当前位置:文档之家› 铅酸蓄电池的性能指标 1、蓄电池的额定容量 按国家标准规定的电池

铅酸蓄电池的性能指标 1、蓄电池的额定容量 按国家标准规定的电池

铅酸蓄电池的性能指标 1、蓄电池的额定容量 按国家标准规定的电池
铅酸蓄电池的性能指标 1、蓄电池的额定容量 按国家标准规定的电池

铅酸蓄电池的性能指标

1、蓄电池的额定容量

按国家标准规定的电池容量,单位是Ah,是放电电流与完全放电时间的乘积,表达电池储存电量的多少。以6-DZM-10蓄电池为例:当蓄电池以2小时率放电时(即以5A放电),放电时间应在120分钟以上,5A×(120/60)

h=10Ah。这相当于在平坦路面上匀速行驶2小时,20km/h×2h=40km,是充电一次的续行里程。

使用过程中,蓄电池的容量会逐渐衰减,续行里程自然会减少。

2、放电循环寿命

蓄电池的初容量的大小,不代表蓄电池的寿命长短,各厂家蓄电池的铅粉质量、铅膏配制、板栅的材质、隔板的选用、电解液的配制,各有不同。有些电池初容量大,寿命短;有些电池初容量小,寿命长;有些电池则兼顾初容量和寿命。

有些整车厂单凭几次2小时率完全放电的结果,或只凭用电池跑几次续行里程的结果来评价蓄电池的优劣是不妥当的。

衡量蓄电池使用寿命的指标是:放电循环寿命。通常测量的方法是电池充满电后,在放电至总容量的70%为一次循环。此循环次数多少,表示电池使用寿命的长短。电动自行车用的蓄电池循环寿命应不少于350次,低于此值的电池为不合格。

3、额定电压

电动自行车用的蓄电池的单格额定电压为2V,组成6V、12V、24V、36V、48V的电池组。

4、配组合理

配组不当,会在串联电池组中出现‘落后电池’。其后果如前所述。

阀控式铅酸蓄电池主要性能参数

1、电池电动势、开路电压、工作电压

当蓄电池用导体在外部接通时,正极和负极的电化反应自发地进行,倘若电池中电能与化学能转换达到平衡时,正极的平衡电极电势与负极平衡电极电势的差值,便是电池电动势,它在数值上等于达到稳定值时的开路电压。电动势与单位电量的乘积,表示单位电量所能作的最大电功。但电池电动热与开路电压意义不同:电动势可依据电池中的反应利用热力学计算或通过测量计算,有明确的物理意义。后者只在数字上近于电动势,需视电池的可逆程度而定。

电池在开路状态下的端电压称为开路电压。电池的开路电压等于电池正极电极电势与负极电极电势之差。

电池工作电压是指电池有电流通过(闭路)的端电压。在电池放电初始的工作电压称为初始电压。电池在接通负载后,由于欧姆电阻和极化过电位的存在,电池的工作电压低于开路电压。

2、容量

电池容量是指电池储存电量的数量,以符号C表示。常用的单位为安培小时,简称安时(Ah)或毫安时(mAh)。

电池的容量可以分为额定容量(标称容量)、实际容量。

(1)额定容量

额定容量是电池规定在在25℃环境温度下,以10小时率电流放电,应该放出最低限度的电量(Ah)。

a、放电率。放电率是针对蓄电池放电电流大小,分为时间率和电流率。

放电时间率指在一定放电条件下,放电至放电终了电压的时间长短。依据IEC标准,放电时间率有20,10,5,3,1,0.5小时率及分钟率,分别表示为:20Hr,10Hr,5Hr,3Hr,2Hr,1Hr,0.5Hr等。

b、放电终止电压。铅蓄电池以一定的放电率在25℃环境温度下放电至能再反复充电使用的最低电压称为放电终了电压。大多数固定型电池规定以10Hr 放电时(25℃)终止电压为1.8V/只。终止电压值视放电速率和需要而夫定。通常,为使电池安全运行,小于10Hr的小电流放电,终止电压取值稍高,大于10Hr的大电流放电,终止电压取值稍低。在通信电源系统中,蓄电池放电的终

止电压,由通信设备对基础电压要求而定。

放电电流率是为了比较标称容量不同的蓄电池放电电流大小而设立的,通常以10小时率电流为标准,用I10表示,3小时率及1小时率放电电流则分别以I3、I1表示。

c、额定容量。固定铅酸蓄电池规定在25℃环境下,以10小时率电流放电至终了电压所能达到的额定容量。10小时率额定容量用C10表示。10小时率的电流值为

其它小时率下容量表示方法为:

3小时率容量(Ah)用C3表示,在25℃环境温度下实测容量(Ah)是放电电流与放电时间(h)的乘积,阀控铅酸固定型电池C3和I3值应该为

C3=0.75C10(Ah) I3=2.5I10(h)

1小时定容量(Ah)用C1表示,实测C1和I1值应为

C1=0.55C10(Ah) I1=5.5I10(h)

(2)实际容量

实际容量是指电池在一定条件下所能输出的电量。它等于放电电流与放电时间的乘积,单位为Ah。

3、内阻

电池内阻包括欧姆内阻和极化内阻,极化内阻又包括电化学极化与浓差极化。内阻的存在,使电池放电时的端电压低于电池电动势和开路电压,充电时端电压高于电动势和开路电压。电池的内阻不是常数,在充放电过程中随时间不断变化,因为活性物质的组成、电解液浓度和温度都在不断地改变。

欧姆电阻遵守欧姆定律;极化电阻随电流密度增加而增大,但不是线性关系,常随电流密度的对数增大而线性增大。

4、循环寿命

蓄电池经历一次充电和放电,称为一次循环(一个周期)。在一定放电条件下,电池工作至某一容量规定值之前,电池所能承受的循环次数,称为循环寿命。

各种蓄电池使用循环次数都有差异,传统固定型铅酸电池约为500~600次,起动型铅酸电池约为300~500次。阀控式密封铅酸电池循环寿命为

1000~1200次。影响循环寿命的因素一是厂家产品的性能,二是维护工作的质

量。固定型铅电池用寿命,还可以用浮充寿命(年)来衡量,阀控式密封铅酸电池浮充寿命在10年以上。

对于起动型铅酸蓄电池,按我国机电部颁标准,采用过充电耐久能力及循环耐久能力单元数来表示寿命,而不采用循环次数表示寿命。即过充电单元数应在4以上,循环耐久能力单元数应在3以上。

5、能量

电池的能量是指在一定放电制度下,蓄电池所能给出的电能,通常用瓦时(Wh)表示。

电池的能量分为理论能量和实际能量。理论能量W理可用理论容量和电动势(E)的乘积表示,即 W理=C理E

电池的实际能量为一定放电条件下的实际容量C实与平均工作电压U平的乘积,即W实=C实U平

常用比能量来比较不同的电池系统。比能量是指电池单位质量或单位体积所能输出的电能,单位分别是Wh/kg或Wh/L。

比能量有理论比能量和实际比能量之分。前者指1kg电池反应物质完全放电时理论上所能输出的能量。实际比能量为1kg电池反应物质所能输出的实际能量。

由于各种因素的影响,电池的实际比能量远小于理论比能量。实际比能量和理论比能量的关系可表示如下:

W实=W理?KV?KR?Km

式中KV—电压效率;KR—反应效率;Km—质量效率。

电压效率是指电池的工作电压与电动势的比值。电池放电时,由于电化学极化、浓差极化和欧姆压降,工作电压小于电动势。

反应效率表示活性物质的利用率。

电池的比能量是综合性指标,它反映了电池的质量水平,也表明生产厂家的技术和管理水平。

6、储存性能

蓄电池在贮存期间,由于电池内存在杂质,如正电性的金属离子,这些杂质可与负极活性物质组成微电池,发生负极金属溶解和氢气的析出。又如溶液中及从正极板栅溶解的杂质,若其标准电极电位介于正极和负极标准电极电位

之间,则会被正极氧化,又会被负极还原。所以有害杂质的存在,使正极和负极活性物质逐渐被消耗,而造成电池丧失容量,这种现象称为自放电。

电池自放电率用单位时间内容量降低的百分数表示:即用电池贮存前

(C10’)(C10”)容量差值和贮存时间T(天、月)的容量百分数表示。7、功率与比功率

电池的功率是指电池在一定放电制度下,于单位时间内所给出能量的大小,单位为W(瓦)或kW(千瓦)。单位质量电池所能给出的功率称为比功率,单位为W/kg或kW/kg。比功率也是电池重要的性能指标之一。一个电池比功率大,表示它可以承受大电流放电。

铁锂电池与铅酸对比

铁锂电池与铅酸对比

磷酸铁锂电池和密封阀控式铅酸蓄电池的比较 一、产品性能比较和系统组成比较 磷酸铁锂电池和铅酸电池性能比较详见表4。 表4 磷酸铁锂电池和铅酸电池性能比较 电池性能 说明 磷酸铁锂电池 铅酸电池 单体电压 (V ) 3.2 2 重量比能量 (wh/kg ) 110~130 30~50 体积比能量 (wh/L ) 180~220 80~120 循环寿命 1C100%充放 ≥1000次 250~350次 高温性能 循环寿命变化 45℃为25℃时减半 35℃为25℃时减半 低温性能 -20℃容量保持率 50% 55% 自放电 常温搁置28天 4% 5% 充放电效率 >99% 80% 耐过充性能 一般 好 安全性 优 优 环保 无污染 污染 磷酸铁锂蓄电池与铅酸蓄电池在-48V 直流电源系统的组成比较如表5所示。 表1 磷酸铁锂电池组和铅酸电池组参数比较 组单体组单体组单体组单体浮充均充铅酸电池40~572448243.2 1.854.0 2.2556.4 2.35 1.13 1.18铁锂电池40~571651.2 3.243.2 2.755.2 3.4557.6 3.6 1.08 1.13铁锂电池 40~57 1548 3.243.2 2.88 54.0 3.6 56.4 3.76 1.13 1.18 电池设备工作范围只数 标称电压(V)电压比值放电终止电压(V)浮充电压(V) 均充电压(V) 资料显示: ? 充满电后4.0V 的磷酸铁锂蓄电池静置15分钟后回落到3.4V ,电池开 口电压3.4V 。 ? 单体工作电压为2.0V~4.2V 。 ? 在3.65V 以下可以充电性能稳定。 ? 单体电池放电时,3.0V 以下电压下降很快。 综合以上信息,建议48V 直流系统的蓄电池组只数选择16只的配置方案。 二、基站应用方案比较及投资比较 磷酸铁锂电池应用在基站中,主要考虑到不同放电率对该种电池放电容量的影响较小,以及耐受较宽的环境温度。以下将针对基站的功耗、后备时间进行电池容量选择的分析。

铅酸蓄电池结构详解

铅酸蓄电池结构详解 一、蓄电池的功用 蓄电池种类较多,根据电解液不同,有酸性和碱性之分。由于铅酸蓄电池内阻小,电压稳定,在短时间内能供给较大的起动电流,而且结构简单,价格较低,所以在汽车拖拉机上被广泛采用。 蓄电池为一可逆直流电源,在汽车拖拉机上及发电机并联,它的主要作用是: (1)发动机起动时,蓄电池向起动机和点火装置供电。起动发动机时,蓄电池必须在短时间内(5~10s)给起动机提供强大的起动电流(汽油机为200~600A。柴油机有的高达1000A)。 (2)在发电机不发电或电压较低发动机处于低速时,蓄电池向点火系及其它用电设备供电,同时向交流发电机供给他激励磁电流。(3)当用电设备同时接入较多,发电机超载时,蓄电池协助发电机共同向用电设备供电。 (4)当蓄电池存电不足,而发电机负载又较少时,可将发电机的电能转变为化学能储存起来,即充电。 (5)蓄电池还有稳定电网电压的作用。当发动机运转时,交流发电机向整个系统提供电流。蓄电池起稳定电器系统电压的作用。蓄电池相当于一个较大的电容器,可吸收发电机的瞬时过电压,保护电子元件不被损坏。延长其使用寿命。 二、蓄电池的构造

车用12V蓄电池均由6个单格电池串联而成,每个单格的标称电压为2V,串联成12V的电源,向汽车拖拉机用电设备供电。 蓄电池主要由极板、电解液、格板、电极、壳体等部分组成。 1.极板 极板分为正极板和负极板两种。蓄电池的充电过程是依靠极板上的活性物质和电解液中硫酸的化学反应来实现的。正极板上的活性物质是深棕色的二氧化铅(PbO2),负极板上的活性物质是海绵状、青灰色的纯铅(Pb)。 正、负极板的活性物质分别填充在铅锑合金铸成的栅架上,加入锑的目的是提高栅架的机械强度和浇铸性能。但锑有一定的副作用,锑易从正极板栅架中解析出来而引起蓄电池的自行放电和栅架的膨胀、溃烂,从而影响蓄电池的使用寿命。 负极板的厚度为1.8mm,正极板为2.2mm,为了提高蓄电池的容量,国外大多采用厚度为1.1~1.5mm的薄型极板。另外,为了提高蓄电池的容量,将多片正、负极板并联,组成正、负极板组。在每单格电池中,负极板的数量总比正极板多一片,正极板都处于负极板之间,使其两侧放电均匀,否则因正极板机械强度差,单面工作会使两侧活性物质体积变化不一致,造成极板弯曲。 2.隔板 为了减少蓄电池的内阻和体积,正、负极板应尽量靠近但彼此又不能接触而短路,所以在相邻正负极板间加有绝缘隔板。隔板应具有多孔性,以便电解液渗透,而且应具有良好的耐酸性和抗碱性。

12V铅酸蓄电池型号规格表Word版

12V铅酸蓄电池型号规格表 电池型号额定电压额定容量长宽高总高参考重量(V)(AH)(mm)(mm)(mm)(mm)(KG)12V0.8AH12V0.8AH962562620.40 12V1.3AH12V 1.3AH974351570.50 12V1.9AH12V 1.9AH1783560660.75 12V2.0AH12V 2.2AH70471011070.75 12V2.3AH12V 2.3AH1783560660.87 12V2.6AH12V 2.6AH70471011070.80 12V3.3AH12V 3.3AH134676166 1.30 12V4.0AH12V 4.0AH9070101106 1.20 12V4.5AH12V 4.5AH9070101106 1.40 12V5.0AH12V 5.0AH9070101106 1.50 12V7.0AH12V7.0AH1516594100 2.00 12V7.2AH12V7.2AH1516594100 2.05 12V8.0AH12V8.0AH1516594100 2.50 12V9.0AH12V9.0AH1516594100 2.60 12V10AH12V10AH1519895100 3.00 12V12AH12V12AH1519895100 3.60 12V15AH12V14AH1519895100 4.00 12V17AH12V17AH181******** 4.60 12V18AH12V18AH181******** 5.00 12V20AH12V20AH181******** 5.00 12V24AH12V24AH1751651251257.50 12V24AH12V24AH1651261751827.50 12V26AH12V26AH1751651251257.80 12V28AH12V28AH1751651251258.00 12V33AH12V33AH19613115518010.0 12V38AH12V38AH19816617017012.5 12V40AH12V40AH19816617017013.8 12V50AH12V50AH28012519019015.0 12V55AH12V55AH22913820822716.2 12V65AH12V65AH34816812817820.5 12V70AH12V70AH26016921221822.0 12V80AH12V80AH33217421323824.5 12V90AH12V90AH33217421323825.5 12V100AH12V100AH40717420823830.0 12V100AH12V100AH33217421321830.0

铅蓄电池放电特性(精)

第八节铅蓄电池放电特性 一定放电电流,首先,物质的消耗,密度减少,电动势降低,引起输出端电压减少;另外,放电生成物增多,内电阻上升,引起内压降增多,也引致输出端电压进一步下降。 总之,放电过程中,除了内电阻是增大以外,其他的参数都将减少。 铅蓄电池的放电曲线不同放电电流时的放电曲线 图3-6铅蓄电池的放电曲线 (1)刚放电时, (消耗>补充) (电极上反应物之间接触面多,使反应过程充分进行,而且生成物不足阻碍反应进行,内阻压降基本不变。而进行反应的电极材料孔隙内、外的电解液密度差不多,硫酸分子扩散运动很慢,) 使之消耗量和扩散补充量不平衡,使进行反应的硫酸密度下降较快,故电动势和端电压都有较快的下降。 (2)随着反应深入到中期过程, (消耗=补充) 在反应的孔隙内、外的电解液密度的差值较大,促进补充硫酸的扩散运动速度加快,消耗的硫酸分子得以相应补充。密度减少变缓慢,电动势减少缓慢,内电阻变化也不明显,因此,端电压仍随电动势下降较慢。 (2)反应加深,进入放电后期时, (消耗>补充) 化学反应在孔隙内深处进行,硫酸扩散路径变长,生成物使硫酸扩散通道变窄,甚至被堵塞,处于硫酸消耗多于补充的不平衡状态,电动势下降较快,内阻及降不断增大,造成端电压下降加快,曲线变陡。 单体电池当放电电压达到D点时,就是放电的终止电压值。如果在低于终止放电电压值下继续放电的话,电池电压将迅速变为零。这种超量放电是不允许的,实践中,在终止放电电压值达到后的放电,蓄电池已经失去了保证向负载供电能力。一般D点电压值定为1.7伏,也就是额定负载下端电压下降到20伏,就应该给电池充电。 停止放电后,硫酸分子经一段时间扩散到电极孔隙内,会使该处电解液的密度回升,而且均匀分布,所以电动势值可回到1.99伏左右。 影响放电电压的放电条件: 第一,放电电流影响放电电压。 放电电流大小的改变,化学反应进行的程度不同。增大负载时,能量转换量大,化学反应要求更多、更快,硫酸消耗多,密度下降快,生成物多,内阻增大,影响扩散速度。因此,电动势和端电压下降就快了,达到终止放电的时间会缩短,所以放电电流越大,放电电压下降越快。可放电的时间越短。 (注意,放电电流较大状态下的放电终止电压值允许低一些。)

(整理)铅酸蓄电池的性能检测

铅酸蓄电池的性能检测 一、容量 电池容量是指在规定条件下测得的并由制造商宣称的电池容量值。实际上是在规定 温度下,以一定电流放电一定时间,当达到规定的终止电压时,所能给出的电量,用C 表示,以安时(Ah)为单位。 ⑴起动电池的容量 a. 额定储备容量,用Cr.n表示,其值应符合GB/T 5008.2-2008标准的规定。 b. 实际储备容量,用Cr.e表示,其值应在第3次或之前的储备容量试验时,达到额定储备容量用Cr.n。 c. 20h率额定容量,用C20表示,其值应符合GB/T 5008.2-2008标准的规定。 d. 实际容量,用Ce表示,其值应在第3次或之前的容量试验时,应不低于额定容量C20的95%。 ⑵牵引电池的容量 a. 额定容量,用C5表示,在30℃温度下放电5h,放电电流是C5/5(A),放电至单体电压1.70V,所给出的电量(Ah),其值应符合GB/T 7403.1-2008标准的规定。 b. 实际容量,用Ce表示,在规定条件下,电池所能放出的电量(Ah),其值应在第1次容量试验时应不低于额定容量C5的85%。实际容量在前10次容量试验内至少有1次 达到额定容量。 ⑶内燃机车用排气式电池的容量 电池的额定容量以C5表示,其值应在第6次循环内达到电池标称容量值,应符合GB/T 7404.1-2008标准的规定。 ⑷内燃机车用阀控密封式电池的容量 电池的额定容量以C5表示,其值应在第6次循环内达到电池标称容量值,应符合GB/T 7404.2-2008标准的规定。

⑸铁路客车用电池的容量 a. 额定容量,用C10、C5、C1表示,其容量值在进行容量试验时要达到额定值,在3次试验中有1次合格为合格,应符合GB/T 13281-2008标准的规定。 b. 实际容量,用Ce表示,即在规定条件下测得的电池实际放电容量。 c. 低温容量,用Cd表示,电池在零下40℃环境中静置8h,以I10(A)电流放电至单体电压1.60V,计算其容量,低温容量Cd与常温容量C10、C5、C1的比值不少于0.4(>40%)。 ⑹固定型防酸式电池的容量 C10容量在第1次循环不低于0.90C10,第5次循环应达到C10;C1和1.0C容量分别在第7次、第9次循环达到额定值,应符合GB/T 13337.1-2008标准的规定。 ⑺固定型阀控密封式电池的容量 C10容量在第1次循环不低于0.95C10,第3次循环应达到C10、C3、C1,应符合GB/T 19638.1-2008的规定。 ⑻小型阀控密封式电池的容量 C20容量应符合GB/T 19639.2-2008的规定。实际容量Ce在第5次充/放循环内应不低于C20。 ⑼电动道路车辆用电池的容量 a. 额定容量,用C3表示,第1次放电容量应不低于0.85C3,第10次放电容量或之前放电容量应达到C3,应符合GB/T 18332.1-2008的规定。 b. 低温容量,用Cd表示,电池在零下18℃环境中静置24h,以I3(A)电流放电至单体电压1.40V,其容量应不低于0.5C3。 ⑽电动助力车用密封式电池的容量 a. 额定容量,用C2表示,应在第3次循环内达到。 b. 实际容量,用Ca表示,应符合GB/T 22199-2008的规定。

铅酸蓄电池主要设备

铅酸蓄电池制造工艺流程及主要设备 1、极板的制造 包括:铅粉制造、板栅铸造、极板制造、极板化成等。 ⑴铅粉制造设备铸粒机或切段机、铅粉机及运输储存系统; ⑵板栅铸造设备熔铅炉、铸板机及各种模具; ⑶极板制造设备和膏机、涂片机、表面干燥、固化干燥系统等; ⑷极板化成设备充放电机; ⑸水冷化成及环保设备。 2、装配电池设备 汽车蓄电池、摩托车蓄电池、电动车蓄电池、大中小型阀控密封式蓄电池装配线、电池检测设备(各种电池性能检测)。 ⑴典型铅酸蓄电池工艺过程概述 铅酸蓄电池主要由电池槽、电池盖、正负极板、稀硫酸电解液、隔板及附件构成。 ⑵工艺制造简述如下 铅粉制造:将1#电解铅用专用设备铅粉机通过氧化筛选制成符合要求的铅粉。 板栅铸造:将铅锑合金、铅钙合金或其他合金铅通常用重力铸造的方式铸造成符合要求的不同类型各种板板栅。 极板制造:用铅粉和稀硫酸及添加剂混合后涂抹于板栅表面再进行干燥固化即是生极板。 极板化成:正、负极板在直流电的作用下与稀硫酸的通过氧化还原反

应生产氧化铅,再通过清洗、干燥即是可用于电池装配所用正负极板。装配电池:将不同型号不同片数极板根据不同的需要组装成各种不同类型的蓄电池。 3、板栅铸造简介 板栅是活性物质的载体,也是导电的集流体。普通开口蓄电池板栅一般用铅锑合金铸造,免维护蓄电池板栅一般用低锑合金或铅钙合金铸造,而密封阀控铅酸蓄电池板栅一般用铅钙合金铸造。 第一步:根据电池类型确定合金铅型号放入铅炉内加热熔化,达到工艺要求后将铅液铸入金属模具内,冷却后出模经过修整码放。 第二步:修整后的板栅经过一定的时效后即可转入下道工序。板栅主要控制参数:板栅质量;板栅厚度;板栅完整程度;板栅几何尺寸等; 4、铅粉制造简介 铅粉制造有岛津法和巴顿法,其结果均是将1#电解铅加工成符合蓄电池生产工艺要求的铅粉。铅粉的主要成份是氧化铅和金属铅,铅粉的质量与所制造的质量有非常密切的关系。在我国多用岛津法生产铅粉,而在欧美多用巴顿法生产铅粉。 岛津法生产铅粉过程简述如下: 第一步:将化验合格的电解铅经过铸造或其他方法加工成一定尺寸的铅球或铅段; 第二步:将铅球或铅段放入铅粉机内,铅球或铅段经过氧化生成氧化铅;

铅酸蓄电池的原理与性能

铅酸蓄电池的原理与性能 一、铅酸蓄电池的工作原理 蓄电池是一种化学电源,它的构造可以是各式各样的,可是从原理上讲所有的电池都是由正极、负极、电解质、隔离物和容器组成的,其中 正负两极的活性物质和电解质起电化反应,对电池产生电流 起着主要作用,如图4-1所示。 在电池部,正极和负极通过电解质构成电池的电路,在 电池外部接通两极的导线和负荷构成电池的外电路。 在电极和电解液的接触面有电极电位产生,不同的两极 活性物质产生不同的电极电位,有着较高电位的电极叫做正 极,有着较低电位的电极叫做负极,这样在正负极之间产生了电位差,当外电路接通时,就有电流从正极经过外电路流向负极,再由负极经过电路流向正极,电池向外电路输送电流的过程,叫做电池的放电。 在放电过程中,两极活性物质逐渐消耗,负极活性物质 1.电解质 2.负极 3.容量 4.正极 5.隔离物 6.导线 7.负荷 图4-1 电池构造示意图 放出电子而被氧化,正极活性物质吸收从外电路流回的电子而被还原,这样负极电位逐渐升高,正极电位逐渐降低,两极间的电位差也就逐渐降低,而且由于电化反应形成新的化合物增加了电池的阻,使电池输出电流逐渐减少,直至不能满足使用要求时,或在外电路两电极之间端电压低于一定限度时,电池放电即告终。 电池放电以后,用外来直流电源以适当的反向电流通入,可以使已形成的新化合物还原成为原来的活性物质,而电池又能放电,这种用反向电流使活性物质还原的过程叫做充电。 蓄电池可以反复多次充电、放电,循环使用,使用寿 命长,成本较低,能输出较大的 能量,放电时电压下降很慢。 1.电动势的产生 铅蓄电池的正极是二氧化铅(PbO2),负极是绒状铅 (Pb),它们是两种不同的活性物质,故和稀硫酸(H2SO4)起 化学作用的结果也不同。在未接通负载时,由于化学作用 使正极板上缺少电子,负极板上却多余电子,如图4-2所图4-2 铅蓄电池电势产生过程示,两极间就产生了一定的电位差。 2.放电过程的化学反应 当外电路接上负载(比如灯泡)后,铅蓄电池在 正、负极板间电位差(电动势)的作用下,电流Ⅰ从 正极流出,经负载流向负极,也就是说,负极上的 电子经负载进入正极,如图4-3。同时在蓄电池部 产生化学反应: . 学习.资料.

铅酸蓄电池用极板检验技术条件

铅酸蓄电池用极板检验技术条件

目次 1.范围 2.引用标准 3.术语、定义 4.产品分类 5.技术要求 6.试验条件 7.试验方法 8.判定标准 9.标志、包装和贮存

铅酸蓄电池用极板 1范围 本附件规定铅酸蓄电池用极板的产品分类、技术要求、试验方法、检验规则、标志、包装、运输和贮存。 本附件适用于涂膏式负极板、涂膏式正极板、管式正极板。 2引用标准 下列文件中的条款通过本附件的引用而成为本附件的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本附件,然而,鼓励根据本附件达成协议的各方研究是否使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本附件。 GB/T 626 化学试剂硝酸 GB/T 631 化学试剂氨水 GB/T 643 化学试剂高锰酸钾 GB/T 676 化学试剂乙酸(冰醋酸) GB/T 694 化学试剂无水乙酸钠 GB 1245 化学基准试剂(容量)草酸钠 GB/T 1266 化学试剂氯化钠 GB/T 1294 化学试剂酒石酸 GB/T 1400 化学试剂六次甲基四胺 GB/T 计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划(GB/T ,ISO2859_1:1999,IDT) GB/T 蓄电池名词术语(GB/T , eqvIEC60486:1986) GB/T 6684 化学试剂过氧化氢 GB/T 6685 化学试剂氯化羟胺(盐酸羟胺) GB 6782 食品添加剂柠檬酸钠 GB/T 10111 利用随机数骰子进行随机抽样的方法

GB/T 15347 化学试剂抗坏血酸3术语、定义 下列术语和定义适用于本附件 干式荷电极板 极板为干态且处于高层建筑荷电状态的极板.普通型极板 极板为干态且处于低荷电状态的极板. 涂膏式极板外观术语和定义 3.3.1极板弯曲 极板弧状变形 3.3.2极板活性物质掉块 极板上活性物质脱高板栅,且形成穿透性缺陷. 3.3.3极板表面脱皮有气泡 活性物质之间层状剥离,但未形成穿透性缺陷. 3.3.4极板活性物质凹陷 极板上活性物质局部明显低于极板表面 3.3.5极板四框歪 极板对角线不相等. 3.3.6极板活性物质酥松 活性物质之间或与板栅之间结合力变差 管式极板外观术语和定义 3.4.1丝管破裂 丝管表面一处或多处相互脱离 3.4.2丝管散头 丝管顶端发散. 3.4.3铅膏粘附。 丝管外表面粘附活性物质。

铅酸蓄电池规格参数

Clean Energy Provider 清洁能源提供商》》》》》》》》》》》》》》》》》》》》》》》》》

/公司简介 /产品结构说明 /产品特点 /DETI 牵引式蓄电池的性能 /产品展示 /蓄电池配件 /应用领域 /改进型活链接 清洁能源提供商 BS 系列牵引用铅酸蓄电池参数(158宽) DIN 系列牵引用铅酸蓄电池参数(198宽) Company profile Product structure description Product features Cell Specification Product demonstration Battery accessories Application fields Improved living link Series BS 158 Wide Traction Lead-acid Battery Series DIN 198 Wide Traction Lead-acid Battery Clean Energy Provider

/公司简介 清洁能源提供商 Company profile DEHE Power Clean Energy Provider 泰州德和电源有限公司是一家集铅酸蓄电池生产、销售、租赁为一体的清洁能源提供商,2007年在江苏省泰州经济开发区成立,项目总投资2300万美元,占地5公顷,厂房面积28000平米。蓄电池生产能力可达100万KVAH,年产值1亿美元。 公司长期致力于各类铅酸蓄电池的研发和生产,从铅粉制作至产成品,提供一整套的优质生产及销售服务。公司具有雄厚的技术支撑,丰富的生产经验、国际先进的生产制造设备和检测设备、完善的质量监控系统。同时整合了报废蓄电池的回收,全程ISO14000认证,极大降低环境污染风险。 德和公司始终秉承“诚信、严谨、创新、奉献”的宗旨,致力于追求产品的先进性、可靠性、经济性和实用性,竭诚为广大用户提供最优质的产品以及完善的售后服务和技术支持。欢迎国内外新老客户垂询惠顾。 Taizhou Dehe Power Source Co., Ltd., founded in 2007 in Jiangsu Taizhou Economic Development Zone, with total investment of $ 23million, floor area of 5 hectare and factory area of 28,000 square meter, is a clean power supplier integrating lead-acid storage battery production, selling, and finance lease. Its production capacity of storage battery reaches 1 million KV AH, with annual output value of $100million. The company has been engaging in R&D and production of various lead-acid storage batteries and providing quality production and selling services from lead powder manufacturing to finished battery production. We possess strong technical power. Rich production experience, internationally advanced production equipment and test equipment, as well as complete quality control system. Meanwhile, we integrate used battery recycle and ISO14000 certification of the entire process, which significantly reduces the risk of environmental pollution. Dehe Company has always been adhering to the principle of “Integrity, preciseness, innovation, devotion”, and the commitment to pursuing advancement, reliability, economic efficiency and practicability. We strive all our efforts to provide customers with top-quality products and impeccable after-sale service and technical support. Welcome customers home and abroad to send us enquiries.

铅酸电池、锂电池等各种电动车电池优缺点分析

目前市场上电动自行车使用的电池品种很多。除了使用量最大的阀控密封式铅酸蓄电池以外,还有镍氢电池、镍镉电池、锂离子电池、锌空电池等等。这些蓄电池都具有各自独特的优点,以下我们就来分别认识一下各电池的特性与功用。 铅酸电池 其中,以铅酸蓄电池为数量最多。铅酸蓄电池的价格最低,也最常用,中国是全世界铅酸蓄电池最大的生产国。其含污染的成分比较少,可回收性好。缺点是比容小。也就是说,在同样的容量下,电池重量和体积都大。目前的铅酸蓄电池基本上是由浮充类型的电池发展而来的。浮充电池不适应快速充电和大电流放电,虽然技术人员的花费了大量的心血进行了卓有成效的改进,可以进入实用了,但是其寿命还是非常不理想的。胶体电池 胶体电池属于铅酸蓄电池的一种发展分类,最简单的做法,是在硫酸中添加胶凝剂,使硫酸电液变为胶态。电液呈胶态的电池通常称之为胶体电池。广义而言,胶体电池与常规铅酸电池的区别不仅仅在于电液改为胶凝状。例如非凝固态的水性胶体,从电化学分类结构和特性看同属胶体电池。又如在板栅中结附高分子材料,俗称陶瓷板栅,亦可视作胶体电池的应用特色。近期已有实验室在极板配方中添加一种靶向偶联剂,大大提高了极板活性物质的反应利用率,据非公开资料表明可达到70wh/kg的重量比能量水平,这些都是现阶段工业实践及有待工业化的胶体电池的应用范例。 胶体电池与常规铅酸电池的区别,从最初理解的电解质胶凝,进一步发展至电解质基础结构的电化学特性研究,以及在板栅和活性物质中的应用推广。其最重要的特点为:用较小的工业代价,沿已有150年历史的铅酸电池工业路子制造出更优质的电池,其放电曲线平直,拐点高,比能量特别是比功率要比常规铅酸电池大20%以上,寿命一般也比常规铅酸电池长一倍左右,高温及低温特性要好得多。 镍氢电池 镍氢电池的比容比铅酸蓄电池好很多,单体电池的寿命也比较好,其大电流充放电特性也比铅酸蓄电池好。问题是镍氢电池串连电池组的管理问题比较多,一旦发生过充电以后,就会形成单体电池隔板熔化的问题,导致整组电池迅速失效。所以,国产的镍氢电池的关键技术问题还是充电器和电池管理系统的问题,而这个问题还没有引起各个电池制造商和车厂足够的重视。所以,镍氢电池的发展收到很大的制约。镍镉电池镍镉电池的大电流特性比镍氢电池好,其抗过充电特性也比镍氢电池好,中国又是世界上镍镉电池的生产大国。一些人提出镉污染的问题,中国现在还在大量的向欧洲出口镍镉电池及其应用产品,欧洲到2006年才开始限制。据中央电视台播放的消息,神州五号还是采用镍镉电池的。这是其相对比较高的可靠性的优点使该品种电池还在应用与宇航设备上。这样看,电动自行车方面过早的使镍镉电池退出应用是否有一些过激?而镍镉电池的成本和充电器的成本都明显低于镍氢电池,只要回收处理好了,还是应该保留这个电池品种的。

铅酸蓄电池设计..

铅酸蓄电池设计方法 铅酸蓄电池设计 本文以用于电动自行车能源的铅酸蓄电池设计为例,介绍有关设计中的计算和步骤,虽然针对铅酸电池系列,但其中的某些原则和方法,对其它系列的电池设计也有一定的参考价值。 设计要求: 电池用途和要求: 电动自行车能源, 行程50公里,时速20公里。 工作电压:24V 工作电流:9A 循环寿命:250个周期 电池组外形尺寸: 233X133X204 单腔内格尺寸:60X33X178 设计: 、确定单体电池数目: 单体电池数目二工作电压/单体电池额定电压二24/2 = 12 (只) 另外根据给定的外形尺寸和内腔尺寸,确定电池组应由12个单元格组 成双排结构。 二、单体电池的设计与计算: 1.电池容量的确定:提高电性能的途径就是改善限制电极的性能因素, 而降低成本则是降低非限制电极因素的用量! (1)额定容量:根据给定条件,电池额定容量为: 工作电流X (行程/时速)二 9A X(50km/20kmH-1) =22.5AH = 23AH (2)设计容

量:1.1额定容量=1?1 X3=25?3 (AH ) 2.单体电池极板尺寸与数目的确定: 1)根据给定的内腔尺寸,确定极板尺寸为: 正极板(板栅):164X58X2.0; 负极板(板栅):164X58X1.4 值得注意的是极板的厚度设计。由于极板厚度直接影响着活物质的利用率。极板放电产物PbS04的比容较大,随着放电过程的加深,极 板孔率下降,使H2SO4的扩散发生困难,因而极板越厚,活物质的利用率就越低,所以在选择极板厚度时应全面考虑用户提出的性能要求和使用条件。首先应保证电池的性能指标,这样可能会影响到一些次要的性能指标,如对电池主要要求大功率,低温起动,则设计极板应薄些, 然而相应地电池寿命可能就会降低。反之,如对电池主要须耐较强冲击振动和较长的寿命,则就要设计极板厚些。另外,负极板厚度至少为正极板的70?80%以上才适宜。 (2)单片正极板容量:据阿仑特(Arend t)经验公式:C=LXHX0.154 式中: C:单片容量;L:极板宽度(cm); H:极板高度(cm)D:极板厚度(cm)

电动汽车电池的分类及性能参数

电动汽车电池的分类及性能参数 电池的分类 电动汽车用电池为化学电源,它的分类方法很多。按电解液分为: a.碱性电池。即电解液为碱性水溶液的电池; b.酸性电池。即电解液为酸性水溶液的电池; c.中性电池。即电解液为中性水溶液的电池; d.有机电解质溶液电池。即电解液为有机电解质溶液的电池。 按活性物质的存在方式分为: a.活性物质保存在电极上。可分为一次电池(非再生式,原电池)和 二次电池(再生式,蓄电池); b.活性物质连续供给电极。可分为非再生燃料电池和再生燃料电池。按电池的某些特点分为: a.高容量电池; b.免维护电池; c.密封电池; d.燃结式电池; e.防爆电池; f.扣式电池、矩形电池、圆柱形电池等。 尽管由于化学电源品种繁多,用途广泛,外形差别大,使上述分类方法难以统一,但习惯上按其工作性质及存贮方式不同,一般分为四类: a. 一次电池

一次电池,又称“原电池”,即放电后不能用充电的方法使它复原的电池。换言之,这种电池只能使用一次,放电后电池只能被遗弃了。这类电池不能再充电的原因,或是电池反应本身不可逆,或是条件限制使可逆反应很难进行。如: 锌锰干电池 Zn│NH4Cl·ZnCl2│MnO2(C) 锌汞电池 Zn│KOH│HgO 银锌电池 Zn│KOH│Ag2O b.二次电池 二次电池,又称“蓄电池”,即放电后又可用充电的方法使活性物质复原而能再次放电,且可反复多次循环使用的一类电池。这类电池实际上是一个化学能量贮存装置,用直流电将电池充足,这时电能以化学能的形式贮存在电池中,放电时,化学能再转换为电能。如:铅酸电池 Pb│H2SO4│PbO2 镍镉电池 Cd│KOH│NiOOH 镍氢电池 H2│KOH│NiOOH 锂离子电池 LiCoO2│有机溶剂│6C 锌空气电池 Zn│KOH│O2(空气) c.贮备电池 贮备电池,又称“激活电池”,是正、负极活性物质和电解液不直接接触,使用前临时注入电解液或用其他方法使电池激活的一类电池。这类电池的正、负极活性物质的化学变质或自放电,因与电解液的隔离而基本上被排除,从而使电池能长时间贮存。如:镁银电

铅酸蓄电池充电方法及特性说明

铅酸蓄电池充电方法及特性说明 铅蓄电池的充电特征就是指蓄电池在恒定流充电状态下,电解液相对密度ρ(15℃)、蓄电池端电压UC随充电时间的变化规律。图5-12是将某型号铅蓄电池以5A进行恒流充电时测得的规律曲线。充电过程中,电解液相对密度基本以直线逐渐上升。这是因为采用等流充电,充电机每单位时间向蓄电池输入的电量相等,每单位时间内电解液中的水变为硫酸的量也基本相等。充电过程中,铅蓄电池端电压上升的规律由四个阶段组成:第一阶段:充电开始,端电压上升较快。这是由于极板活性物质孔隙内部的水迅速变为硫酸,孔隙外部的水还未来得及渗透入补充,极板内部电解液相对密度迅速上升所致。 第二阶段:端电压上升较平稳,至单格电压2.4V。该阶段,每单位时间内极板内部消耗的水与外部渗入的水基本相等,处于动态平衡状态。 第三阶段:端电压由2.4V迅速上升至2.7V,该阶段电解液中的水开始电解,正极板表面逸出氧气,负极板处逸出氢气电解液中冒出气泡,出现所谓的电解液“沸腾”现象。 第四阶段:该阶段过充电阶段,端电压不再上升。为了观察端电压和电解液相对密度不再上升的现象,保证蓄电池充分充电,一般需要过充电2h~3h。由于过充电时剧烈地放出气泡会导致活性物质脱落,造成蓄电池容量降低,使用寿命缩短,因此应尽量避免长的时间过充电。过充电时,蓄电池逸出的氢气与氧气混合,混合气体具有易烯、易爆特点,因此充电的蓄电池附近应免明火出现。 铅蓄电池充电终了的特征是: (1)端电压和电解液相对密度上升到最大值,且2h~3h内不再上升。 (2)电解液中产生大量气泡,呈现“沸腾”状态。 3.蓄电池的充放电控制技术 在实际光伏发电系统的蓄池中,为了实现设定的充电模式,须对充电过程进行控制,运用正确的充电控制方法,有利于提高蓄电池的充电效率和使用寿命。 (1)充电过程阶段的划分 在实际光伏发电系统的蓄池中,为了实现设定的充电模式,须对充电过程进行控制,运用正确的充电控制方法,有利于提高蓄电池的充电效率和使用寿命。充电过程一般分为主充、均充和浮充3个阶段。充电末期主要是以恒小电流长时间充电的涓流充电流为主(充电倍率小于0.1C时,称为涓流充电)。

天能阀控铅酸蓄电池电池检测标准

附件一:阀控铅酸蓄电池的检 测 1、检测方法、判断标准 1.1万用表电压检测法 情况一:蓄电池在短期内突然出现放电时间或行驶里程骤降。 步骤:a.电池间连接线检查。检查电池间连接线是否连接牢固有无松动,连接线有无腐蚀断丝; b.放电。将电池总电压放至测量值,即单格电压达到1.8V(6V电池为 5.4V/单只,8V电池为7.2V/单只,12V电池为10.8V/单只); c.放电后电压记录。打开车载用电设备(如:大灯、冷暖风机等)迅 速测量每单只电池的电压并按照不同方位电池做好电压记录; e.补充电。如有△U值大于以上参考值,对这只电池作好记号便于找到,并作以 下补充电; (1)用车载充电器充电至充电完成; (2)用单只充电器对△U值大于以上参考值的电池进行补电; (3)重复b至d步骤; (4)如△U值仍大于参考值,用车载充电器充电至充电完成后更换这只落后电池。 f.平衡适应阶段。为更好使更换的电池达到与其它电池间平衡和适应过程前期 务必按以下操作,切勿作深放电;

(1)充电后放电深度在30%左右进行充电为宜,即如正常可行驶100公里,在行驶30公里左右停止; (2)用车载充电器充电至充电完成; (3)以此浅放电循环至少3次以上方可,建议放电深度不大于70%为宜(即在平缓的路况行驶时感觉车速下降动力不足),如长期进行深 放电会造成电池间压差增大,电池容量、寿命快速下降的风险。 情况二:蓄电池在一定期间内放电时间或行驶里程短大于电池正常衰减且后续未出现急剧下降; 步骤:a.充电后电压记录。用车载充电器充电至充电完成,断开充电器静止2小时测量每单只电池电压并按照不同方位电池做好电压记录, 充满电即单格电压在2.2V左右(6V电池为6.6V/单只,8V电池 为8.8V/单只,12V电池为13.2V/单只),作为判断电池是否因充 电器问题未充满电; b.放电1。将电池总电压放至测量值,即单格电压达到1.8V(6V 电池为5.4V/单只,8V电池为7.2V/单只,12V电池为10.8V/单只); c.放电后电压记录。打开车载用电设备(如:大灯、冷暖风机等) 迅速测量每单只电池的电压并按照不同方位电池做好电压记录, 作为判断是否可能因电池单只落后导致,如单只落后按情况一d 至f进行,如电压正常继续以下操作; d.放电2。将电池总电压放至截止电压,即单格电压达到1.65V (6V电池为4.95V/单只,8V电池为6.6V/单只,12V电池为9.9V/ 单只); e.放电后电压记录。打开车载用电设备(如:大灯、冷暖风机等) 迅速测量每单只电池的电压并按照不同方位电池做好电压记录, 作为判断控制器欠压保护是否设置太高导致;

V铅酸蓄电池型规格表

V铅酸蓄电池型规格表公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

12V铅酸蓄电池型号规格表 电池型号额定电压额定容量长宽高总高参考重量(V)(AH)(mm)(mm)(mm)(mm)(KG) 12V96256262 12V97435157 12V178356066 12V7047101107 12V178356066 12V7047101107 12V134676166 12V9070101106 12V9070101106 12V9070101106 12V1516594100 12V1516594100 12V1516594100 12V1516594100 12V10AH12V10AH1519895100 12V12AH12V12AH1519895100 12V15AH12V14AH1519895100 12V17AH12V17AH181******** 12V18AH12V18AH181******** 12V20AH12V20AH181******** 12V24AH12V24AH175165125125 12V24AH12V24AH165126175182 12V26AH12V26AH175165125125 12V28AH12V28AH175165125125 12V33AH12V33AH196131155180 12V38AH12V38AH198166170170 12V40AH12V40AH198166170170 12V50AH12V50AH280125190190 12V55AH12V55AH229138208227 12V65AH12V65AH348168128178 12V70AH12V70AH260169212218 12V80AH12V80AH332174213238 12V90AH12V90AH332174213238 12V100AH12V100AH407174208238 12V100AH12V100AH332174213218

铅酸蓄电池的原理与性能

. 铅酸蓄电池的原理与性能 一、铅酸蓄电池的工作原理 蓄电池是一种化学电源,它的构造可以是各式各样的,可是从原理上讲所有的电池都是由正极、负极、电解质、隔离物和容器组成的,其中正负两极的活性物质和电解质起电化反应,对电池产生电流起着主要作用,如图4-1所示。 在电池内部,正极和负极通过电解质构成电池的内电路,在电池外部接通两极的导线和负荷构成电池的外电路。 在电极和电解液的接触面有电极电位产生,不同的两极活性物质产生不同的电极电位,有着较高电位的电极叫做正极,有着较低电位的电极叫做负极,这样在正负极之间产生了电位差,当外电路接通时,就有电流从正极经过外电路流向负极,再由负极经过内电路流向正极,电池向外电路输送电流的过程,叫做电池的放电。 在放电过程中,两极活性物质逐渐消耗,负极活性物质 1.电解质 2.负极 3.容量 4.正极 5.隔离物 6.导线 7.负荷 图4-1 电池构造示意图 放出电子而被氧化,正极活性物质吸收从外电路流回的电子而被还原,这样负极电位逐渐升高,正极电位逐渐降低,两极间的电位差也就逐渐降低,而且由于电化反应形成新的化合物增加了电池的内阻,使电池输出电流逐渐减少,直至不能满足使用要求时,或在外电路两电极之间端电压低于一定限度时,电池放电即告终。 电池放电以后,用外来直流电源以适当的反向电流通入,可以使已形成的新化合物还原成为原来的活性物质,而电池又能放电,这种用反向电流使活性物质还原的过程叫做充电。 蓄电池可以反复多次充电、放电,循环使用,使用寿命长,成本较低,能输出较大的能量,放电时电压下降很慢。 1.电动势的产生 铅蓄电池的正极是二氧化铅(PbO 2),负极是绒状铅(Pb),它们是两种不同的活性物质,故和稀硫酸(H 2SO 4)起化学作用的结果也不同。在未接通负载时,由于化学作用 使正极板上缺少电子,负极板上却多余电子,如图4-2所 图4-2 铅蓄电池电势产生过程 示,两极间就产生了一定的电位差。 2.放电过程的化学反应 当外电路接上负载(比如灯泡)后,铅蓄电池在正、负极板间电位差(电动势)的作用下,电流Ⅰ从正极流出,经负载流向负极,也就是说,负极上的电子经负载进入正极,如图4-3。同时在蓄电池内部产生化学反应:

铅酸蓄电池在线监测系统

铅酸蓄电池在线监测系统 关键字:铅酸蓄电池在线监测系统蓄电池内阻仪蓄电池放电仪蓄电池检测仪 当前,蓄电池的检测和监测已逐渐成为一个热点问题,电力系统、电信系统、移动通讯系统及其他信息产业领域都对蓄电池的检测和监测提出了相应的要求,各大生产厂商都在积极开发相关产品。 从信息安全和供电安全角度来说,电池监测本身与电池具有同样的重要性。在高度现代化的当今社会,很难想象电力网停电、电信网瘫痪给社会政治、经济带来的损失。为了避免这样的损失,在相应的设备上都使用电池作为备用电源,这样,即使电力网停电,也可以从容地采用其他应急手段,避免重大损失的发生。电池如同其他电子元件一样,同样存在早期失效问题,而且电池还存在正确运行的问题,电池监测正是要从这两个角度来提高系统的可靠性,也就是说一方面监测可以保证电池处于正确的运行状态,另一方面监测可以发现即将失效的电池。所以电池监测对重要系统的运行安全具有重要的意义。 电池监测并不是一个新的概念,它的历史几乎同铅酸电池的历史一样长,只是由于电子技术和信息技术的发展才给它注入了新的概念。从使用者的角度说,仅仅对电池组电压和电池组电流进行监测的产品已经不能满足需要,具有单体电池电压监测乃至具有电池内阻监测的产品正在被越来越多地采用。另一方面,新技术已经广泛采用,继电器触点式电池切换逐渐消失代之以先进的电子式切换,单片机技术使监测产品具有了强大的功能,数字信号处理技术使监测产品具有更高的精度和更低的成本。这一领域的各种应用使新一代电池监测产品正从各个角度不断完善。 蓄电池用户最关心的问题是电池监测产品能否满足他们应用系统的安全要求。而市场上销售的电池监测产品并非都能令用户满意。从国内外的研究结果来看,单体电池电压监测除了能够发现电池短路和电池断路这样类型的电池失效外,对电池容量下降很难发现,电池容量下降是电池失效的最主要模式,目前只有电池内阻监测可以有效地发现这样的电池。 产品的性能和成本是用户最关心的两个问题。电池组运行参数监测产品对电池组的正确运行帮助很大,对电池失效基本没有检测能力;具有单电池电压监测的产品可以发现如电池短路和电池断路这样类型的严重失效电池,对电池容量下降基本没有检测能力;具有电池内阻监测的产品可以满足高安全性要求的应用需要。电池组运行参数监测产品具有最低成本;极有单电池电压监测的产品具有较低的成本;具有电池内阻监测的产品成本较高。也有针对特定大批量需求用户的高性能的产品可供选用。由于应用系统的安全性要求,系统不能随时停机维护,在线监测能更好满足这方面的需求。在线监测还能提高效率,更加准确可靠地完成电池监测任务。电池监测问题和网络有着密不可分的关系。网络安全除了与软件、系统管理等问题有关,还与硬件有着密切关系,而电池监测则是应该重点考虑的问题之一。另一方面,从监测自动化角度来说,网络化监测是电力、通讯行业的特点,这就要求电池监测产品具有网络兼容性。 针对蓄电池用户关心的问题,本公司特推出以下产品来解决: 蓄电池内阻测试仪,PITE3915内阻仪采用最先进的交流放电测试方法,能够精确测量蓄电池两端电压和内阻,并以此来判断蓄电池电池容量和技术状态的优劣。客户可以根据自身情况选择按键操作和液晶触摸两种操作方式。它既可以对蓄电池进行成组测量,也可以进行单节测量。 蓄电池活化仪,PITE3930/3932智能蓄电池活化仪,是专用于日常维护中对落后蓄电池处

相关主题
文本预览
相关文档 最新文档