当前位置:文档之家› 通用版2020年中考数学总复习:正多边形与圆的有关的证明和计算--知识讲解(基础)-最新

通用版2020年中考数学总复习:正多边形与圆的有关的证明和计算--知识讲解(基础)-最新

通用版2020年中考数学总复习:正多边形与圆的有关的证明和计算--知识讲解(基础)-最新
通用版2020年中考数学总复习:正多边形与圆的有关的证明和计算--知识讲解(基础)-最新

中考总复习:正多边形与圆的有关的证明和计算—知识讲解(基

础)

责编:常春芳

【考纲要求】

1.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;

2.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.

【知识网络】

【考点梳理】

考点一、正多边形和圆

1、正多边形的有关概念:

(1) 正多边形:各边相等,各角也相等的多边形叫做正多边形.

(2)正多边形的中心——正多边形的外接圆的圆心.

(3)正多边形的半径——正多边形的外接圆的半径.

(4)正多边形的边心距——正多边形中心到正多边形各边的距离.(正多边形内切圆的半径)

(5)正多边形的中心角——正多边形每一边所对的外接圆的圆心角.

2、正多边形与圆的关系:

(1)将一个圆n(n ≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形.

(2)这个圆是这个正多边形的外接圆.

(3)把圆分成n(n ≥3)等分,经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形.这个圆叫做正n 边形的内切圆.

(4)任何正n 边形都有一个外接圆和一个内切圆,这两个圆是同心圆.

3、正多边形性质:

(1)任何正多边形都有一个外接圆.

(2) 正多边形都是轴对称图形,一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心.当边数是偶数时,它又是中心对称图形,它的中心就是对称中心.

(3)边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.

(4)任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.

要点诠释:

(1)正n 边形的有n 个相等的外角,而正n 边形的外角和为360度,所以正n 边形每个外角的度数是360n

;所以正n 边形的中心角等于它的外角. (2)边数相同的正多边形相似.周长的比等于它们边长(或半径、边心距)的比.面积比等于它们边长(或半径、边心距)平方的比.

考点二、圆中有关计算 1.圆中有关计算

圆的面积公式:

,周长. 圆心角为、半径为R 的弧长

. 圆心角为,半径为R ,弧长为的扇形的面积. 弓形的面积要转化为扇形和三角形的面积和、差计算. 圆柱的侧面图是一个矩形,底面半径为R ,母线长为的圆柱的体积为

,侧面积为,全面积为.

圆锥的侧面展开图为扇形,底面半径为R ,母线长为,高为的圆锥的侧面积为

,全面积为,母线长、圆锥高、底面圆的半径之间有.

要点诠释:

(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即

(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.

(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;

(4)扇形两个面积公式之间的联系:.

【典型例题】

类型一、正多边形有关计算

1.(2015?镇江)图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.

(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);

(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.

【思路点拨】

(1)作AE的垂直平分线交⊙O于C,G,作∠AOG,∠EOG的角平分线,分别交⊙O于H,F,反向延长FO,HO,分别交⊙O于D,B顺次连接A,B,C,D,E,F,G,H,八边形ABCDEFGH即为所求;

(2)由八边形ABCDEFGH是正八边形,求得∠AOD=3=135°得到的长=,设这个圆锥底面圆的半径为R,根据圆的周长的公式即可求得结论.

【答案与解析】

(1)如图所示,八边形ABCDEFGH即为所求,

(2)∵八边形ABCDEFGH是正八边形,

∴∠AOD=3=135°,

∵OA=5,

∴的长=,

设这个圆锥底面圆的半径为R,

∴2πR=,

∴R=,即这个圆锥底面圆的半径为.

故答案为:.

【总结升华】

本题考查了尺规作图,圆内接八边形的性质,弧长的计算,圆的周长公式的应用,会求八边形的内角的度数是解题的关键.

举一反三:

【变式1】如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是______米.

【答案】

3

1

2 .

解析:如图,以三个圆心为顶点等边三角形O1O2O3的高O1C=

3

2

所以AB=AO1+O1C+BC=1313

1

2222

++=+.

【高清课堂:正多边形与圆的有关证明与计算自主学习4】

【变式2】同一个圆的内接正三角形、正方形、正六边形的边长的比是__________.

【答案】321

::

【高清课堂:正多边形与圆的有关证明与计算自主学习2】

【变式3】(2015?广西自主招生)一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为2,则扇形纸板和圆形纸板的面积比是()

A.5:4 B.5:2 C.:2 D.:

【答案】A.

【解析】解:如图1,连接OD,

∵四边形ABCD是正方形,

∴∠DCB=∠ABO=90°,AB=BC=CD=2,

∵∠AOB=45°,

∴OB=AB=2,

由勾股定理得:OD==2,

∴扇形的面积是=π;

如图2,连接MB、MC,

∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,

∴∠BMC=90°,MB=MC,

∴∠MCB=∠MBC=45°,

∵BC=2,

∴MC=MB=,

∴⊙M的面积是π×()2=2π,

∴扇形和圆形纸板的面积比是π÷(2π)=.

故选:A.

类型二、正多边形与圆有关面积的计算

2.(1)如图(a),扇形OAB的圆心角为90°,分别以OA,OB为直径在扇形内作半圆,P和Q 分别表示阴影部分的面积,那么P和Q的大小关系是( ).

A.P=Q B.P>Q C.P<Q D.无法确定

(2)如图(b),△ABC为等腰直角三角形,AC=3,以BC为直径的半圆与斜边AB交于点D,则图中阴影部分的面积是________.

(3)如图(c),△AOB中,OA=3cm,OB=1cm,将△AOB绕点O逆时针旋转90°到△A′OB′,求AB 扫过的区域(图中阴影部分)的面积.(结果保留π)

【思路点拨】 直接使用公式计算阴影部分面积比较困难时,可采用和差法、转化法、方程法等,有时也需要运用变换的观点解决问题.

【答案与解析】

解:(1)阴影部分的面积直接求出十分困难,可利用几个图形面积的和差进行计算:

2OAB OCA P S S Q =-+扇形半圆2211()42R R Q Q ππ=-+=; (2)(转化法“凑整”)利用BmD CnD S S =弓形弓形,则阴影部分的面积可转化为△ACD 的面积,等于△

ABC 面积的一半,答案为94

; (3)(旋转法)将图形ABM 绕点O 逆时针旋转到A ′B ′M ′位置,则

A OA MOM S S S ''=-阴影扇形扇形2211244

OA OM πππ=-=. 【总结升华】

求阴影面积的几种常用方 (1)公式法;(2)割补法;(3)旋转法;(4)拼凑法;(5)等积变形法;(6)构造方程法.

举一反三:

【变式】如图,在△ABC 中,AB =AC ,AB =8,BC =12,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是( )

A .64π127-

B .16π32-

C .16π247-

D .16π127-

【答案】

解:如图,由AB ,AC 为直径可得AD ⊥BC ,则BD =DC =6.

在Rt △ABD 中,228627AD =-=,

∴ 211246271612722S ππ??=???-??=-

???

阴影. 答案选D. 3.如图所示,A 是半径为2的⊙O 外一点,OA =4,AB 是⊙O 的切线,B 为切点,弦BC ∥OA ,连AC ,求阴影部分的面积.

【思路点拨】

图中的阴影是不规则图形,不易直接求出,如果连接OB 、OC ,由BC ∥OA ,根据同底等高的三角形面积相等,于是所求阴影可化为扇形OBC 去求解.

【答案与解析】

解:如图所示,连OB 、OC

∵ BC ∥OA .

∴ △OBC 和△ABC 同底等高,

∴ S △ABC =S △OBC ,

∵ AB 为⊙O 的切线,

∴ OB ⊥AB .

∵ OA =4,OB =2,

∴ ∠AOB =60°.

∵ BC ∥OA ,

∴ ∠AOB =∠OBC =60°.

∵ OB =OC ,

∴ △OBC 为正三角形.

∴ ∠COB =60°,

∴ 260223603OBC S S ππ?===阴影扇形.

【总结升华】通过等积替换化不规则图形为规则图形,在等积转化中①可根据平移、旋转或轴对称等图形变换;②可根据同底(等底)同高(等高)的三角形面积相等进行转化.

举一反三:

【变式】如图所示,半圆的直径AB =10,P 为AB 上一点,点C ,D 为半圆的三等分点,则阴影部分的面积等于________.

【答案】

解:连接OC 、OD 、CD . ∵ C 、D 为半圆的三等分点,

∴ ∠AOC =∠COD =∠DOB =

180603=°°. 又∵ OC =OD ,

∴ ∠OCD =∠ODC =60°,∴ DC ∥AB ,

∴ PCD OCD S S =△△,

∴ 2605253606

S S ππ===g g 阴影扇形OCD .

4.(2015秋?江都市期中)如图,在边长为4的正方形ABCD 中,以AB 为直径的半圆与对角线AC 交于点E .

(1)求弧BE所对的圆心角的度数.

(2)求图中阴影部分的面积(结果保留π).

【思路点拨】(1)连接OE,由条件可求得∠EAB=45°,利用圆周角定理可知弧BE所对的圆心角∠EOB=2∠EAB=90°;

(2)利用条件可求得扇形AOE的面积,进一步求得弓形的面积,利用Rt△ADC的面积减去弓的面积可求得阴影部分的面积.

【答案与解析】

解:(1)连接OE,

∵四边形ABCD为正方形,

∴∠EAB=45°,

∴∠EOB=2∠EAB=90°;

(2)由(1)∠EOB=90°,

且AB=4,则OA=2,

∴S扇形AOE==π,S△AOE=OA2=2,

∴S弓形=S扇形AOE﹣S△AOE=π﹣2,

又∵S△ACD=AD?CD=×4×4=8,

∴S阴影=8﹣(π﹣2)=10﹣π.

【总结升华】本题主要考查扇形面积的计算和正方形的性质,掌握扇形的面积公式是解题的关键,注意弓形面积的计算方法.

5.将一块三角板和半圆形量角器按图中方式叠放,重叠部分(阴影)的量角器圆弧(?

AB )对应的中心角(∠AOB )为120°,AO 的长为4cm ,求图中阴影部分的面积.

【思路点拨】

看是否由“规则的”三角形、四边形、圆、扇形、弓形等可求面积的图形,经过怎样的拼凑、割补、叠合而成,这是解决这类题的关键.

【答案与解析】

阴影部分的面积可看成是由一个扇形AOB 和一个Rt △BOC 组成,

其中扇形AOB 的中心角是120°,AO 的长为4,Rt △BOC 中,OB =OA =4,∠BOC =60°, ∴ 可求得BC 长和OC 长,从而可求得面积,

阴影部分面积=扇形AOB 面积+△BOC 面积=21623cm 3π??+ ???. 【总结升华】

本题是求简单组合图形的面积问题,解答时,常常是寻找这些“不规则的图形”是由哪些“可求面积的、规则的图形”组合而成.

举一反三:

【变式】如图,矩形ABCD 中,AB =1,2AD =

.以AD 的长为半径的⊙A 交BC 于点E ,则图中阴影

部分的面积为________.

【答案】1224

π--. 解析:连接AE ,易证AB =BE =1,∠BAE =45°,所以∠EAD =45°, 所以21112(2)22824ABE ABCD DAE S S S S ππ=--=

--=--△阴影矩形扇形.

6.如图,AB是⊙O的直径,点P是AB延长线上一点,PC切⊙O于点C,连接AC,过点O作AC 的垂线交AC于点D,交⊙O于点E.已知AB﹦8,∠P=30°.

(1)求线段PC的长;

(2)求阴影部分的面积.

【思路点拨】

(1)连接OC,由PC为圆O的切线,根据切线的性质得到OC与PC垂直,可得三角形OCP为直角三角形,同时由直径AB的长求出半径OC的长,根据锐角三角函数定义得到tanP为∠P的对边OC与邻边PC的比值,根据∠P的度数,利用特殊角的三角函数值求出tanP的值,由tanP及OC的值,可得出PC的长;

(2)由直角三角形中∠P的度数,根据直角三角形的两个锐角互余求出∠AOC的度数,进而得出∠BOC的度数,由OD与BC垂直,且OC=OB,利用等腰三角形的三线合一得到OD为∠BOC的平分线,可求出∠COD度数为60°,再根据直角三角形中两锐角互余求出∠OCD度数为30°,根据30°角所对的直角边等于斜边的一半,由斜边OC的长求出OD的长,先由∠COD的度数及半径OC的长,利用扇形的面积公式求出扇形COE的面积,再由OD与CD的长,利用直角三角形两直角边乘积的一半求出直角三角形COD的面积,用扇形COE的面积减去三角形COD的面积,即可求出阴影部分的面积.

【答案与解析】

解:(1)连接OC,

∵PC切⊙O于点C,∴OC⊥PC,

∵AB=8,∴OC=

1

2

AB=4,

又在直角三角形OCP中,∠P=30°,

∴tanP=tan30°=

OC

PC

,即PC=

4

3

3

=43;(2)∵∠OCP=90°,∠P=30°,

此题考查了切线的性质,含30°角的直角三角形的性质,等腰三角形的性质,锐角三角函数定义,以及扇形的面积公式,遇到已知切线的类型题时,常常连接圆心与切点,利用切线的性质得出垂直,利用直角三角形的性质解决问题.

正多边形和圆教案

正多边形和圆(一)教案 教材分析 学生在前面已经学习了正多边形的概念,了解正多边形的各边相等、各内角相等以及多边形内角和的运算公式。在本册中学习了圆及圆的有关性质,理解圆中弧与弦的关系,从而为本节课研究正多边形与圆的关系打下了良好的基础,本节课先通过观察美丽的图案,让学生感受到数学来源于生活。接下来研究正多边形和圆的关系,按由特殊到一般的规律,以正五边形为例进行探索和证明,并将结论推广到正n边形。让学生体会到化归思想在研究问题中的重要性。培养学生观察、比较、分析问题的能力,发展了学生合情推理能力和演绎推理能力。 教学目标 知识技能:了解正多边形与圆的关系,了解正多边形的中心、半径、边心距、中心角等概念。能运用正多边形的知识解决圆的有关计算问题。 数学思考;通过正多边形与圆的关系的教学培养学生观察、猜想、推理、迁移的能力。 解决问题:进一步向学生渗透“特殊——一般”再“一般——特殊”的唯物辩证法思想,体会化归思想在研究问题中的重要性,能综合运用所学知识和技能解决问题。 情感态度:学生经历观察、发现、探究等数学活动,感受到数学来源于生活,又服务于生活,体会到事物之间是相互联系,相互作用的。 重点难点 教学重点:探索正多边形与圆的关系,了解正多边形的有关概念,并能进行计算。 教学难点:探索正多边形与圆的关系。 教学过程: 一、观察图案,提出问题 (设计说明:学生通过观看美丽的图案,欣赏生活中正多边形形状的物体,让学生感受到数学来源于生活,从中感受到数学美,并提出本节课所要研究的问题。) 问题l:观看教科书图24。3-1,这些美丽的图案,都是在日常生活中我们经常能看到的,利用正多边形得到的物体。你能从这些图案中找出正多边形来吗? 教师引导学生回忆、理解正多边形的概念。 问题2:菱形,矩形,正方形是正多边形吗? 问题3:通过观察图案,你们知道正多边形和圆有什么关系吗? 问题4:给你一个圆,怎样就能做出一个正多边形来? (教师引导学生观察、思考,学生分组讨论、交流,发表各自见解) 此问题比较抽象,是本节课的难点。教师要求学生观察教材图案,会发现正多边形的边数多给人一种接近圆的印象。教师展示课件:在圆中依次出现几条相等的弦,学生会想到弧相等,教师迸一步引导学生明确只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形。

中考数学-圆的切线证明方法

专题-------圆的切线证明 我们学习了直线和圆的位置关系,就出现了新的一类习题,就是证明一直线是圆的切线.在我们所学的知识范围内,证明圆的切线常用的方法有: 一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M,求证:DM与⊙O相切. 证明一:连结OD. ∵AB=AC, ∴∠B=∠C. ∵OB=OD, ∴∠1=∠B. ∴∠1=∠C. D ∴OD∥AC. ∵DM⊥AC, ∴DM⊥OD. ∴DM与⊙O相切 证明二:连结OD,AD. ∵AB是⊙O的直径, ∴AD⊥BC. 又∵AB=AC,

∴∠1=∠2. ∵DM ⊥AC , ∴∠2+∠4=900 ∵OA=OD , ∴∠1=∠3. ∴∠3+∠4=900. 即OD ⊥DM. ∴DM 是⊙O 的切线 例2 如图,已知:AB 是⊙O 的直径,点C 在⊙O 上,且∠CAB=300,BD=OB ,D 在AB 的延长线上. 求证:DC 是⊙O 的切线 证明:连结OC 、BC. ∵OA=OC , ∴∠A=∠1=∠300. ∴∠BOC=∠A+∠1=600. 又∵OC=OB , ∴△OBC 是等边三角形. ∴OB=BC. ∵OB=BD , ∴OB=BC=BD. ∴OC ⊥CD. ∴DC 是⊙O 的切线. 例3 如图,AB 是⊙O 的直径,CD ⊥AB ,且OA 2=OD ·OP . 求证:PC 是⊙O 的切线. C D

证明:连结OC ∵OA 2=OD ·OP ,OA=OC , ∴OC 2=OD ·OP , OC OP OD OC . 又∵∠1=∠1, ∴△OCP ∽△ODC. ∴∠OCP=∠ODC. ∵CD ⊥AB , ∴∠OCP=900. ∴PC 是⊙O 的切线. 二、若直线l 与⊙O 没有已知的公共点,又要证明l 是⊙O 的切线,只需作OA ⊥l ,A 为垂足,证明OA 是⊙O 的半径就行了,简称:“作垂直;证半径” 例4 如图,AB=AC ,D 为BC 中点,⊙D 与AB 切于E 点. 求证:AC 与⊙D 相切. 证明一:连结DE ,作DF ⊥AC ,F 是垂足.

中考数学总复习专题六圆的有关证明与计算试题新人教版

专题六圆的有关证明与计算 圆的切线的判定与性质 【例1】(2016·临夏州)如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D三点. (1)求证:AB是⊙O的直径; (2)判断DE与⊙O的位置关系,并加以证明; (3)若⊙O的半径为3,∠BAC=60°,求DE的长. 分析:(1)连接AD,证AD⊥BC可得;(2)连接OD,利用中位线定理得到OD与AC平行,可证∠ODE为直角,由OD为半径,可证DE与圆O相切;(3)连接BF,先证三角形ABC为等边三角形,再求出BF的长,由DE为三角形CBF中位线,即可求出DE的长. 解:(1)连接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90°,∴AB为圆O的直径 (2)DE与圆O相切,证明:连接OD,∵O,D分别为AB,BC的中点,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∵OD为圆的半径,∴DE与圆O相切 (3)∵AB=AC,∠BAC=60°,∴△ABC为等边三角形,∴AB=AC=BC=6,连接BF,∵AB为圆O的直径,∴∠AFB=∠DEC=90°,∴AF=CF=3,DE∥BF,∵D为BC的中点,∴E为CF的中点,即DE为△BCF中位线,在Rt△ABF中,AB=6,AF=3,根据勾股定理得BF=错误!=3错误!,则DE=错误!BF=错误! 圆与相似 【例2】(2016·泸州)如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC. (1)求证:BE是⊙O的切线; (2)已知CG∥EB,且CG与BD,BA分别相交于点F,G,若BG·BA=48,FG=2,DF=2BF,求AH的值. 分析:(1)证∠EBD=90°即可;(2)由△ABC∽△CBG得错误!=错误!,可求出BC,再由△BFC∽△BCD得BC2=BF·BD,可求出BF,再求出CF,CG,GB,通过计算发现CG=AG,可证CH=CB,即可求出AC. 解:(1)连接CD,∵BD是直径,∴∠BCD=90°,即∠D+∠CBD=90°,∵∠A=∠D,∠A=∠EBC,∴∠CBD+∠EBC=90°,∴BE⊥BD,∴BE是⊙O切线 (2)∵CG∥EB,∴∠BCG=∠EBC,∴∠A=∠BCG,又∵∠CBG=∠ABC,∴△ABC∽△ CBG,∴BC BG =\f(AB,BC),即BC2=BG·BA=48,∴BC=4错误!,∵CG∥EB,∴CF⊥BD,∴△BFC∽△BCD,∴BC2=BF·BD,∵DF=2BF,∴BF=4,在Rt△BCF中,CF= \r(BC2-FB2)=42,∴CG=CF+FG=5错误!,在Rt△BFG中,BG=错误!=3错误!,∵

中考数学几何证明压轴题

(i (2)若四边形BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. 3、如图13- 1, 一等腰直角三角尺 GEF 的两条直角边与正方形 ABCD 勺两条边分别 重合在一起?现正方形 ABCD 保持不动,将三角尺 GEF 绕斜边EF 的中点0(点O 也是 BD 中点)按顺时针方向旋转. (1) 如图13- 2,当EF 与AB 相交于点M GF 与 BD 相交于点N 时,通过观察 或 测量BM FN 的长度,猜想BM FN 满足的数量关系,并证明你的猜想; (2) 若三角尺GEF 旋转到如图13-3所示的位置时x 线段.FE 的延长线与AB 的延长线相交于点 M 线段BD 的延长线与F 时,(1)中的猜想还成立吗?若成立, F O (1)若 s i n / A G ) B( E ) 5 勺延长线相交于点N,此 弭■若不成 辺CD 于E ,连结ADg BD 3 OC OD 且0吐5 E (2)若图/3ADO / EDO= 4: 1,求13形OAC(阴影部分)的面积(结果保留 5、如图,已知:C 是以AB 为直径的半圆 O 上一点,CHLAB 于点H,直线 AC 与过B 点的切线相交于点 D, E 为CH 中点,连接 A ¥ 延长交BD 于点F ,直线 F CF 中考专题训练 1、如图,在梯形 ABCD 中,AB// CD , / BCD=90 ,且 AB=1, BC=2 tan / ADC=2. (1) 求证:DC=BC; ⑵E 是梯形内一点, F 是梯形外一点,且/ EDC 2 FBC DE=BF 试判断△ ECF 的形状,并证明你的结论; (3)在(2)的条件下,当BE: CE=1: 2,Z BEC=135 时,求 sin / BFE 的值. 2、已知:如图,在 □ ABCD 中,E 、F 分别为边 AB CD 的中点,BD 是对角线,AG// DB 交CB 的 (1) 求证:△ ADE^A CBF ; D ( F ) 4、如图, =r D -,求CD 的长 C D M B 勺直径AB 垂 请证 立,请说明理由. A G

201X版九年级数学下册 24.6 正多边形与圆 24.6.1 正多边形与圆教案 (新版)沪科版

2019版九年级数学下册 24.6 正多边形与圆 24.6.1 正多边形与圆教案(新版)沪科版 课题24.6.1正多边形与圆 教学 目标 1.使学生理解正多边形概念 2.使学生了解依次连结圆的n等分点所得的多边形是正多边形;过圆的n等分点作圆的 切线,以相邻切线的交点为顶点的多边形是正多边形. 3.通过正多边形定义教学培养学生归纳能力; 4.通过正多边形与圆关系定理的教学培养学生观察、猜想、推理、迁移能力. 教 材 分 析 重点n等分圆周(n≥3)可得圆的内接正n边形和圆的外切正n边形. 难点对正n边形中泛指“n”的理解. 教具电脑、投影仪 教 学 过 程 (一)、新课引入 1.同学们还记得怎样画五角星吗?(让一学生回答)这节课我们就来研究这样画的道理。 2.思考以下问题:1.等边三角形、正方形的边、角各有什么性质?等边三角形与正方形的边、角 性质有什么共同点?. 各边相等,各角相等的多边形叫做正多边形.正多边形与圆有什么样的关系?这就是我们今天学习的内容(板书课题) (二)、新课讲解: 1.多边形和圆的关系的定理 定理:把圆分成n(n≥3)等份: (1)依次连结各分点所得的多边形是这个圆的内接正n边形; (2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形. 我们以n=5的情况进行证明.

已知:⊙O中,AB =BC =CD =DE =EA ,TP、PQ、QR、RS、ST分别是经过点A、B、C、D、E的⊙O的切线. 求证:(1)五边形ABCDE是⊙O的内接正五边形; (2)五边形PQRST是⊙O的外切正五边形. (1)思路分析:要证五边形ABCDE是⊙O的内接正五边形,就要证明这五边形的五条边相等五个角相等,利用在同圆中,弧等弦再证角相等。证明说明“依次连结圆的五等分点所得的圆内接五边形是正五边形”的观察后的猜想是正确的.如果n等分圆周,(n≥3)、n=6,n=8……是否也正确呢? 因为在同圆中,弧等弦等,n等分圆就得到n条弦等,也就是n边形的各边都相等.又n边形的每个内角对圆的(n-2)条弧,而每一内角所对的弧都相等,根据弧等、圆周角相等,证明了n边形的各角都相等,因此圆内接正五边形的证明具有代表性. (2)思路分析:由弧等推得弦等、弦切角等说明五边形PQRST的各角都相等各边都相等?前面同学的证明,说明“经过圆的五等分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正五边形.”同样根据弧等弦等、弦切角等就可证明经过圆的n等分点作圆的切线,以相邻切线的交点为顶点的n个等腰三角形全等,从而证明了这个圆的以它n等分点为切点的外切n边形是正n边形. 证明:(见课本) 说明:(1)要判定一个多边形是不是正多边形,除根据定义来判定外,还可以根据这个定理来判定,即:①依次连结圆的n(n≥3)等分点,所得的多边形是正多迫形;②经过圆的n(n≥3)等分点作圆的切线,相邻切线相交成的多边形是正多边形. (2)要注意定理中的“依次”、“相邻”等条件. (3)此定理被称为正多边形的判定定理,我们可以根据它判断一多边形为正多边形或根据它作正多边形. 正多边形在生产实践中有广泛的应用性,因此,正多边形的知识对学生进一步学习和参加定理(2)中少“相邻”两字行不行?少“相邻”两字会出现什么现象? 2.等分圆周的方法画正多边形 (1)用量角器等分圆: 依据:等圆中相等的圆心角所对应的弧相等. 操作:两种情况:其一是依次画出相等的圆心角来等分圆,这种方法比较准确,但是麻烦;其二是先用量角器画一个圆心角,然后在圆上依次截取等于该圆心角所对弧的等弧,于是得到圆的等

中考数学几何证明题汇编

N 几何证明题分类汇编 一、证明两线段相等 1.如图3,在梯形ABCD 中,AD BC ∥,EA AD ⊥,M 是AE 上一点,BAE MCE =∠∠, 45MBE =o ∠. (1)求证:BE ME =. (2)若7AB =,求MC 的长. 2、(8分)如图11,一张矩形纸片ABCD ,其中AD=8cm ,AB=6cm ,先沿对角线BD 折叠,点C 落在点C ′的位置,BC ′交AD 于点G. (1)求证:AG=C ′G ; (2)如图12,再折叠一次,使点D 与点A 重合,的折痕EN ,EN 角AD 于M ,求EM 的长. 2、类题演练 3如图,分别以Rt△ABC 的直角边AC 及斜边AB 向外作等边△ACD 、等边△ABE .已知∠BAC =30o,EF ⊥AB ,垂足为F ,连结DF . (1)试说明AC =EF ; (2)求证:四边形ADFE 是平行四边形. 4如图,在△ABC 中,点P 是边AC 上的一个动点,过点P 作直线MN∥BC,设MN 交∠BCA 的平分线于点 E ,交∠BCA 的外角平分线于点 F . (1)求证:PE =PF ; (2)*当点P 在边AC 上运动时,四边形BCFE 可能是菱形吗?说明理由; (3)*若在AC 边上存在点P ,使四边形AECF 是正方形,且 AP BC =3 2 .求此时∠A 的大小. 图3 A B C D M E A C D E F 第20题图

二、证明两角相等、三角形相似及全等 1、(9分)AB 是⊙O 的直径,点E 是半圆上一动点(点E 与点A 、B 都不重合),点C 是BE 延长线上 的一点,且CD ⊥AB ,垂足为D ,CD 与AE 交于点H ,点H 与点A 不重合。 (1)(5分)求证:△AHD ∽△CBD (2)(4分)连HB ,若CD=AB=2,求HD+HO 的值。 2、(本题8分)如图9,四边形ABCD 是正方形,BE ⊥BF ,BE=BF ,EF 与BC 交于点G 。 (1)求证:△ABE≌△CBF ;(4分) (2)若∠ABE =50o,求∠EGC 的大小。(4分) 3、(本题7分)如图8,△AOB 和△COD 均为等腰直角三角形,∠AOB =∠COD =90o,D 在AB 上. (1)求证:△AOC ≌△BOD ;(4分) (2)若AD =1,BD =2,求CD 的长.(3分) 2、类题演练 1、 (8分)如图,已知∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D ,CE 与AB 相交于F . (1)求证:△CEB ≌△ADC ; (2)若AD =9cm ,DE =6cm ,求BE 及EF 的长. 2、已知,在平行四边形ABCD 中,EFGH 分别是AB 、BC 、CD 、DA 上的点,且AE=CG ,BF=DH ,求证:AEH ?≌CGF ? 三、证明两直线平行 A B C D F E 图9 A O D B H E C B F C

正多边形与圆教案

正多边形和圆 一、学习目标: 1知识与技能: (1)了解正多边形的中心、半径、边心距、中心角等概念。 (2)能运用正多边形的知识解决圆的有关计算问题。 2过程与方法: (1)学生在探讨正多边形有关计算过程中,体会到要善于发现问题,解决问题,发展学生的观察、比较、分析、概括及归纳的逻辑思维能力和逻辑推理能力。 (2)在探索正多边形有关过程中,学生体会化归思想在解决问题中的重要性,能综合运用所学的知识和技能解决问题。 3情感、态度与价值观: ' (1)学生经历观察、发现、探究等数学活动,感受到数学来源于生活,又服务于生活,体会到事物之间是相互联系,相互作用的。 (2)运用已有的正多边形的知识解决问题的活动中获得成功的体验,建立学习自信心。 二、教学重难点: 教学重点:理解正多边形和圆中心正多边形半径、中心角、边心距、边长之间的关系,并能进行有关计算。 教学难点:理解正多边形和圆中心正多边形半径、中心角、边心距、边长之间的关系以及把正多边形的计算问题转化为解直角三角形的问题。 三、教学方法:引导学生采用自主合作探究的方式进行学习 四、教学准备:PPT课件、圆规、直尺 五、教学过程: 导入: 前面我们学习了许多图形与圆的关系,如:点和圆、直线和圆、四边形和圆以及圆与圆的关系,还有什么图形我们没有与圆联系上呢(多边形)那么今天我就和同学们一起来探讨正多边形与圆。看看它们之间有怎样的联系,又给我们带来什么样的知识。 / (一)自习交流: 1.带着以下问题自主预习教材105页至106页的内容,勾画你认为重要的地方和有 疑问的地方。 ①什么是多边形多边形的内角和与外角怎么计算的 ②正多边形和圆有什么关系 ③结合图形说说正多边形的中心、中心角、边心距、半径,并结合以前的知 识说说它们的特点 ④结合图形说一说如何计算正多边形的中心角、边心距、半径、周长和面 积 2.师生交流重要知识点: (1)正多边形:各边相等,各角也相等的多边形叫做正多边形。 如正五边形:AB=BC=CD=DE=EA ∠A=∠B=∠C=∠D=∠E (

6.中考数学圆的综合证明题

中考复习——圆的综合证明题 1.如图,在Rt△ABC中, ACB=90°,AO是△ABC的角平分线,以O为圆心,OC为半径作⊙O (1)求证:AB是⊙O的切线. (2)已知AO交⊙O于点E,延长AO交⊙O于点D,tanD=1 2 ,求 AE AC 的值. (3)在(2)的条件下,设⊙O的半径为3,求AB的长. 4.如图①,半圆O的直径AB=6,AM和BN是它的两条切线,CP与半圆O相切于点P,并于AM,BN分别相交于C,D两点. (1)请直接写出∠COD的度数; (2)求AC?BD的值; 5.如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.(1)求证:∠ACD=∠B; (2)如图2,∠BDC的平分线分别交AC,BC于点E,F,求tan∠CFE的值; 6.如图,AB是⊙O的弦,点C为半径OA的中点,过点C作CD⊥OA交弦AB于点E,连接BD,且DE=DB.

(1)判断BD 与⊙O 的位置关系,并说明理由; (2)若CD =15,BE =10,tanA=512 ,求⊙O 的直径. 7.如图,直线AB 经过⊙O 上的点C ,直线AO 与⊙O 交于点E 和点D ,OB 与OD 交于点F ,连接DF , DC .已知OA =OB ,CA =CB ,DE =10,DF =6. (1)求证:①直线AB 是⊙O 的切线;②∠FDC =∠EDC ; (2)求CD 的长. 8.如图,在Rt ABC 中,∠C =90°,点O 在AB 上,经过点A 的⊙O 与BC 相切于点D ,与AC ,AB 分别相 交于点E ,F ,连接AD 与EF 相交于点G . (1)求证:AD 平分∠CAB (2)若OH ⊥AD 于点H ,FH 平分∠AFE ,DG =1. ①试判断DF 与DH 的数量关系,并说明理由; ②求⊙O 的半径. 10.如图,△ABC 是⊙O 的内接三角形,AB 是⊙O 的直径, OD ⊥AB 于点O ,分别交AC 、CF 于点E 、 D ,且D E =DC . A B C D E F G H O

中考数学证明题

中考数学证明题 The Standardization Office was revised on the afternoon of December 13, 2020

一、证明题 1. 在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于E.将点C 翻折到对角线BD上的点N处,折痕DF交BC于点F. (1)求证:四边形BFDE为平行四边形; AB=,求BC的长. (2)若四边形BFDE为菱形,且2 2. 如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作 PM⊥AD,PN⊥CD,垂足分别为M、N. (1) 求证:∠ADB=∠CDB; (2) 若∠ADC=90?,求证:四边形MPND是正方形.

3. 如图,四边形ABCD 是平行四边形,DE 平分ADC ∠交AB 于点E ,BF 平分ABC ∠交CD 于点F . (1)求证:DE BF =; (2)连接EF ,写出图中所有的全等三角形.(不要求证明) 4. 如图,在平行四边形ABCD 中,E 为BC 边上的一点.连结AE 、BD ,且AE=AB . (1)求证:ABE EAD ∠=∠; (2)若2AEB ADB ∠=∠,求证:四边形ABCD 是菱形.

5. 如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高. (1)求证:四边形ADEF是平行四边形; (2)求证:∠DHF=∠DEF. 6.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F. (1)求证:△ADE≌△CBF; (2)若AC与BD相交于点O,求证:AO=CO. 7.已知:如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.

正多边形与圆教案

正多边形与圆教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

24.3 正多边形和圆 一、学习目标: 1知识与技能: (1)了解正多边形的中心、半径、边心距、中心角等概念。 (2)能运用正多边形的知识解决圆的有关计算问题。 2过程与方法: (1)学生在探讨正多边形有关计算过程中,体会到要善于发现问题,解决问题,发展学生的观察、比较、分析、概括及归纳的逻辑思维能力和逻辑推理能力。 (2)在探索正多边形有关过程中,学生体会化归思想在解决问题中的重要性,能综合运用所学的知识和技能解决问题。 3情感、态度与价值观: (1)学生经历观察、发现、探究等数学活动,感受到数学来源于生活,又服务于生活,体会到事物之间是相互联系,相互作用的。 (2)运用已有的正多边形的知识解决问题的活动中获得成功的体验,建立学习自信心。 二、教学重难点: 教学重点:理解正多边形和圆中心正多边形半径、中心角、边心距、边长之间的关系,并能进行有关计算。 教学难点:理解正多边形和圆中心正多边形半径、中心角、边心距、边长之间的关系以及把正多边形的计算问题转化为解直角三角形的问题。 三、教学方法:引导学生采用自主合作探究的方式进行学习 四、教学准备:PPT课件、圆规、直尺

五、教学过程: 导入: 前面我们学习了许多图形与圆的关系,如:点和圆、直线和圆、四边形 和圆以及圆与圆的关系,还有什么图形我们没有与圆联系上呢( 多边形)那么今天我就和同学们一起来探讨正多边形与圆。看看它们之 间有怎样的联系,又给我们带来什么样的知识。 (一)自习交流: 1.带着以下问题自主预习教材105页至106页的内容,勾画你认为重要的地 方和有 疑问的地方。 ①什么是多边形多边形的内角和与外角怎么计算的 ②正多边形和圆有什么关系? ③结合图形说说正多边形的中心、中心角、边心距、半径,并 结合以前的知识说说它们的特点? ④结合图形说一说如何计算正多边形的中心角、边心距、半 径、周长和面积? 2.师生交流重要知识点: (1)正多边形:各边相等,各角也相等的多边形叫做正多边形。 如正五边形: AB=BC=CD=DE=EA ∠A=∠B=∠C=∠D=∠E

中考数学专题训练圆的证明与计算(含答案)

圆的证明与计算 1.如图,已知△ABC 内接于△O , P 是圆外一点,P A 为△O 的切线,且P A =PB ,连接 OP ,线段 AB 与线段 OP 相交于点D . (1)求证:PB 为△O 的切线; (2)若P A =4 5PO ,△O 的半径为10,求线段 PD 的长. 第1题图 (1)证明:△△△△△△OA △OB △ 第1题解图 △P A △PB △OA △OB △OP △OP △ △△OAP △△OBP (SSS)△ △△OAP △△OBP △ △P A △△O △△△△ △△OAP △90°△ △△OBP △90°△ △OB △△O △△△△ △PB △△O △△△△

△△Rt△AOP △△OA △PO 2 △△4 5PO △2△10△ △△PO △50 3△ △cos△AOP △AO OP △OD AO △ △OD △6△ △PD △PO △OD △32 3. 2. △△△△△ABC △△AB △AC △△D △BC △△△△△AD △DC △△A △B △D △△△△O △AE △△O △△△△△△DE . △1△△△△AC △△O △△△△ △2△△cos C △3 5△AC △24△△△△AE △△. 第2题图 (1)证明:△AB △AC △AD △DC △ △△C △△B △△DAC △△C △ △△DAC △△B △ △△△E △△B △ △△DAC △△E △ △AE △△O △△△△ △△ADE △90°△ △△E △△EAD △90°△ △△DAC △△EAD △90°△ △△EAC △90°△

△OA △△O △△△△ △AC △△O △△△△ (2)解:△△△△△△D △DF △AC △△F △ 第2题解图 △DA △DC △ △CF △1 2AC △12△ △Rt△CDF △△△cos C △CF CD △3 5△ △DC △20△ △AD △20△ △Rt△CDF △△△△△△△△1622==CF CD DF -△ △△ADE △△DFC △90°△△E △△C △ △△ADE △△DFC △ △AE DC △AD DF △ △AE 20△1620 △△△AE △25△ △△O △△△AE △25. 3.如图,在△ABC 中,AB =BC ,以AB 为直径作△O ,交BC 于点D ,交AC 于点E ,过点E 作△O 的切线EF ,交BC 于点F . (1)求证:EF △BC ; (2)若CD =2,tan C =2,求△O 的半径.

中考数学证明题

中考数学证明题 第一篇:中考数学证明题中考数学证明题o是已知线段ab上的一点,以ob为半径的圆o交ab于点c,以线段ao为直径的半圆圆o于点d,过点b作ab的垂线与ad的延长线交于点e (1)说明ae切圆o于点d (2)当点o位于线段ab何处时,△odc恰好是等边三角形〉?说明理由 答案:一题:显然三角形doe是等边三角形: 理由: 首先能确定o为圆心 然后在三角形obd中:bo=od,再因角b为60度,所以三角形obd为等边三角形; 同理证明三角形oce为等边三角形 从而得到:角bod=角eoc=60度,推出角doe=60度 再因为od=oe,三角形doe为等腰三角形,结合上面角doe=60度,得出结论: 三角形doe为等边三角形 第三题没作思考,有事了,改天再解 二题: 要证明三角形ode为等边三角形,其实还是要证明角doe=60度,因为我们知道三角形ode是等腰三角形。 此时,不妨设角abc=x度,角acb=y度,不难发现,x+y=120度。

此时我们要明确三个等腰三角形:ode;bod;oce 此时在我们在三角形bod中,由于角obd=角odb=x度 从而得出角bod=180-2x 同理在三角形oce中得出角eoc=180-2y 则角bod+角eoc=180-2x+180-2y,整理得:360-2(x+y) 把x+y=120代入,得120度。 由于角eoc+角bod=120度,所以角doe就为60度。 外加三角形doe本身为等腰三角形,所以三角形doe为等边三角形! 图片发不上来,看参考资料里的 1如图,ab⊥bc于b,ef⊥ac于g,df⊥ac于d,bc=df。求证:ac=ef。 2已知ac平分角bad,ce垂直ab于e,cf垂直ad于f,且bc=cd (1)求证:△bce全等△dcf 3. 如图所示,过三角形abc的顶点a分别作两底角角b和角c的平分线的垂线,ad垂直于bd于d,ae垂直于ce于e,求证:ed||bc. 4. 已知,如图,pb、pc分别是△abc的外角平分线,且相交于点p。 求证:点p在∠a的平分线上。 回答人的补充20xx-07-1900:101.在三角形abc中,角abc为60度,ad、ce分别平分角bac角acb,试猜想,ac、ae、cd有怎么样的数

最新人教版初中九年级上册数学《正多边形和圆》教案

24.3正多边形和圆 【知识与技能】 了解正多边形和圆的关系,了解正多边形半径和边长,边心距,中心,中心角等概念.会应用正多边形的有关知识解决圆中的计算问题.会用圆规、量角器和直尺来作圆内接正多边形. 【过程与方法】 结合生活中的正多边形形状的图案,发现正多边形和圆的关系,然后学会用圆的有关知识,解决正多边形的问题. 【情感态度】 学生经历观察、发现、探究等数学活动,感受到数学来源于生活、又服务于生活,体现事物之间是相互联系,相互作用的. 【教学重点】 正多边形与圆的相关概念及其之间的运算. 【教学难点】 探索正多边形和圆的关系,正多边形半径,中心角、弦心距,边长之间的关系. 一、情境导入,初步认识 观察这些美丽的图案,都是在日常生活中,我们经常能看到的利用正多边形得到的物体. (1)你能从图案中找出多边形吗? (2)你知道正多边形和圆有什么关系吗?怎样就能作出一个正多边形来? 【教学说明】学生通过观察美丽的图案,欣赏生活中正多边形形状的物体.让学生感受到数学来源于生活,并从中感受到数学美.问题(2)的提出是为了创设一个问题情境,激起学生主动将所学圆的知识与正多边形联系起来,激发学生积极探索、研究的

热情,并有意将注意力集中在正多边形和圆的关系上. 二、思考探究,获取新知 1.正多边形和圆的关系 问题1将一个圆分成5等份,依次连接各分点得到一个五边形,这五边形一定是正五边形吗?如果是,请你证明这个结论. 教师引导学生根据题意画图,并写出已知和求证. 已知:如图,在⊙O中,A、B、C、D、E是⊙O的五等分点.依次连接ABCDE形成五边形. 问:五边形ABCDE是正五边形吗?如果是,请证明你的结论. 答案:五边形ABCDE是正五边形. ====,∴AB=BC=CD=DE=EA,证明:在⊙O中,∵AB BC CD DE EA ==,∴∠A=∠B;同理∠B=∠C=∠D=∠E,∴五边形ABCDE是正五BCE CDA AB 3 边形. 【教学说明】教师引导学生从正多边形的定义入手证明,即证明多边形各边都相等,各角都相等;引导学生观察、分析,教师带领学生完成证明过程. 问题2如果将圆n等分,依次连接各分点得到一个n边形,这个n边形一定是正n 边形吗? 答案:这个n边形一定是正n边形. 【教学说明】在这个问题中,教师重点关注学生是否会仿照证明圆内接正五边形的方法证明圆内接正n边形.从问题1到问题2是将结论由特殊推广到一般,这符合学生的认知规律,并教导学生一种研究问题的方法,由特殊到一般. 问题3各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形是正多边形吗?如果是,说明理由;如果不是,举出反例. 答案:各边相等的圆内接多边形是正多边形.因为:各边相等的圆内接多边形的各角也相等.各角相等的圆内接多边形不是正多边形.如:矩形. 【教学说明】问题3的提出是为了巩固所学知识,使学生明确判定圆内接多边形

中考数学圆的证明讲义

【2017】23.如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时. (1)求弦AC的长; (2)求证:BC∥PA. 【2016】23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF ∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G. 求证: (1)FC=FG; (2)AB2=BC?BG.

【2014】23、(本题满分是8分) 如图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6.过点B作⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C. (1)求证:AD平分∠BAC; (2)求AC的长。 A B D O C (第23题图)

【2013】23、(本题满分8分)如图,直线l 与⊙O 相切于点D ,过圆心O 作EF ∥l 交⊙O 于E 、F 两点,点A 是⊙O 上一点,连接AE 、AF,并分别延长交直线l 于B 、C 两点, (1)求证:∠ABC+∠ACB=0 90 (2)当⊙O 得半径R=5,BD=12时,求tan ACB 的值. 【2012】23.(8分)如图,PA 、PB 分别与⊙O 相切于点A 、B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N . (1)求证:OM=AN ; (2)若⊙O 的半径R=3,PA=9,求OM 的长. (第23题图)

【2011】23.(本题满分8分)如图,在△ABC 中,0 60B =∠,⊙O 是△ABC 外接圆,过点A 作的切线,交CO 的延长线于P 点,CP 交⊙O 于D (1) 求证:AP=AC (2) 若AC=3,求PC 的长 【2010】23.如图,在RT △ABC 中∠ABC=90°,斜边AC 的垂直平分线交BC 与D 点,交AC 与E 点,连接BE (1)若BE 是△DEC 的外接圆的切线,求∠C 的大小? (2)当AB=1,BC=2是求△DEC 外界圆的半径

中考数学证明题

中考数学证明题 中考数学证明题 ~N累~!!回答人的补充 201X-07-19 00:34 1已知ΔABC,AD是BC边上的中线。E在AB边上,ED平分∠ADB。F在AC边上,FD平分∠ADC。求证:BE+CFEF。 2已知ΔABC,BD是AC边上的高,CE是AB边上的高。F在BD 上,BF=AC。G在CE延长线上,CG=AB。求证:AG=AF,AG⊥AF。 3已知ΔABC,AD是BC边上的高,AD=BD,CE是AB边上的高。AD 交CE于H,连接BH。求证:BH=AC,BH⊥AC。 4已知ΔABC,AD是BC边上的中线,AB= 2,AC= 4,求AD的取值范围。 5已知ΔABC,ABAC,AD是角平分线,P是AD上任意一点。求证:AB-ACPB-PC。 6已知ΔABC,ABAC,AE是外角平分线,P是AE上任意一点。求证:PB+PCAB+AC。 7已知ΔABC,ABAC,AD是角平分线。求证:BDDC。 8已知ΔABD是直角三角形,AB=AD。ΔACE是直角三角形, AC=AE。连接CD,BE。求证:CD=BE,CD⊥BE。 9已知ΔABC,D是AB中点,E是AC中点,连接DE。求证:DE‖BC,2DE=BC。 10已知ΔABC是直角三角形,AB=AC。过A作直线AN,BD⊥AN于D,CE⊥AN于E。求证:DE=BD-CE。

等形 2 1已知四边形ABCD,AB=BC,AB⊥BC,DC⊥BC。E在BC边上, BE=CD。AE交BD于F。求证:AE⊥BD。 2已知ΔABC,ABAC,BD是AC边上的中线,CE⊥BD于E,AF⊥BD 延长线于F。求证:BE+BF=2BD。 3已知四边形ABCD,AB‖CD,E在BC上,AE平分∠BAD,DE平分∠ADC,若AB= 2,CD=3,求AD。 4已知ΔABC是直角三角形,AC=BC,BE是角平分线,AF⊥BE延长线于F。求证:BE=2AF。 5已知ΔABC,∠ACB=90°,AD是角平分线,CE是AB边上的高,CE交AD于F,FG‖AB交BC于G。求证:CD=BG。 6已知ΔABC,∠ACB=90°,AD是角平分线,CE是AB边上的高,CE交AD于F,FG‖BC交AB于G。求证:AC=AG。 7已知四边形ABCD,AB‖CD,∠D=2∠B,若AD=m,DC=n,求AB。 8已知ΔABC,AC=BC,CD是角平分线,M为CD上一点,AM交BC 于E,BM交AC于F。求证:ΔCME≌ΔCMF,AE=BF。 9已知ΔABC,AC=2AB,∠A=2∠C,求证:AB⊥BC。 10已知ΔABC,∠B=60°。AD,CE是角平分线,求证:AE+CD=AC 全等形 4 1已知ΔABC是直角三角形,AB=AC,ΔADE是直角三角形, AD=AE,连接CD,BE,M是BE中点,求证:AM⊥CD。 2已知ΔABC,AD,BE是高,AD交BE于H,且BH=AC,求∠ABC。

《正多边形和圆》第一课时参考教案

《正多边形和圆》第一 课时参考教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

24.3 正多边形和圆 第一课时 教学目标: 1、使学生理解正多边形概念; 2、使学生了解依次连结圆的n等分点所得的多边形是正多边形;过圆的n等分点作圆的切线,以相邻切线的交点为顶点的多边形是正多边形. 3、通过正多边形定义教学培养学生归纳能力; 4、通过正多边形与圆关系定理的教学培养学生观察、猜想、推理、迁移能力. 教学重点: (1)正多边形的定义; (2)n等分圆周(n≥3)可得圆的内接正n边形和圆的外切正n 边形. 教学难点: 对正n边形中泛指“n”的理解. 教学过程: 一、新课引入: 同学们思考以下问题:1.等边三角形的边、角各有什么性质?2.正方形的边、角各有什么性质?[安排中下生回答] 3.等边三角形与正方形的边、角性质有什么共同点?[安排中上生回答:各边相等、各角相等]. 各边相等,各角相等的多边形叫做正多边形.这就是我们今天学习的内容“24.3正多边形和圆”. 2

二、新课讲解: 正多边形在生产实践中有广泛的应用性,因此,正多边形的知识对学生进一步学习和参加生产劳动都是必要的.因此本节课首先给出正多边形的定义,然后根据正多边形的定义和圆的有关知识推导出正多边形与圆的第一个关系定理,即n等分圆周就可得到圆的内接或外切正n边形,它是正多边形画图的理论依据,因此也是本节课的重点之一. 同学回答:什么是正多边形?[安排中下生回答:各边相等、各角也相等的多边形叫做正多边形.] 如果一个正多边形有n(n≥3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.幻灯展示图形: 上面这些图形都是正几边形?[安排中下生回答:正三角形,正四边形,正五边形,正六边形.] 矩形是正多边形吗为什么菱形是正多边形吗为什么[安排中下生回答:矩形不是正多边形,因为边不一定相等.菱形不是正多边形,因为角不一定相等.] 哪位同学记得在同圆中,圆心角、弧、弦、弦心距关系定理?[安排记起来的学生回答:在同圆中,圆心角、弧、弦、弦心距有一组量相等,那么其余量都相等.] 要将圆三等分,那么其中一等份的弧所对圆心角度数是多少要将圆四等分、五等分、六等分呢[安排中下生回答:将圆三等 3

中考数学 圆的证明及计算

圆的证明与计算 1、如图,以AB为直径的⊙O经过AC的中点D,DE⊥BC于点E. (1)求证:DE是⊙O的切线; (2)当DE=1,∠C=30°时,求图中阴影部分的面积. 2、如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC. (1)求证:PA是⊙O的切线; (2)若⊙O的半径为3,求阴影部分的面积. 3、如图,以AB为直径作半圆O,点C为半圆上与A,B不重合的一动点,过点C作CD⊥AB 于点D,点E与点D关于BC对称,BE与半圆交于点F,连CE. (1)判断CE与半圆O的位置关系,并给予证明. (2)点C在运动时,四边形OCFB的形状可变为菱形吗?若可以,猜想此时∠AOC的大小,并证明你的结论;若不可以,请说明理由.

4、已知:如图,△ABC中,内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB于点A,AD与BC交于点E,F在DA的延长线上,且AF=AE. (1)求证:BF与⊙O相切; (2)若BF=5,cosC=,求⊙O的半径. 5、如图,已知AB是⊙O的直径,点C为圆上一点,点D在OC的延长线上,连接DA,交BC的延长线于点E,使得∠DAC=∠B. (1)求证:DA是⊙O切线; (2)求证:△CED∽△ACD; (3)若OA=1,sinD=,求AE的长. 6、如图所示,AB为半圆O的直径,点D是半圆弧的中点,半径OC∥BD,过点C作AD 的平行线交BA延长线于点E. (1)判断CE与半圆OD的位置关系,并证明你的结论. (2)若BD=4,求阴影部分面积.

7、如图,△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F. (1)求证:AC是⊙O的切线. (2)若∠C=30°,连接EF,求证:EF∥AB; (3)在(2)的条件下,若AE=2,求图中阴影部分的面积. 8、如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D. (1)判断直线BC与⊙O的位置关系,并说明理由; (2)若AC=3,∠B=30°. ①求⊙O的半径; ②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)

2018届中考数学复习专题题型(七)--圆的有关计算与证明

(2017浙江衢州第19题)如图,AB 为半圆O 的直径,C 为BA 延长线上一点,CD 切半圆O 于点D 。连结OD ,作BE ⊥CD 于点E ,交半圆O 于点F 。已知CE=12,BE=9[来源:学#科#网Z#X#X#K] (1)求证:△COD ∽△CBE ; (2)求半圆O 的半径r 的长 : 试题解析: (1)∵CD 切半圆O 于点D , ∴CD ⊥OD , ∴∠CDO=90°, ∵BE ⊥CD , ∴∠E=90°=∠CDO , 又∵∠C=∠C , ∴△COD ∽△CBE . (2)在Rt △BEC 中,CE=12,BE=9, ∴22CE BE +=15, ∵△COD ∽△CBE . ∴OD OC BE BC =,即15915r r -=, 解得:r= 458. 考点:1. 切线的性质;2.相似三角形的判定与性质. 2.(2017山东德州第20题)如图,已知Rt ΔABC,∠C=90°,D 为BC 的中点.以AC 为直径的圆O 交AB 于点E. (1)求证:DE 是圆O 的切线. (2)若AE:EB=1:2,BC=6,求AE 的长.

(1)如图所示,连接OE,CE ∵AC是圆O的直径 ∴∠AEC=∠BEC=90° ∵D是BC的中点 ∴ED=1 2 BC=DC ∴∠1=∠2 ∵OE=OC ∴∠3=∠4 ∴∠1+∠3=∠2+∠4,即∠OED=∠ACD ∵∠ACD=90° ∴∠OED=90°,即OE⊥DE 又∵E是圆O上的一点 ∴DE是圆O的切线.

考点:圆切线判定定理及相似三角形 3.(2017甘肃庆阳第27题)如图,AN 是⊙M 的直径,NB ∥x 轴,AB 交⊙M 于点C . (1)若点A (0,6),N (0,2),∠ABN=30°,求点B 的坐标; (2)若D 为线段NB 的中点,求证:直线CD 是⊙M 的切线. (1)∵A 的坐标为(0,6),N (0,2), ∴AN=4, ∵∠ABN=30°,∠ANB=90°, ∴AB=2AN=8, ∴由勾股定理可知:223AB AN -=, ∴B (32). (2)连接MC ,NC ∵AN 是⊙M 的直径, ∴∠ACN=90°, ∴∠NCB=90°,

相关主题
文本预览
相关文档 最新文档