当前位置:文档之家› 塑性铰知识讲解

塑性铰知识讲解

塑性铰知识讲解
塑性铰知识讲解

塑性铰

钢结构中的塑性铰及其应用综述

姓名:严小伟

学号:15121116

北京交通大学

2020年7月

钢结构中的塑性铰及其应用综述摘要:结构构件在地震作用下产生塑性变形,在塑性铰形成的过程中能吸取大量的能量。在设计中恰到好处地设计塑性铰形成的位里并加以应用,可有效降低震害,不至于出现迅速倒塌的后果。

关键字:塑性铰理论;塑性变形;破坏机制

1.引言地震是一种具有突发性和毁灭性的自然灾害,它对当今人类社会的危害主要体现在两个方面:一是地震引起建筑物的破坏或倒塌将会导致严重的人身伤亡和财产损失,二是地震及其地震引起的水灾、火灾等次生灾害将破坏人类社会赖以生存的自然环境,造成严重的经济损失,产生巨大的社会影响。我国地处世界上两个最活跃的地震带上,是世界上的多地震国家之一,强烈地震给我国人民带来的灾难尤为严重。从历史上来看,我国的地震灾害面积己达到我国的国土面积的一半以上,尤其在近几年地震活动相当频繁。因为很多特大地震给人类带来了巨大的经济损失,一些特大地震己给人类社会带来了不可估量的经济损失,这就使得我们要对深入研究土木工程结构的抗震设计理论和应用方法进行深入的研究。不同阶段,客观因素和人类的认识水平是不一样的,这就形成了不同的抗震设计思想和方法。通过工程技术措施,保证建筑物和工程设施的抗震安全,是减轻地震灾害的有效手段,作为抗震灾害的重要环节,结构抗震设计理论的不断完善是世界各国重点研究的课题之一。结构在塑性变形中形成的塑性铰在抗震中能发挥重要作用,塑性铰能否在罕遇地震中出现,对结构安全和生命财产的安危是至关重要的。所以,很有必要对其进行研究和探讨,并应充分利用塑性铰来消耗地震的能量,提高结构的抗震性能,降低地震灾害。

2、塑性铰的有关概念

钢结构中的塑性铰在钢结构构件屈服的横截面处产生。如果不考虑结构分析中钢材应变硬化,那么屈服的横截面会产生一个不确定的转动并能承受一定的约束弯矩即塑性弯矩Mp。塑性铰是与理想铁相比较而言。理想铰不能承受弯矩,而塑性铁能够承受弯矩,其值即为塑性铰截面的极限弯矩。对于超静定结构,由于存在多余联系,某一截面的纵向钢筋屈服,即某一截面出现塑性铁并不能使结构立即成为破坏结构,还能承受继续增加的荷载。当继续加荷时,先出现塑性铁的截面所承受的弯矩维持不变,产生转动,没有出现塑性铰的截面所承受的弯矩继续增加,直到结构形成几何可变机构。这就是塑性变形引起的结构内力分布,塑性铰转动的过程就是内力重分布的过程。

塑性铰的长度塑性铰长度是进行结构延性计算和塑性设计的一个重要参数。在结构铰的分析中,我们都习惯并认同假定其为一个点,但塑性铰却与结构较不一样,而是一个塑性变形区域,我们一般称为塑性铰的长度。研究表明,塑性铰的长度与结构的荷载、边界条件、截面几何形状有关。

3、塑性铰理论

对塑性铰理论的研究,早在20世纪60年代Wen和Janssen就曾提出过一种双线型单元模型;Clough, Bensnka和Wilson]提出一种双分量模型;Aoyama 和sugan在他们研究的基础上提出了3分量模型。但是无论是双分量还是三分量模型使用范围都非常有限。鉴于杆件实际破坏过程中,塑性铰往往出现在构件端部,集中塑性铰模型被提出。Giberson 提出利用杆端塑性转角描述杆件的弹塑性性能的模型,恢复力模型可以选择折线型和曲线型,适用范围较

广;Otani 和Sown认为,构件的刚度随着构件受力过程和反弯点位置的变化而

变化,即杆件被分为弹性、弹塑性杆端弹塑性弹簧段,反弯点位置由加载历史确定;孙焕纯[1A}首先使用平均刚度值来模拟构件的刚度,它没有考虑刚度沿杆件分布的变化。分布塑性铰模型比集中塑性铰模型计算精度高,它模拟了构件塑性铰区域的发展变化情况。1973年Tseng和Penzien提出理想弹塑性铰梁柱单元,在其后的20年中,Kawashima, lmbsen和Mcguire等人提出了新的考虑运动强化的非线性梁柱单元。针对AC1318-95规范,Abraham C.Lynn等人指出,延性设计不好的柱子,容易遭受剪切破坏;当结构的反应由剪力控制时,在抗剪的横向抗力消失后,柱子随即发生重力失效。美国学者Ghobarch等人对地震作用下钢筋混凝土梁柱结点的破坏进行了研究,并提出了预防结点破坏的有效方法。国内外还有许多学者对钢筋棍凝土构件的非线性特性和破坏过程进行了大量的试验与理论研究。

4、塑性铰出现的部位

当地震作用于结构构件上并发生塑性变形时,该截面上各点均进入屈服状态。对钢筋混凝土构件而言,在塑性铰形成时,混凝土拉应力已达到屈服状态,而钢筋拉应力还未达到,若受拉变形继续变大,在二者的相互作用下,在该接触部位始终保持一个“弹性核”,当应变继续加大,钢筋达到屈服时,与混凝土的粘结力破坏,这时出现了塑性变形集中区的塑性铰,在这个过程中,塑性铰要吸收和消耗较多的地震输人能,而在其他部位则得到一个相对安全的保证。因此,塑性铰一般出现在受力较大的部位,如梁的跨中及根部,柱的端部。塑性铰发生位置对框架结构抗震性能的影响是通过以下两方面来实现的: (1)结构物抗震减震的能力,是通过它的耗能能力来体现的。如果塑性铰设置的位置合理,那么结构物就具有良好的抗震能力。(2)塑性铰设置的位置可以明显

改变整体结构的刚度。如果塑性铰设置的位置使结构的振动主频与地震输入的主频相距较大,那么它的抗震性能也是很好的。

5、塑性铰的破坏机制

梁铰破坏机制是指框架梁端的抗弯承载力弱于框架柱端的承载力时,结构的破坏表现为梁端首先进入屈服状态,塑性铰的转动耗散大量地震能量,而各层柱在较长的时间里基本处于弹性状态,最后才在底层柱根部出现塑性铰。结构整体围绕柱根部做刚体转动,就总体而言,结构仅为单自由度体系。

柱铰破坏机制是指框架柱的承载力弱于框架梁的承载力时,在水平荷载作用下,结构破坏表现为柱端进入屈服状态,而梁仍处于弹性状态,在最不利的情况下,可能由于其他各层柱子均相对较强而仅在其一层形成柱铰侧移机构,而使整体结构达到承载能力极限状态。

框架结构的变形能力与框架的破坏机制密切相关。实验研究表明,梁先屈服,可使整个框架有较大的内力重分布和能量耗散能力。由上述可见,理想的破坏机制应为最少自由度的机制,对于框架结构,应使其成为梁铰型侧移屈服机构,以充分利用梁塑性铰区的非弹性变形来耗散地震能量。在抗震设计中一方面应防止塑性铰在竖向构件上出现,另一方面应迫使塑性铰发生在水平构件上,同时要尽量推迟塑性铰在框架柱根部出现。要想更好地实现这一目标,首先应能准确地判

别一个结构的破坏机制,然后采取不同的措施予以合理的设计。

6、形成塑性铰的措施

在地震作用来临时,我们希望结构出现塑性铰来吸收地震能量。可采用以下几种措施:

(1)对于抗震结构,宜采用延性性能好的材料—钢或合理配置钢筋的钢筋混凝土而成的延性性能好的构件,并以此构成延性较好的结构。这样,当结构遭受罕遇地震作用时,结构也可依靠钢材屈服后有足够的延性,使在弹性后的塑性变形过程中吸收和耗散能量。经验表明,大部分抗震结构在中震作用下都进入塑性状态而耗能,因而能将结构保存下来,不至于倒塌。

(2)要使结构成为延性结构,首先在结构体系上应是超静定的,而不是呈悬臂状的静定结构,并且还需要使塑性铰最先出现在此超静定结构的次要构件或水平构件上.然后才出现在主要构件或竖向构件上,以形成多道抗震防线,延长非弹性的发展过程,增大变形能力,吸收和耗散地震能量,提高结构的防倒塌能力。

(3)采用不同的抗震等级。可通过合理的结构体系、合理布置结构、对构件及其连接采取各种构造措施等多方面的努力来提高延性进而形成塑性铰,当然施工质量好坏对结构延性也有很大的影响。抗震等级的划分主要考虑了地震作用,它包括区分设防烈度、场地类别;考虑了结构类型,它包括区分主、次抗侧力构件;还考虑了房屋高度等因素。所以,抗震等级的划分在很大程度上发挥了作用。

(4)结构中有限的延性破坏也要控制,在地震作用下塑性铰的弯曲屈服对整个构件的强度、非线性变形以及结构的耗能能力起控制作用。因此,要做到以下几点:①控制塑性铰在某个恰当的部位出现;②在塑性铰区防止过早出现剪切破坏,即按强剪弱弯设计,并防止过早出现锚固破坏(强锚固);③在塑性铰区改善抗弯及抗剪钢筋构造,控制斜裂缝的发展,充分发挥弯曲作用下抗拉钢筋的延性作用。

7、塑性铰的应用

在结构设计中根据塑性铰的形成原理人为的设计塑性铰出现的先后顺序或者将要出现塑性铰的截面处用阻尼器装置代替,使结构在强能力输入时依靠塑性铰的形成耗能或依靠出现塑性铰处设计的阻尼器耗能从而避免结构的破坏。所谓“强柱弱梁”即有抗震设防的框架结构中,在地震作用下,能呈现“梁铰机制”,使梁端首先出现塑性铰,避免柱端出现塑性铰,使整个框架在地震作用下,具有良好的变形能力。将梁的塑性铰位置从柱边移开,通过增加节点中的辅助纵向钢筋并使其伸入两侧梁内一定距离,将可能发生的梁内塑性铰区段从柱边移开,使其在距柱边一个梁截面有效高度处形成,这样,在反复循环荷载作用下,非弹性变形不会侵入节点内(塑性铰产生非弹性效应,形成非弹性变形),这样框架结构便能在循环荷载的反复作用下,仍能保持其总体程度和有效度,另外,由于地震荷载引起的损坏区段从节点移开后,对震害的修复更加容易,费用也较少,产生可观的经济效果。

8、结论

(1)塑性铰形成时,此刻结构已有很大的塑性变形。

(2)塑性铰形成时要吸收和消耗较多的地震输人能,在力学性能方面可使结构处于一个相对稳定的平台。

(3)在易形成塑性铰的部位,既希望塑性铰出现来吸收能量,又要进行加强,防止塑性铰区范围过分扩大,产生剪切破坏。

参考文献:

<<框架结构梁中塑性铰的设置_魏中峰>>

<<拉结法中框架梁塑性铰位置的探究>>

<<塑性铰理论在实际工程中的应用>>

<<钢框架结构延性节点塑性铰外移的机理研究>>

<<塑性铰发生位置对框架结构抗震性能的影响>>

<<塑性铰长度对平面框架滞回耗能计算影响分析_边江>>

(完整版)初三物理比热容知识点及相应练习

第二讲比热容 【益思互动】 一、比热容 1、定义:单位质量的某种物质温度升高(降低)1℃时吸收(放出)的热量 2、物理意义:表示物体吸热或放热的本领的物理量 3、单位:J/(kg·℃) 4、说明: (1)比热容是物质的一种特性,大小与物体的种类、状态有关,与质量、体积、温度、密度、吸热放热、形状等无关。 (2)水的比热容为4.2×103J(kg·℃) 表示:1kg的水温度升高(降低)1℃吸收(放出)的热量为4.2×103J (3)水常调节气温、取暖、作冷却剂、散热,是因为水的比热容大 二、热量的计算 1、计算公式: Q吸=Cm(t-t0), Q放=Cm(t0-t) 2、热平衡方程: 不计热损失Q吸=Q放 【益思精析】 例题1、关于比热容,下列说法正确的是( ) A.温度越高,比热容越大B.物质放热越多,比热容越大 C.物质的质量越大,比热容越小D.物质的比热容与质量和温度无关 变式1、质量为5 kg的汽油,用去一半后,剩下的汽油( ) A.密度、比热容、热值都变为原来的一半 B.密度不变,比热容、热值变为原来的一半 C.密度、比热容变为原来的一半,热值不变 D.密度、比热容、热值都不变 例题2、用两个完全相同的电热器同时给水和煤油分别加热,在此过程中,水和煤油的温度升高一样快,由此可以判定( ) A.水的体积小于煤油的体积B.水的体积大于煤油的体积 C.水的质量大于煤油的质量D.水的质量等于煤油的质量 变式2、冬季供暖的暖气是用水作工作物质将热量传递到千家万户,这是利用了水的

( ) A.密度大B.比热容大C.质量大D.蒸发吸热

例题3、一个质量为250g的钢刀,加热到560℃,然后在空气中自然冷却,室温为20℃,这把钢刀在冷却过程中放出多少热量?若把这些热量给30℃0.5 kg的水加热,水温可以上升多少摄氏度?升高到多少摄氏度? c钢=0.46×103J/(kg·℃) 变式3、甲、乙两种物质的质量之比为3:1,吸收相同的热量之后,升高的温度之比为2:3,求 这两种物质的比热容之比. 例题4、水的比热容是煤油比热容的两倍,若水和煤油的质量之比为1:2,吸收的热量之比为2:3,则水和煤油升高的温度之比为( ) A.3:2 B.2:3 C.4:3 D.3:4 变式4、水温从20℃升高到30℃吸取的热量为4.2×104J,水的质量是( ) A.1 kg B.10 kg C.0.1 kg D.100 kg 【益思拓展】 A.夯实基础 1、质量相等的水和干沙子吸收相等的热量时,升高的温度_______,若升高相同的温度,吸收的热量_______.说明了质量相同的不同物质的吸热能力是_______的.为了描述物质的这种性质,物理学中引入了_______这个物理量. 2、_______________的某种物质,温度升高,_______所吸收的热量叫做这种物质的比热容.比热容的单位是_______,符号是_______. 3、比热容是物质的一种属性,每种物质都有自己的比热容.水的比热容是_________,表示的物理意义是_______________,一桶水倒掉一半剩下的水的比热容是_______.一大桶酒精和一滴水相比较,它们的比热容_______大. 4、物体温度升高时,吸收热量的计算公式是Q吸=cm(t-t0),其中,c表示_______,单位是_______,m表示_______________,单位是_______,t表示_______________,t0表示_______________,单位是_______. 5、冰的比热容是2.1×103J/(kg·℃),当冰融化成水后,比热容是_________,说明同种物质,在不同状态时,比热容是_________的. 6、用两个相同的“热得快”分别给盛在两个相同杯子里的质量相等的水和煤油加热,问:(1)在相同的时间内,哪个温度升高的快些_______________;(2)升高相同的温度,哪个需要的时间长些_______;(3)从这个实验可得出什么结论_____________________.

金属塑性成型原理-知识点

名师整理精华知识点 名词解释 塑性成型:金属材料在一定的外力作用下,利用其塑性而使其成形并获得一定力学性能的加工方法 加工硬化:略 动态回复:在热塑性变形过程中发生的回复 动态再结晶:在热塑性变形过程中发生的结晶 超塑性变形:一定的化学成分、特定的显微组织及转变能力、特定的变形温度和变形速率等,则金属会表现出异乎寻常的高塑性状态 塑性:金属在外力作用下,能稳定地发生永久变形而不破坏其完整性的能力。 屈服准则(塑性条件):在一定的变形条件下,只有当各应力分量之间符合一定关系时,指点才开始进入塑性状态,这种关系成为屈服准则。 塑性指标:为衡量金属材料塑性的好坏,需要有一种数量上的指标。 晶粒度:表示金属材料晶粒大小的程度,由单位面积所包含晶粒个数来衡量,或晶粒平均直径大小。填空 1、塑性成形的特点(或大题?) 1组织性能好(成形过程中,内部组织发生显著变化)2材料利用率高(金属成形是靠金属在塑性状态下的体积转移来实现的,不切削,废料少,流线合理)3尺寸精度高(可达到无切削或少切屑的要求)4生产效率高适于大批量生产 失稳——压缩失稳和拉伸失稳 按照成形特点分为1块料成形(一次加工、轧制、挤压、拉拔、二次加工、自由锻、模锻2板料成形多晶体塑性变形——晶内变形(滑移,孪生)和晶界变形 超塑性的种类——细晶超塑性、相变超塑性 冷塑性变形组织变化——1晶粒形状的变化2晶粒内产生亚结构3晶粒位向改变 固溶强化、柯氏气团、吕德斯带(当金属变形量恰好处在屈服延伸范围时,金属表面会出现粗超不平、变形不均匀的痕迹,称为吕德斯带) 金属的化学成分对钢的影响(C略、P冷脆、S热脆、N兰脆、H白点氢脆、O塑性下降热脆);组织的影响——单相比多相塑性好、细晶比粗晶好、铸造组织由于有粗大的柱状晶粒和偏析、夹杂、气泡、疏松等缺陷、塑性降低。 摩擦分类——干摩擦、边界摩擦、流体摩擦 摩擦机理——表面凹凸学说、分子吸附学说、粘着理论 库伦摩擦条件T=up 常摩擦力条件 t=mK 塑性成形润滑——1、特种流体润滑法2、表面磷化-皂化处理3、表面镀软金属 常见缺陷——毛细裂纹、结疤、折叠、非金属夹杂、碳化物偏析、异金属杂物、白点、缩口残余 影响晶粒大小的主要因素——加热温度、变形程度、机械阻碍物 常用润滑剂——液体润滑剂、固体润滑剂(干性固体润滑剂、软化型固体润滑剂) 问答题 1、提高金属塑性的基本途径 1、提高材料成分和组织的均匀性 2、合理选择变形温度和应变速率 3、选择三向压缩性较强的变形方式 4、减小变形的不均匀性 2、塑性成形中的摩擦特点 1、伴随有变形金属的塑性流动 2、接触面上压强高 3、实际接触面积大 4、不断有新的摩擦面产生 5、常在高温下产生摩擦 3、塑性成形中对润滑剂的要求 1、应有良好的耐压性能 2、应有良好的耐热性能 3、应有冷却模具的作用 4、应无腐蚀作用 5、应无毒 6、应使用方便、清理方便 4、防止产生裂纹的原则措施 1、增加静水压力 2、选择和控制适合的变形温度和变形速度 3、采用中间退火,以便消除变形过程中产生的硬化、变形不均匀、残余应力等。 4、提高原材料的质量 5、细化晶粒的主要途径 1、在原材料冶炼时加入一些合金元素及最终采用铝、钛等作为脱氧剂 2、采用适当的变形程度和变形温度 3、采用锻后正火或退火等相变重结晶的方法 6、真实应力-应变的简化形式及其近似数学表达式1、幂指数硬化曲线Y=B?n 2、有初始屈服应力的刚塑性硬化曲线Y=σs+B1?m 3、有初始屈服应力的刚塑性硬化直线Y=σs+B2?4、无加工硬化的水平直线Y=σs 7、为什么晶粒越细小,强度和塑性韧性都增加?晶粒细化时,晶内空位数目与位错数目都减少,位错与空位、位错间的交互作用几率减小,位错易于运动,即塑性好。位错数目少,塞积位错数目少,使应力集中降低。晶粒细化使晶界总面积增加,致使裂纹扩展的阻力增加,推迟了裂纹的萌生,增加了断裂应变。晶粒细小,裂纹穿过晶界进入相邻晶粒并改变方向的频率增加,消耗的能量增加,韧性增加。另外晶界总面积增加可以降低晶界上的杂质浓度,减轻沿晶脆性断裂倾向。 8、变形温度对金属塑性的影响 总趋势:随着温度的升高,塑性增加,但是这种增加并非简单的线性上升;在加热过程的某些温度区间,往往由于相态或晶粒边界状态的变化而出现脆性区,使金属的塑性降低。在一般情况下,温度由绝对零度上升到熔点时,可能出现几个脆性区,包括低温的、中温的、和高温的脆性区。 9、动态回复、为什么说是热塑性变形的主要软化机制? 动态回复是指在热塑性变形过程中发生的回复,2,动态回复,主要是通过位错的攀移,交滑移等,来实现的,对于铝镁合金、铁素体钢等,由于它们层错能高,变形时扩展位错宽度窄,集束容易,位错的攀移和交滑移容易进行,位错容易在滑移面间转动,而使异号位错相互抵消,结果使位错密度下降,畸变能降低,不足以达到动态再结晶所需的能量水平。因此这类金属在热塑性变形过程中,即使变形程度很大,变形温度远高于再结晶温度,也只会发生动态回复,而不发生动态再结晶。 10、什么是动态再结晶,其主要影响因素?(自己总结吧,课本太乱) 动态再结晶:在热塑性变形过程中发生的结晶。与金属的位错能高地有关,与晶界迁移的难易有关 ,金属越纯,发生动态再结晶的能力越强。

比热容(基础) 知识讲解

比热容(基础) 撰稿:肖锋审稿:雒文丽 【学习目标】 1、知道物质的比热容的概念、物理意义; 2、记住水的比热容比较大,是4.2×103J/(㎏·℃); 3、能用比热容解释简单的自然、生活中的现象,并能设计实验、解决简单的问题; 4、会设计并进行“比较不同物质吸热能力不同”的实验; 5、能够利用吸热、放热公式进行相关计算。 【要点梳理】 要点一、探究比较不同物质的吸热能力 1、提出问题:物体温度升高,吸收热量的多少与哪些因素有关? 2、猜想与假设 以水为例:水吸热的多少,与水的质量,水的温度升高有关,不同物质,质量相同,温度升高相同吸热是否相同呢? 总结:物体吸热多少与物质的____________,物体的________,物体的__________有关。 3、制定计划与设计实验 温馨提示:注意控制变量法的使用,取质量相同,初温相同的水和煤油,升高相同的温度,看吸热是否相同。(以加热时间的多少来看吸热的多少) 4、进行实验与收集证据

5、分析与论证: 相同质量的同种物质,升高相同的温度,吸热是 的; 相同质量的不同物质,升高相同的温度,吸热是 的。 6、评估、交流与合作 7、分析误差的原因 要点二、比热容(高清课堂《比热容、热量的计算》一、比热容) 一定质量的某种物质,在温度升高时所吸收的热量与它的质量和升高温度乘积之比,叫做物质的比热容。符号c ,单位为焦每千克摄氏度,符号为J/(㎏·℃)。 要点诠释: 1、比热容是物质本身的一种性质 (1)同种物质在同一状态下的比热容与其质量、吸收(或放出)热量的多少及温度的改变无关。 (2)同一种物质在不同的状态下比热容不同,如冰、水的比热容是不同的。 2、水的比热容比较大,是4.2×103J/(㎏·℃)。主要表现: (1)由于水的比热容较大,一定质量的水升高(或降低)一定的温度吸收(或放出)的热量较多,我们用水作为冷却剂和取暖用。 (2)由于水的比热容较大,一定质量的水吸收(或放出)较多的热量而自身的温度却改变不多,这一点有利于调节气候。夏天,太阳晒到海面上,海水的温度升高过程中吸收大量的热,所以人们住在海边并不觉得特别热;冬天,气温低了,海水由于温度降低而放出大量的热,使沿海气温降得不是太低,所以住在海边的人又不觉得特别冷。 要点三、热量的计算(高清课堂《比热容、热量的计算》二、热量的计算) 1、吸热公式:Q 吸=cm(t-t 0) 式中Q 吸表示物体吸收的热量,c 表示物质的比热容,m 表示物体的质量,t 0表示物体

材料成型技术基础复习提纲整理知识讲解

材料成型技术基础复习提纲整理

第一章绪论 1、现代制造过程的分类(质量增加、质量不变、质量减少)。 2、那几种机械制造过程属于质量增加(不变、减少)过程。 (1)质量不变的基本过程主要包括加热、熔化、凝固、铸造、锻压(弹性变形、塑性变形、塑性流动)、浇灌、运输等。 (2)质量减少过程材料的4种基本去除方法:切削过程;磨料切割、喷液切割、热力切割与激光切割、化学腐蚀等;超声波加工、电火花加工和电解加工;落料、冲孔、剪切等金属成形过程。 (3)材料经过渗碳、渗氮、氰化处理、气相沉积、喷涂、电镀、刷镀等表面处理及快速原型制造方法属于质量增加过程。 第二章液态金属材料铸造成形技术过程 1、液态金属冲型能力和流动性的定义及其衡量方法 液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,称为液态金属充填铸型的能力,简称液态金属的充型能力。 液态金属的充型能力通常用铸件的最小壁厚来表示。 液态金属自身的流动能力称为“流动性”。液态金属流动性用浇注流动性试样的方法来衡量。在生产和科学研究中应用最多的是螺旋形试样。 2、影响液态金属冲型能力的因素(金属性质、铸型性质、浇注条件、铸件结构)

(1)金属的流动性:流动性好的液态金属,充型能力强,易于充满薄而复杂的型腔,有利于金属液中气体、杂质的上浮并排除,有利于对铸件凝固时的收缩进行补缩。 流动性不好的液态金属,充型能力弱,铸件易产生浇不足、冷隔、气孔、夹杂、缩孔、热裂等缺陷。 (2)铸型性质:铸型的蓄热系数b(表示铸型从其中的金属液吸取并储存在本身中热量的能力)愈大,铸型的激冷能力就愈强,金属液于其中保持液态的时间就愈短,充型能力下降。 (3)浇注条件:浇注温度对液态金属的充型能力有决定性的影响。浇注温度越高,充型能力越好。在一定温度范围内,充型能力随浇注温度的提高而直线上升,超过某界限后,由于吸气,氧化严重,充型能力的提高幅度减小。 液态金属在流动方向上所受压力(充型压头)越大,充型能力就越好。但金属液的静压头过大或充型速度过高时,不仅发生喷射和飞溅现象,使金属氧化和产生”铁豆”缺陷,而且型腔中气体来不及排出,反压力增加,造成“浇不足”或“冷隔”缺陷。 浇注系统结构越复杂,流动阻力越大,液态金属充型能力越低。 (4)铸件结构:衡量铸件结构的因素是铸件的折算厚度R(R=铸件体积/铸件散热表面积=V/S)和复杂程度,它们决定着铸型型腔的结构特点。 R大的铸件,则充型能力较高。R越小,则充型能力较弱。 铸件结构复杂,厚薄部分过渡面多,则型腔结构复杂,流动阻力大,充型能力弱。 铸件壁厚相同时,铸型中的垂直壁比水平壁更容易充满。

比热容面试试讲稿

比热容 尊敬的各位评委老师大家好,我是XX号考生,我今天试讲的课题是《比热容》现在开始试讲。 一、创设情境,导入新课 夏天到了,常去海边的同学都会有这样的感觉,白天沙子热得烫脚,但海水却非常清凉,到了傍晚沙子很快就凉了下来,但海水却仍然是暖暖的。为什么日照相同,沙子和海水的温度不一样呢?带着这些问题让我们共同学习一下今天的课程《比热容》。 二、明确目标,学有方向 哪位同学愿意看大屏幕给大家读一下本节课的学习目标呢?这位同学。 1.了解比热容的概念,知道比热容是物质的一种性质。 2.尝试用比热容解释简单的自然现象。 3.会进行简单的吸放热计算。 很好,请坐。 三、自主学习与点拨 同学们,我们知道相同的日照,沙子和海水的温度不同;那沙子和海水升高相同的温度所需的日照时间相同么?那么,让我们一起来做一个实验。在老师的讲桌上有两个规格相同的电加热器、两支温度计、300g的水和300g的油。我们先将温度计和电加热器放入水和油的烧杯中,同时打开两个烧杯中的电加热器。现在加热器已经开始工作了,我们预备将水和油加热至50℃。大家看,油的升温速度要比水快一些,好,现在油的温度已经到50℃了,而水的温度才到42℃,那么我们继续给水加热,好的,水终于到50℃。假设电加热器放出的热量均被油和水吸收了,那么我们的这个实验说明了什么?这位同学。 (这说明不同物质,在质量相同,升高相同温度时,吸收的热量不同) 非常好,那么怎样表示不同物质吸热能力的差别呢?在物理学中,我们引入比热容这个物理量。我们把一定质量的某种物质,在温度升高时吸收的热量与它的质量和升高温度之比,叫做这种物质的比热容。 c---比热容---J/(kg·℃) 1 J/(kg·℃)的物理意义为,1kg某种物质升高1℃,吸收的热量为1J,也可以表述成,1kg某种物质降低1℃放出的热量为1J。 大家想一下,我手中有一杯水,如果我把水倒掉一半,水的比热容发生变化了么?为什么呢? (老师我知道,好,这位同学。比热容没有发生变化,比热容是反应物质自身的物理量,不随物质的质量、形状、地点、温度高低发生变化。)

热量比热容(基础)知识讲解

热量比热容(基础) 【学习目标】 1、知道物质的比热容的概念、物理意义; 2、记住水的比热容比较大,是4.2×103J/(㎏·℃); 3、能用比热容解释简单的自然、生活中的现象,并能设计实验、解决简单的问题; 4、会设计并进行“比较不同物质吸热能力不同”的实验。 5、能够利用吸热或放热公式进行相关计算。 【要点梳理】 知识点一 、热传递 能量从温度高的物体传到温度低的物体,或者从物体的高温部分传到低温部分的现象,叫做热传递现象。 1、热传递有三种方式:热传导、对流和热辐射。 2、热量:热量表示在热传递过程中物体吸收或者放出的能量的多少。热量的符号是Q ,热量的国际单位是焦耳,符号是J 。 知识点二、比热容 单位质量的某种物质,温度升高1℃所吸收的热量叫做物质的比热容。符号c ,单位为焦每千克摄氏度,符号为J/(㎏·℃)。 要点诠释: 1、比热容是物质本身的一种性质: (1)同种物质在同一状态下的比热容与其质量、吸收(或放出)热量的多少及温度的改变无关。 (2)同一种物质在不同的状态下比热容不同,如冰、水的比热容是不同的。 2、水的比热容比较大,是4.2×103J/(㎏·℃)。主要表现: (1)由于水的比热容较大,一定质量的水升高(或降低)一定的温度吸收(或放出)的热量较多,我们用水作为冷却剂和取暖用。 (2)由于水的比热容较大,一定质量的水吸收(或放出)较多的热量而自身的温度却改变不多,这一点有利于调节气候。夏天,太阳晒到海面上,海水的温度升高过程中吸收大量的热,所以人们住在海边并不觉得特别热;冬天,气温低了,海水由于温度降低而放出大量的热,使沿海气温降得不是太低,所以住在海边的人又不觉得特别冷。 3、公式:t m Q c ?= 知识点三、热量的计算 公式:Q=cm Δt 式中Q 表示物体吸收或者放出的热量,c 表示物质的比热容,m 表示物体的质量,Δt 表示温度的变化量。 要点诠释: 物体吸收或放出热量的多少由物体的比热容、物体的质量和物体的温度升高(或降低)的乘积决定,跟物体的温度高低无关。 【典型例题】 类型一、比热容 1、为了研究物质的某种特性,某小组的同学做如下实验:他们在两只完全相同的

金属塑性变形理论习题集

《金属塑性变形理论》习题集张国滨张贵杰编 河北理工大学 金属材料与加工工程系 2005年10月

前言 前言 《金属塑性变形理论》是关于金属塑性加工学科的基础理论课,也是“金属材料工程”专业大学本科生的主干课程,同时也是报考金属塑性加工专业方向硕士研究生的必考科目。 《金属塑性变形理论》总学时为100,内容上分为两部分,即“塑性加工力学”(60学时)和“塑性加工金属学”(40学时)。为增强学生的社会适应能力和拓宽就业渠道,在加强基础、淡化专业的今天,本课程的学时数不但没有减少还略有增加(原88学时),更加突出了本课程对学科的发展以及在学生素质的培养中所占有的重要地位。 为使学生能够学好本课,以奠定扎实的理论基础,提高分析问题和解决问题的能力,编者集20余年的教学经验特编制本习题集,一方面作为学生在学习本课程时的辅导材料,供课下消化课堂内容时使用,另一方面也可供任课教师在授课时参考,此外对报考研究生的学生还具有指导复习的作用。 本“习题集”在编写时,充分考虑了学科内容的系统性、学生学习的连贯性以及与教材顺序的一致性。该“习题集”中具有前后关联的一个个题目,带有由浅入深的启发性,能够引导学生将所学的知识不断深化。教师也可根据教学进程从中选题,作为课外作业指导学生进行练习。所有这些都会有助于学生理解和消化课堂上所学习的内容,从而提高课下的学习效率。 编者 2005年10月

第一部分:塑性加工力学 第一章 应力状态分析 1. 金属塑性加工中的外力有哪几种?其意义如何? 2. 为什么应力分量的表达需用双下标?每个下标都表示何物理意义? 3. 已知应力状态如图1-1所示,写出应力分量,并以张量形式表示。 4. 已知应力状态的六个分量7-=x σ,4-=xy τ,0=y σ,4=yz τ, 8-=zx τ,15-=z σ(MPa),画出应力状态图,写出应力张量。 5. 作出单向拉伸、单向压缩、三向等值压缩、平面应力、平面应变、 纯剪切应力状态的应力Mehr 圆。 6. 已知应力状态如图1-2所示,当斜面法线方向与三个坐标轴夹角余弦 31===n m l 时,求该斜面上的全应力S 、全应力在坐标轴上的分量x S 、y S 、z S 及斜面上的法线应力n σ和切应力n τ。 图 1-1

常见物质比热容查询表及比热容概念名词解释

比热容(specific heat capacity)又称比热容量,简称比热(specific heat),是单位质量物质的热容量,即是单位质量物体改变单位温度时的吸收或释放的内能。比热容是表示物质热性质的物理量。通常用符号c表示。 混合物的比热容 气体的比热容 水的比热容较大的应用 一、利用水的比热容大来调节气候 二、利用水的比热容大来冷却或取暖 常见物质的比热容混合物的比热容气体的比热容 水的比热容较大的应用 一、利用水的比热容大来调节气候 二、利用水的比热容大来冷却或取暖 编辑本段定义 比热容是单位质量的某种物质升高单位温度所需的热量。其国际单位制中的单位是焦耳每千克开尔文(J /(kg·K) 或J /(kg·℃),J是指焦耳,K是指热力学温标,与摄氏度℃相等),即令1千克的物质的温度上升(或下降)1摄氏度所需的能量。根据此定理,最基本便可得出以下公式: c=△E(Q)/m△T △E为吸收的热量,中学的教科书里为Q;m是物体的质量,△T是吸热(放热)后温度所上升(下降)值,初中的教材里把△T写成△t,其实这是很不规范的(我们生活中常用℃作为温度的单位,很少用K,而且△T=△t,因此中学阶段都用△t,但国际上或者更高等的科学领域,还是使用△T)。 物质的比热容与所进行的过程有关。在工程应用上常用的有定压比热容Cp、定容比热容Cv和饱和状态比 比热容测试仪 热容三种。 定压比热容Cp是单位质量的物质在压力不变的条件下,温度升高或下降1℃或1K所吸收或放出的能量。 定容比热容Cv是单位质量的物质在容积(体积)不变的条件下,温度升高或下降1℃或1K吸收或放出的内能。 饱和状态比热容是单位质量的物质在某饱和状态时,温度升高或下降1℃或1K所吸收或放出的热量。 编辑本段单位 比热容的单位是复合单位。

【人教物理九上】 13.3 比热容

13.3 比热容 教学目标 a. 知道什么是物质的比热容 b. 知道比热的单位是焦/(千克·℃)及其读法 c. 会查物质的比热表 d. 能用学的比热知识解释一些常见日常现象,培养学生解决实际问题的能力 教学建议 教材分析 分析一:比热是初中物理中一个非常重要的物理量,也是一个比较难理解的物理量.教材首先从日常生活常识出发,说明物质在温度变化时,吸收(或释放)的热量与物体质量和温度变化量有关,从而为比热概念的引出作好铺垫.然后安排演示实验,引导学生观察、对比、分析,最终抽象出比热的概念,并进一步由比热的定义说明其单位.最后列出一些常见物质的比热表,并联系实际讨论一些日常现象. 分析二:比热是一个比较抽象的概念,通过对它的学习,可以有意识地培养学生抽象思维能力. 教法建议 建议一:比热的概念比较抽象,因此通过实验总结出来是一个好办法,做好演示实验,引导学生有意识地观察和思考至关重要.实验前明确实验要研究的是不同的物质在质量相等、温度升高相同时吸收的热量是否相同.在实验前要格外强调杯子内的水和煤油质量相同,两个热水器也是完全相同的,这些实验条件对学生正确得出比热概念是非常重要的.当学生观察到煤油的温度上升得快时,要引导学生认识到相等质量的不同物质在吸收相同热量时,升高的温度不同,并进一步引申到其它物质.最后引导学生怎样描述物质的这一特性,从而得出比热的概念. 建议二:在介绍比热表时,要教会学生怎样运用比热表,通过比较,指出水的比热较 1

大,为讲解水在日常生活中应用做好铺垫.另外,根据水和冰的比热不同,说明不仅不同的物质比热不同,即使是同一种物质在不同状态下的比热值也不同. 建议三:为巩固学生对比热概念的理解,可以多联系实际,列举一些日常生活中的现象,并运用比热进行解释. “比热容”教学设计示例 掌握并理解比热的概念 讲授、实验 一、实验 (1)常见有关比热现象 (2)煤油、水对比实验 二、比热 单位质量的某种物质温度升高1℃吸收的热量,叫做这一物质的比热容. 单位质量的某种物质温度降低1℃所释放的热量也等于比热. 比热的单位是焦/(千克·℃) 三、比热表 四、水的应用 由比热表可以看出水的比热较大列举日常生活中的 常见有关比热现象 演示实验现象 引导学生观察思考 通过实验我们可以 看出不同物质吸收 相同的热量升高的 温度不同,而升高 (或降低)相同的 温度所吸收(或释 放)的热量不同, 那么用什么方法来 观察实验 思考实验所说明 的问题 思考问题,提出 描述不同物质的 这一特性. 看比热表,对比 各种物质的比热 解释日常生活中 的暖气以及冷凝 剂为什么常用水 2

九年级物理全册第十三章热和能第三节比热容知识点汇总新人教版

教育资料 . 第三节 比热容 1、比热容: 定义:单位质量的某种物质温度升高(或降低)1℃时吸收(或放出)的热量。 比热容用符号c 表示,它的单位是焦每千克摄氏度,符号是J/(kg ·℃) 比热容是表示物体吸热或放热能力的物理量。 物理意义:水的比热容c 水=4.2×103J/(kg ·℃),物理意义为:1kg 的水温度升高(或降低)1℃,吸收(或放出)的热量为4.2×103J 。 比热容是物质的一种特性,比热容的大小与物体的种类、状态有关,与质量、体积、温度、密度、吸热放热、形状等无关。 水常用来调节气温、取暖、作冷却剂、散热,是因为水的比热容大。 比较比热容的方法: ①质量相同,升高温度相同,比较吸收热量多少(加热时间):吸收热量多,比热容大。 ②质量相同,吸收热量(加热时间)相同,比较升高温度:温度升高慢,比热容大。 2、热量的计算公式: ①温度升高时用:Q 吸=cm (t -t 0) c =Q 吸 m (t -t 0) m =Q 吸 c (t -t 0) t =Q 吸 c m + t 0 t 0=t- Q 吸 c m ②温度降低时用:Q 放=cm (t 0-t ) c =Q 放 m (t 0-t ) m =Q 放 c (t 0-t ) t 0=Q 放 c m + t t =t 0- Q 放 c m ③只给出温度变化量时用:Q =cm △t c =Q m △t m =Q c △t △t =Q c m Q ——热量——焦耳(J );c ——比热容——焦耳每千克摄氏度(J/(kg ·℃));m ——质量——千克(kg );t ——末温——摄氏度(℃);t 0——初温——摄氏度(℃) 审题时注意“升高(降低)到10℃”还是“升高(降低)(了)10℃”,前者的“10℃”是末温(t ),后面的“10℃”是温度的变化量(△t )。 由公式Q =cm △t 可知:物体吸收或放出热量的多少是由物体的比热容、质量和温度变化量这三个因素决定的。

塑性成形重要知识点总结

塑性变形:材料在一定外力作用下,利用其塑性而使其成型并获得一定力学性能的加工方法。塑性:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力。 滑移:晶体在力的作用下,晶体的一部分沿一定的晶面和晶向相对于晶体的另一部分发生相对移动或切变。 滑移面:滑移中,晶体沿着相对滑动的晶面。滑移方向:滑移中,晶体沿着相对滑动的晶向。孪生:晶体在切应力作用下,晶体一部分沿着一定的晶面和一定的晶向发生均匀切变。 张量:由若干个当坐标改变时,满足转换关系的分量所组成的集合。 晶粒度:金属材料晶粒大小的程度。 变形织构:在塑性变形时,当变形量很大,多晶体中原为任意取向的各个晶粒,会逐渐调整其取向而彼此趋于一致。这种由于塑性变形的结果而使晶粒具有择优取向的组织。 动态再结晶:在热塑性变形过程中发生的再结晶。 主应力:切应力为0的微分面上的正应力。 主方向:主应力方向,主平面法线方向。 主应力空间:由三个主方向组成的空间 主切应力:切应力达到极值的平面上作用得切应力。 主切应力平面:切应力达到极值的平面。 主平面:应力空间中,可以找到三个互相垂直的面,其上均只有正应力,无切应力,此面就称为主平面。 平面应力状态:变形体内与某方向轴垂直的平面上无应力存在,并所有应力分量与该方向轴无关的应力状态。 平面应变状态:物体内所有质点都只在同一个坐平面内发生变形,而该平面的法线方向没有变形的变形状态。 理想刚塑性材料:研究塑性变形时,既不考虑弹性变形,又不考虑变形过程中的加工硬化的材料。 理想弹塑性材料:塑性变形时,需考虑塑性变形之前的弹性变形,而不考虑硬化的材料。 弹塑性硬化材料:塑性变形时,既要考虑塑性变形前的弹性变形,又要考虑加工硬化的材料。刚塑性硬化材料:研究塑性变形时,不考虑塑性变形之前的弹性变形,需考虑变形过程中的加工硬化的材料。 屈服轨迹:两相应力状态下屈服准则的表达式在主应力坐标平面上的几何图形,一条封闭的曲线。 屈服表面:屈服准则的数学表达式在主应力空间中的几何图形是一个封闭的空间曲面称为屈服表面。 应变增量:以物体在变形过程中某瞬时的形状尺寸为原始状态,在此基础上发生的无限小应变。全量应变:反映张量在某一变形过程或变形过程中的某个阶段结束时的应变。 比例加载:在加载过程中,所有的外力一开始就按同一比例加载。 干摩擦:当变形金属与工具之间的接触表面上不存在任何外来的介质,即直接接触时所产生的摩擦。 流体摩擦:当变形金属与工具表面之间的润滑剂层较厚,两者表面完全被润滑剂隔开,这种状态下的摩擦称为。 磷化:塑性成形时润滑前在坯料表面上用化学方法制成一层磷酸盐或草酸盐薄膜,呈多孔吸附润滑剂。

塑性变形理论

第2章 金属塑性变形的物性方程 物性方程又称本构方程,是εσ-关系的数学表达形式。弹性变形阶段有广义Hooke 定律,而塑性变形则较为复杂。在单向受力状态下,可由实验测定εσ-曲线来确定塑性本构关系。但在复杂受力情况下实验测定困难,因此只能在一定的实验结果基础上,通过假设、推理,建立塑性本构方程。为了建立塑性本构方程,首先需弄清楚塑性变形的开始条件——屈服,以及进入塑性变形后的加载路径等问题。 §2.1 金属塑性变形过程和力学特点 2.1.1 变形过程与特点 以单向拉伸为例说明塑性变形过程与特 点,如图2-1所示。金属变形分为弹性、均匀 塑性变形、破裂三个阶段。塑性力学视s σ为 弹塑性变形的分界点。当s σσ<时,σ与ε存 在统一的关系,即εσE =。 当s σσ≥以后,变形视作塑性阶段。 εσ-是非线性关系。当应力达到b σ之后, 变形转为不均匀塑性变形,呈不稳定状态。b σ点的力学条件为0d =σ或d P =0。经短暂的不 稳定变形,试样以断裂告终。 若在均匀塑性变形阶段出现卸载现象,一 部分变形得以恢复,另一部分则成为永久变形。卸载阶段εσ-呈线性关系。这说明了塑性变形时,弹性变形依然存在。弹塑性共存与加载卸载过程不同的εσ-关系是塑性变形的两个基本特征。 由于加载、卸载规律不同,导致εσ-关系不唯一。只有知道变形历史,才能得到一一对应的εσ-关系,即塑性变形与变形历史或路径有关。这是第3个重要特征。 事实上,s σσ>以后的点都可以看成是重新加载时的屈服点。以g 点为例,若卸载则εσ-关系为弹性。卸载后再加载,只要g σσ<点,εσ-关系仍为弹性。一旦超过g 点,εσ-呈非线性关系,即g 点也是弹塑性变形的交界点,视作继续屈服点。一般有s g σσ>,这一现象为硬化或强化,是塑性变形的第4个显著特点。 在简单压缩下,忽略摩擦影响,得到的压缩s σ与拉伸s σ基本相同。但是若将拉伸屈服后的试样经卸载并反向加载至屈服,反向屈服一般低于初始屈服。同理,先压后拉也有类似现象。这种正向变形强化导致后继反向变形软化的现象称作Bauschinger 效应。这是金属微观组织变化所致。一般塑性理论分析不考虑Bauschinger 效应。 Bridgman 等人在不同的静水压力容器中做单向拉伸试验。结果表明: 静水压力只引起图2-1 应力应变曲线

热量比热容(提高) 知识讲解

热量比热容(提高) 【学习目标】 1、知道物质的比热容的概念、物理意义; 2、记住水的比热容比较大,是4.2×103J/(㎏·℃); 3、能用比热容解释简单的自然、生活中的现象,并能设计实验、解决简单的问题; 4、会设计并进行“比较不同物质吸热能力不同”的实验。 5、能够利用吸热或放热公式进行相关计算。 【要点梳理】 知识点一 、热传递 能量从温度高的物体传到温度低的物体,或者从物体的高温部分传到低温部分的现象,叫做热传递现象。 1、热传递有三种方式:热传导、对流和热辐射。 2、热量:热量表示在热传递过程中物体吸收或者放出的能量的多少。热量的符号是Q ,热量的国际单位是焦耳,符号是J 。 知识点二、比热容 单位质量的某种物质,温度升高1℃所吸收的热量叫做物质的比热容。符号c ,单位为焦每千克摄氏度,符号为J/(㎏·℃)。 要点诠释: 1、比热容是物质本身的一种性质: (1)同种物质在同一状态下的比热容与其质量、吸收(或放出)热量的多少及温度的改变无关。 (2)同一种物质在不同的状态下比热容不同,如冰、水的比热容是不同的。 2、水的比热容比较大,是4.2×103J/(㎏·℃)。主要表现: (1)由于水的比热容较大,一定质量的水升高(或降低)一定的温度吸收(或放出)的热量较多,我们用水作为冷却剂和取暖用。 (2)由于水的比热容较大,一定质量的水吸收(或放出)较多的热量而自身的温度却改变不多,这一点有利于调节气候。夏天,太阳晒到海面上,海水的温度升高过程中吸收大量的热,所以人们住在海边并不觉得特别热;冬天,气温低了,海水由于温度降低而放出大量的热,使沿海气温降得不是太低,所以住在海边的人又不觉得特别冷。 3、公式:t m Q c ?= 知识点三、热量的计算 公式:Q=cm Δt 式中Q 表示物体吸收或者放出的热量,c 表示物质的比热容,m 表示物体的质量,Δt 表示温度的变化量。 要点诠释: 物体吸收或放出热量的多少由物体的比热容、物体的质量和物体的温度升高(或降低)的乘积决定,跟物体的温度高低无关。 【典型例题】 类型一、比热容 1、为了探究液体温度升高时吸收热量的多少与哪些因素有关,小刚和几个同学做了如下实验:在四个相同的烧杯中分别盛有水和煤油,用相同的加热器给它们加热。加热器每分钟放出的热量相等,且放出的热量全部被水和煤油吸收。下表是同学们记录的实验数据,

塑性变形的力学原理

塑性变形的力学原理 element of mechanics of plasticity 从认定塑性变形体为均质连续体出发,依据宏观的实验结果,研究变形体内的应力、应变以及它们和变形温度、速度等条件之间的关系(见金属塑性变形)。 应力-应变曲线在材料试验中,常用圆棒受拉,短柱受压,薄壁管受扭转,以测定负载和变形的关系;然后分别算出单位面积上的负载(称为应力,常用ζ表示)和单位长度的变形(称为应变,常用ε表示)。材料的ζ和ε间的对应关系称为应力-应变曲线(ζ-ε曲线)。最常用的试验是试样受拉时,由原始长 度l0增加到l,常称比值为工程应变或应变,而称自然对数值l n (l/l )为对数应 变或真应变。若在外力P的作用下,受拉试样由原始截面积A 减小到每一瞬间的 值A,则称比值P/A 为习惯应力,P/A为真应力。常见的延性金属的应力-应变曲线,按有无明显的屈服点,分为两类(见金属力学性能的表征)。 对于小变形量,用工程应力-应变曲线即可;而对于大变形量,需用真应力-应变曲线。在一次受拉试验中,我们可以得到材料的特征性的ζ-ε曲线,此外,还可以得到材料的屈服应力(ζs)、断裂应力(ζb)、截面收缩率(ψ%)、延伸率即伸长率(δ%)和弹性模量(E)等特性指标。 常用ζs作为材料塑性变形时的抗力,ψ%和δ%为其承受塑性变形的能力(塑性指标)。但对塑性加工而言,由于变形量大、变形条件复杂,所以上述指标值不能直接应用,而只能表示某个可以单独测定的条件(如温度、变形速率等)对变形抗力和塑性指标的影响。因此我们常用ζ0来表示材料在简单应力状态条件下的变形抗力,用ζ表示在某个复杂条件下的变形抗力;在高变形速率的实验 中,由于ζ s 和ζ b 难于分别测定,所以有时也用ζb的变化来代表变形抗力的变 化。 塑性加工总是在复杂的应力状态条件下实现的。早在1911年卡门(T.von Karman)就用实验证明在高流体静压力下,通常认为是“脆性的”花岗岩可以有相当大的塑性变形。但是从一个简单的试验结果出发来定量地描述各种加工条件下的塑性指标,是很困难的;因而必须用接近于加工条件的方式进行实测,测得的数值称为塑性加工性指标(见金属塑性加工)。我们用塑性变形条件来计算应力状态条件对于变形抗力的影响。 复杂应力下的塑性变形有两个论题:如何用最简化的数学语言叙述复杂应力状态?在这样的背景下如何叙述进入塑性变形状态的条件? 应力状态条件取均质连续体内一点(或不考虑力分布的单元体)作受力分析的对象,则可证明存在着一组唯一的三维直角坐标系,不论外部的作用力如何分布,在此系内沿坐标面在单元体上的切应力为零。此坐标系称为主坐标系,垂直于坐标面的正应力称为主应力,常用ζ1、ζ2、ζ3表示。这样,任何复杂的

比热容 教学建议

第3节比热容 教学目标 1. 知道什么是物质的比热容 2.知道比热容的单位是J/(kg·℃)及其读法 3.会查物质的比热容表 4.能用比热容知识解释一些常见日常现象,培养学生解决实际问题的能力 教学建议 教材分析 分析一:比热容是初中物理中一个非常重要的物理量,也是一个比较难理解的物理量.教材首先从日常生活常识出发,说明物质在温度变化时,吸收(或释放)的热量与物体质量和温度变化量有关,从而为比热容概念的引出作好铺垫.然后安排演示实验,引导学生观察、对比、分析,最终抽象出比热容的概念,并进一步由比热容的定义说明其单位.最后列出一些常见物质的比热容表,并联系实际讨论一些日常现象. 分析二:比热容是一个比较抽象的概念,通过对它的学习,可以有意识地培养学生抽象思维能力. 教法建议 建议一:比热容的概念比较抽象,因此通过实验总结出来是一个好办法,做好演示实验,引导学生有意识地观察和思考至关重要.实验前明确实验要研究的是不同的物质在质量相等、温度升高相同时吸收的热量是否相同.在实验前要格外强调杯子内的水和煤油质量相同,两个热水器也是完全相同的,这些实验条件对学生正确得出比热容概念是非常重要的.当学生观察到煤油的温度上升得快时,要引导学生认识到相等质量的不同物质在吸收相同热量时,升高的温度不同,并进一步引申到其他物质.最后引导学生怎样描述物质的这一特性,从而得出比热容的概念. 建议二:在介绍比热容表时,要教会学生怎样运用比热容表,通过比较,指出水的比热容较大,为讲解水在日常生活中应用作好铺垫.另外,根据水和冰的比热容不同,说明不仅不同的物质比热容不同,即使是同一种物质在不同状态下的比热容值也不同.

比热容知识点总结

比热容练习题 姓名;日期; 一、填空题 1.质量相等的同种物质,温度升高越多,吸收的热量_________;同一种物质升高相同的温度时,_________越大的物体吸收的热量越多;质量相等的两种不同物质组成的物体,升高相同温度时,_______小的吸收热量少. 2.沿海地区的昼夜气温变化不大,而内陆沙漠地区的昼夜气温变化较大,形成这种现象的主要原因是_______________. 3.用两个相同的“热得快”分别给盛在两个相同杯子里的质量相等的水和煤油加热,问:(1)在相同的时间内,哪个温度升高的快些_______________;(2)升高相同的温度,哪个需要的时间长些_______;(3)从这个实验可得出什么结论_____________________. 4.把质量相同、材料不同的两个金属球甲和乙,加热到相同的温度,然后分别投入两杯初温相同、质量也相同的水中,最后发现投入乙球的杯内水温较高,那么可以断定甲、乙两种金属的比热容c甲_________c乙.(填><或=) 5.一个物体由于温度的变化吸收或放出的热量多少,决定于_______、_______和_______.已知铝的比热容是0.88×3 10J/(kg?℃),质量是100 g的铝块,升高30 ℃需要吸收_____ J的热量,降低30 ℃放出_______ J的热量. 6.甲、乙两金属球的质量之比是5∶3,吸收相同的热量后,升高的温度之比为1∶5,则它们的比热容之比为_______ 7.水的比热是4.2×3 10焦/(千克?℃),它的意思是指质量1千克的水,温度 _____________时__________是4.2×10焦耳 8.在受太阳照射条件相同时,沿海地区比内陆地区温度变化小,这是因为水与干沙土相比__________的__________较大。 9.现有质量和初温都相等的铝块、铁块和铜块,其比热C铝>C铁>C铜,它们吸收相等的热量后,末温最高是______块,末温最低的是______块

塑性铰知识讲解

塑性铰

钢结构中的塑性铰及其应用综述 姓名:严小伟 学号:15121116 北京交通大学 2020年7月

钢结构中的塑性铰及其应用综述摘要:结构构件在地震作用下产生塑性变形,在塑性铰形成的过程中能吸取大量的能量。在设计中恰到好处地设计塑性铰形成的位里并加以应用,可有效降低震害,不至于出现迅速倒塌的后果。 关键字:塑性铰理论;塑性变形;破坏机制 1.引言地震是一种具有突发性和毁灭性的自然灾害,它对当今人类社会的危害主要体现在两个方面:一是地震引起建筑物的破坏或倒塌将会导致严重的人身伤亡和财产损失,二是地震及其地震引起的水灾、火灾等次生灾害将破坏人类社会赖以生存的自然环境,造成严重的经济损失,产生巨大的社会影响。我国地处世界上两个最活跃的地震带上,是世界上的多地震国家之一,强烈地震给我国人民带来的灾难尤为严重。从历史上来看,我国的地震灾害面积己达到我国的国土面积的一半以上,尤其在近几年地震活动相当频繁。因为很多特大地震给人类带来了巨大的经济损失,一些特大地震己给人类社会带来了不可估量的经济损失,这就使得我们要对深入研究土木工程结构的抗震设计理论和应用方法进行深入的研究。不同阶段,客观因素和人类的认识水平是不一样的,这就形成了不同的抗震设计思想和方法。通过工程技术措施,保证建筑物和工程设施的抗震安全,是减轻地震灾害的有效手段,作为抗震灾害的重要环节,结构抗震设计理论的不断完善是世界各国重点研究的课题之一。结构在塑性变形中形成的塑性铰在抗震中能发挥重要作用,塑性铰能否在罕遇地震中出现,对结构安全和生命财产的安危是至关重要的。所以,很有必要对其进行研究和探讨,并应充分利用塑性铰来消耗地震的能量,提高结构的抗震性能,降低地震灾害。

相关主题
文本预览
相关文档 最新文档