热系数和传热系数区别

. 传热系数以往称总传热系数。国家现行标准规范统一定名为传热系数。传热系数K值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,℃),1小时内通过1平方米面积传递的热量,单位是瓦/平方米·度(W/㎡·K,此处K可用℃代替)。 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,℃),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处为K可用℃代替)。导热系数与材料的组成结构、密度、含水率、温度等因素有关。非晶体结构、密度较低的材料,导热系数较小。材料的含水率、温度较低时,导热系数较小。 通常把导热系数较低的材料称为保温材料,而把导热系数在0.05瓦/米?度以下的材料称为高效保温材料。 传热系数(Heat transfer coefficient) 传热系数以往称总传热系数。国家现行标准规范统一定名为传热系数。传热系数K值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K/℃)1小时内通过1平方米面积传递的热量单位是瓦/平方米?度(W/㎡?K)此处K可用℃代替。 传热系数不是描述物质物性的物理量,它会随着不同的外界条件而发生变化,例如温度,流速,流量等,总的说来,它是一个工程上的概念. 机械工程中遇到的传热过程常常是热传导、对流换热和辐射换热三者的综合,而在应用最多的表面式换热器(又称间壁式换热器)中温度不太高,辐射换热的作用不大,所以分析时主要考虑热传导和对流换热的综合过程。因此,传热系数不仅与器壁的材料性能和厚度有关,还与器壁两侧的对流换热(有时还有辐射换热)过程有关。 导热系数(Thermal conductivity) 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C),在1小时内,通过1平方米面积传递的热量,用λ表示,单位为瓦/(米·度),w/(m·k)(W/m·K,此处的K可用℃代替)。 导热系数与材料的组成结构、密度、含水率、温度等因素有关。导热系数又被称作“热导系数”或“导热率”,反映材料热性能的重要物理量.这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。所以同类材料的导热率都是一样的,并不会因为厚度不一样而变化。 热传导是热交换的三种(热传导,对流和辐射)基本形式之一.是工程热物理、材料科学、固态物理、能源、环保等各个研究领域的课题。材料的导热机理在很大程度上取决于它的微观结构。热量的传递依靠原子、分子围绕平衡位置的振动以及自由电子的迁移。 .

导热系数的影响因素

导热系数的影响因素 1、温度 温度对各类绝热材料导热系数均有直接影响,温度提高,材料导热系数上升。 2、含湿率 所有的保温材料都具有多孔结构,容易吸湿。当含湿率大于5%~10%,材料吸湿后湿分占据了原被空气充满的部分气孔空间,引起其有效导热系数明显升高。 3、容重(单位容积内物体的重量) 容重是材料气孔率的直接反映,由于气相的导热系数 ..... ..固相导热系 .......通常均 ...小于 数.,所以保温材料都具有很大的气孔率即很小的容重。一般情况下,增大气孔率或减少容重都将导致导热系数的下降。 4、松散材料的粒度 常温时,松散材料的导热系数随着材料粒度减小而降低,粒度大时,颗粒之间的空隙尺寸增大,其间空气的导热系数必然增大。粒度小者,导热系数的温度系数小。 5、热流方向 导热系数与热流方向的关系,仅仅存在于各向异性的材料中,即在各个方向 时要好 的要好 气孔质材料又进一步分成固体物质中有气泡和固体粒子相互轻微接触两种。纤维质材料从排列状态看,分为方向与热流向垂直和纤维方向与热流向平行两种情况。一般情况下纤维保温材料的纤维排列是后者或接近后者,同样密度条件下,其导热系数要比其它形态的多孔质保温材料的导热系数小得多。 6、填充气体的影响 绝热材料中,大部分热量是从孔隙中的气体传导的。因此,绝热材料的热导率在很大程度上决定于填充气体的种类。低温工程中如果填充氦气或氢气,可作为一级近似,认为绝热材料的热导率与这些气体的热导率相当,因为氦气和氢气的热导率都比较大。

7、比热容 绝热材料的比热容对于计算绝热结构在冷却与加热时所需要冷量(或热量)有关。在低温下,所有固体的比热容变化都很大。 在常温常压下,空气的质量不超过绝热材料的5%,但随着温度的下降,气体所占的比重越来越大。因此,在计算常压下工作的绝热材料时,应当考虑这一因素。 8、线膨胀系数 计算绝热结构在降温(或升温)过程中的牢固性及稳定性时,需要知道绝热材料的线膨胀系数。如果绝热材料的线膨胀系数越小,则绝热结构在使用过程中受热胀冷缩影响而损坏的可能性就越小。大多数绝热材料的线膨胀系数值随温度下降下降而显著下降。

保温材料的导热系数

保温材料的导热系数 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C),在1秒内,通过1平方米面积传递的热量,单位为瓦/米·度(W/m·K,此处的K可用℃代替)。导热系数与材料的组成结构、密度、含水率、温度等因素有关。 金属导热系数表(W/mK) 热传导系数的定义为:每单位长度、每K,可以传送多少W的能量,单位为W/mK。其中“W”指热功率单位,“m”代表长度单位米,而“K”为绝对温度单位。该数值越大说明导热性能越好。以下是几种常见金属的热传导系数表: 银429 铜401 金317 铝237 铁80 锡67 铅34.8 各种物质导热系数! material conductivity K (W/m.K) diamond 钻石2300 silver 银429

cooper 铜401 gold 金317 aluminum 铝237 各物质的导热系数 物质温度导热系数物质温度导热系数亚麻布50 0.09 落叶松木0 0.13 木屑50 0.05 普通松木45 0.08~0.11 海砂20 0.03 杨木100 0.1 研碎软木20 0.04 胶合板0 0.125 压缩软木20 0.07 纤维素0 0.46 聚苯乙烯100 0.08 丝20 0.04~0.05 硫化橡胶50 0.22~0.29 炉渣50 0.84 镍铝锰合金0 32.7 硬质胶25 0.18 青铜30 32~153 白桦木30 0.15 殷钢30 11 橡木20 0.17 康铜30 20.9 雪松0 0.095 黄铜20 70~183 柏木20 0.1 镍铬合金20 12.3~171 普通冕玻璃20 1 石棉0 0.16~0.37 石英玻璃4 1.46 纸12 0.06~0.13 燧石玻璃32 0.795 皮棉 4.1 0.03 重燧石玻璃12.5 0.78 矿渣棉0 0.05~0.14 精制玻璃12 0.9 毡0.04 汽油12 0.11

耐火和隔热材料的热导率

现将从样本、合同附件以及书中收集到的热导率数据拟合成回归式,列举于下,供计算时参照使用,总计共311项。 来自<陶瓷纤维耐火材料的施工>,苏启昕译,146页附图,小计共33项。 <750kg/mλ=-1*10+0.0001t+0.1168 <700kg/mλ=0.0182t2+0.5566t+0.0327 λ=

Super HT MOR1800 1800+0.00040t kcal/mh℃ W/Mk Super HT MOR1700 1700+0.00040t kcal/mh℃ W/mK Super HT MOR1650 1650+0.00030t kcal/mh℃ W/mK Super HT MOR1600 1550 kcal/mh℃ W/mK Super HT MOR1500 1450 kcal/mh℃ +0.000465t W/mK 耐火浇注料 PC #40 1800 kcal/mh℃PC #38 175094%Al2 2.8-2.95t/mλ=1.012+0.000488t W/mK PC Chrome 150024%Cr 2.8-2.95t/mλ=0.610+0.00034t kcal/mh℃ W/mK PC #36 170070%Al O 2.35-2.5t/m3 kcal/mh℃PC #488 120071%Al2O3 2.4-2.55t/m W/mK PC KL Mix 165056%Al O 2.15-2.25 kcal/mh℃PC #34 1650 PC #33 1580 PC #31 1540 W/mK PC#31 Trowl 1540 Tuff Mix A 1420 PC Mix D 1400 PC TuFF Mix 1320 PC #0702 165047%Al3 2.1-2.25t/ PC #27 13703 kcal/mh℃PC Hydro Mix 1370 PC Trowl Mix 1350 W/Mk PC Petro Mix 1370 PC #652 1000 低水泥耐火浇注料 PLCAST #0732 1700℃74%Al2O3 2.65-2.8t/m3λ=0.89+0.0003t kcal/mh℃ 11%SiO2λ=1.035+0.000349t W/mK PLCAST #0759 1700℃74%Al2O3 2.6-2.75t/m3λ=0.87+0.0004t kcal/mh℃ 21%SiO2λ=1.012+0.000465t W/mK PLCAST #0702 1650℃47%Al2O3 2.1-2.25t/m3λ=0.46+0.0003t kcal/mh℃ 47%SiO2λ=0.535+0.000349t W/mK PLCAST #0739 1550℃37%Al2O3 2.0-2.15t/m3λ=0.46+0.0003t kcal/mh℃ 53%SiO2λ=0.535+0.000349t W/mK PLCAST #0719 1700℃74%Al2O3 1.4-1.55t/m3λ=0.45+0.0001t kcal/mh℃ 20%SiO2λ=0.523+0.000116t W/mK PLCAST #0852 1600℃47%Al2O3 1.37t/m3λ=0.42+0.00008t kcal/mh℃ 45%SiO2λ=0.488+0.0000931t W/mK

常见材料导热系数全

导热率K是材料本身的固有性能参数,用于描述材料的导热能力,又称为热导率,单位为W/mK。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。不同成分的导热率差异较大,导致由不同成分构成的物料的导热率差异较大。单粒物料的导热性能好于堆积物料。 稳态导热:导入物体的热流量等于导出物体的热流量,物体内部各点温度不随时间而变化的导热过程。 非稳态导热:导入和导出物体的热流量不相等,物体内任意一点的温度和热含量随时间而变化的导热过程,也称为瞬态导热过程。 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C),在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/米·度 导热系数与材料的组成结构、密度、含水率、温度等因素有关。非晶体结构、密度较低的材料,导热系数较小。材料的含水率、温度较低时,导热系数较小。 通常把导热系数较低的材料称为保温材料(我国国家标准规定,凡平均温度不高于350℃时导热系数不大于0.12W/(m·K)的材料称为保温材料),而把导热系数在0.05瓦/米摄氏度以下的材料称为高效保温材料。 导热系数高的物质有优良的导热性能。在热流密度和厚度相同时,物质高温侧壁面与低温侧壁面间的温度差,随导热系数增大而减小。锅炉炉管在未结水垢时,由于钢的导热系数高,钢管的内外壁温差不大。而钢管内壁温度又与管中水温接近,因此,管壁温度(内外壁温度平均值)不会很高。但当炉管内壁结水垢时,由于水垢的导热系数很小,水垢内外侧温差随水垢厚度增大而迅速增大,从而把管壁金属温度迅速抬高。当水垢厚度达到相当大(一般为1~3毫米)后,会使炉管管壁温度超过允许值,造成炉管过热损坏。对锅炉炉墙及管道的保温材料来讲,则要求导热系数越低越好。一般常把导热系数小于0。8x10的3次方瓦/(米时·摄氏度)的材料称为保温材料。例如石棉、珍珠岩等 填缝导热材料有:导热硅脂、导热云母片、导热陶瓷片、导热矽胶片、导热双面胶等。主要作用是填充发热功率器件与散热片之间的缝隙,通常看似很平的两个面,其实接触面积不到40%,又因为空气是不良导热体,导热系数仅有0.03w/m.k,填充缝隙就是用导热材料填充缝隙间的空气. 傅力叶方程式: Q=KA△T/d, R=A△T/Q Q: 热量,W K: 导热率,W/mk A:接触面积 d: 热量传递距离△T:温度差 R: 热阻值

导热系数对热传导的影响

导热系数对热传导的影响
焦雯 黄海明
(北京交通大学工程力学研究所,100044)
摘要:导热 系数是 材料热物 性参数之 一,其 参数值的 准确性 有着重要 的理论 和使 用价值。本文通过把导热系数取为近似的常数和接近的函数进行数值计算,得到物体表 面和内部的温度变化规律,经对比分析可知:在两种情况下,物体表面和内部的温度变 化速率有很大的不同,随时间的推移,表面的温度趋于一致,而内部的温度分布呈现明 显的差异性。 关键词:导热系数,数值计算,温度
一、引言
导热系数与材料的组成结构、密度、含水率、温度等因素有关,其参数值的准 [1 -3] 确性有着重要的工程意义,却鲜见有相关的文献报告 。本文利用经典的傅里 叶(Fourier)导热定律,并考虑热辐射现象,定性地给出了导热系数对热传导的影 响。
二、数学模型及其离散化
以某种材料为例,其影响导热系数 K 的主要因素为温度,表达式为:
(1) [4] 一维热传导离散方程 为: =
(3)
11

初始条件:
(4) 边界条件:
(5)
(6)
温度。
三、结论
图 1 受热表面温度随时间变化图
图 2 背面温度随时间变化图
图 3 K 为定值时内部温度分布图
图 4 K 为函数时内部温度分布图
12

本文通过把导热系数取为近似的常数和接近的函数作对比分析,可以得到如下 结论:在两种情况下,物体表面和内部的温度变化速率有很大的不同,随时间的推 移,表面的温度趋于一致,而内部的温度分布呈现明显的差异性,当 K 为常数时, 温度分布曲线较为平滑,热传导表现平稳;而 K 为函数时,由于 K 随温度的变化而 变化,则受热区域升温较快,背面传热较慢。

1 2 3 4



张洪济.热传导[M].北京:高等教育出版社,1992,10 陈则韶,葛新石,顾毓沁.量热技术和热物性测定[M].合肥:中国科学技术大学出版社,1990,10 王补宣.工程传热传质学[M].北京:科学出版社,2002 陶文铨.传热学[M].北京:高等教育出版社,1998
13

传热系数和导热系数有什么区别

传热系数和导热系数有什么区别? 传热系数和导热系数有什么区别?我看单位只差一个平方!那位能准确的定义一下两者?!区别你可以通过定义看出来: 传热系数以往称总传热系数。国家现行标准规范统一定名为传热系数。传热系数K值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,℃),1小时内通过1平方米面积传递的热量,单位是瓦/平方米·度(W/㎡·K,此处K可用℃代替)。 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,℃),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处为K可用℃代替)。导热系数与材料的组成结构、密度、含水率、温度等因素有关。非晶体结构、密度较低的材料,导热系数较小。材料的含水率、温度较低时,导热系数较小。通常把导热系数较低的材料称为保温材料,而把导热系数在0.05瓦/米?度以下的材料称为高效保温材料 传热系数 thermal conductivity又称传热总系数,是传热过程方程式中的一个比例系数,表示固体壁两边的流体间传热的数值。传热现象将传导、对流和辐射3种基本方式一并考虑。传热系数其值是当两边流体间的温度差为1℃时,在单位时间(1小时)内,每单位壁面(1m2)所通过的热量(kJ),单位为kJ/(m2.h·K)。传热系数愈大,传热效率愈高。《安全工程大辞典》(1995年11月化学工业出版社出版)…… 导热系数:在稳态条件下,1m厚的物体,两侧表面温差为1℃,1h内通过1m2面积传递的热量; 传热系数:在稳态条件下,围护结构两侧空气温差为1℃(1K),1h内通过1m2面积传递的热量; K值只有经试验确定,试验方法上有计算公式 热流系数应该就是两侧温差为1K单位时间内通过的热量 问题:什么是热传导?热传导是什么意思? 热传导:热量总是从温度高的物体传到温度低的物体,这个过程叫做热传导。热传导是 热传递的三种(热对流、热传导、热辐射)方式之一。热传导是固体中热传递的主要方式。在气体或液体中,热传导过程往往和对流同时发生。让一块热的铁块和一块冷的铁块接触,热的铁块会逐渐变冷,冷的铁块会逐渐变热,直到两者温度相同为止,这是热传导的原故。各种物质的热传导性能不同,一般金属都是热的良导体,玻璃、木材、棉毛制品、羽毛、毛皮以及液体和气体都是热的不良导体,石棉的热传导性能极差,常作为绝热材料。热传导只在两种物体相接触并且有温度差时才能进行。 热对流:热传递三种方式(热对流、热传导、热辐射)之一。依靠流体(液体、气体)体身流动而实现传热的过程称为热对流,简称对流。对流可分自然对流和强迫对流两种。自

思考题4-导热系数

导热系数 六.思考题 1.导热系数的物理意义是什么? 导热系数是反映材料导热性能的重要参数之一,其值等于相距单位长度的两平面的温度相差为一个单位时,在单位时间内通过单位面积所传递的热量,单位是()k m w ??开米瓦。 2.实验中采用什么方法来测量不良导体的导热系数? 3.测λ要满足哪些条件?在实验中又如何保证? a. 2010θθ?要处于稳态,即这两个温度在十分钟内保持不变,并且2010θθ>。(10θ人为手动控制在mV mV 03.050.3±)。 b. 测量20θ附近的冷却速率。 4.试述稳态发测不良导体导热系数的基本原理。 通过当达到稳态时待测样品的传热率和散热盘向侧面和下面的散热率相同的原理推导得出。 5.讨论本实验误差因素,并说明测量导热系数可能偏小的原因。 a. 样品表面老化,影响传热。 b. 加热板、样品、散热板之间有缝隙,影响传热。 c. 热电偶热端与发热盘和散热盘接触不良,应沾些硅油插入小孔内部,等等。 6.测冷却速率时,为什么要在稳态度20θ附近选值? a. 当散热板处在不同温度时,它的散热率不同,与本体温度、环境温度都有关。 b. 在实验中当系统处于稳态时,通过待测样品的传热率与散热盘向侧面和下面的散热率相同,所以测冷却速率要在稳态温度20θ附近。 7.本实验的热电偶测温度为什么不用定标就能代入公式记标?能否不用数字电压表而用其他电表仪器来测热电偶电压值代入公式求导热系数而不影响结果?举例说明。 在所测温度范围内,直流数字电压表测得的电动势与待测温度成线性关系,即αθ=E ,那么()201020102010θθθαθαθθα-?--?=-?E E E ,所以不用定标就可以代入公 式。 可以才采用与电阻串联的电流表或灵敏电流计,因为()()2010201020102010θθθ-?=-?=-?=-?I I I R E R E R E E E E

相关主题
文本预览
相关文档 最新文档