当前位置:文档之家› 桁架结构

桁架结构

第三章桁架(屋架)结构只受结点荷载作用的等直杆的理想铰结体系称桁架结构。它是由一些杆轴交于一点的工程结构抽象简化而成的。

它在历史上出现很早,公元前500年罗马人就在多瑙河上修建了桁架桥梁;后来迅速成为普遍的结构形式应用于土木工程大跨度的结构中,在房屋建筑中尤其得到广泛推广。

1.优点:受力合理、计算简单、施工方便、适应性强,对支座无横向推力,应用广泛。

2.缺点:结构高度大,侧向刚度小。

?结构高度大增加了屋面及围护墙的用料,同时也增加了采暖、通风、采光等设备的负荷,并给音响控制带来困难。

?侧向刚度小,对于钢屋架特别明显受压的上弦平面外稳定性差,也难以抵抗房屋纵向的侧向力,这就需要设置支撑。一般房屋的纵向侧向力并不大,但支撑很多,都按构造(长细比)要求确定截面,故耗钢不少却未能材尽其用。

第三章桁架结构

3.1桁架结构的受力特点

3.2屋架结构的型式

3.3屋架结构的选型与布置

3.4立体桁架

3.5 张弦结构

3.6 桁架结构的其他型式

桁架的受力与梁的区别

1、上弦受压、下弦受拉,形成力偶来平衡外荷载所产生的弯矩。

2、由斜腹杆轴力中的竖向分量来平衡外荷载所产生的剪力。

3、桁架结构中,各杆单元均为轴向受拉或轴向受压构件,使材料的强度可以得到充分的发挥。

主桁架

(1)直杆:组成桁架的所有各杆都是直杆,所有各杆的中心线(轴线)都在同一平面内,这一平面称为桁架的中心平面。

木材――榫接、钉连接

钢桁架――焊接或螺栓连接3.1.2桁架结构计算的假定

(2)节点均为铰节点:桁架的杆件与杆件相连接的节点均为铰接节点。

钢筋混凝土――

刚性连接

严格地说,钢桁架和钢筋混凝土桁架都应该按刚架结构计算,各杆件除承受轴力外还承受弯矩的作用。但进一步的理论分析和工程实践经验表明,上述杆件内的弯矩所产生的应力很小,只要在节点构造上采取适当的措施,该应力对结构或构件不会造成危害,故一般计算中桁架结构节点均按铰接处理。3.1.2桁架结构计算的假定

(2)节点均为铰节点:桁架的杆件与杆件相连接的节点均为铰接节点。

(3)所有外力(包括荷载及支座反力)都作用在中心平面内,并集中作用于节点上。

对于桁架上直接搁置屋面板的结构,当屋面板的宽度和桁架上弦的节间长度不等时,上弦将受到节间荷载的作用并产生弯矩;或对下弦承受吊顶荷载的结构,当吊顶梁间距与下弦节间长度不等时也会在下弦产生节间荷载及弯矩。这将使上、下弦杆件由轴向受压或轴向受拉变为压弯或拉弯构件,是极为不利的。

如何解决?

1、木桁架与钢筋混凝土桁架:

上、下弦截面尺寸较大,节间荷载所产生的弯矩对构件的影响可通过增大截面或采取构造措施。

2、钢桁架:

因其上、下弦截面尺寸很小,节间荷载所产生的弯矩对构件受力有较大影响,桁架节间的划分应考虑屋面板、檩条、吊顶梁的布置要求使荷载尽量作用在节点上。

当节间长度较大时,在钢结构中,常采用再分式屋架,使屋面荷载直接作用在上弦节点上,避免了上弦受弯。

常见桁架的受力特点:

1. 平行弦桁架

?弦杆:平行弦桁架高度相等,下弦各节间的内力随外荷载产生的总弯矩而变化,跨中节间轴力大、靠近支座处轴力较小或为零,下弦内力变化较大。?腹杆:沿跨度方向各腹杆的轴力变化与剪力图一致,跨中小而支座处大,其值变化较大。

常见桁架的受力特点:

2. 三角形桁架

?上、下弦杆内力在跨中节间最小,在靠近支座处最大。

?因高度变化速度大于剪力变化速度,故斜腹杆和竖腹杆的受力都是跨中大,支座处小。

常见桁架的受力特点:

3. 折线形桁架

?高度呈抛物线型的桁架是最理想的桁架形式。?上弦曲线做成圆形使屋架外形与抛物线弯矩图接近,为便于制作,常将桁架上弦各节点与弯矩图重合,而在各节点之间取直线,成为折线形桁架。这时,上、下弦杆内各节间轴力基本相等。

?(斜)腹杆内力全部为零。

平面桁架系统静力分析

平面桁架系统静力分析 已知:桁架结构如图,节点D作用载荷F,a=30cm,b=50cm,各杆横截面均为正方形,横截面积A=1cm2,材料为45#钢,外载荷F=2000N。 要求:给出有限元软件分析的主要步骤、参数设置,加载前后变形图,轴力及轴向应力图;并利用材料力学知识求出解析解,与有限元结果对比。 图一:桁架结构 1、先在workbench中进行建模. 2、在concept中点击line from sketches,选择画好的草图,generate生成,然后生成截面形状,在concept(cross section中)选为矩形rectangular,details view中设置截面尺寸,生成截面,

如下图。 3、点击结构树中line body, details view中设置cross section为画好的rect2,点击generate生成line body,如下图。

4、添加材料参数,在engineering data中添加新材料,45号钢密度为7890 kg/m3,杨氏模量为209GPa,泊松比比为0.269。更新model并打开,点击结构树中的line body,在details view中的assignment中添加45号钢。 5、网格划分,点击mesh,修改网格尺寸,此处设置为5mm生成后如下图。 6、施加约束和载荷,在static structural中insert下添加fixed support和fixed rotation,在最上部的节点处施加载荷,如下图。

7、添加分析项,在solution中insert下加入轴力,变形,和轴向应力图(beam tool中),然后进行solution,如下图。 图1-1 加载前后变形图

各种系统架构图与详细说明

各种系统架构图与详细说明 2012.07.30

1.1.共享平台逻辑架构设计 如上图所示为本次共享资源平台逻辑架构图,上图整体展现说明包括以下几个方面: 1 应用系统建设 本次项目的一项重点就是实现原有应用系统的全面升级以及新的应用系统的开发,从而建立行业的全面的应用系统架构群。整体应用系统通过SOA面向服务管理架构模式实现应用组件的有效整合,完成应用系统的统一化管理与维护。 2 应用资源采集 整体应用系统资源统一分为两类,具体包括结构化资源和非机构化资源。本次项目就要实现对这两类资源的有效采集和管理。对于非结构化资源,我们将通过相应的资源采集工具完成数据的统一管理与维护。对于结构化资源,我们将通过全面的接口管理体系进行相应资源采集模板的搭建,采集后的数据经过有效的资源审核和分析处理后进入到数据交换平台进行有效管理。 3 数据分析与展现

采集完成的数据将通过有效的资源分析管理机制实现资源的有效管理与展现,具体包括了对资源的查询、分析、统计、汇总、报表、预测、决策等功能模块的搭建。 4 数据的应用 最终数据将通过内外网门户对外进行发布,相关人员包括局内各个部门人员、区各委办局、用人单位以及广大公众将可以通过不同的权限登录不同门户进行相关资源的查询,从而有效提升了我局整体应用服务质量。 综上,我们对本次项目整体逻辑架构进行了有效的构建,下面我们将从技术角度对相关架构进行描述。 1.2.技术架构设计

如上图对本次项目整体技术架构进行了设计,从上图我们可以看出,本次项目整体建设内容应当包含了相关体系架构的搭建、应用功能完善可开发、应用资源全面共享与管理。下面我们将分别进行说明。 1.3.整体架构设计 上述两节,我们对共享平台整体逻辑架构以及项目搭建整体技术架构进行了分别的设计说明,通过上述设计,我们对整体项目的架构图进行了归纳如下: 综上,我们对整体应用系统架构图进行了设计,下面我们将分别进行说明。

第七专题平面桁架结构

平面桁架结构 一、平面桁架的形式 1.屋盖结构体系 屋盖分为无檩屋盖有檩屋盖。无檩屋盖一般用于预应力混凝土大型屋面板等重型屋面,将屋面板直接放在屋架上。有檩屋盖常用于轻型屋面材料的情况。 2.屋架的形式 屋架外形常用的有三角形、梯形、平行弦和人字形等。 桁架外形应尽可能与其弯矩图接近,这样弦杆受力均匀,腹杆受力较小。腹杆的布置应尽量用长杆受拉、短杆受压,腹杆的数目宜少,总长度要短,斜腹杆的倾角一般在30°~60°之间,腹杆布置时应注意使荷载都作用在桁架的节点上。 (1)三角形桁架 三角形桁架适用于陡坡屋面(i>1/3)的有檩屋盖体系,屋架通常与柱子只能铰接。弯矩图与三角形的外形相差悬殊,弦杆受力不均,支座处内力较大,跨中内力较小,弦杆的截面不能充分发挥作用。支座处上、下弦杆交角过小内力又较大,使支座节点构造复杂。 (2)梯形桁架 梯形屋架适用于屋面坡度较为平缓的无檩屋盖体系,它与简支受弯构件的弯矩图形比较接近,弦杆受力较为均匀。梯形屋架与柱的连接可以做成铰接也可以做成刚接。梯形屋架的中部高度一般为(1/10~1/8)L,与柱刚接的梯形屋架,端部高度一般为(1/16~1/12)L,通常取为2.0~2.5m。与柱铰接的梯形屋架,端部高度可按跨中经济高度和上弦坡度决定。 (3)人字形桁架 人字形屋架的上、下弦可以是平行的,坡度为1/20~1/10,节点构造较为统一;也可以上、下弦具有不同坡度或者下弦有一部分水平段,以改善屋架受力情况。人字形屋架因中高度一般为2.0~2.5m,跨度大于36m时可取较大高度但不宜超过3m;端部高度一般为跨度的1/18~1/12。 (4)平行弦桁架 平行弦桁架在构造方面有突出的优点,弦杆及腹杆分别等长、节点形式相同、能保证桁架的杆件重复率最大,且可使节点构造形式统一,便于制作工业化。 3.托架形式 支承中间屋架的桁架称为托架,托架一般采用平行弦桁架,其腹杆采用带竖杆的人字形体系。托架高度般取跨度的1/5~1/10,托架的节间长度一般为2m或3m。 二、屋盖支撑

空间桁架结构程序设计(Fortran)学习资料

空间桁架结构程序设计(F o r t r a n)

空间桁架静力分析程序及算例1、变量及数组说明

2、空间桁架结构有限元分析程序源代码 !主程序(读入文件,调用总计算程序,输出结果) CHARACTER IDFUT*20,OUTFUT*20 WRITE(*,*) 'Input Data File name:' READ (*,*)IDFUT OPEN (11,FILE=IDFUT,STATUS='OLD') WRITE(*,*) 'Output File name:' READ (*,*)OUTFUT OPEN(12,FILE=OUTFUT,STATUS='UNKNOWN') WRITE(12,*)'*****************************************' WRITE(12,*)'* Program for Analysis of Space Trusses *' WRITE(12,*)'* School of Civil Engineering CSU *' WRITE(12,*)'* 2012.6.25 Designed By MuZhaoxiang *' WRITE(12,*)'*****************************************' WRITE(12,*)' ' WRITE(12,*)'*****************************************' WRITE(12,*)'*************The Input Data****************' WRITE(12,*)'*****************************************' WRITE(12,100) READ(11,*)NF,NP,NE,NM,NR,NCF,ND WRITE(12,110)NF,NP,NE,NM,NR,NCF,ND 100 FORMAT(6X,'The General Information'/2X,'NF',5X,'NP',5X,'NE',5X,'NM',5X,'NR',& 5X,'NCF',5X,'ND') 110 FORMAT(2X,I2,6I7) NPF=NF*NP NDF=ND*NF

桁架结构体系..

桁架结构体系 在本小节中我们要给大家介绍桁架结构体系的组成、优缺点及适用范围;桁架结构体系的合理布置原则及及受力特点。 桁架结构组成:一般由竖杆,水平杆和斜杆组成(图1-23)。 图1-23 桁架结构 在房屋建筑中,桁架常用来作为屋盖承重结构,这时常称为屋架。 用于屋盖的桁架体系有两类: (1)平面桁架,用于平面屋架; (2)空间桁架,用于空间网架。 这两类桁架的共同特点是它们都由一系列只受同向拉力或压力的杆件连接而成。作为桁架结构的整体来说,它们在荷载作用下受弯、受剪;但作为桁架结构中的杆件来说,只承受轴向力,不承受弯矩、剪力和扭矩。 桁架结构的最大特点是,把整体受弯转化为局部构件的受压或受拉,从而有效地发挥出材料的潜力并增大结构的跨度。 桁架结构受力合理、计算简单、施工方便、适应性强,对支座没有横向推力,因而在结构工程中得到了广泛的应用。 屋架的主要缺点是结构高度大,侧向刚度小。 结构高度大,增加了屋面及围护墙的用料,同时也增加了采暖、通风、采光等设备的负荷,并给音响控制带来困难。侧向刚度小,对于钢屋架特别明显,受压的上弦平面外稳定性差,也难以抵抗房屋纵向的侧向力,这就需要设置支撑。 桁架是较大跨度建筑的屋盖中常用的结构型式之一。在一般情况下,当房屋的跨度大于18m时,屋盖结构采用桁架比梁经济。屋架按其所采用的材料区分,有钢屋架、木屋架、钢木屋架和钢筋混凝土屋架等。钢筋混凝土屋架当其下弦采用预应力钢筋时,称为预应力钢筋混凝土屋架。目前,我国预应力钢筋混凝土屋架的跨度已做到60多米,钢屋架的跨度已做到70多米。

一、桁架结构的型式与受力特点 屋架结构的型式很多: (1)按屋架外形的不同,有三角形屋架、梯形屋架、抛物线屋架、折线型屋架、平行弦屋架等。 (2)根据结构受力的特点及材料性能的不同,也可采用桥式屋架、无斜腹杆屋架或刚接桁架、立体桁架等。 我国常用的屋架有三角形、矩形、梯形、拱形和无斜腹杆屋架等多种型式,见图1-24。 图1-24常用的屋架型式 (a)三角形屋架(b)平行弦屋架(矩形)(c)梯形屋架(再分式) (d)拱形屋架(e)下撑式屋架(f)无斜腹杆屋架 尽管桁架结构中以轴力为主,其构件的受力状态比梁的结构合理,但在桁架结构各杆件单元中,内力的分布是不均匀的。屋架的几何形状有矩形的(即平行弦屋架)、三角形、梯形、折线形的和抛物线形的等等。它们的内力分布随形状的不同而变化。 在一般情况下,屋架的主要荷载类型是均匀分布的结点荷载。我们首先分析在结点荷载作用下平行弦屋架的内力分布特点,见图1-25。然后,引伸至其它形式的屋架。 从图1-25中可以得出如下结论: (1)弦杆轴力:

桁架结构分析

2013-2014年度学生研究计划(SRP)“桁架结构模型结构优化及试验” 结题论文 姓名骆辉军 学院土木与交通学院 专业土木工程(卓越全英班) 学号 201230221450 指导老师范学明 时间 2014年10月

一.实验背景 随着科学技术的发展和计算机软件技术的应用,应用相关的软件来进行桁架结构模型的优化已经可以成为现实。桁架结构中的桁架指的是桁架梁,是格构化的一种梁式结构。桁架结构常用于大跨度的厂房、展览馆、体育馆和桥梁等公共建筑中。由于大多用于建筑的屋盖结构,桁架通常也被称作屋架。在桥梁结构中,桁架结构也应用广泛。只受结点荷载作用的等直杆的理想铰结体系称桁架结构。它是由一些杆轴交于一点的工程结构抽象简化而成的。合理地设计桁架结构,就能够最大限度地利用材料的强度,起到减轻桁架重量,节省材料的目的,从而也能为工程实际应用提供相关的依据和参考。 但桁架的结构模型形式千变万化,仅仅从理论上分析桁架的受力特征和破坏特征,而不进行相应的试验研究是无法取得实质性的进展的。正是基于这样一个原则,我们需要在理论研究的基础上通过试验来优化桁架的结构模型,在各式各样的桁架结构中挑选出受力合理的结构,最大限度地使材料的强度得以利用。 研究桁架结构模型优化的意义 桁架结构中,各杆件受力均以单向拉、压为主,通过对上下弦杆和腹杆的合理布置,可适应结构内部的弯矩和剪力分布。由于水平方向的拉、压内力实现了自身平衡,整个结构不对支座产生水平推力。结构布置灵活,应用范围非常广。桁架梁和实腹梁(即我们一般所见的梁)相比,在抗弯方面,由于将受拉与受压的截面集中布置在上下两端,增大了内力臂,使得以同样的材料用量,实现了更大的抗弯强度。在抗剪方面,通过合理布置腹杆,能够将剪力逐步传递给支座。这样无论是抗弯还是抗剪,桁架结构都能够使材料强度得到充分发挥,从而适用于各种跨度的建筑屋盖结构。更重要的意义还在于,它将横弯作用下的实腹梁内部复杂的应力状态转化为桁架杆件内简单的拉压应力状态,使我们能够直观地了解力的分布和传递,便于结构的变化和组合。 由于杆件之间的互相支撑作用,且刚度大,整体性好,抗震能力强,所以能够承受来自多个方向的荷载。而且具有结构简单,运输方便等优点,其应用于各个工程领域。古代木构建筑,而今的2008北京奥运会的主体育馆鸟巢;太空中的大型可展天线,地面上的跨海大桥,随处都可见到桁架的身影。由于桁架的结构模型千变万化,不同的桁架结构形式对桥梁或者屋架的受力特征有很大的影响,因而,研究桁架结构模型的优化具有重大的意义。 二.实验的相关资料 1.桁架结构的常见构造方式 桁架指的是桁架梁,是格构化的一种梁式结构,即一种由杆件彼此在两端用铰链连接而成的结构。桁架由直杆组成的一般具有三角形单元的平面或空间结构,桁架杆件主要承受轴向拉力或压力,从而能充分利用材料的强度,在跨度较大时可比实腹梁节省材料,减轻自重和增大刚度。由于大多用于建筑的屋盖结构,桁架通常也被称作屋架。 桁架结构常用于大跨度的厂房、展览馆、体育馆和桥梁等公共建筑中。其主要结构特点在于,各杆件受力均以单向拉、压为主,通过对上下弦杆和腹杆的合理布置,可适应结构内部的弯矩和剪力分布。由于水平方向的拉、压内力实现了自身平衡,整个结构不对支座产生水平推力。结构布置灵活,应用范围非常广。桁架梁和实腹梁(即我们一般所见的梁)相

桁架结构优化设计

桁架结构优化设计 一般所谓的优化,是指从完成某一任务所有可能方案中按某种标准寻找最佳方案。结构优化设计的基本思想是,使所设计的结构或构件不仅满足强度、刚度与稳定性等方面的要求,同时又在追求某种或某些目标方面(质量最轻,承载最高,价格最低,体积最小)达到最佳程度。 对于图1-1的结构,已知L=2m,x b=1m,载荷P=100kN,桁架材料的密度r=7.7x10-5N/mm3,[δt]=150Mpa,[δc]=100Mpa,y b的范围:0.5m≦y b≦1.5m。 图1-1 桁架结构 设计变量与目标函数(质量最小)

预定参数(设计中已确定,设计者不能任意修改的量):L , x b ,P ,r ,[δt ] ,[δc ] 设计变量(可由设计者调整的量)y b ,A 1,A 2 约束条件(对设计变量的约束条件) (1) 强度条件约束(截面、杆件的强度) (2) 几何条件约束(B 点的高度范围) 目标函数:桁架的质量W (最小) 解:1. 应力分析 0sin sin 02112=--=∑θθN N F x 0cos cos 02112=---=∑P N N F y θθ 由此得: )sin(sin 2111θθθ+= p N ) sin(sin 212 2θθθ+- =p N 由正弦定理得: l y l x p N B B 2 1) (2 -+=

l y x p N B B 2 22 += 由此得杆1和2横截面上的正应力 1 2 1) (2 lA y l x p B B -+= σ 2 2 22 lA y x p B B += σ 2.最轻质量设计 目标函数(桁架的质量) ))((2 2 2 1 2 2 B B y x A y l x A W B B ++-+=γ (1-1) 约束条件 [][]? ? ? ?? ????? ????≤+≤-+c B t B lA y x p lA y l x p B B σσ2 2 1 2 22 ) ( (1-2) 0.5≦y b ≦1.5(m ) (1-3) (于是问题归结为:在满足上述约束条件下,确定设计变量y b ,A 1,A 2,使目标函数W 最小。) 3.最优解搜索 采用直接实验法搜索。首先在条件(1-3)所述范围内选取一系列y b 值,由强度条件(1-2)确定A 1与A 2,最后根据式(1-2)计算相应W ,在y b -W 曲线中选取使W 最小的y b 与相应的A 1与A 2,即为本问题的最优解。 4.利用MA TLAB 编程 (1)分析目标函数和约束条件

桁架结构实例分析

桁架结构实例分析 上海大剧院所采用的建筑结构为月牙形钢桁架结构。为满足上海人民日益增长的文化需要和艺术表演需求,特此设计建造了上海大剧院。上海大剧院是以观演为主要功能的公共建筑。其包括演出、餐厅、咖啡厅、画廊以及地下车库组成。除了体现了现代化的剧院建筑成就,还融入了中国传统文化。 其平面布置的格局为中国建筑的传统布局方法—“井”字形划分布局。前为大厅,后为表演及专业技术活动场地。大剧院包括1800座的大剧场和600座的中剧场及300座的小剧场。上海大剧院对于空间的利用达到近乎完美的境地。大剧场分三层看台,采用“法国式”结构。无论从座位设置到观剧视觉和听觉感受效果均达到国际第一流剧院的优级配置标准。此外大剧院还拥有目前国际上容纳面积最大、动作变换最多的舞台设备。 大剧院的展向天空的屋顶如桥梁般承接着宇宙和人类的联系。融合了东西方的文化韵味。白色弧形拱顶和具有光感的玻璃幕墙的有机结合,在灯光的烘托下如水晶宫一般。大剧院的设计特点非常鲜明。首先在营造外观气势上,其拱顶屋架起到了一定作用,延伸了建筑向上的高度以及横向的广度。同时形成了较强的视觉冲击力。此外其向上反翘的拱顶并不只是摆设,还有实际效用。其实在剧院设计上,拱顶设计更具优势。剧院建筑对于声学效果要求很严,大剧院的拱顶由六根柱子支撑,中间留有空隙,因此设计将机房设备安置于此。除了

能有效利用建筑面积外,更能避免地下震动对主题观众厅的噪声影响,架空的钢结构顶部可以有效延缓噪声到达建筑主体的时间,从而减弱固体传声的影响。更增加了剧场内部空间,增加了观众的座位数。 大剧院钢屋该既是覆盖整个大剧院下部结构的屋顶,又是一个称重结构。为了达到建筑和结构的完美统一。大剧院采用了巨型框架的结构体系,它具有侧向刚度较大,给建筑提供大开间和大高度室内空间,能满足建筑多功能要求的特点。大剧院内六个钢筋混凝土电梯筒体作为主框架柱,承担着上部结构全部的竖向荷载、风载及地震荷载,两榀纵向主桁架及十二榀横向月牙形桁架形成主框架梁,承担着全部钢屋盖的竖向荷载,并将这传至电梯筒体,钢屋盖内部三层楼面结构组成巨型结构的次框架部分。充分满足了建筑设计需求。

大空间钢结构桁架檩条系统

大空间钢结构桁架檩条系统 摘要:本文详细介绍了桁架檩条作为一种大柱距屋面檩条体系,应用于轻钢结构建筑的设计方法及构造要求。通过实际案例的分析,对于桁架檩条相对于托架结构体系和高频焊接构件体系进行了经济型的比较,阐明了这种大柱距檩条系统在应用上的独特优势及发展前景。 关键词: 桁架檩条柱距空腹结构连续折弯抗风支撑 1. 概述: 屋面檩条是轻型钢结构建筑中的主要受力构件之一。通常情况下,轻钢结构建筑的柱距在6m~9m 之间,屋面次结构采用Z型连续搭接檩条或C型简支檩条,这是因为普通的冷弯薄壁檩条的经济跨度在9m 之内。但是在某些特定的行业中,由于生产活动及运输的需要,如超市、物流中心、汽车制造厂房等,需要建筑物能够提供更加宽阔灵活的空间,柱距可能达到12m以上,甚至18m;还有一些建筑物,由于屋面有较大的悬挂荷载,超出了冷弯薄壁檩条的承载范围。以往解决问题的做法是,采用实腹式H型钢梁或高频焊H型钢梁代替檩条或采用纵向托架结构系统(LGS),但这些做法往往会造成结构用钢量大幅增长,以及建筑成本和施工难度的增加。巴特勒屋面桁架檩条是一种新型的用于大柱距屋面系统的空腹结构,能够弥补冷弯薄壁型钢檩条在大跨度、大荷载方面的缺陷和不足。美国巴特勒公司开发的Landmark?2000结构体系,正是使用这种桁架檩条结合实腹式门式刚架,以及相关支撑系统所形成的。该结构体系具有不同一般的低成本优势和极佳的观感,并能提供更大的空间。另外,桁架檩条在穿越管线和安装吊挂方面也有普通檩条无法比拟的优势。经过十余年具体的实践活动,该系统已经被市场所接受,在美国已经成为主流的结构体系。 2. 产品特征: 与传统的用热轧型钢作为桁架上下弦杆不同,巴特勒屋面桁架檩条采用冷弯薄壁型钢作为弦杆,薄壁焊管作为腹杆,在使桁架的外形更为美观的同时,能合理地利用材料的特性。桁架檩条截面高度分为500mm和750mm两种,设计跨度为4.5m~18.0m,并以150mm为模数变化。桁架檩条主要由上下弦杆、主腹杆、端腹杆及端支座组成,组装图见图1:

空间桁架结构程序设计(Fortran)

空间桁架静力分析程序及算例1、变量及数组说明 输入数据 控制数据NF 单个节点的自由度数 NP 结构离散节点的总数 NE 结构离散单元的总数 NM 结构中单元不同的特征数类的总数NR 结构受约束节点的总数 NCF 结构受外荷载作用的节点总数 ND 一个单元的节点总数 几何数据X(NP) 节点X坐标数组 Y(NP) 节点Y坐标数组 Z(NP) 节点Z坐标数组 ME(ND,NE) 单元节点信息存储矩阵 ME(1,NE)存储杆件始端节点号 ME(2,NE)储存杆件末端节点号RR(2,NR) 结构约束信息矩阵 RR(1,NR)存放受有约束的节点号 RR(2,NR)存放节点位移约束情况 单元特征数据AE(2,IN) 单元特征数类数组 AE(1,IN)单元的弹性模量 AE(2,IN)单元的横截面面积NAE(NE) 单元特征类信息存储数组 荷载数据PF(4,NCF) 外荷载信息数组 PF(1,NCF)存放外荷载作用的节点号 PF(2,NCF)存放X方向的外荷载 PF(3,NCF)存放Y方向的外荷载 PF(4,NCF)存放Z方向的外荷载 输出数据 位移DIST(NPF) 节点位移数组 DIST(NF*I-2)存放I节点X方向的位移DIST(NF*I-1)存放I节点Y方向的位移DIST(NF*I) 存放I节点Z方向的位移 力SG(NE) 单元内力数组 SM(NE) 单元截面应力数组 FL(NF*NR) 支座反力数组 FL(NF*I-2)存放受约束的I节点X方向的反力 FL(NF*I-1)存放受约束的I节点Y方向的反力 FL(NF*I)存放受约束的I节点Z方向的反力

中间变量 NPF=NF*NP 二维总刚度矩阵的最大行数 NDF=ND*NF 一个单元的自由度总数(2*3=6) IN 单元特征类总数 AKE(2,2) 单元在局部坐标系中的刚度局矩阵 BL 杆件单元长度 T(2,6) 坐标转换矩阵 TAK(6,6) 单元在总体坐标系中的刚度矩阵 IT(NF,NP) 节点联系数组 LMT(NDF,NE) 单元联系数组 MAXA(NPF) 结构二维总刚度矩阵主对角元地址数组 NWK 结构一维总刚度矩阵的总容量 CKK(NWK) 结构一维总刚度矩阵 NN 结构矩阵方程的方程总数(去掉约束) NNM NNM=NN+1 V(NN) 已知节点荷载列阵数组,回代完成后为存放结构位移 PP(NPF) 所有节点荷载列阵数组 2、空间桁架结构有限元分析程序源代码 !主程序(读入文件,调用总计算程序,输出结果) CHARACTER IDFUT*20,OUTFUT*20 WRITE(*,*) 'Input Data File name:' READ (*,*)IDFUT OPEN (11,FILE=IDFUT,STATUS='OLD') WRITE(*,*) 'Output File name:' READ (*,*)OUTFUT OPEN(12,FILE=OUTFUT,STATUS='UNKNOWN') WRITE(12,*)'*****************************************' WRITE(12,*)'* Program for Analysis of Space Trusses *' WRITE(12,*)'* School of Civil Engineering CSU *' WRITE(12,*)'* 2012.6.25 Designed By MuZhaoxiang *' WRITE(12,*)'*****************************************' WRITE(12,*)' ' WRITE(12,*)'*****************************************' WRITE(12,*)'*************The Input Data****************' WRITE(12,*)'*****************************************' WRITE(12,100) READ(11,*)NF,NP,NE,NM,NR,NCF,ND WRITE(12,110)NF,NP,NE,NM,NR,NCF,ND 100 FORMAT(6X,'The General Information'/2X,'NF',5X,'NP',5X,'NE',5X,'NM',5X,'NR',& 5X,'NCF',5X,'ND') 110 FORMAT(2X,I2,6I7) NPF=NF*NP

钢结构桁架设计计算书

renchunmin 一、设计计算资料 1. 办公室平面尺寸为18m ×66m ,柱距8m ,跨度为32m ,柱网采用封闭结合。火灾危险性:戊类,火灾等级:二级,设计使用年限:50年。 2. 屋面采用长尺复合屋面板,板厚50mm ,檩距不大于1800mm 。檩条采用冷弯薄壁卷边槽钢C200×70×20×2.5,屋面坡度i =l/20~l/8。 3. 钢屋架简支在钢筋混凝土柱顶上,柱顶标高9.800m ,柱上端设有钢筋混凝土连系梁。上柱截面为600mm ×600mm ,所用混凝土强度等级为C30,轴心抗压强度设计值f c =1 4.3N/mm 2 。 抗风柱的柱距为6m ,上端与屋架上弦用板铰连接。 4. 钢材用 Q235-B ,焊条用 E43系列型。 5. 屋架采用平坡梯形屋架,无天窗,外形尺寸如下图所示。 6. 该办公楼建于苏州大生公司所 属区内。 7. 屋盖荷载标准值: (l) 屋面活荷载 0.50 kN/m 2 (2) 基本雪压 s 0 0.40 kN/m 2(3) 基本风压 w 0 0.45 kN/m 2(4) 复合屋面板自重 0.15 kN/m 2(5) 檩条自重 查型钢表 (6) 屋架及支撑自重 0.12+0. 01l kN/m 28. 运输单元最大尺寸长度为9m ,高度为0.55m 。 二、屋架几何尺寸的确定 1.屋架杆件几何长度 屋架的计算跨度mm L l 17700300180003000=-=-=,端部高度取mm H 15000=跨中高度为mm 1943H ,5.194220 217700 150020==?+ =+=取mm L i H H 。跨中起拱高度为60mm (L/500)。梯形钢屋架形式和几何尺寸如图1所示。

钢桁架桥的结构设计与分析

钢桁架桥的结构设计与分析 1、概述 钢桁架桥以其跨越能力强、施工速度快、承载能力强、耐久性好普遍应用于铁路桥梁。长期以来,由于钢材价格高,材料养护费用高,钢桁架桥梁在公路领域应用较少。近年来,随着我国炼钢水平的提高,国产的钢材品质已经完全能满足结构安全的需要,同时随着钢结构防腐技术的提高,钢结构桥梁越来越多的在公路工程领域得到应用。 相比较我国当前100m左右中等跨径常用的桥型如连续梁、系杆拱、矮塔斜拉桥等结构,钢桁架桥梁虽然建筑成本高,但刨去成本控制的因素,钢桁架桥具有以下的几点优越性: 1.建筑高度低,由于钢桁架结构主桁主要由拉杆和压杆构成,对杆件界面的抗弯刚度要求不大,因此钢桁架的建筑高度由横梁控制,在桥梁宽度不是非常大时可极大的降低桥梁建筑高度,尤其适用于对桥梁建筑高度有严格限制的桥梁; 2.施工周期短,速度快。钢桁架施工可在工厂制作杆件,运到现场拼装成桥,可采用顶推和支架拼装等方法,这使它在很多工期较紧的工程(如重要道路的桥梁改建)和跨越重要道路的跨线桥上成为桥型首选之一; 3.随着钢结构防腐技术的提高,钢桁架桥的耐久性大为提高,同时钢材作为延性材料,结构安全性较混凝土桥梁高。正

因为钢桁架桥梁的这几方面的优点,桁架桥梁成为特定条件下的经济而合理的桥型选择。 2、结构设计 公路桥位于江苏省境内,正交跨越京杭大运河,河口宽95m,通航净空要求90x7m,桥梁主跨采用97m,由于桥梁中心至桥头平交处距离仅140余米,若采用其他结构纵坡将达到5%以上,经综合考虑,主桥采用97m下承式钢桁架结构。 2.1主桁 主桁采用带竖杆的华伦式三角形腹杆体系,节间长度 5.35m,主桁高度8m,高跨比为1/12.04。两片主桁中心距为8.6m,宽跨比为1/11.2,桥面宽度为8m。

空间桁架结构程序的设计(Fortran)

空间桁架静力分析程序及算例1、变量及数组说明

2、空间桁架结构有限元分析程序源代码 !主程序(读入文件,调用总计算程序,输出结果) CHARACTER IDFUT*20,OUTFUT*20 WRITE(*,*) 'Input Data File name:' READ (*,*)IDFUT OPEN (11,FILE=IDFUT,STATUS='OLD') WRITE(*,*) 'Output File name:' READ (*,*)OUTFUT OPEN(12,FILE=OUTFUT,STATUS='UNKNOWN') WRITE(12,*)'*****************************************' WRITE(12,*)'* Program for Analysis of Space Trusses *' WRITE(12,*)'* School of Civil Engineering CSU *' WRITE(12,*)'* 2012.6.25 Designed By MuZhaoxiang *' WRITE(12,*)'*****************************************' WRITE(12,*)' ' WRITE(12,*)'*****************************************' WRITE(12,*)'*************The Input Data****************' WRITE(12,*)'*****************************************' WRITE(12,100) READ(11,*)NF,NP,NE,NM,NR,NCF,ND WRITE(12,110)NF,NP,NE,NM,NR,NCF,ND 100 FORMAT(6X,'The General Information'/2X,'NF',5X,'NP',5X,'NE',5X,'NM',5X,'NR',& 5X,'NCF',5X,'ND') 110 FORMAT(2X,I2,6I7) NPF=NF*NP

管桁架结构设计与分析

龙源期刊网 https://www.doczj.com/doc/3711479867.html, 管桁架结构设计与分析 作者:王柱成王诗瑶刘广鹏任盛鑫 来源:《装饰装修天地》2018年第20期 摘要:近年来,随着我国钢材产量的不断增长,钢结构以其自身的优势在建筑中所占的比重越来越大,钢管结构也取得了很大的突破。钢管结构的最大优点是能很好地结合人们对建筑的功能要求、感官要求和经济效益要求。钢管桁架结构以其独特的优点受到人们的青睐。 关键词:管桁架;结构设计;分析 1 管桁架结构的力学特性 管桁架结构是在网架结构的基础上发展起来的。与空间桁架结构相比,管桁架结构具有独特的优势和实用性,结构的用钢量也相对经济。与空间桁架结构相比,管桁架结构省去了空间桁架下弦杆和球节点,能满足不同建筑形式的要求,特别是圆拱和任意曲线形状比空间桁架结构更为有利。四面稳定,节省材料消耗。 与传统的开口截面钢桁架(h型钢和I型钢)相比,管桁架结构的截面材料绕中性轴均匀分布,使截面具有良好的压扭承载力和较大的刚度,不需要节点板,结构简单。 最重要的是管桁架结构外形美观,造型方便,具有一定的装饰效果。该管桁架结构整体性能好,抗扭刚度高,外形美观,制造、安装、翻转、吊装相对容易。冷弯薄壁型钢屋架具有结构轻巧、刚度好、节约钢材、充分利用材料强度等优点。特别是在长细比控制的压杆和支撑体系中更为经济。目前,采用这种结构的建筑物基本上属于公共建筑物。该结构具有外形美观(可做成平板形、圆弧形、任意曲线形)、制作安装方便、结构稳定性好、屋面刚度大、经济效果好等特点。 2 管桁架结构的结构计算 2.1 基本设计规则 三维桁架的高度可为跨度的1/12~1/16。三维拱的拱厚可达跨度的1/20~1/30,拱高可达跨度的1/3~1/6。弦(主管)与腹杆(支管)和两腹杆(支管)夹角不得小于30度。当立体桁架跨度较大(一般不小于30m钢结构)时,可考虑起拱,起拱值不大于立体桁架跨度的 1/300(一般为1/500)。此时杆件内力变化较小,设计时不能用拱计算。管桁架结构在恒载和活载标准下的最大挠度值不应超过短跨度的1/250,悬臂不应超过跨度的1/125。悬吊吊装设备屋面结构的最大挠度不应大于结构跨度的1/400。当仅改善外观要求时,在恒载和活载标准下,最大挠度可取挠度减去鼓包值。

桁架结构静力测试

桁架结构静力测试 邬雨萱1450502 金永学1550873 1.工程背景: 钢桁架桥在现实中应用广泛,工程实例中有各 种各样的钢桁架桥。钢桁架桥一般为超静定结 构,以使桥更为安全。桁架杆件主要受轴向拉 应力或压应力而不受弯矩。因此可以最大限度 发挥材料的性能,让承受更大的力,因此其十 分适合于大跨度结构。如图所示就是一座钢桁 架桥。但是实际应用中的桁架桥的结点往往并 非全铰接,其中或多或少带有刚接特性,因此实际使用时桁架的受力与理论计算并不完全相同。桁架结构是现代工程结构中最常用的结构之一。在荷载作用下,桁架杆件主要承受轴向拉力或压力,从而能充分利用材料的强度,节省材料,减轻自重和增大刚度,同时,桁架结构还具有造型优美,坚固耐用,具有艺术性等特点,在现代工程实践当中得到广泛的应用。因此,桁架的设计和测试显得尤为重要。 1.实验目的: (1)设计并组装桁架结构;图1

(2)理论分析选定杆件轴力大小和方向; (3)了解应变片测量原理及使用方式; (4)测定桁架各杆件轴力大小,并与理论值比较; 2.实验内容: (1)桁架搭建:该桁架由24根265mm×10mm×5mm和90根190mm×10mm×5mm的钢杆通过螺钉连结起来。成型后效果如下图。 图一桁架实物图 (a) (b) (c) 图二节点构造图 (2)实验方案设计:杆件选择:在实验中,为了测得杆的轴力,我们选择了三种不同的杆件粘贴应变片。杆件位置及编号如下图所示: 杆件2

每个测点在杆件的正,反两面分别粘贴应变片,编号后,再引出导线,接入DH-3818静态应变测试仪上。将应变片粘贴在杆件两侧,目的是排除由于受力不在桁架所在平面内而造成的杆件弯曲对测试的影响。在实验处理数据时,应取两个读数的平均值作为杆件的应变值。 加载设计:因简支梁的挠度在力集中在梁中点时达到最大,所以我们将荷载加在桁架的中间位置。为了加载方便,我们把加载点设计在桁架的上弦点A 处。如上图所示。 (3)受力分析:该桁架结构有一定的对称性,在作受力分析图时我们只画结构的一半受力图: (4)操作步骤:a.在需要测量的杆件上贴好应变片,将各应变片导线接入DH-3818静态应变测试仪并用电烙铁焊接牢固; b.将DH-3818静态应变测试仪各通道清零并平衡; c.加载,记录下各通道的读数,计算轴力,与理论值进行比较。 (5)实验数据处理: 测得每个杆件的横截面都是10.25×3.30mm(取横截面积为34mm 2)的矩形,取弹性模量E=210G ,重力加速度g=9.8m/s 。 数据表如下: 其它杆件受力 外载荷杆件1受力杆件2受力杆件3受力

木结构桁架设计

木结构桁架设计(一) [资料来源:木结构设计手册] 一、桁架结构形式的选择和布置 1. 桁架结构形式的分类和选择 木屋盖除了屋面构件外,还有屋盖承重结构。屋盖承重结构分为原木或方木结构和胶合木结构两类,根据杆件体系可分为桁架、拱和框架等三类。屋架一般为平面桁架,它承受作用于屋盖结构平面内的荷载,并把这些荷载传递至下部结构(如墙或柱子)。 桁架根据下弦所用材料又分为木材7架和钢木椅架两类。桁架结构形式的选择,应根据建筑上的要求、材料供应、制造条件和结构本身的合理性和可能性等因素来确定,并宜采用静定的结构体系。 木桁架,目前常用的还是原木或方木结构。 钢木桁架为采用钢材作下弦的桁架,钢木桁架能消除木材缺陷(木节、裂缝及斜纹)对桁架受拉下弦及其连接的不利影

响,提高桁架的安全可靠程度和刚度。在下列情况下,宜选用钢木桁架: (1)当所用木材不能满足下弦的材质标准时; (2)设有悬挂吊车和有振动荷载的中小型工业厂房; (3)当桁架跨度较大或使用湿材时; (4)木构件表面温度达到40~50°C; (5)采用落叶松或云南松等在干燥过程中易于翘裂的木材,且其跨度超过15m(对于原木)或12m(对于方木); (6)采用新利用树种木材,且其跨度超过9m。 2.桁架的外形 桁架的外形应根据所采用的屋面材料、桁架跨度、建筑造型、制造条件和桁架的受力性能等因素来确定。 木桁架的外形通常有三角形、梯形及多边形等三种(图6.3.1),当采用胶合木结构时,还可用拱形。对砖木结构房屋,我国目前常用的屋面材料为粘土瓦、彩色混凝土瓦及多彩沥青油毡瓦等,需要的排水坡度较大,故一般均采用三角形桁架;这种桁架与梯形、多边形桁架相比较,其受力性能较差,用料较费,且建筑造型也不太好,因此其跨度不宜超过18m。当跨度再大时,应选用彩钢压型板或其他轻质材料

桁架结构设计(EFX)培训

桁架设计(EFX)培训 PTC GSO 上海 程红

Agenda 第一天 1.EFX模块的特点 2.EFX模块的安装及配置 3.EFX基本功能使用-截面梁 4.EFX基本功能使用-接头 5.EFX基本功能-简化细节表示 第二天 1.EFX复杂钢结构-项目子组件 2.EFX复杂钢结构-连接器、设备、焊接组 3.EFX复杂钢结构-螺栓、销钉连接 4.EFX元件的绘图 5.建立自定义型材库

桁架结构设计特点 桁架结构,相对于其他的机械结构而言有以下特点:?产品结构复杂,零部件数量繁多; ?单个零件相对简单,大量采用型材; ?零件间连接复杂,连接形式多样; ?出图工作量很大;

EFX模块介绍 Expert Framework Extension (EFX) 是Pro/ENGINEER 的扩展部分,专用于桁架的设计建模。 使用EFX 可以执行下列任务: ?利用标准Pro/ENGINEER 功能创建曲线骨架,其中曲线表示结构的主梁。 ?通过以下方式装配型材梁:从库中选定型材梁,并选取参照曲线或起点和终点,或者动态创建每个型材梁的起点和终点,系统根据参照曲线的长度,自动创建型材梁并将其装配到参照曲线上。 ?修改型材梁位置(例如,旋转或移动)。 ?通过选取两个型材梁,在两个型材梁之间定义接头(例如,拐角接头、T 型接头或角接接头)。 ?装配连接器元素和其它设备元素。 ?在简化表示中复杂的型材形状,快速切换到更详细的表示。

1. 执行SETUP.EXE,指定安装路径d:\ptc\efx4.0,完成安装 2.子目录 EFX 包含下列子目录: text-包含一个config.pro文件,其中包括下列项目: 1.EFX 的启动命令 2.Pro/ENGINEER 配置选项 3.EFX 图标的映射键。 EFX 图标(config.win)

桁架结构

桁架结构 前言:课本加优点运输方便,结构重量轻,常用于大跨度结构,充分发挥材料的作用 关键词:桁架结构、桁架类型、桁架组成、桁架结构的选型与布置 一:什么是桁架结构? 桁架结构(Truss structure )中的桁架指的是桁架梁,是格构化的一种梁式结构。桁架结构常用于大跨度的厂房、展览馆、体育馆和桥梁等公共建筑中。由于大多用于建筑的屋盖结构,桁架通常也被称作屋架。Pppt 中。 二:桁架组成 上图加课本内容

各桁架结构的概述和图形,在课本上。没种的优缺点ppt 三::桁架结构的选型及布置 Ppt加课本

四:桁架结构的重要结构构件

桁架的历史演变 只受结点荷载作用的等直杆的理想铰结体系称桁架结构。它是由一些杆轴交于一点的工程结构抽象简化而成的。桁架在建造木桥和屋架上最先见诸实用。古罗马人用桁架修建横跨多瑙河的特雷江桥的上部结构(发现于罗马的浮雕中,文艺复兴时期,意大利建筑师(拔拉雕Palladio)也开始采用木桁架建桥出现朗式、汤式、豪式桁架。英国最早的金属桁架是在1845年建成的,适合汤式木桁架相似的格构桁架,第二年又采用了三角形的华伦式桁架 桁架结构

桁架结构中的桁架指的是桁架梁,是格构化的一种梁式结构。桁架结构常用于大跨度的厂房、展览馆、体育馆和桥梁等公共建筑中。由于大多用于建筑的屋盖结构,桁架通常也被称作屋架。 主要结构特点 各杆件受力均以单向拉、压为主,通过对上下弦杆和腹杆的合理布置,可适应结构内部的弯矩和剪力分布。由于水平方向的拉、压内力实现了自身平衡,整个结构不对支座产生水平推力。结构布置灵活,应用范围非常广。桁架梁和实腹梁(即我们一般所见的梁)相比,在抗弯方面,由于将受拉与受压的截面集中布置在上下两端,增大了内力臂,使得以同样的材料用量,实现了更大的抗弯强度。在抗剪方面,通过合理布置腹杆,能够将剪力逐步传递给支座。这样无论是抗弯还是抗剪,桁架结构都能够使材料强度得到充分发挥,从而适用于各种跨度的建筑屋盖结构。更重要的意义还在于,它将横弯作用下的实腹梁内部复杂的应力状态转化为桁架杆件内简单的拉压应力状态,使我们能够直观地了解力的分布和传递,便于结构的变化和组合。

管桁架结构的设计要点

管桁架结构的设计要点 近年来,随着我国钢铁产量的不断增长,钢结构以其自身的优势,在建筑中所占的比例越来越大,钢管结构也取得较大的突破。钢管结构的最大优点是能将人们对建筑物的功能要求、感观要求以及经济效益要求完美地结合在一起,因此如何做好钢管结构中管桁架结构的设计就尤为重要。 管桁架结构的受力特点 管桁架,是指用圆杆件在端部相互连接而组成的格构式结构。与传统的开口截面(H型钢和I字钢)钢桁架相比,管桁架结构截面材料绕中和轴较均匀分布,使截面同时具有良好的抗压和抗弯扭承载能力及较大刚度。这种钢构不用节点板,构造简单,制作安装方便、结构稳定性好、屋盖刚度大。空间三角形钢管桁架在受到竖向均布荷载作用的时候,表现出腹杆抗剪、弦杆抗弯的受力机理。弦杆轴力的主要影响因素是截面的高度,而竖面斜腹杆轴力的主要影响因素是竖面腹杆与竖直线的倾角。水平腹杆在竖向荷载作用下的受力较小,但是如果受到明显的扭矩作用的话,必须考虑适当加大其截面尺寸。 管桁架结构的结构计算 设计基本规定。立体桁架的高度可取跨度的1/12~1/16,立体拱架的拱架厚度可取跨度1/20~1/30,矢高可取跨度的1/3~1/6。弦杆(主管)与腹杆(支管)及两腹杆(支管)之间的夹角不宜小于30°。当立体桁架跨度较大(一般认为不小于30米钢结构)时,可考虑起拱,起拱值可取不大于立体桁架跨度的1/300(一般取1/500)。此时杆件内力变化“较小”,设计时可按不起拱计算。管桁架结构在恒荷载与活荷载标准作用下的最大挠度值不宜超过短向跨度的1/250,悬挑不宜超过跨度1/125。对于设有悬挂起重设备的屋盖结构最大挠度不宜大于结构跨度的1/400。当仅为改善外观要求时,最大挠度可取恒荷载与活荷载标准作用下挠度减去起拱值。一般情况下,按强度控制面而选用的杆件不会因为种种原因的刚度要求而加大截面。 一般计算原则。管桁架结构应进行重力荷载及风荷载作用下的内力、位移计算,并应根据具体情况,对地震、温度变化、支座沉降及施工安装荷载等作用下的位移、内力进行计算。内力和位移可按弹性理论,采用空间杆系的有限元方法进行计算。对非抗震设计,作用及作用组合的效应应按现行国家标准《建筑结构荷载规范》进行计算。在杆件截面及节点设计中,应按作用基本组合的效应确定内力设计值。对抗震设计,地震组合的效应应

相关主题
文本预览
相关文档 最新文档