当前位置:文档之家› 几种时频分析方法综述2——希尔伯特黄变换

几种时频分析方法综述2——希尔伯特黄变换

几种时频分析方法综述2——希尔伯特黄变换
几种时频分析方法综述2——希尔伯特黄变换

几种时频分析方法综述2——希尔伯特—黄变换

夏巨伟

(浙江大学空间结构研究中心)

摘要:希尔伯特—黄变换由经验模态分解(empirical mode decomposition ,简称EMD )和Hilbert 谱分析两部分组成。经验模态分解方法是一种自适应的、高效的数据分解方法。由于这种分解是以局部时间尺度为基础,因此,它适应于非线性、非平稳过程。通过经验模型分解,任何复杂的数据集都可以被分解为个数有限的、而且常常是为数不多的几个固有模函数(intrinsic mode functions ,简称IMF)的线性叠加。通过分解得到IMF 后,就可以对每一个分量做希尔伯特变换,得到其瞬时频率和幅度。本文详细对Hilbert-Huang Transform 的过程进行了阐述,并用算例分析指出了其优势所在。 关键词:希尔伯特—黄变换;时频分析技术;

1 希尔伯特—黄变换(Hilbert-Huang Transform )

1.1 希尔伯特变换与瞬时频率(Hilbert Transform and instantaneous frequency )

对于任意一个时间序列X(t),它的希尔伯特变换具有如下形式:

-1

()(t)=,-X Y P d t ττπτ

∞∞?

其中,P ——积分的柯西主值;

希尔伯特变换对于任何属于L p 空间中的函数都存立,即上式中X(t)∈L p (—

∞,+∞)。

通过上述定义,X(t)和Y(t)成为一组复共轭对,同时能够构造一个实部和虚部分为X(t)和Y(t)的解析信号(Analytic Signal)Z(t),Z(t)表示为:

()()(t)=(t)(t)=a ,i t Z X iY t e θ+

其中,

()()1/222

(t)a =(t)+(t),arctan .X(t)Y t X Y t θ????= ?????

理论上讲有无数种方式去定义虚部,但是希尔伯特变换是唯一能够得到解析

信号结果的方法。

X(t)的Hilbert 变换实质上是将X(t)与函数1/t 在时域上做卷积,这就决定了通过X(t)的Hilbert 变换能够考察其局部特性。得到X(t)的瞬时相位函数后,其瞬时频率为:

()()

(t).d w t dt

θ=

1.2 经验模态分解与固有模态函数(Empiricalmode decomposition/EMD and Intrinsic mode function/IMF )

固有模态函数需要满足两个条件:(1)极值与零点的数量必须相等或最多相差一个;(2)由局部极大值包络和局部极小值包络定义的平均包络曲线上任何一点的值为0;

1.2.1 EMD —筛选过程(Sifting process )

11122k 1k k k 1x(t )m h ,h m h ,..........

h m h .

h c .--=-=-==?

11122n 1n n n

j

n j 1

x(t )c r ,r c r ,x(t )c

r ...r c r ..

-=-=-=-

?=-=∑

1.3 Hilbert 谱与Hilbert 边际谱

经过筛选过程后,X(t)可以表示为IMF 与残差量的和:

n

n 1n 1n 1

2

2j n j

j

k

j 1j 1

j 1k 1

T

n 1n 1

2j k t 0j 1k 1n 1

22j j 1X (t )C r X (t )C (t )2C (t )C

(t )

C (t )C (t )/X (t )IO X (t )C (t )

0++++=====++====+?=+??

?=≈? ???

=∑∑∑

∑∑∑∑∑

对X(t)的每一个IMF 进行Hilbert 变换可以得到X(t)的Hilbert 谱:

()

()()j j j n

n

i t dt

j j j 1

j 1

Hilbert Spectrum

Hilb n i t dt

i t j j j j j 1

n

i ert Spectru t

j j 1

m

C (t )a (t )e

a (HHT :a (t )e X(t )C (t )t )e H (,t )

X(t )a t T )e

F :(ωωθωω====?

==?====?

∑∑∑

得到Hilbert 谱后可以进一步定义Hilbert 边际谱:

Hilbert Magrinal Spectrum

T

h()H(,t )dt

ωω=?

1.4 算例分析 1.4.1

一个有跳变的余弦信号

cos(6) 105cos(6) 10

t t s y t t s ππ≤?

=?

+>?

1.4.2

频率发生改变的余弦信号

cos(6)10

cos(4)10t t s y t t s ππ≤?=?>?

1.4.3

余弦扫频信号

2(10.2)cos(4) 010y t t t s π=+≤≤

1.4.4两个不同频率的正弦信号的叠加

=+≤≤

y t t t s

sin(10)sin(5) 010

时频分析方法综述

几种时频分析方法简介 1.傅里叶变换(Fourier Transform) 1 2/ 2 1 22/ ()() ()() 1 ()()()( : : ::) N j nk N ft N ft j nk N n H T h kT e H f h t e d DFT FT IFT IDFT t NT k h t H f e dt h nT H e N NT π π ππ - - ∞- -∞ ∞- -∞ ? = ??=??? ???????→ ?? ??=?= ?? ? ∑ ? ?∑ 离散化(离散取样) 周期化(时频域截断) 2.小波变换(Wavelet Transform) a.由傅里叶变换到窗口傅里叶变换(Gabor Transform(Short Time Fourier Transform)/) 从傅里叶变换的定义可知,时域函数h(t)的傅里叶变换H(f)只能反映其在整个实轴的性态,不能反映h(t)在特定时间区段内的频率变化情况。如果要考察h(t)在特定时域区间(比如:t∈[a,b])内的频率成分,很直观的做法是将h(t)在区间t∈[a,b]与函数 [] [] 1 1,t, () 0,t, a b t a b χ ?∈ ? =? ∈ ?? ,然后考察 1 ()() h t t χ傅里叶变换。但是由于 1 ()t χ在t= a,b处突然 截断,导致中 1 ()() h t t χ出现了原来h(t)中不存在的不连续,这样会使得 1 ()() h t t χ的傅里叶变化中附件新的高频成分。为克服这一缺点,D.Gabor在1944年引入了“窗口” 傅里叶变换的概念,他的做法是,取一个光滑的函数g(t),称为窗口函数,它在有限的区间外等于0或者很快地趋于0,然后将窗口函数与h(t)相乘得到的短时时域函数进行FT 变换以考察h(t)在特定时域内的频域情况。 2 2 (,)()() ()()(,) ft f ft f STFT ISTF G f h t g t e dt h t df g t G f e d T π π ττ τττ +∞- -∞ +∞+∞ -∞-∞ =- =- ? ?? : : 图:STFT示意图 STFT算例

社会科学研究方法文献综述

关于商业片植入式广告发展现状及存在问题的研究——受众心理的关注及营销策略、传播方式的使用 文献综述 姓名:王丹 20090257 曾艳 20090261 杨斯琦 20090259 唐梦佳 20090256 余颂庆 20090260 张文 20090262 吴霜 20090258 班级:市场营销03班 指导老师:杨代福 时间:2012-03-10

【引言】 进入21世纪以来,由于行业竞争加剧等原因,商业片植入式广告异军突起,事实上,这种广告模式由来已久,也并非中国特色。植入式广告源于欧美,发展较为成熟,我国的植入式尚处萌芽阶段,负面问题频发,饱受舆论质疑。但不可否认的是,植入式广告不但比传统硬广告更有优势,而且也是快速收回投资成本、降低商业风险急加速媒介产业循环的好方法,作为产业链上重要一环,其存在不仅具有合理性,而且具良好的发展前景。那么,如何使商业片的植入式广告快速的进入其下一个发展阶段成为现阶段的重大问题。因此,对于影响植入式广告效果的重要因素(营销手段、传播方式以及受众心理),值得我们去研究和思考我们。 【正文】 一、植入式广告的文献研究现状 植入式广告于上世纪20年代至20年代末开始萌芽、2000年以后才真正进入蓬勃发展期,虽然相对于传统传播形式的广告,植入式广告的发展历史并不长,但是以商业片植入式广告为代表的植入式广告已经成为广告发展的一股不可抵挡的趋势,而国内外专家、学者对植入式广告发展的方方面面也进行了深入研究和探讨,呈现出一定深度和广度的理论学说及典型案例,对于植入式广告产业发展发挥了作用。从国内外的研究现状看,对于植入式广告的研究成果可归纳为以下四个方面。 1.对于植入式广告的理论体系依据研究 关于植入式广告所依据的理论体系的研究,主要集中在传播学理论的体现与运用;张金海在《20世纪广告传播理论研究》一书中指出,植入式广告在现代广告业的发展中越来越引人注目,体现了现代广告逐渐将目光放在广告传播的社会文化关注,而巧妙地利用传播学中的归因理论和“说服性传播”的效果理论,则可以将这种关注的社会化效果扩大;而吕善锟在其论文《电影中植入式广告的理论依据》中则明确提出,植入式广告之所以比传统的商业广告有更好的说服效果,正在于其运用了传播学中的归因理论、两级传播理论、“说服性传播”的效果研究、经典条件反射理论以及模仿理论等。

DHMA实验模态分析系统的概述

DHMA实验模态分析系统的概述 江苏东华测试技术有限公司推出的“DHMA实验模态分析系统”, 从激励信号、传感器、适调器、数据采集和分析软件到实验报告的生成,构成了完整的进行实验模态分析的硬件和软件条件。专业的技术培训,保证了用户可靠、准确、合理的使用本系统。 DHMA实验模态分析系统汇集了公司多年来硬件、软件研发经验,和广大用户对实验模态分析系统的改进意见,参考国内外实验模态分析领域专家学者的研究成果和指导意见,功能强大,特点鲜明:采用内嵌专业知识的软件模式,即使是非专业的用户也可以成功地进行模态实验;内嵌的工作流程保证符合质量标准的重复实验过程;强大的模态参数提取技术保证了高质量、不受操作者经验多寡的影响,即使对模态高度密集或阻尼很大的结构也游刃有余。 汽车白车身现场图片

汽车白车身一阶振型 针对不同实验对象的特点,本公司提供了三种具体的解决方案,满足了大多数用户的需求: 方案一:不测力法(环境激励)实验模态分析系统 不测力法实验模态分析(OMA)可用于对桥梁及大型建筑、运行状态的机械设备或不易实现人工激励的结构进行结构特性的动态实验。仅利用实测的时域响应数据,通过一定的系统建模和曲线拟合的方法识别结构的模态参数。桥梁及大型建筑、运行状态下的机械设备等不易实现人工激励的结构均可采用不测力法来进行实验模态分析。

方案二:锤击激励法实验模态分析系统 DHMA实验模态分析系统可以提供用户完整的锤击激励法实验模态分析完整的解决方案,是对被测结构用带力传感器的力锤施加一个已知的输入力,测量结构各点的响应,利用软件的频响函数分析模块计算得到各点频响函数数据。利用频响函数,通过一定的模态参数识别方法得到结构的模态参数。锤击激励法实验模态分析可分为单点激励法和单点拾振法。

五种简要分析数据的方法(原创+整理版)

五种简要分析数据的方法无论是负责管理的同事还是销售一线的小伙伴,都会发现数据分析的重要性, 但是在工作中,我发现很多小伙伴们都不太会处理数据,更不会明白数据取经团小伙伴们做的大量“数据清洗”工作,当然中间可能涉及到编程,数据取经团小伙伴们的能力可是杠杠的,我作为外行,是不敢班门弄斧的,如下从管理和销售方面简要讲讲我的数据分析方法。(感谢统计学老师) 首先,我们要知道,什么叫数据分析。其实从数据到信息的这个过程,就是数据分析。数据本身并没有什么价值,有价值的是我们从数据中提取出来的信息。 然而,我们还要搞清楚数据分析的目的是什么? 目的是解决我们现实中的某个问题或者满足现实中的某个需求。 那么,在这个从数据到信息的过程中,肯定是有一些固定的思路,或者称之为思维方式。下面一一给你一一介绍。(本文用到的指标和维度是同一个意思) 一、【对照】 【对照】俗称对比,单独看一个数据是不会有感觉的,必需跟另一个数据做对比才会有感觉。比如下面的图a和图b。 图a毫无感觉

图b经过跟昨天的成交量对比,就会发现,今天跟昨天实则差了一大截。 这是最基本的思路,也是最重要的思路。在现实中的应用非常广,比如选产品丶监控增量等,这些过程就是在做【对照】,决策BOSS们拿到数据后,如果数据是独立的,无法进行对比的话,就无法判断,等于无法从数据中读取有用的信息。呜呜,虽然法律增量少,好歹还是在涨啊 二、【拆分】 分析这个词从字面上来理解,就是拆分和解析拆分不等于分析,呃,分析包含拆分,拆分能帮助我们找出原因(这简直是终极意义啊)。因此可见,拆分在数据分析中的重要性。很多小伙伴都会用这样的口吻:经过数据拆分后,我们就清晰了……。不过,我相信有很多朋友并没有弄清楚,拆分是怎么用的?

SFA方法综述

SFA方法和因子分析法综述 (姬晓鹏,管理科学与工程,1009209018) 1.1DEA方法和SFA方法的区别 1.数据包络分析(DEA) 数据包络分析(data envelopment analysis)简称DEA,采用线性规划技术,是最常用的一种非参数前沿效率分析法。它由A.Charnes和W.W.Cooper[1]等人于1978年创建的,以相对效率为基础对同一类型的部门的绩效进行评价。 该方法将同一类型的部门或单位当作决策单元(DMU),其评价依据的是所能观测到的决策单元的输入数据和输出数据。输入数据是指决策单元在某种活动中所消耗的某些量,如投入资金量、原料量等,输出数据是指决策单元消耗这些量所获得的成果和产出,如产品产量、收入金额等。将各决策单元的输入输出数据组成生产可能集所形成的生产有效前沿面,通过衡量每个决策单元离此前沿面的远近,来判断该决策单元的投入产出的合理性,即技术效率[2]。 一般的评价方法比较同一类型的决策单元的效率,需要先对决策单元的输入输出指标进行比较,并通过加权得到一个综合评分,然后通过各个决策单元的评分来反映其效益优劣。数据包络分析法则巧妙地构造了目标函数,并通过Charnes -Cooper变换(称为2 C-变换)将分式规划问题转化为线性规划问题,无需统一指标的量纲,也无需给定或者计算投入产出的权值,而是通过最优化过程来确定权重,从而使对决策单元的评价更为客观。对建筑设计企业进行评价的问题,很适于数据包络分析法的评价模型。 DEA方法也存在着一些缺点:首先,当决策单元总数与投入产出指标总数接近时,DEA方法所得的技术效率与实际情况偏差较大;其次,DEA方法对技术有效单元无法进行比较;此外,由于未考虑到系统中随机因素的影响,当样本中存在着特殊点时,DEA方法的技术效率结果将受到很大影响。彭晓英等用因子分析法对指标进行筛选和综合,再采用DEA方法进行评价,解决了DEA方法对指标数量限制的问题,并对煤炭资源型城市的生态经济发展进行了评价[3]。 SFA与DEA方法都是前沿效率评价方法,它们都是通过构造生产前沿面来计算技术效率的。与DEA方法相比,SFA方法利用生产函数来构造生产前沿面,并采用技术无效率项的条件期望来作为技术效率,其结果受特殊点的影响较小且

振动测试理论和方法综述

振动测试理论和方法综述 摘要:振动是工程技术和日常生活中常见的物理现象。在长期的科学研究和工程实践中,已逐步形成了一门较完整的振动工程学科,可供进行理论计算和分析。随着现代工业和现代科学技术的发展,对各种仪器设备提出了低振级和低噪声的要求,以及对主要生产过程或重要设备进行监测、诊断,对工作环境进行控制等等。这些都离不开振动的测量。振动测试技术在工业生产中起着十分重要的作用,为此设计和制造高效的振动测试系统便成为测试技术的重要内容。本文概述了振动测试的发展历程,总结和分析了振动测试系统的基本组成和应用理论,列举了几种机械振动测试系统的类型。最后分析了振动测试系统的几个发展趋势。 关键词:振动测试;振动测试系统;测试技术;激振测试系统 1.引言 振动问题广泛存在于生活和生产当中。建筑物、机器等在内界或者外界的激励下就会产生振动。而机械振动常常会破坏机械的正常工作,甚至会降低机械的使用寿命并对机器造成不可逆的损坏。多数的机械振动是有害的。因而对振动的研究不仅有利于改善人们的生活环境和生活水平,也有助于提高机械设备的使用寿命,提高人们的生产效率。正因如此振动测试在生产和科研等多方面都有着十分重要的地位[1]。为了控制振动,将振动给人们带来的危害降至最低,就需要我们了解振动的特性和规律,对振动进行测试和研究。振动测试应运而生。 振动测试有着较为长久的发展历史,是与人类社会的发展有着紧密的联系。随着计算机技术和相关高科技技术的问世和发展,振动测试系统也有了飞跃性的发展。振动测试系统从最早的简单机械设备的应用到如今的先进的计算机技术和设备的应用。从刚开始的检测人员的耳朵来进行测量、判断和计算出大概的故障点的原始方法到现在的计算机控制、存储、处理数据的处理[2],无不体现出振动测试系统的长足发展和飞跃式的进步。与此同时,振动测试在理论方面也有了长足的发展,1656 年惠更斯首次提出物理摆的理论并且创造出了单摆机械钟到现今的自动控制原理和计算机的日趋完善,人们对机械振动分析的研究已日趋成熟。而伴随着振动测试系统的进步和日臻成熟,其在国民的日常生活和生产中所扮演的角色也愈发的重要。 2.振动测试与分析系统(TDM)的发展

实验数据处理的几种方法

实验数据处理的几种方法 物理实验中测量得到的许多数据需要处理后才能表示测量的最终结果。对实验数据进行记录、整理、计算、分析、拟合等,从中获得实验结果和寻找物理量变化规律或经验公式的过程就是数据处理。它是实验方法的一个重要组成部分,是实验课的基本训练内容。本章主要介绍列表法、作图法、图解法、逐差法和最小二乘法。 1.4.1 列表法 列表法就是将一组实验数据和计算的中间数据依据一定的形式和顺序列成表格。列表法可以简单明确地表示出物理量之间的对应关系,便于分析和发现资料的规律性,也有助于检查和发现实验中的问题,这就是列表法的优点。设计记录表格时要做到:(1)表格设计要合理,以利于记录、检查、运算和分析。 (2)表格中涉及的各物理量,其符号、单位及量值的数量级均要表示清楚。但不要把单位写在数字后。 (3)表中数据要正确反映测量结果的有效数字和不确定度。列入表中的除原始数据外,计算过程中的一些中间结果和最后结果也可以列入表中。 (4)表格要加上必要的说明。实验室所给的数据或查得的单项数据应列在表格的上部,说明写在表格的下部。 1.4.2 作图法 作图法是在坐标纸上用图线表示物理量之间的关系,揭示物理量之间的联系。作图法既有简明、形象、直观、便于比较研究实验结果等优点,它是一种最常用的数据处理方法。 作图法的基本规则是: (1)根据函数关系选择适当的坐标纸(如直角坐标纸,单对数坐标纸,双对数坐标纸,极坐标纸等)和比例,画出坐标轴,标明物理量符号、单位和刻度值,并写明测试条件。 (2)坐标的原点不一定是变量的零点,可根据测试范围加以选择。,坐标分格最好使最低数字的一个单位可靠数与坐标最小分度相当。纵横坐标比例要恰当,以使图线居中。 (3)描点和连线。根据测量数据,用直尺和笔尖使其函数对应的实验点准确地落在相应的位置。一张图纸上画上几条实验曲线时,每条图线应用不同的标记如“+”、“×”、“·”、“Δ”等符号标出,以免混淆。连线时,要顾及到数据点,使曲线呈光滑曲线(含直线),并使数据点均匀分布在曲线(直线)的两侧,且尽量贴近曲线。个别偏离过大的点要重新审核,属过失误差的应剔去。 (4)标明图名,即做好实验图线后,应在图纸下方或空白的明显位置处,写上图的名称、作者和作图日期,有时还要附上简单的说明,如实验条件等,使读者一目了然。作图时,一般将纵轴代表的物理量写在前面,横轴代表的物理量写在后面,中间用“~”

结构模态分析方法

模态分析技术的发展现状综述 摘要:本文首先系统的介绍了模态分析的定义,并以模态分析技术的理论为基础,查阅了大量的文献和资料后,介绍了三种模态分析技术在各领域的应用,以及国内外对于结构模态分析技术研究的发展现状,分析并总结三种模态分析技术的特点与发展前景。 关键词:模态分析技术发展现状 Modality Analysis Technology Development Present Situation Summary Abstract:This article first systematic introduction the definition of modality analysis,and based on modal analysis theory,after has consulted the massive literature and the material.Introduced application about three kind of modality analysis technology in various domains. At home and abroad, the structural modal analysis technology research and development status quo.Analyzes and summarizes three kind of modality analysis technology characteristic and the prospects for development. Key words:Modality analysis Technology Development status 0 引言 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。模态分析的过程如果是由有限元计算的方法完成的,则称为计算模态分析;如果是通过试验将采集的系统输入与输出信号经过参数识别来获得模态参数的,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备故障诊断的重要方法。 1 数值模态分析的发展现状 数值模态分析主要采用有限元法,它是将弹性结构离散化为有限数量的具体质量、弹性特性单元后,在计算机上作数学运算的理论计算方法。它的优点是可以在结构设计之初,根据有限元分析结果,便预知产品的动态性能,可以在产品试制出来之前预估振动、噪声的强度和其他动态问题,并可改变结构形状以消除或抑制这些问题。只要能够正确显示出包含边界条件在内的机械振动模型,就可以通过计算机改变机械尺寸的形状细节。有限元法的不足是计算繁杂,耗资费时。这种方法,除要求计算者有熟练的技巧与经验外,有些参数(如阻尼、结合面特征等)目前尚无法定值,并且利用有限元法计算得到的结果,只能是一个近似值。 正因如此,大多数数学模拟的结构,在试制阶段常应做全尺寸样机的动态试验,以验证计算的可靠程度并补充理论计算的不足,特别对一些重要的或涉及人身安全的结构,就更是如此。 70 年代以来,由于数字计算机的广泛应用、数字信号处理技术以及系统辨识方法的发展 , 使结构模态试验技术和模态参数辨识方法有了较大进展,所获得的数据将促进产品性能的改进、更新[1] 。在硬件上,国外许多厂家研制成功各种类型的以FFT和

几种时频分析方法综述2——希尔伯特黄变换

几种时频分析方法综述2——希尔伯特—黄变换 夏巨伟 (浙江大学空间结构研究中心) 摘要:希尔伯特—黄变换由经验模态分解(empirical mode decomposition ,简称EMD )和Hilbert 谱分析两部分组成。经验模态分解方法是一种自适应的、高效的数据分解方法。由于这种分解是以局部时间尺度为基础,因此,它适应于非线性、非平稳过程。通过经验模型分解,任何复杂的数据集都可以被分解为个数有限的、而且常常是为数不多的几个固有模函数(intrinsic mode functions ,简称IMF)的线性叠加。通过分解得到IMF 后,就可以对每一个分量做希尔伯特变换,得到其瞬时频率和幅度。本文详细对Hilbert-Huang Transform 的过程进行了阐述,并用算例分析指出了其优势所在。 关键词:希尔伯特—黄变换;时频分析技术; 1 希尔伯特—黄变换(Hilbert-Huang Transform ) 1.1 希尔伯特变换与瞬时频率(Hilbert Transform and instantaneous frequency ) 对于任意一个时间序列X(t),它的希尔伯特变换具有如下形式: -1 ()(t)=,-X Y P d t ττπτ ∞∞? 其中,P ——积分的柯西主值; 希尔伯特变换对于任何属于L p 空间中的函数都存立,即上式中X(t)∈L p (— ∞,+∞)。 通过上述定义,X(t)和Y(t)成为一组复共轭对,同时能够构造一个实部和虚部分为X(t)和Y(t)的解析信号(Analytic Signal)Z(t),Z(t)表示为: ()()(t)=(t)(t)=a ,i t Z X iY t e θ+ 其中, ()()1/222 (t)a =(t)+(t),arctan .X(t)Y t X Y t θ????= ????? 理论上讲有无数种方式去定义虚部,但是希尔伯特变换是唯一能够得到解析 信号结果的方法。 X(t)的Hilbert 变换实质上是将X(t)与函数1/t 在时域上做卷积,这就决定了通过X(t)的Hilbert 变换能够考察其局部特性。得到X(t)的瞬时相位函数后,其瞬时频率为: ()() (t).d w t dt θ= 1.2 经验模态分解与固有模态函数(Empiricalmode decomposition/EMD and Intrinsic mode function/IMF ) 固有模态函数需要满足两个条件:(1)极值与零点的数量必须相等或最多相差一个;(2)由局部极大值包络和局部极小值包络定义的平均包络曲线上任何一点的值为0;

时频分析技术简述

时频分析技术简述 一 时频分析产生的背景 在传统的信号处理领域,基于Fourier 变换的信号频域表示及其能量的频域分布揭示了信号在频域的特征,它们在传统的信号分析与处理的发展史上发挥了极其重要的作用。但是,Fourier 变换是一种整体变换,即对信号的表征要么完全在时域,要么完全在频域,作为频域表示的功率谱并不能告诉我们其中某种频率分量出现在什么时候及其变化情况。然而,在许多实际应用场合,信号是非平稳的,其统计量(如相关函数、功率谱等)是时变函数。这时,只了解信号在时域或频域的全局特性是远远不够的,最希望得到的乃是信号频谱随时间变化的情况。为此,需要使用时间和频率的联合函数来表示信号,这种表示简称为信号的时频表示。 时频分析的主要研究对象是非平稳信号或时变信号,主要的任务是描述信号的频谱含量是怎样随时间变化的。时频分析是当今信号处理领域的一个主要研究热点,它的研究始于20世纪40年代,为了得到信号的时变频谱特性,许多学者提出了各种形式的时频分布函数,从短时傅立叶变换到Cohen 类,各类分布多达几十种。如今时频分析已经得到了许多有价值的成果,这些成果已在工程、物理、天文学、化学、地球物理学、生物学、医学和数学等领域得到了广泛应用。时频分析在信号处理领域显示出了巨大的潜力,吸引着越来越多的人去研究并利用它。 二 常见的几种时频分析方法 一般将时频分析方法分为线性和非线性两种。典型的线性时频表示有短时傅立叶变换(简记为STFT)、Gabor 展开和小波变换(Wavelet Transformation ,简记为WT)等。非线性时频方法是一种二次时频表示方法(也称为双线性),最典型的是WVD(Wigner-Ville Distribution)和Cohen 类。 1 短时傅立叶变换STFT 为了分析语音信号,Koenig 等人提出了语谱图(Spectrogram)方法,定义为信号的短时傅立叶变换STFT 的模平方,故亦称为STFT 方法或者STFT 谱图。离散短时傅立叶变换定义如下: ()()()m j m X e m n m x n STFT ?ω?-∞-∞=-= ∑, 式中()n ω是时间窗函数。短时傅立叶变换的基本思想是用一个时间宽度足够窄的固定的窗函数乘时间信号,使取出的信号可以被看成平稳的,然后对取出的

16种常用数据分析方法

一、描述统计 描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。 1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策树法。 2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W险验、动差法。 二、假设检验 1、参数检验 参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。 1)U验使用条件:当样本含量n较大时,样本值符合正态分布 2)T检验使用条件:当样本含量n较小时,样本值符合正态分布 A 单样本t检验:推断该样本来自的总体均数口与已知的某一总体均数口0 (常为理论值或标准值)有无差别; B 配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在 可能会影响处理效果的各种条件方面扱为相似; C两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。 2、非参数检验 非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。 适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。

A虽然是连续数据,但总体分布形态未知或者非正态; B体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下; 主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。三、信度分析 检査测量的可信度,例如调查问卷的真实性。 分类: 1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度 2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。 四、列联表分析 用于分析离散变量或定型变量之间是否存在相关。 对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。 五、相关分析 研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相 关程度。 1、单相关:两个因素之间的相关关系叫单相关,即研究时只涉及一个自变量和一个因变量; 2、复相关:三个或三个以上因素的相关关系叫复相关,即研究时涉及两个或两个 以上的自变量和因变量相关;

情感识别综述

龙源期刊网 https://www.doczj.com/doc/365550572.html, 情感识别综述 作者:潘莹 来源:《电脑知识与技术》2018年第08期 摘要:情感交互在人机自然交互的研究中受到了很大的重视,而情感识别是人机情感交互的关键,其研究目的是让机器感知人类的情感状态,提高机器的人性化水平。该文首先对情感识别理论进行了概述,继而对情感识别的研究方法进行了分类描述,接着简述了情感识别的应用领域,最后对情感识别的发展进行了展望。 关键词:情感识别;综述;多模态融合;特征提取;情感分类 中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2018)08-0169-03 1引言 随着智能技术的迅猛发展以及智能机器在各领域的广泛应用,人们渴望对机器进行更深层次地智能化开发,使机器具备和人一样的思维和情感,让机器能够真正地了解用户的意图,进而让机器更好地为人类提供智能化的服务。在智能机器研究中,自然和谐的人机交互能力受到很大的重视。情感识别作为人机情感交互的基础,能够使机器理解人的感性思维,影响着机器智能化的继续发展,成为人机自然交互的关键要素。同时,情感识别融多学科交叉为一体,其发展将会带动多学科共同发展,其应用也会带来巨大的经济效益和社会效益。因而,情感识别技术的研究具有很大的发展前景和重要的学术价值。 2情感识别概述 情感是一种综合了行为、思想和感觉的状态。情感信息主要表现在内外两个层面:一是外在情感信息,是指通过外表能自然观察到的信息,如面部表情、唇动、声音、姿势等,二是内在情感信息,是指外部观察不到的生理信息,如心率、脉搏、血压、体温等。 情感识别本质上也是一种模式识别,它是指利用计算机分析各种情感信息,提取出描述情感的情感特征值,建立特征值与情感的映射关系,然后对情感信息进行分类,从而推断出情感状态的过程。 3情感识别的研究方法 情感识别的研究方法主要有:面部表情识别、语音情感识别、姿态表情识别、文本识别、生理模式识别和多模态情感识别。情感识别过程一般包括四个部分:数据获取、数据预处理、情感特征提取、情感分类。情感特征提取过程一般包括:特征提取、特征降维和特征选择。其中,特征提取的方式各有不同,而特征降维和选择的方式大致相同。

环境振动下模态参数识别方法综述.

环境振动下模态参数识别方法综述 摘要:模态分析是研究结构动力特性的一种近代方法,是系统识别方法在工程振动领域中的应用。环境振动是一种天然的激励方式,环境振动下结构模态参数识别就是直接利用自然环境激励,仅根据系统的响应进行模态参数识别的方法。与传统模态识别方法相比,具有显著的优点。本文主要是做了环境振动下模态识别方法的一个综述报告。 关键词:环境振动模态识别综述 Abstract: The modal analysis is the study of structural dynamic characteristics of a modern method that is vibration system identification methods in engineering applications in the field. Ambient vibration is a natural way of incentives, under ambient vibration modal parameter identification is the direct use of the natural environment, incentives, based only on the response of the system for modal parameter identification method. With the traditional modal identification methods, has significant advantages. This paper is a summary report of the environmental vibration modal identification method. Keywords: Ambient vibration ;modal parameters ;Review 随着我国交通运输事业的发展,各种形式的大、中型桥梁不断涌现,由于大型桥梁结构具有结构尺大、造型复杂、不易人工激励、容易受到环境影响、自振频率较低等特点,传统模态参数识别技术在应用上的局限性越来越突出。传统的振动试验采用重振动器或落锤激励桥梁,需要投入大量人力和试验设备,激励成本增高,难度大,而且对于桥梁这样的大型复杂结构,激励(输入)往往很难测得,也不适合长期监测的实验模态分析。 环境振动是指振幅很小的环境地面运动。系由天然的和(或)人为的原因所造成,例如风、海浪、交通干扰或机械振动等,受激结构的振幅较小,但响应涵盖频率丰富。系统或者结构的模态参数包括:模态频率、模态阻尼、模态振型等。模态参数识别是系统识别的一部分,通过模态参数的识别可以了解系统或结构的动力学特性,这些动力特性可以作为结构有限元模型修正、故障诊断、结构实时监测的评定标准和基础。环境振动下的模态参数识别就是利用自然环境激励,根据结构的动

时频分析方法综述

几种时频分析方法简介 1. 傅里叶变换(Fourier Transform ) 1 2/201 22/0()()()()1()()()(::::)N j nk N ft N ft j nk N n H T h kT e H f h t e d DFT FT IFT IDFT t NT k h t H f e dt h nT H e N NT ππππ--∞ --∞∞--∞?=??=??????????→????=?=??? ∑??∑离散化(离散取样) 周期化(时频域截断) 2. 小波变换(Wavelet Transform ) a. 由傅里叶变换到窗口傅里叶变换(Gabor Transform(Short Time Fourier Transform)/) 从傅里叶变换的定义可知,时域函数h(t)的傅里叶变换H(f )只能反映其在整个实轴的性态,不能反映h (t )在特定时间区段内的频率变化情况。如果要考察h(t)在特定时域区间(比如:t ∈[a,b])内的频率成分,很直观的做法是将h(t)在区间t ∈[a,b]与函数 [][] 11,t ,()0,t ,a b t a b χ?∈?=? ∈??,然后考察1()()h t t χ傅里叶变换。但是由于1()t χ在t= a,b 处突 然截断,导致中1()()h t t χ出现了原来h (t )中不存在的不连续,这样会使得1()()h t t χ的傅里叶变化中附件新的高频成分。为克服这一缺点,D.Gabor 在1944年引入了“窗口”傅里叶变换的概念,他的做法是,取一个光滑的函数g(t),称为窗口函数,它在有限的区间外等于0或者很快地趋于0,然后将窗口函数与h(t)相乘得到的短时时域函数进行FT 变换以考察h(t)在特定时域内的频域情况。 22(,)()()()()(,)ft f ft f STFT ISTF G f h t g t e dt h t df g t G f e d T ππτττττ+∞ --∞ +∞+∞ -∞ -∞ =-=-??? ::

emd 希尔伯特黄变换程序

(一)简单的EMD程序 function imf = emd(x) % Empiricial Mode Decomposition (Hilbert-Huang Transform) % imf = emd(x) % Func : findpeaks x = transpose(x(:));%转置 imf = []; while ~ismonotonic(x) %当x不是单调函数,分解终止条件 x1 = x; sd = Inf;%均值 %直到x1满足IMF条件,得c1 while (sd > 0.1) | ~isimf(x1) %当标准偏差系数sd大于0.1或x1不是固有模态函数时,分量终止条件 s1 = getspline(x1);%上包络线 s2 = -getspline(-x1);%下包络线 x2 = x1-(s1+s2)/2;%此处的x2为文章中的h sd = sum((x1-x2).^2)/sum(x1.^2); x1 = x2; end imf{end+1} = x1; x = x-x1; end imf{end+1} = x; % FUNCTIONS function u = ismonotonic(x) %u=0表示x不是单调函数,u=1表示x为单调的 u1 = length(findpeaks(x))*length(findpeaks(-x)); if u1 > 0, u = 0; else, u = 1; end function u = isimf(x) %u=0表示x不是固有模式函数,u=1表示x是固有模式函数 N = length(x); u1 = sum(x(1:N-1).*x(2:N) < 0); u2 = length(findpeaks(x))+length(findpeaks(-x)); if abs(u1-u2) > 1, u = 0; else, u = 1; end function s = getspline(x) %三次样条函数拟合成元数据包络线 N = length(x); p = findpeaks(x); s = spline([0 p N+1],[0 x(p) 0],1:N);

线性时频分析方法综述_李振春

文章编号:1671-8585(2010)04-0239 -08 收稿日期:2010-04-30;改回日期:2010-05-19。 第一作者简介:李振春(1963)),男,理学博士,教授,博士生导师,中国石油大学(华东)地球物理系主任,主要从事地震波传播与正演模拟、地震成像与偏移速度分析、多尺度地震资料联合反演与CFP -AVP 分析理论与方法的教学与研究工作。 基金项目:国家自然科学基金(40974073)、国家863课题(2007A A060504)、国家973课题(2007CB209605)资助。 线性时频分析方法综述 李振春1 ,刁 瑞1 ,韩文功2 ,刘力辉 3 (1.中国石油大学地球资源与信息学院,山东青岛266555;2.中国石油化工股份有限公司胜利油 田分公司,山东东营257000;3.北京诺克斯达石油科技有限公司,北京100192) 摘要:较详细地综述了目前已有的短时傅里叶变换、小波变换、S 变换和广义S 变换等几种线性时频分析方法,概括了线性时频分析方法的特点和优缺点,阐述了各种方法的发展历程。窗函数对分辨率影响巨大,是线性时频分析方法的关键,通过对窗函数的调节和改进,可以得到不同的线性时频分析方法和相对应的时频分辨率。理论分析和试验表明,广义S 变换的时频窗口能够随着频率尺度自适应地调整,具有较高的时频分辨率,在应用中具有更高的实用性和灵活性。利用广义S 变换对地震数据体进行谱分解,可以得到更丰富的地震属性信息,对储层预测和油气识别有重要作用。 关键词:时频分析;窗函数;小波变换;广义S 变换;谱分解中图分类号:P631.4 文献标识码:A 基于傅里叶变换的信号频域表示及能量频域分布揭示了信号在频域的特征,但傅里叶变换是一种整体变换,只能了解信号的全局特性,不能有效检测信号频率随时间的变化情况,只有把时域和频域结合起来才能更好地反映非平稳信号的特征。时频分析(Time -Frequency A nalysis,TFA)的基本思想是设计时间和频率的联合函数,同时描述信号在不同时间和频率的能量密度或强度[1]。时频分析以联合时频分布的形式来表示信号的特性,克服了傅里叶分析时域和频域完全分离的缺陷,可以较准确地定位某一时刻出现哪些频率分量,以及某一频率分量分布在哪些时刻上。 线性时频分析方法主要有:短时傅里叶变换(STFT)、Gabor 换、小波变换(WT)、S 变换(ST )和广义S 变换(GST )等。20世纪40年代,Koenig 等[2] 提出了语谱图的方法。短时傅里叶变换由于实现简单已成为分析非平稳信号的有力工具,缺点是分辨率单一。法国地球物理学家Mo rlet 发现地震信号在低频端应该具有较高的频率分辨率,在高频端频率分辨率可以较低[3]。根据这一特点,由Meyer [4]和Grossm an 等[3]共同发展了小波变换方法,这是一种多分辨率分析方法。经过20多年的发展,小波变换取得了突破性的进展,形成了多分辨率分析、框架和滤波器组三大完整和丰富的小波理论体系。Sto ckw ell 等 [5] 提出了S 变换,这是短 时傅里叶变换和连续小波变换的延伸。在S 变换中,基本小波由简谐波与高斯函数的乘积构成,简谐波要进行伸缩变换,高斯函数要进行伸缩和平移 变换。由于S 变换中的窗函数固定不变,因而在应 用中受到了限制,Pinneg ar 等对S 变换进行了推广 [6~11] ,提出或应用了不同窗函数的广义S 变换。 下面详细介绍短时傅里叶变换、小波变换、S 变换、广义S 变换等方法的特点和优缺点。 1 短时傅里叶变换(ST FT ) 1946年Gabor 提出了短时傅里叶变换,用以测量声音信号的频率定位,对于信号h(t)的短时傅里叶变换定义为 F x (t,8)= Q h(S )w *t,8(S )d S = Q h(S )w *(S -t)e -j 8S d S =3h(S ),w (S -t)e -j 8S 4 (1) 式中:w * t,8(S )是w t,8(S )的复共轭,w t,8(S )=w(S -t)#e -j 8S ,+w(S )+=+w t,8(S )+=1,并且窗函数w (S )应取对称函数。当窗函数w(S )选取高斯窗函数时,式(1)就是Gabor 变换;如果w (S )=1,窗函数变为无限宽的矩形窗,则STFT 变为傅里叶变换。 STFT 的含义可解释为:在时域用窗函数 239 第33卷第4期2010年8月 勘探地球物理进展 P ro gr ess in Ex plor ation Geo phy sics V o l.33,N o.4A ug.,2010

结构非线性动力分析方法综述_周文峰

·自然科学研究· 结构非线性动力分析方法综述 周文峰 郭 剑 (攀枝花学院土木工程学院,四川攀枝花 617000) 摘 要 时程分析法是一种计算机模拟分析方法,其优势在于能模拟出结构进入非弹性阶段的受力性能。该 方法主要包括结构分析模型、单元模型和恢复力模型三个重要方面。本文从这三个方面简单介绍了结构非线 性动力反应分析方法。 关键词 非线性;动力分析;模型 结构抗震设计方法经历了静力阶段、反应谱阶段和动力阶段。从本质上说,前二者所采用的方法均为静力法,且只能进行弹性分析。动力阶段的形成建立在计算机的普及和数值分析方法的出现基础之上,其分析方法称为时程分析法。时程分析法本质上是一种计算机模拟分析方法,能够计算出结构地震反应的全过程,该方法的突出优势在于能模拟出结构进入非弹性阶段的受力性能。 时程分析法的出现促进了结构非线性地震反应分析的发展。它主要包括结构分析模型、单元模型和恢复力模型三个重要方面,下面从这三个方面进行简单介绍。 1 结构分析模型 结构的模型化是非线性动力反应分析的第一步,结构模型的模拟应着重于其动力特性的模拟。因此体系恢复力、质量、阻尼模型的准确性是模拟精度的前提。目前的结构分析模型可分为以下几类: 1.1 层间模型 考虑到框架结构质量的分布规律,很容易形成以楼层为单元的多质点体系的思路,故将这种模型称之为层间模型。在研究框架结构动力反应时,层间模型中采用得最多的是层间剪切型模型。该模型假定框架结构层间变形以剪切变形为主,忽略其它形式变形的影响,故而比较适用于高跨比不大、层数不多的框架。为了进一步拓宽此模型的适用范围,在此模型基础上又发展了层间剪弯型模型,使之能适用于层数较多和高跨比较大的框架。 但是层间模型在实际使用中却存在比较大的困难,这主要反映在如何具体确定层间的剪切刚度及弯曲刚度的问题上,而且这二者之间又是耦合在一起的。这一问题层间模型自身是无法解决的。目前,层间模型只是对于常见的层数不多且平面布置十分简单、规则、对称并且能简化为平面结构的框架有一定的实用性,也就是说对于这类框架通常能根据经验进行适当的假设后进行简单推导得到层间单元刚度。 1.2 杆系模型 杆系模型是将整体结构离散为梁、柱单元进行分析。杆系分析模型的出现不仅解决了层间模型所面临的层间刚度无法确定的困难,而且它还解决了层间模型所固有的另外两个缺陷。其一,如果说层间模型从宏观(层单元)角度展示了结构总体动力反应规律,那么由于框架各杆进入非弹性阶段的先后次序不同所造成的整个框架动力反应规律的不同,则是层间模型所不能解释、反映的。其二,无论从抗震研究还是设计角度来看,框架结构的梁、柱构件在地震作用下的反应规律到底如何也是人们所关心的,因为结构的设计最终要落实到构件的设计。如柱端弯矩增大系数应如何取值等,这些问题采用层间模型是无法回答的,从这个角度看也必须将框架结构细化到至少是构件层次才有可能解决这些问题。 杆系分析模型分为两大类,平面杆系分析模型与空间杆系分析模型。目前,平面杆系分析模型的研究相对较为成熟,国内外已开始将注意力转向空间杆系分析模型的研究上。 2 单元模型 对于杆系分析模型,目前用于模拟单元滞回性能的模型已有很多,这些单元分析模型可采取分类的方式加以比较考察。这些模型大致可分为两大类若干小类。 2.1 集中塑性铰模型 单分量模型是集中塑性铰模型中最简单的一类,该模型将杆单元的非弹性性能用非线性弹簧反映,而不对非弹性变· 109·第23卷第4期 攀枝花学院学报 2006年8月V o l .23.N o .4 J o u r n a l o f P a n z h i h u a U n i v e r s i t y A u g .2006

相关主题
文本预览
相关文档 最新文档