当前位置:文档之家› 单片机智能温度报警系统

单片机智能温度报警系统

单片机智能温度报警系统
单片机智能温度报警系统

私立华联学院毕业设计题目:单片机智能温度报警系统学院:电子信息工程系

专业:电子信息工程技术

班级: 08电子1班

姓名:梁旭

学号:0301080135

摘要:介绍了单总线数字温度传感器DSI8B20模块的特性,利用DS18B20设计了一种基于STC89C52单片机的智能温度报警系统。该智能温度报警系统以STC公司生产的STC89C52为控制器,结构简单、测温准确。软件使用模块化结构.并对温度进行刷新显示和报警处理。

Abstract: The single-bus digital temperature sensor DSI8B20 module features, the use of

DS18B20 designed based on STC89C52 of Intelligent temperature alarm system. The intelligent temperature alarm system to STC produced STC89C52 the controller structure is simple, accurate temperature measurement. Software uses a modular structure. Refresh and temperature display and alarm processing.

一、引言

在工业生产中,温度的控制尤其重要,因而对温度报警系统的需求也越来越大。如何设计一款成本低廉、测量准确、操作简单的智能温度报警系统成为一个重要问题。在本次设计中,整个系统以SCT98C52为核心。温度传感器DS18B20完成环境温度转换功能。其输出为数字形式,可以直接给单片机进行处理;键盘为简单的三键控制,处理方式采用中断方式,减少了占用CPU时间。这种设计的成本较小,结构简单、操作方便,并且测量也很准确,能够满足工业生产

的需要

温度控制,在工业自动化控制中占有非常重要的地位。单片机系统的开发应用给现代工业测控领域带来了一次新的技术革命,自动化、智能化均离不开单片机的应用。将单片机控制方法运用到温度控制系统中,可以克服温度控制系统中存在的严重滞后现象,同时在提高采样频率的基础上可以很大程度的提高控制效果和控制精度。现代自动控制越来越朝着智能化发展,在很多自动控制系统中都用到了工控机,小型机、甚至是巨型机处理机等,当然这些处理机有一个很大的特点,那就是很高的运行速度,很大的内存,大量的数据存储器。但随之而来的是巨额的成本。在很多的小型系统中,处理机的成本占系统成本的比例高达20%,而对于这些小型的系统来说,配置一个如此高速的处理机没有任何必要,因为这些小系统追求经济效益,而不是最在乎系统的快速性,所以用成本低廉的单片机控制小型的,而又不是很复杂,不需要大量复杂运算的系统中是非常适合的。

温度控制,在工业自动化控制中占有非常重要的地位,如在钢铁冶炼过程中要对出炉的钢铁进行热处理,才能达到性能指标,塑料的定型过程中也要保持一定的温度。随着科学技术的迅猛发展,各个领域对自动控制系统控制精度、响应速度、系统稳定性与自适应能力的要求越来越高,被控对象或过程的非线性、时变性、多参数点的强烈耦合、较大的随机扰动、各种不确定性以及现场测试手段不完善等,使难以按数学方法建立被控对象的精确模型的情况。

随着电子技术以及应用需求的发展,单片机技术得到了迅速的发展,在高集成度,高速度,低功耗以及高性能方面取得了很大的进展。伴随着科学技术的发展,电子技术有了更高的飞跃,我们现在完全可以运用单片机和电子温度传感器对某处进行温度检测,而且我们可以很容易地做到多点的温度检测,如果对此原理图稍加改进,我们还可以进行不同地点的实时温度检测和控制。

二、设计目的

学习了单片机课程之后,为了加深对理论知识的理解,学习理论知识在实际中的运用,加深自己的动手能力,我通过查找资料,应用STC89C52单片机和DS18B20温度芯片制作了一个智能温度报警系统。提高对单片机的认识,提高焊接能力。

三、使用中央单元处理器介绍

1、主控芯片STC89C52

STC89C52 是一种带8K 字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Eras-able Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。单片机的可擦除只读存储器可以反复擦除1000 次。该器件采用STC高密度非易失存储器制造技术制造,与工业标准的MCS-51 指令集和输出管脚相兼容。由于将多功能8 位CPU 和闪烁存储器组合在单个芯片中,STC的STC89C52是一种高效微控制器。STC89 单片机为嵌入式控制系统提供了一种灵

活性高且价廉的方案。

2 、DS18B20数字温度传感器

DSI8B20 是DALLAS 公司的最新单线数字温度传感器,它体积小、经济。是世界上第一片支持“一线总线”接口的温度传感器。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。它的测量温度范围为一55~ +125℃。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3~5.5 V 的电压范围,使系统设计更灵活、方便。而且新一代产品更便宜,体积更小。DSI8B20 可以程序设定9~12 位的分辨率,精度为±0.5℃。可以选择更小的封装方式,更宽的电压适用范围。分辨率设定及用户设定的报警温度存储在EPROM 中,掉电后依然保存。DS18B20 的性能是新一代产品中最好的,性能价格比也非常出色,继“一线总线”的早期产品后, DSI8B20开辟了温度传感器技术的新概念。DS18B20 和DS18B22 使电压特性及封装有更多的选择,让用户可以构建适合自己的经济的测温系统。S18B20 内部结构主要由4 部分组成:64 位光刻ROM, 温度传感器、非挥发的温度报警触发器TH 和[2]TL,配置寄存器。 DSI8B20的管脚排列如图2所示。本次设计智能温度报警系统的温度采集就由DSI8B20 完成。将DSI8B20 的GND 脚接地,VDD 脚接高电平,而单总线DQ 脚接单片机的外部中断1 脚,具体的采集电路

DSI8B20的管脚排列图2

但在系统调试时也出现了很多问题。第一个问题是温度输出总是85。后来经过反复实验才发现DSI8B20从测温结束到将温度值转换为数字量需要一定的转换时间。这是必须保证的,不然会出现转换错误的现象。第二个问题是在实际使用中发现的,就是要使电源电压保持在5V左右,若电源电压过低,会使所测得的温

度与实际温度出现偏高现象。

四、系统软件设计

本设计智能温度报警系统由温度采集、信号处理、温度监测、输出控制四部分组成。其系统框图如图7所示,它通过预先设在单片机中的高低温度值来对非常温度值进行报警,从DSI8B20 采集到的温度经信号调理电路处理后直接送入单片机进行刷新。微控制器根据信号数据及设定的各种控制参数,按照嵌入的软件控制规律执行计算与处理,自动显示温度值、输出相应的控制信号,并根据当前状态输出正常、报警等信号,同时将各种数据通过数码管进行显示监控。

系统的软件设计流程图如图6 所示。

图6 软件设计流程图

1.1、方案一

由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,其中还涉及到电阻与温度的对应值的计算,感温电路比较麻烦。而且在对采集的信号进行放大时容易受温度的影响出现较大的偏差。

1.2、方案二

进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,电路简单,精度高,软硬件都以实现,而且使用单片机的接口便于系统的再扩展,满足设计要求。

从以上两种方案,很容易看出,采用方案二,电路比较简单,费用较低,可靠性高,软件设计也比较简单,故采用了方案二。

2.1系统总体设计

温度计电路设计总体设计方框图如图1所示,控制器采用单片机STC89C52,温度传感器采用DS18B20,用4位LED 数码管以串口传送数据实现温度显示。

图2.1—1 总体设计方框图

图2.1—2系统仿真图

2.2系统模块

系统由单片机最小系统、显示电路、按键、温度传感器等组成。

2.2.1 主控制器

单片机STC89S51具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用系统可用电池供电。

晶振采用12MHZ。复位电路采用上电加按钮复位。

图2.3.1—1晶振电路

图2.2.1—2复位电路

2.2.2 显示电路

显示电路采用4位共阴极LED数码管,P0口由上拉电阻提高驱动能力,作为段码输出并作

为数码管的驱动。P2口的低四位作为数码管的位选端。采用动态扫描的方式显示。

图2.3.2 数码管显示电路

2.2.3温度传感器

DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。DS18B20的性能特点如下:

1、独特的单线接口仅需要一个端口引脚进行通信;

2、多个DS18B20可以并联在惟一的三线上,实现多点组网功能

3、无须外部器件;

4、可通过数据线供电,电压范围为3.0~5.5V;

5、零待机功耗;

6、温度以9或12位数字;

7、用户可定义报警设置;

8、报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件;

9、负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作;

DS18B20可以采用两种方式供电,一种是采用电源供电方式,此时DS18B20的1脚接地,2脚作为信号线,3脚接电源。另一种是寄生电源供电方式,如图4 所示单片机端口接单线总线,为保证在有效的DS18B20时钟周期内提供足够的电流,可用一个MOSFET管来完成对总线的上拉。

当DS18B20处于写存储器操作和温度A/D转换操作时,总线上必须有强的上拉,上拉开启时间最大为10us。采用寄生电源供电方式时VDD端接地。由于单线制只有一根线,因此发送接口必须是三态的。

图2.2.3 温度传感器与单片机的连接

2.2.4报警温度调整按键

本系统设计三个按键,采用查询方式,一个用于选择切换设置报警温度和当前温度,另外两个分别用于设置报警温度的加和减。均采用软件消抖。

图2.3.4 按键电路

3系统软件算法分析

系统程序主要包括主程序,读出温度子程序,温度转换命令子程序,计算温度子程序,显示数据刷新子程序,按键扫描处理子程序等。

3.1主程序流程图

主程序的主要功能是负责温度的实时显示、读出并处理DS18B20的测量的当前温度值,温度测量每1s进行一次。这样可以在一秒之内测量一次被测温度,其程序流程见图3.1所示。

图3.1

3.2读出温度子程序

读出温度子程序的主要功能是读出RAM 中的9字节,在读出时需进行CRC 校验,校验有错时不进行温度数据的改写。其程序流程图如图3.2示

3.3温度转换命令子程序

温度转换命令子程序主要是发温度转换开始命令,当采用12位分辨率时转换时间约为750ms ,在本程序设计中采用1s 显示程序延时法等待转换的完成。温度转换命令子程序流程图如上图,图3.3所示

图3.3 温度转换流程图 图3.2 读温度流程图

3.4 计算温度子程序

计算温度子程序将RAM 中读取值进行BCD 码的转换运算,并进行温度值正负的判定,其程序流程图如图3.4所示。

3.5 显示数据刷新子程序

显示数据刷新子程序主要是对分离后的温度显示数据进行刷新操作,当标志位位为1时将符号显示位移入第一位。程序流程图如图3.5。

图3.4计算温度流程图

图3.5显示数据刷新流程图

3.6按键扫描处理子程序

按键采用扫描查询方式,设置标志位,当标志位为1时,显示设置温度,否则显示当前温度。如下图3.6示。

图3.6 按键扫描处理子程序

4 实验仿真

进入protuse后,连接好电路,并将程序下载进去。将DS18B20的改为0.1,数码管显示温度与传感器的温度相同。

图4—1 温度显示仿真

当按下SET键一次时,进入温度报警上线调节,此时显示软件设置的温度报警上线,按ADD 或DEC分别对报警温度进行加一或减一。

当再次按下SET键时,进入温度报警下线调节,此时显示软件设置的温度报警下线,按ADD 或DEC分别对报警温度进行加一或减一。

图4—2 温度调试仿真

当第三次按下SET键时,退出温度报警线设置。显示当前温度。

五、电路实物图

使用元器件:

主控器STC89C52一片、DS18B20温度测量传感器一片、30P瓷片电容2个、1K电阻5个、100欧电阻8个10K电阻1个、8550三极管5个,12M晶体1片、、按钮开关1个、复位按钮3个、蜂鸣器1个、离子电池1个、USB接口1个、万能电路板一块、5V电源一个、四位七段数码管1块、导线若干。

六、结束语

实验表明:该智能温度报警系统结构简单、测温准确,具有一定的实际应用价值。该智能温度报警系统只是DSI8B20在温度控制领域的一个简单实例,还有许多需要完善的地方,例如可以将测得的温度通过单片机与通讯模块相连接,以手机短信息的方式发送给用户,使用户能够随时对温度进行监控。此外,还能广泛地应用于各种工业生产领域,如建筑,仓储等行业。

通过这次对数字温度计的设计与制作,让我了解了设计电路的程序,也让我了解了关于数字温度计的原理与设计理念,要设计一个电路总要先用仿真仿真成功之后才实际接线的。但是最后的成品却不一定与仿真时完全一样,因为,再实际接线中有着各种各样的条件制约着。而且,在仿真中无法成功的电路接法,在实际中因为芯片本身的特性而能够成功。所以,在设计时应考虑两者的差异,从中找出最适合的设计方法。

通过这次学习,让我对各种电路都有了大概的了解,所以说,坐而言不如立而行,对于这些电路还是应该自己动手实际操作才会有深刻理解。

在焊接过程中我曾将温度传感器的电源、地焊反啦,导致温度传感器急剧发热,后经观察和查询资料才得以改正。

从这次的课程设计中,我真真正正的意识到,在以后的学习中,要理论联系实际,把我们所学的理论知识用到实际当中,学习单机片机更是如此,程序只有在经常的写与读的过程中才能提高,这就是我在这次课程设计中的最大收获。

特别是对单片机C语言产生了更深的兴趣,能用Portel,PROTEUS等专业软件,掌握了电子电路调试的方法,能独立解决设计与调试过程中出现的一般问题,能正确选用元器件与材料,能对所设计电路的指标和性能进行测试并提出改进意见,能查阅各种有关手册和正确编写设计报告。

由于这次的设计是一个人单独作一个课题,所以我是采用以自学为主的学习方法。在学完《模拟电子技术基础》和《数字电子技术基础》课程之后,还要对《单片机基础》的深入研究。在复习和课程设计任务有关的单元电路,理清头绪,按照电子电路的一般设计步骤进行设计。一个人做有点困难,途中不知碰到了多少难题,有些问题需要请教老师和同学,在解决这些实际

难题中我的动手能力和知识巩固都得到了很大的提高。

参考文献

[1] 曾令琴模拟电子技术人民邮电出版社

[2] 李晓荃单片机原理与应用电子工业出版社

[3] 电子报人民邮电出版社

[4] 何立民单片机的C语言应用程序设计北京航空航天大学出版社

[5] 网上资料

程序名称:DS18B20温度测量、报警系统

简要说明:DS18B20温度计,温度测量范围0~99.9摄氏度可设置上限报警温度、下限报警温度

即高于上限值或者低于下限值时蜂鸣器报警

默认上限报警温度为38℃、默认下限报警温度为5℃

报警值可设置范围:最低上限报警值等于当前下限报警值

最高下限报警值等于当前上限报警值

将下限报警值调为0时为关闭下限报警功能

C语言程序:

#include

#include "DS18B20.h"

#define uint unsigned int

#define uchar unsigned char //宏定义

#define SET P3_1 //定义调整键

#define DEC P3_2 //定义减少键

#define ADD P3_3 //定义增加键

#define BEEP P3_7 //定义蜂鸣器

bit shanshuo_st; //闪烁间隔标志

bit beep_st; //蜂鸣器间隔标志

sbit DIAN = P2^7; //小数点

uchar x=0; //计数器

signed char m; //温度值全局变量

uchar n; //温度值全局变量

uchar set_st=0; //状态标志

signed char shangxian=38; //上限报警温度,默认值为38

signed char xiaxian=5; //下限报警温度,默认值为38

uchar code LEDData[]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90,0xff};

/*****延时子程序*****/

void Delay(uint num)

{

while( --num );

}

/*****初始化定时器0*****/

void InitTimer(void)

{

TMOD=0x1;

TH0=0x3c;

TL0=0xb0; //50ms(晶振12M)

}

/*****定时器0中断服务程序*****/

void timer0(void) interrupt 1

{

TH0=0x3c;

TL0=0xb0;

x++;

}

/*****外部中断0服务程序*****/

void int0(void) interrupt 0

{

EX0=0; //关外部中断0

if(DEC==0&&set_st==1)

{

shangxian--;

if(shangxian

}

else if(DEC==0&&set_st==2)

{

xiaxian--;

if(xiaxian<0)xiaxian=0;

}

}

/*****外部中断1服务程序*****/

void int1(void) interrupt 2

{

EX1=0; //关外部中断1

if(ADD==0&&set_st==1)

{

shangxian++;

if(shangxian>99)shangxian=99;

}

else if(ADD==0&&set_st==2)

{

xiaxian++;

if(xiaxian>shangxian)xiaxian=shangxian;

}

}

/*****读取温度*****/

void check_wendu(void)

{

uint a,b,c;

c=ReadTemperature()-5; //获取温度值并减去DS18B20的温漂误差a=c/100; //计算得到十位数字

b=c/10-a*10; //计算得到个位数字

m=c/10; //计算得到整数位

n=c-a*100-b*10; //计算得到小数位

if(m<0){m=0;n=0;} //设置温度显示上限

if(m>99){m=99;n=9;} //设置温度显示上限

}

/*****显示开机初始化等待画面*****/

Disp_init()

{

P2 = 0xbf; //显示-

P1 = 0xf7;

Delay(200);

P1 = 0xfb;

Delay(200);

P1 = 0xfd;

Delay(200);

P1 = 0xfe;

Delay(200);

P1 = 0xff; //关闭显示

}

/*****显示温度子程序*****/

Disp_Temperature() //显示温度{

P2 =0xc6; //显示C

P1 = 0xf7;

Delay(300);

P2 =LEDData[n]; //显示个位

P1 = 0xfb;

Delay(300);

P2 =LEDData[m%10]; //显示十位DIAN = 0; //显示小数点

P1 = 0xfd;

Delay(300);

P2 =LEDData[m/10]; //显示百位P1 = 0xfe;

Delay(300);

P1 = 0xff; //关闭显示

}

/*****显示报警温度子程序*****/ Disp_alarm(uchar baojing)

{

P2 =0xc6; //显示C

P1 = 0xf7;

Delay(200);

P2 =LEDData[baojing%10]; //显示十位

P1 = 0xfb;

Delay(200);

P2 =LEDData[baojing/10]; //显示百位

P1 = 0xfd;

Delay(200);

if(set_st==1)P2 =0x89;

else if(set_st==2)P2 =0xc7; //上限H、下限L标示

P1 = 0xfe;

Delay(200);

P1 = 0xff; //关闭显示

}

/*****报警子程序*****/

void Alarm()

{

if(x>=10){beep_st=~beep_st;x=0;}

if((m>=shangxian&&beep_st==1)||(m

}

/*****主函数*****/

void main(void)

{

uint z;

InitTimer(); //初始化定时器

EA=1; //全局中断开关

TR0=1;

ET0=1; //开启定时器0

IT0=1;

IT1=1;

check_wendu();

check_wendu();

for(z=0;z<300;z++)

{

Disp_init();

}

接口实验报告-基于51单片机的脉搏温度测试系统-

摘要 接口实验报告 题目:脉搏波体温自动采集系统院(系):电子工程与自动化学院 专业:仪器仪表工程 学生姓名: 学号: 指导老师:李智 职称:教授 20 年8月28日 I

摘要 本文介绍了一种基于51单片机的心率体温采集系统。首先介绍了51系列单片机的内部相关配置、工作原理以及编程方法,其次介绍了温度传感器PT100的相关测温方法以及通过红外光电传感器TCRT5000对射的方法来抓取人体脉搏信号。此次设计的电路部分主要包括:传感测量电路、放大电路、滤波整形电路、AD转换电路、控制电路、电源供电电路等。上位机为通过VC编程界面。通过上位机按键控制,将PT100及TCRT5000输入的微弱信号进行放大整形,最后AD采集转换传送给单片机,在上位机界面上显示相关体温及心率信息。 本次硬件设计基于比较稳定可行、低成本的设计思想,软件设计采用模块化的设计方法,并且详细分析了红外传感器TCRT5000应用于心率测量上以及PT100应用于温度测量上的原理及优点,阐述了其他各配合电路的组成与工作特点,并且通过仿真进行电路的可行性验证,最后完成实物电路的设计,使得本次课题的预期结果得以实现。 关键词:51单片机;传感器;仿真;AD转换

Abstract Abstract This paper introduced a heart rate and body temperature acquisition system that based on 51 single chip microcomputer. First the internal configurations of 51 single chip microcomputer are introduced. And the paper also tell how 51 single chip microcomputer works and how can we program on it. Then the method of using temperature sensor PT100 to get body temperature is introduced, and we use infrared photoelectric sensor TCRT5000 to get the pulse signal of human body.The design of the circuit mainly comprises sensing circuit, amplifying circuit, filtering and shaping circuit, AD converting circuit, counting and displaying circuit, controlling circuit, power supplying circuit and so on. When the keyboard is pressed, the system starts to get signal. The small signal from PT100 and TCRT5000 will be amplified and shaped. Then ad converter will change the analog signal into digital signal and send to 51 single chip microcomputer. At last LCD1602 will display the information of body temperature and heart rate. Keywords: Piezoelectric sensors;control circuit;counters;Multisim2001 simulation software control circuit. III

基于AT89C51单片机的温度传感器

基于AT89C51单片机的温度传感器 目录 摘要.............................................................. I ABSTRACT........................................................... I I 第一章绪论 (1) 1.1 课题背景 (1) 1.2本课题研究意义 (2) 1.3本课题的任务 (2) 1.4系统整体目标 (2) 第二章方案论证比较与选择 (3) 2.1引言 (3) 2.2方案设计 (3) 2.2.1 设计方案一 (3) 2.2.2 设计方案二 (3) 2.2.3 设计方案三 (3) 2.3方案的比较与选择 (4) 2.4方案的阐述与论证 (4) 第三章硬件设计 (6) 3.1 温度传感器 (6) 3.1.1 温度传感器选用细则 (6) 3.1.2 温度传感器DS18B20 (7) 3.2.单片机系统设计 (13)

3.3显示电路设计.................................错误!未定义书签。 3.4键盘电路设计................................错误!未定义书签。 3.5报警电路设计.................................错误!未定义书签。 3.6通信模块设计.................................错误!未定义书签。 3.6.1 RS-232接口简介..............................错误!未定义书签。 3.6.2 MAX232芯片简介.............................错误!未定义书签。 3.6.3 PC机与单片机的串行通信接口电路.............错误!未定义书签。 第四章软件设计..................................错误!未定义书签。 4.1 软件开发工具的选择..........................错误!未定义书签。 4.2系统软件设计的一般原则.......................错误!未定义书签。 4..3系统软件设计的一般步骤......................错误!未定义书签。 4.4软件实现....................................错误!未定义书签。 4.4.1系统主程序流程图.........................错误!未定义书签。 4.4.2 传感器程序设计...........................错误!未定义书签。 4.4.3 显示程序设计.............................错误!未定义书签。 4.4.4 键盘程序设计.............................错误!未定义书签。 4.4.5 报警程序设计.............................错误!未定义书签。 4.4.6 通信模块程序设计.........................错误!未定义书签。 第五章调试与小结..................................错误!未定义书签。致谢...............................................错误!未定义书签。参考文献...........................................错误!未定义书签。附录...............................................错误!未定义书签。系统电路图.......................................错误!未定义书签。系统程序.........................................错误!未定义书签。

基于51单片机的温度控制系统

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王*

毕业论文设计 基于51单片机的温度控制系统

摘要 在日常生活中温度在我们身边无时不在,温度的控制和应用在各个领域都有重要的作用。很多行业中都有大量的用电加热设备,和温度控制设备,如用于报警的温度自动报警系统,热处理的加热炉,用于融化金属的坩锅电阻炉及各种不同用途的温度箱等,这些都采用单片机技术,利用单片机语言程序对它们进行控制。而单片机技术具有控制和操作使用方便、结构简单便于修改和维护、灵活性大且具有一定的智能性等特 点,可以精确的控 制技术标准,提高了温控指标,也大大的提高了产品的质量和性能。 由于单片机技术的优点突出,智能化温度控制技术正被广泛地采用。本文介绍了基于单片机AT89C51 的温度控制系统的设计方案与软硬件实现。采用温度传感器DS18B20 采集温度数据,7段数码管显示温度数据,按键设置温度上下限,当温度低于设定的下限时,点亮绿色发光二极管,当温度高于设定的上限时,点亮红色发光二极管。给出了系统总体框架、程序流程图和Protel 原理图,并在硬件平台上实现了所设计功能。 关键词:单片机温度控制系统温度传感器

Abstract In daily life, the temperature in our side the ever-present, the control of the temperature and the application in various fields all have important role. Many industry there are a large number of electric heating equipment, and the temperature control equipment, such as used for alarm automatic temperature alarm systems, heat treatment furnace, used to melt metal crucible resistance furnace, and all kinds of different USES of temperature box and so on, these using single chip microcomputer, using single chip computer language program to control them. And single-chip microcomputer technology has control and convenient in operation, easy to modify and maintenance of simple structure, flexibility is large and has some of the intelligence and other characteristics, we can accurately control technology standard to improve the temperature control index, also greatly improve the quality of the products and performance. Because of the advantages of the single chip microcomputer intelligent temperature control technology outstanding, is being widely adopted. This paper introduces the temperature control based on single chip microcomputer AT89C51 design scheme of the system and the hardware and software implementation. The temperature sensor DS18B20 collection temperature data, 7 period of digital pipe display, the upper and lower limits of temperature button when temperature below the setting of the lower limit, light green leds, when the temperature is higher than the set on the limit, light red leds. Given the system framework and program flow chart and principle chart, and in Protel hardware platform to realize the function of the design. Keywords:SCM Temperature control system Temperature sensors

基于单片机的温度测量系统设计

基于STC单片机的温度测量系统的研究 摘要:本文针对现有温度测量方法线性度、灵敏度、抗振动性能较差的不足,提出了一种基于STC单片机,采用Pt1000温度传感器,通过间接测量铂热电阻阻值来实现温度测量的方案。重点介绍了,铂热电阻测量温度的原理,基于STC实现铂热电阻阻值测量,牛顿迭代法计算温度,给出了部分硬件、软件的设计方法。实验验证,该系统测量精度高,线性好,具有较强的实时性和可靠性,具有一定的工程价值。 关键词:STC单片机、Pt1000温度传感器、温度测量、铂热电阻阻值、牛顿迭代法。 Study of Temperature Measurement System based on STC single chip computer Zhang Yapeng,Wang Xiangting,Xu Enchun,Wei Maolin Abstract:A method to achieve temperature Measurement by the Indirect Measurement the resistance of platinum thermistor is proposed. It is realized by the single chip computer STC with Pt1000temperature sensor.The shortcomings of available methods whose Linearity, Sensitivity, and vibration resistance are worse are overcame by the proposed method. This paper emphasizes on the following aspects:the principle of temperature measurement by using platinum thermistor , the measurement of platinum thermistor’s resistance based on STC single chip computer, the calculating temperature by Newton Iteration Method. Parts of hardware and software are given. The experimental results demonstrate that the precision and linearity of the method is superior. It is also superior in real-time character and reliability and has a certain value in engineering application. Keywords: STC single chip computer,Pt1000temperature sensor,platinum thermistor’s resistance,Newton Iteration Method 0 引言 精密化学、生物医药、精细化工、精密仪器等领域对温度控制精度的要求极高,而温度控制的核心正是温度测量。 目前在国内,应用最广泛的测温方法有热电偶测温、集成式温度传感器、热敏电阻测温、铂热电阻测温四种方法。 (1) 热电偶的温度测量范围较广,结构简单,但是它的电动势小,灵敏度较差,误差较大,实际使用时必须加冷端补偿,使用不方便。 (2) 集成式温度传感器是新一代的温度传感器,具有体积小、重量轻、线性度好、性能稳定等优点,适于远距离测量和传输。但由于价格相对较为昂贵,在国内测温领域的应用还不是很广泛。 (3) 热敏电阻具有灵敏度高、功耗低、价格低廉等优点,但其阻值与温度变化成非线性关系,在测量精度较高的场合必须进行非线性处理,给计算带来不便,此外元件的稳定性以及互换性较差,从而使它的应用范围较小。 (4)铂热电阻具有输出电势大、线性度好、灵敏度高、抗振性能好等优点。虽然它 的价格相对于热敏电阻要高一些,但它的综合性能指标确是最好的。而且它在0~200°C范

基于51单片机的温度报警系统设计

宝鸡文理学院电子电气工程学院单片机实习设计报告 设计题目: 基于51单片机的温度报警系统设计 班级: 2013级自动化2班 姓名: 赵阳201395124062 李杰201395124063 江超201395124064 王珊201395124065 指导教师: 李军生张曦 2016年1月8日

基于51单片机的温度报警系统设计 摘要 温度是一个十分重要的物理量,对它的测量与控制有十分重要的意义。随着现代工农业技术的发展及人们对生活环境要求的提高,人们也迫切需要检测与控制温度。温度控制电路在工农业生产中有着广泛的应用。日常生活中也可以见到,如电冰箱的自动制冷,空调器的自动控制等等。在工业生产中,温度、压力、流量和液位是四种最常见的过程变量。其中,温度是一个非常重要的过程变量。例如:在冶金工业、化工工业、电力工业、机械加工和食品加工等许多领域,都需要对各种加热炉、热处理炉、反应炉和锅炉的温度进行监控。然而,用常规的监控方法,潜力是有限的,难以满足较高的性能要求。采用单片机来对它们进行监控不仅具有监控方便、简单和灵活性大的优点,而且可以大幅度提高被测温度的技术指标,从而能够大大提高产品的质量和数量。因此,单片机对温度的监控问题是一个工业生产中经常会遇到的监控问题。现代社会是信息化的社会,随着安全化程度的日益提高,而通过温度报警器及时报警,避免不必要的损失。 研究了基于STC-89C52RC单片机温度控制系统的原理和功能,温度测量单元由单总线数字温度传感器DS18B20构成。该系统可进行温度设定,时间显示和保存监测数据。如果温度超过任意设置的上限和下限值,系统将报警并可以和自动控制的实现,从而达到温度监测智能一定范围内。基于系统的原理,很容易使其他各种非线性控制系统,只要软件设计合理的改变。 关键字:STC-89C52RC单片机;温度;时间;DS18B20。

51单片机测温程序

#include #include #define uint unsigned int #define uchar unsigned char uinti,numone,numtwo,temp; ucharqian,bai,shi,ge,xiaoshu; sbitdq=P2^2; sbitdula=P2^6; sbitwela=P2^7; uchar code list[]={ 0x3f , 0x06 , 0x5b , 0x4f , 0x66 , 0x6d ,0x7d , 0x07 , 0x7f , 0x6f , 0x77 , 0x7c , 0x39 , 0x5e , 0x79 , 0x71,0x80 }; unsigned char code listone[] = {0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,0x87,0xff,0xef}; void delay(uint z) { uintx,y; for(x=100;x>0;x--) for(y=z;y>0;y--); } voiddelayone(unsigned char i)

{ while(--i); } /****************************************** 此延时函数针对的是12Mhz的晶振 delay(0):延时518us 误差:518-2*256=6 delay(1):延时7us (原帖写"5us"是错的)delay(10):延时25us 误差:25-20=5 delay(20):延时45us 误差:45-40=5 delay(100):延时205us 误差:205-200=5 delay(200):延时405us 误差:405-400=5*/ voidshuma(uchar temp) { shi=temp/100; ge=temp%100/10; xiaoshu=temp%10; dula=1; P0=list[shi]; dula=0; P0=0xff; wela=1; P0=0xfe;

(完整word版)基于51单片机的温度控制系统设计

基于51单片机的水温自动控制系统 0 引言 在现代的各种工业生产中 ,很多地方都需要用到温度控制系统。而智能化的控制系统成为一种发展的趋势。本文所阐述的就是一种基于89C51单片机的温度控制系统。本温控系统可应用于温度范围30℃到96℃。 1 设计任务、要求和技术指标 1.1任务 设计并制作一水温自动控制系统,可以在一定范围(30℃到96℃)内自动调节温度,使水温保持在一定的范围(30℃到96℃)内。 1.2要求 (1)利用模拟温度传感器检测温度,要求检测电路尽可能简单。 (2)当液位低于某一值时,停止加热。 (3)用AD转换器把采集到的模拟温度值送入单片机。 (4)无竞争-冒险,无抖动。 1.3技术指标 (1)温度显示误差不超过1℃。 (2)温度显示范围为0℃—99℃。 (3)程序部分用PID算法实现温度自动控制。 (4)检测信号为电压信号。 2 方案分析与论证 2.1主控系统分析与论证 根据设计要求和所学的专业知识,采用AT89C51为本系统的核心控制器件。AT89C51是一种带4K字节闪存可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器。其引脚图如图1所示。 2.2显示系统分析与论证 显示模块主要用于显示时间,由于显示范围为0~99℃,因此可采用两个共阴的数码管作为显示元件。在显示驱动电路中拟订了两种设计方案: 方案一:采用静态显示的方案 采用三片移位寄存器74LS164作为显示电路,其优点在于占用主控系统的I/O口少,编程简单且静态显示的内容无闪烁,但电路消耗的电流较大。 方案二:采用动态显示的方案 由单片机的I/O口直接带数码管实现动态显示,占用资源少,动态控制节省了驱动芯片的成本,节省了电 ,但编程比较复杂,亮度不如静态的好。 由于对电路的功耗要求不大,因此就在尽量节省I/O口线的前提下选用方案一的静态显示。

基于51单片机及DS18B20温度传感器的数字温度计程序(详细注释)

基于51单片机及DS18B20温度传感器的数字温度计程序(详细注释)

电路实物图如下图所示: C 语言程序如下所示: /******************************************************************** zicreate ----------------------------- Copyright (C) https://www.doczj.com/doc/366963354.html, -------------------------- * 程序名; 基于DS18B20的测温系统 * 功 能: 实时测量温度,超过上下限报警,报警温度可手动调整。K1是用来 * 进入上下限调节模式的,当按一下K1进入上限调节模式,再按一下进入下限 * 调节模式。在正常模式下,按一下K2进入查看上限温度模式,显示1s 左右自动 * 退出;按一下K3进入查看下限温度模式,显示1s 左右自动退出;按一下K4消除 * 按键音,再按一下启动按键音。在调节上下限温度模式下,K2是实现加1功能, * K1是实现减1功能,K3是用来设定上下限温度正负的。 * 编程者:Jason * 编程时间:2009/10/2 *********************************************************************/ #include //将AT89X52.h 头文件包含到主程序 #include //将intrins.h 头文件包含到主程序(调用其中的_nop_()空操作函数延时) #define uint unsigned int //变量类型宏定义,用uint 表示无符号整形(16位) #define uchar unsigned char //变量类型宏定义,用uchar 表示无符号字符型(8位) uchar max=0x00,min=0x00; //max 是上限报警温度,min 是下限报警温度 bit s=0; //s 是调整上下限温度时温度闪烁的标志位,s=0不显示200ms ,s=1显示1s 左右 bit s1=0; //s1标志位用于上下限查看时的显示 void display1(uint z); //声明display1()函数 #include"ds18b20.h" //将ds18b20.h 头文件包含到主程序 #include"keyscan.h" //将keyscan.h 头文件包含到主程序 #include"display.h" //将display.h 头文件包含到主程序

基于51单片机的温度警报器的设计

西安文理学院物理与机械电子工程学院课程设计任务书

目录 摘要 (3) 1 引言 (3) 1.1课题背景 (3) 1.2研究内容和意义 (5) 2 芯片介绍 (5) 2.1 DS18B20概述 (5) 2.1.1 DS18B20封装形式及引脚功能 (6) 2.1.2 DS18B20内部结构 (6) 2.1.3 DS18B20供电方式 (9) 2.1.4 DS18B20的测温原理 (10) 2.1.5 DS18B20的ROM命令 (11) 2.2 AT89C52概述 (13) 2.2.1单片机AT89C52介绍 (13) 2.2.2功能特性概述 (13) 3 系统硬件设计 (13) 3.1 单片机最小系统的设计 (13) 3.2 温度采集电路的设计 (14) 3.3 LED显示报警电路的设计 (15) 4 系统软件设计...................................................15 4.1 流程图........................................................15 4.2 温度报警器程序.................................................16 4.3 总电路图..................................................... 19 5总结 (20)

摘要 随着时代的进步和发展,温度的测试已经影响到我们的生活、工作、科研、各个领域,已经成为了一种非常重要的事情,因此设计一个温度测试的系统势在必行。 本文主要介绍了一个基于AT89C52单片机的数字温度报警器系统。详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,对各部分的电路也一一进行了介绍,该系统可以方便的实现温度的采集和报警,并可以根据需要任意上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当做温度处理模块潜入其他系统中,作为其他主系统的辅助扩展。DS18B20与AT89C52结合实现最简温度报警系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。 关键词:单片机;温度检测;AT89C52;DS18B20; 1 引言 1.1课题背景 温度是工业对象中主要的被控参数之一,如冶金、机械、食品、化工各类工业生产中,广泛使用的各种加热炉、热处理炉、反应炉等,对工件的温度处理要求严格控制。随着科学技术的发展,要求温度测量的范围向深度和广度发展,以满足工业生产和科学技术的要求。 基于AT89C51单片机提高了系统的可移植性、扩展性,利于现代测控、自动化、电气技术等专业实训要求。以单片机为核心设计的温度报警器,具有安全可靠、操作简单方便、智能控制等优点。 温度对于工业生产如此重要,由此推进了温度传感器的发展。温度传感器主要经过了三个发展阶段[1]: (1)模拟集成温度传感器。该传感器是采用硅半导体集成工艺制成,因此亦称硅传感器或单片集成温度传感器。此种传感器具有功能单一(仅测量温度)、

基于AT89C51单片机的测温系统

引言 本文主要介绍了一个基于AT89C51单片机的测温系统,详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,特别是数字温度传感器DS18B20的数据采集过程,并介绍了利用C语言编程对DS18B20的访问,该系统可以方便的实现实现温度采集和显示,使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点。DS18B20与AT89C51结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量。数字温度计与传统的温度计相比,具有读数方便、测温范围广、测温精确、功能多样话等优点。其主要用于对测温要求准确度比较高的场所,或科研实验室使用,该设计使用STC89C52单片机作控制器,数字温度传感器DS18B20测量温度,单片机接受传感器输出,经处理用LED数码管实现温度值显示。 .

一、设计要求 通过基于MCS-51系列单片机AT89C51和DS18B20温度传感器检测温度,熟悉芯片的使用,温度传感器的功能,数码显示管的使用,C语言的设计;并且把我们这一年所学的数字和模拟电子技术、检测技术、单片机应用等知识,通过理论联系实际,从题目分析、电路设计调试、程序编制调试到传感器的选定等这一完整的实验过程,培养了学生正确的设计思想,使学生充分发挥主观能动性,去独立解决实际问题,以达到提升学生的综合能力、动手能力、文献资料查阅能力的作用,为毕业设计和以后工作打下一个良好的基础。 以MCS-51系列单片机为核心器件,组成一个数字温度计,采用数字温度传感器DS18B20为检测器件,进行单点温度检测,检测精度为0.5摄氏度。温度显示采用3位LED数码管显示,两位整数,一位小数。具有键盘输入上下限功能,超过上下限温度时,进行声音报警。 二、基本原理 原理简述:数字温度传感器DS1820把温度信息转换为数字格式;通过“1-线协议”,单片机获取指定传感器的数字温度信息,并显示到显示设备上。通过键盘,单片机可根据程序指令实现更灵活的功能,如单点检测、轮转检测、越数字温度传感器的温度检测及显示的系统原理图如图DS1820限检测等。基于 图 2.1 基于DS1820的温度检测系统框图 三:主要器件介绍(时序图及各命令序列,温度如何计算等) 系统总体设计框图 由于DS18B20数字温度传感器具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠,所以在该设计中采用DS18B20数字温度传感器测量温度。 测温电路设计总体设计框图如图所示,控制器采用单片机AT89S52,温度传感器采用DS18B20,显示采用4位LED数码管,报警采用蜂鸣器、LED灯实现,键盘用来设定报警上下限温度。 .. . 测温电路设计总体设计框图图3.11.控制模块 AT89S52单片机是美国ATMEL公司生产的低功耗,高性能CMOS 8位单片机,片内含有8kb的可系统编程的Flash只读程序存储器,器件采用ATMEL公

基于51单片机的温度控制系统的设计

基于单片机的温度控制系统设计 1.设计要求 要求设计一个温度测量系统,在超过限制值的时候能进行声光报警。具体设计要求如下: ①数码管或液晶显示屏显示室内当前的温度; ②在不超过最高温度的情况下,能够通过按键设置想要的温度并显示;设有四个按键,分别是设置键、加1键、减1键和启动/复位键; ③DS18B20温度采集; ④超过设置值的±5℃时发出超限报警,采用声光报警,上限报警用红灯指示,下限报警用黄灯指示,正常用绿灯指示。 2.方案论证 根据设计要求,本次设计是基于单片机的课程设计,由于实现功能比较简单,我们学习中接触到的51系列单片机完全可以实现上述功能,因此可以选用AT89C51单片机。温度采集直接可以用设计要求中所要求的DS18B20。报警和指示模块中,可以选用3种不同颜色的LED灯作为指示灯,报警鸣笛采用蜂鸣器。显示模块有两种方案可供选择。 方案一:使用LED数码管显示采集温度和设定温度; 方案二:使用LCD液晶显示屏来显示采集温度和设定温度。 LED数码管结构简单,使用方便,但在使用时,若用动态显示则需要不断更改位选和段选信号,且显示时数码管不断闪动,使人眼容易疲劳;若采用静态显示则又需要更多硬件支持。LCD显示屏可识别性较好,背光亮度可调,而且比LED 数码管显示更多字符,但是编程要求比LED数码管要高。综合考虑之后,我选用了LCD显示屏作为温度显示器件,由于显示字符多,在进行上下限警戒值设定时同样可以采集并显示当前温度,可以直观的看到实际温度与警戒温度的对比。LCD 显示模块可以选用RT1602C。

3.硬件设计 根据设计要求,硬件系统主要包含6个部分,即单片机时钟电路、复位电路、键盘接口模块、温度采集模块、LCD 显示模块、报警与指示模块。其相互联系如下图1所示: 图1 硬件电路设计框图 单片机时钟电路 形成单片机时钟信号的方式有内部时钟方式和外部时钟方式。本次设计采用内部时钟方式,如图2所示。 单片机内部有一个用于构成振荡器的高增益反相放大器,引脚XTAL1和XTAL2分别为此放大器的输入端和输出端,其频率范围为~12MHz ,经由片外晶体振荡器或陶瓷振荡器与两个匹配电容一 起形成了一个自激振荡电路,为单片机提供时钟源。 复位电路 复位是单片机的初始化操作,其作用是使CPU 和系统中的其他部件都处于一个确定的初始状态,并从这个状态开始工作,以防止电源系统不稳定造成CPU 工作不正常。在系统中,有时会出现工作不正常的情况,为了从异常状态中恢复,同时也为了系统调试方便,需要设计一个复位电路。 单片机的复位电路有上电复位和按键复位两种形式,因为本次设计要求需要有启动/复位键,因此本次设计采用按键复位,如图3。复位电路主要完成系统 图2 单片机内部时钟方式电路 图3 单片机按键复位电路

单片机课程设计(温度控制系统)

温度控制系统设计 题目: 基于51单片机的温度控制系统设计姓名: 学院: 电气工程与自动化学院 专业: 电气工程及其自动化 班级: 学号: 指导教师:

2015年5月31日 摘要: (3) 一、系统设计 (3) 1.1 项目概要 (3) 1.2设计任务和要求: (4) 二、硬件设计 (4) 2.1 硬件设计概要 (4) 2.2 信息处理模块 (4) 2.3 温度采集模块 (5) 2.3.1传感器DS18b20简介 (5) 2.3.2实验模拟电路图 (7) 2.3.3程序流程图 (6) 2.4控制调节模块 (9) 2.4.1升温调节系统 (9) 2.4.2温度上下限调节系统 (8) 2.43报警电路系统 (9) 2.5显示模块 (12) 三、两周实习总结 (13) 四、参考文献 (13) 五、附录 (15)

5.1原理图 (15) 摘要: 在现代工业生产中,温度是常用的测量被控因素。本设计是基于51单片机控制,将DS18B20温度传感器实时温度转化,并通过1602液晶对温度实行实时显示,并通过加热片(PWM波,改变其占空比)加热与步进电机降温逐次逼近的方式,将温度保持在设定温度,通过按键调节温度报警区域,实现对温度在0℃-99℃控制的自动化。实验结果表明此结构完全可行,温度偏差可达0.1℃以内。 关键字:AT89C51单片机;温控;DS18b20 一、系统设计 1.1 项目概要 温度控制系统无论是工业生产过程,还是日常生活都起着非常重要的作用,过低或过高的温度环境不仅是一种资源的浪费,同时也会对机器和工作人员的寿命产生严重影响,极有可能造成严重的经济财产损失,给生活生产带来许多利的因素,基于AT89C51的单片机温度控制系统与传统的温度控制相比具有操作方便、价价格便宜、精确度高和开展容易等优点,因此市场前景好。

基于51单片机DS18B20温度传感器的C语言程序和电路

基于51单片机DS18B20温度传感器的C语言程序和电路 DS18B20在外形上和三极管很像,有三只脚。电压范围为3.0 V至5.5 V 无需备用电源测量温度位温度转换为12位数字格式最大值为750毫秒用户可定义的非易失性温度报警设置应用范围包敏感系统。 下面是DS18B20的子程序,本人用过完全可行的: #include #include #define uchar unsigned char #define uint unsigned int sbit DQ=P2^0; void reset(); //DS18B20 void write_byte(uchar val); //DS18B20写命令函数 uchar read_byte(void); //DS18B20读1字节函数 void read_temp(); //温度读取函数 void work_temp(); //温度数据处理函数 uchar data temp_data[2]={0x00,0x00}; uchar data display[5]={0x00,0x00,0x00,0x00,0x00}; //对于温度显示值值 uchar code ditab[16]={0x00,0x01,0x01,0x02,0x03,0x03,0x04,0x04,0x05,0x06,0x06,0x07,0x0数部分查表 main() { while(1) { 自己添加; } } void delay1(uint t) { for(;t>0;t--); } ///////温度控制子函数 void reset() { uchar presence=1; while(presence) { while(presence) {

基于51单片机的数字温度报警器

摘要:随着传感器在生产生活中更加广泛的应用,一种新型的数字式温度传感器实现对温度的测试与控制得到了更快的开发。本文设计了一种基于单片机AT89C52的温度检测及报警系统。该系统将温度传感器DS18B20接到单片机的一个端口上,单片机对温度传感器进行循环采集。将采集到的温度值与设定的上下限进行比较,当超出设定范围的上下限时,通过单片机控制的报警电路就会发出报警信号,从而实现了本次课程设计的要求。该系统设计和布线简单、结构紧凑、体积小、重量轻、抗干扰能力较强、性价比高、扩展方便,在工农业等领域的温度检测中有广阔的应用前景。本次课程设计的测量范围为0℃--99℃,测量误差为±2℃。 关键字:温度传感器、单片机、报警、数码管显示 一、概述 本次设计可以应用到许多我们用过的软件设计,将前面所学的知识融汇在一起实现温度监测及其报警的功能,来提醒农民当前大棚内温度是否适合农作物的生长。 电子技术是在十九世纪末、二十世纪初开始发展起来的新兴技术,在二十世纪发展最迅速,应用最广泛,成为近代科学技术发展的一个重要标志。 随着电子技术的飞速发展,电子技术在日常生活中得到了广泛的应用,各类转换电路的不断推出以及电子产品的快速更新,电子技术已成为世界发展和人们生活中必不可少的工具。 本次课设应用Protues软件设计一个温度检测报警系统,用温度传感器DS18B20采集大棚内的温度,当大棚内的温度高于30℃。或低于15℃。时,电路发出报警信号并显示当前温度,达到提醒农民的效果。 本次课设要求设计一个温度监测报警显示电路,要求温度范围:0℃--99℃;测量误差为±2℃;报警下限温度为:15℃;报警上限温度为:30℃。 二、方案论证 设计一个用于温室大棚温度监测系统。大棚农作物生长时,其温度不能太低,也不能太高,太低或太高均不适合农作物生长。该系统可实时测量、显示大棚的温度,当大棚温度超过农作物生长的温度范围时,报警提醒农民。 方案一: 方案一原理框图如图1所示。 图1 大棚温度检测系统的原理框图 方案二: 方案二原理框图如图2所示。

基于51单片机的心率体温测试系统

摘要 本文介绍了一种基于51单片机的心率体温采集系统。首先介绍了51系列单片机的内部相关配置、工作原理以及编程方法,其次介绍了温度传感器PT100的相关测温方法以及通过红外光电传感器TCRT5000对射的方法来抓取人体脉搏信号。此次设计的电路部分主要包括:传感测量电路、放大电路、滤波整形电路、AD转换电路、计数显示电路、控制电路、电源供电电路等。通过按键开始测试,将PT100及TCRT5000输入的微弱信号进行放大整形,最后AD采集转换传送给单片机,在LCD1602上显示相关体温及心率信息。 本次硬件设计基于比较稳定可行、低成本的设计思想,软件设计采用模块化的设计方法,并且详细分析了红外传感器TCRT5000应用于心率测量上以及PT100应用于温度测量上的原理及优点,阐述了其他各配合电路的组成与工作特点,并且通过仿真进行电路的可行性验证,最后完成实物电路的设计,使得本次课题的预期结果得以实现。 关键词:51单片机;传感器;仿真;AD转换 -I

Abstract This paper introduced a heart rate and body temperature acquisition system that based on 51 single chip microcomputer. First the internal configurations of 51 single chip microcomputer are introduced. And the paper also tell how 51 single chip microcomputer works and how can we program on it. Then the method of using temperature sensor PT100 to get body temperature is introduced, and we use infrared photoelectric sensor TCRT5000 to get the pulse signal of human body.The design of the circuit mainly comprises sensing circuit , amplifying circuit, filtering and shaping circuit, AD converting circuit, counting and displaying circuit, controlling circuit, power supplying circuit and so on. When the keyboard is pressed, the system starts to get signal. The small signal from PT100 and TCRT5000 will be amplified and shaped. Then ad converter will change the analog signal into digital signal and send to 51 single chip microcomputer . At last LCD1602 will display the information of body temperature and heart rate. Keywords: Piezoelectric sensors;control circuit;counters;Multisim2001 simulation software control circuit. -II

相关主题
文本预览
相关文档 最新文档