当前位置:文档之家› 热电式传感器 热电式传感器是一种将温度变化转化为电量变化的装置

热电式传感器 热电式传感器是一种将温度变化转化为电量变化的装置

热电式传感器 热电式传感器是一种将温度变化转化为电量变化的装置
热电式传感器 热电式传感器是一种将温度变化转化为电量变化的装置

3.2.4热电式传感器热电式传感器是一种将温度变化转化为电量变化的装置。在各种热

电式传感器中,以将温度量转换为电势和电阻的方法最为普遍。其中最为常用于测量温度的是热电偶和热电阻,热电偶是将温度转化为电势变化,而热电阻是将温度变化转化为电阻的变化。这两种热电式传感器目前在工业生产中被广泛应用。该系统需要的传感器是将温度转化为电流,且水温最高是100℃,所以选择Pt100铂热电阻传感器。P100铂热电阻,简称为:PT100铂电阻,其阻值会随着温度的变化而改变。PT后的100即表示它在0℃时阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。它的工作原理:当PT100在0摄氏度的时候他的阻值为100欧姆,它的的阻值会随着温度上升它的阻值成匀速增长。

3.2.5可控硅加热装置简介

对于要求保持恒温控制而不要温度记录的电阻炉采用带PID调节的数字式温度显示调节仪显示和调节温度,输出0~10mA作为直流信号输入控制可控硅电压调整器或触发板改变可控硅管导通角的大小来调节输出功率,完全可以满足要求,投入成本低,操作方便直观并且容易维护。温度测量与控制是热电偶采集信号通过PID温度调节器测量和输出0~10mA 或4~20mA控制触发板控制可控硅导通角的大小,从而控制主回路加热元件电流大小,使电阻炉保持在设定的温度工作状态。可控硅温度控制器由主回路和控制回路组成。主回路是由可控硅,过电流保护快速熔断器、过电压保护RC和电阻炉的加热元件等部分组成

3系统整体设计方案和电气连接图

系统选用了PLC CPU 226为控制器,PT100型热电阻将检测到的实际锅炉水温转化为电流信号,经过EM231模拟量输入模块转化成数字量信号并送到PLC中进行PID调节,PID控制器输出转化为0~10mA的电流信号输入控制可控硅电压调整器或触发板改变可控硅管导通角的大小来调节输出功率,从而调节电热丝的加热。PLC和组态王连接,实现了系统的实时监控。

整体设计方案如图3

系统工作原理加热炉温度控制系统基本构成如图1-1所示 它由PLC主控系统、固态继电器、加热炉、温度传感器等4个部分组成。

加热炉温度控制系统基本组成

传感器原理与应用习题_第7章热电式传感器

《传感器原理与应用》及《传感器与测量技术》习题集与部分参考答案 教材:传感器技术(第3版)贾伯年主编,及其他参考书 第7章热电式传感器 7-1 热电式传感器有哪几类?它们各有什么特点? 答:热电式传感器是一种将温度变化转换为电量变化的装置。它可分为两大类:热电阻传感器和热电偶传感器。 热电阻传感器的特点:(1)高温度系数、高电阻率。(2)化学、物理性能稳定。(3)良好的输出特性。(4).良好的工艺性,以便于批量生产、降低成本。 热电偶传感器的特点:(1)结构简单(2)制造方便(3)测温范围宽(4)热惯性小(5)准确度高(6)输出信号便于远传 7-2 常用的热电阻有哪几种?适用范围如何? 答:铂、铜为应用最广的热电阻材料。铂容易提纯,在高温和氧化性介质中化学、物理性能稳定,制成的铂电阻输出-输入特性接近线性,测量精度高。铜在-50~150℃范围内铜电阻化学、物理性能稳定,输出-输入特性接近线性,价格低廉。当温度高于100℃时易被氧化,因此适用于温度较低和没有侵蚀性的介质中工作。 7-3 热敏电阻与热电阻相比较有什么优缺点?用热敏电阻进行线性温度测量时必须注意什么问题? 7-4 利用热电偶测温必须具备哪两个条件? 答:(1)用两种不同材料作热电极(2)热电偶两端的温度不能相同 7-5 什么是中间导体定律和连接导体定律?它们在利用热电偶测温时有什么实际意义? 答:中间导体定律:导体A、B组成的热电偶,当引入第三导体时,只要保持第三导体两端温度相同,则第三导体对回路总热电势无影响。利用这个定律可以将第三导体换成毫伏表,只要保证两个接点温度一致,就可以完成热电势的测量而不影响热电偶的输出。 连接导体定律:回路的总电势等于热电偶电势E AB(T,T0)与连接导线电势E A’B’(Tn,T0)的代数和。连接导体定律是工业上运用补偿导线进行温度测量的理论基础。 7-6 什么是中间温度定律和参考电极定律?它们各有什么实际意义? 答:E AB(T,Tn,T0)=E AB(T,Tn)+E AB(Tn,T0) 这是中间温度定律表达式,即回路的总热电势等于E AB(T,Tn)与E AB(Tn,T0)的代数和。Tn为中间温度。中间温度定律为制定分度表奠定了理论基础。 7-7 镍络-镍硅热电偶测得介质温度800℃,若参考端温度为25℃,问介质的实际温度为多少? 答:t=介质温度+k*参考温度(800+1*25=825) 7-8 热电式传感器除了用来测量温度外,是否还能用来测量其他量?举例说明之。 7-9 实验室备有铂铑-铂热电偶、铂电阻器和半导体热敏电阻器,今欲测量某设备外壳的温度。已知其温度约为300~400℃,要求精度达±2℃,问应选用哪一种?为什么?

第5章热电式传感器习题

第五章会计凭证练习题 页脚内容1 第5章热电式传感器习题 1、 热电偶结构由哪几部分组成? 2、 用热电偶测温时为什么要进行冷端温度补偿?其冷端温度补偿的方法有哪几种? 3、 热电阻温度计有哪些主要优点? 4、 已知铜热电阻一CulOO 的百度电阻比 W(100)=1.42,当用此热电阻测量 50C 温 度 时,其电阻值为多少?若测温时的电阻值为 92Q,则被测温度是多少? 解:由 W (100) =R IOO /R O =1.42,则其灵敏度为 R 100 R O 1 .42R O R O 0.42R 。 K 100 0 100 100 则温度为50 C 时,其电阻值为 R 50 = R O +K X 50=100+0.42 X 50=121( 当 R t =92 时,由 R t = R D +Kt ,得 t=( R t - R O )/K=(92 - 100)/0.42= - 19(C ) 5、 将一灵敏度为0.08mV/ C 的热电偶与电位计相连接测量其热电势,电位计接线端是 30C,若电位计上读数是 60mV ,热电偶的热端温度是多少 ? 丄 60mV “ t ------ 30 C 780 C 解: 0.08mV / C 6、 参考电极定律有何实际意义 ?已知在某特定条件下材料 A 与铂配对的热电势为 13.967mV ,材料B 与铂配对的热电势是 8.345mV ,求出在此特定条件下,材料 A 与材料B 配对后的热电势。 解:由标准电极定律 E (T,T O )=E A 铂(T,T O )- E B 铂(T,T O ) =13.967- 8.345=5.622(mV) 7、 镍铬一镍硅热电偶灵敏度为 0.04mV/ C ,把它放在温度为1200C 处,若以指示仪表 作为冷端,此处温度为 50 C ,试求热电势大小。 解: E(1200,50)= (1200 50) X 0.04=46(mV) 8、 热电偶温度传感器的输入电路如习题图 7-20所示,已知铂铑 一铂热电偶在温度 0~100C 之间变化时,其平均热电势波动为 6卩V C ,桥路中供桥电压为 4V ,三个锰铜电阻(R I 、 R 2、R 3)的阻值均为1 R 铜电阻的电阻温度系数为 a =0.004/C ,已知当温度为 0 C 时电桥平 衡,为了使热电偶的冷端温度在 0~50 C 范围其热电势得到完全 补偿,试求可调电阻的阻值只 100 °42 0.42 /O C 100 R 5O 解:热电偶冷端补偿电势 E(t,O)=kt , 式中,k 为热电偶灵敏度(k=6 V/C ), 而补偿电桥输出电压(见习题图 Ui R U R t 0 4 冷端补偿时有 7-20) 4 4 6 0.004 根据电桥电路,其等效电路为 R 1、R cu 和R 2、R 3分别串联后再并联,然后与电源、 R 串联,桥臂电阻串并联后为 1Q 由此可得 1XU =1 E/(R+1) 1=4000/6 - 1=665.7(Q ) 02=50 C,而实际温度 01=100 C ,设电阻温度 kt t U i 4k 6000 V =6mV 所以 R=E/ U i - 9、在某一瞬间,电阻温度计上指示温度 计的动态关系为 d 2 dt 其中,k=0.2/s O 试确定温度计达到稳定读数 (0.995 9i)所需时间。 k( 1 2)

热电阻热电偶温度传感器校准实验

湖南大学实验指导书 课程名称:实验类型: 实验名称:热电阻热电偶温度传感器校准实验 学生姓名:学号:专业: 指导老师:实验日期:年月日 一、实验目的 1.了解热电阻和热电偶温度计的测温原理 2.学会热电偶温度计的制作与校正方法 3.了解二线制、三线制和四线制热电阻温度测量的原理 4.掌握电位差计的原理和使用方法 5.了解数据自动采集的原理 6.应用误差分析理论于测温结果分析。 二、实验原理 1.热电阻 (1) 热电阻原理 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。常用铂电阻和铜电阻,铂电阻在0—630.74℃以内,电阻Rt与温度t 的关系为: Rt=R0(1+At+Bt2) R0系温度为0℃时的电阻,铂电阻内部引线方式有两线制,三线制,和四线制三种,两线制中引线电阻对测量的影响最大,用于测温精度不高的场合,三线制可以减小热电阻与测量仪之间连接导线的电阻因环境温度变化所引起的测量误差。四线制可以完全消除引线电阻对测量的影响,用与高精度温度检测。本实验是三线制连接,其中一端接二根引线主要是消除引线电阻对测量的影响。 (2) 热电阻的校验 热电阻的校验一般在实验室中进行,除标准铂电阻温度计需要作三定点,(水三相点,水沸点和锌凝固点)校验外,实验室和工业用的铂或铜电阻温度计的校验方法有采用比较法

各种温度传感器分类及其原理.

各种温度传感器分类及其原理

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1.热电偶的工作原理 当有两种不同的导体和半导体A和B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端或冷端,则回路中就有电流产生,如图2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向, 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势:热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b 之间便有一电动势差△ V,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由A流向B时,称A为正极,B 为负极。实验表明,当△ V很小时,△ V与厶T成正比关系。定义△ V对厶T 的微分热电势为热电势率,又称塞贝克系数。

热电偶温度传感器设计报告

传感器课程设计 设计题目:热电偶温度传感器 2010年12月30日 目录 1、序言 (3) 2、方案设计及论证 (4)

3、设计图纸 (9) 4、设计心得和体会 (10) 5、主要参考文献 (11) 一、序言 随着信息时代的到来,传感器技术已经成为国外优先发展的科技领域之一。测控系统的设计通常是从对象信息的有效获取开始的不同种类

的物理量不仅需要不同种类的传感器进行采集,而且因信号性质的不同,还需要采用不同的测量电路对信号进行调理以满足测量的要去。因此,触感其与检测技术在现代测量与控制系统中具有非常重要的地位。 而在所有的传感器中,热电偶具有构造简单、适用温度围广、使用方便、承受热、机械冲击能力强以及响应速度快等特点,常用于高温区域、振动冲击大等恶劣环境以及适合于微小结构测温场合。 因此,我们想设计一种热电偶传感器能够在低温下使用,可以适用于试验和科研中,测量为温度围:-200 ℃ ~500 ℃,电路不太复杂的简易的热电偶温度传感器,考虑到制作材料相对便宜,我们选择了铜-铜镍(康铜)。在选择测量电路时,我们从简单,符合测量围要求及热电偶的技术特性,我们采用了AD592对T型热电偶进行冷结点的补偿电路。这种型号的电路允许的误差(0.5 ℃或0.004x|t|)相对于其他类型的热电偶具有测量温度精度高,稳定好,低温时灵敏度高,价格低廉。能较好的满足测量围。 热电偶同其它种温度计相比具有如下特点: a、优点 ·热电偶可将温度量转换成电量进行检测,对于温度的测量、控制,以及对温度信号的放大、变换等都很方便, ·结构简单,制造容易, ·价格便宜, ·惰性小,

温度传感器简介

简谈温度传感器及研究进展 摘要:温度传感器是使用范围最广,数量最多的传感器,在日常生活,工业生产等领域都扮演着十分重要的角色。从17世纪温度传感器首次应用以来,依次诞生了接触式温度传感器,非接触式温度传感器,集成温度传感器。近年来在智能温度传感器在半导体技术,材料技术等新技术的支持下,温度传感器发展迅速。由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用更加方便,因此智能温度传感器是当今的一个研究热点。微处理器的引入,使得温度信号的采集,记忆,存储,综合,处理与控制一体化,使温度传感器向智能化方向发展。关键词:温度传感器;智能温度传感器;接触式温度传感器 中图分类号:TP212.1 文献标识码:A Abstract:temperature transducer is used most widely, the largest number of sensors, in daily life, such as industrial production field plays a very important role.Since the 17th century temperature sensor for the first time application, was born in turn contact temperature sensor, non-contact temperature sensor, integrated temperature sensor.Intelligent temperature sensor in recent years in semiconductor technology, materials technology, under the support of new technologies such as the temperature sensor is developing rapidly.Due to the software and hardware of the intelligent temperature sensor reasonable matching can greatly enhance the function of the sensor, improve the precision of the sensor, and can make the temperature sensor has simple and compact structure, use more convenient, thus intelligent temperature sensor is a hot spot nowadays.The introduction of the microprocessor, which makes the temperature signal collection, memory, storage, comprehensive, processing and control integration, make the temperature sensor to the intelligent direction. Key words:temperature transducer; Smart temperature sensor; Contact temperature sensors 前言:温度作为国际单位制的七个基本量之一,测量温度的传感器的各种各样,温度传感器是温度测量仪表的核心部分,十分重要。据统计,温度传感器是使用范围最广,数量最多的传感器。简而言之,温度传感器(temperature transducer)就是是指能感受温度并转换成可用输出信号的传感器。在半导体技术的支持下,本世纪相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。在材料技术的支持下,陶瓷,有机,纳米等新材料用于温度传感器中可以使温度的测量和控制更加科学和精确。由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用更加方便,因此智能温度传感器是当今的一个研究热点。微处理器的引入,使得温度信号的采集,记忆,存储,综合,处理与控制一体化,使温度传感器向智能化方向发展。

第九章热电偶传感器习题及答案

第九章热电偶传感器 一、单项选择题 1)正常人的体温为37?C,则此时的华氏温度约为______,热力学温度约为______。 A. 32F,100K B. 99F,236K C .99F,310K D. 37F,310K 2)_____的数值越大,热电偶的输出热电势就越大。 A. 热端直径 B. 热端和冷端的温度 C. 热端和冷端的温差 D. 热电极的电导率 3)测量钢水的温度,最好选择______热电偶;测量钢退火炉的温度,最好选择_____热电偶;测量汽轮机高压蒸气(200?C左右)的温度,且希望灵敏度高一些,选择______热电偶为宜。 A. R B. B C. S D. K E .E 4)测量CPU散热片的温度应选用______型的热电偶;测量锅炉烟道中的烟气温度,应选用______型的热电偶;测量100m深的岩石钻孔中的温度,应选用______型的热电偶。 A. 普通 B.铠装 C. 薄膜 D. 热电堆 5)在热电偶测温回路中经常使用补偿导线的最主要的目的是______。 A. 补偿热电偶冷端热电势的损失 B. 起冷端温度补偿作用 C. 将热电偶冷端延长到远离高温区的地方 D. 提高灵敏度 二、分析与问答 1、简述热电偶与热电阻的测量原理的异同。 2、设一热电偶工作时产生的热电动势可表示为E AB(t , t0),其中A、B、t、t0各 代表什么意义?t0在实际应用时常应为多少? 3、用热电偶测温时,为什么要进行冷端补偿?冷端补偿的方法有哪几种? 三、计算题 1、用一K型热电偶测量温度,已知冷端温度为40℃,用高精度毫伏表测得此时 的热电动势为29.186mV,求被测的温度大小? 2、用一K型热电偶测钢水温度,形式如图示。已知A、B分别为镍铬、镍硅材 料制成,A`、B`为延长导线。问: 1)满足哪些条件时,此热电偶才能正常工作? 2)A、B开路是否影响装置正常工作?原因? 3)采用A`、B`的好处? 4)若已知t01=t02=40℃,电压表示数为37.702mV,则钢水温度为多少? 5)此种测温方法的理论依据是什么?

第5章 热电式传感器习题

第5章 热电式传感器习题 1、 热电偶结构由哪几部分组成? 2、 用热电偶测温时为什么要进行冷端温度补偿?其冷端温度补偿的方法有哪几种? 3、热电阻温度计有哪些主要优点? 4、 已知铜热电阻—Cul00的百度电阻比W(100)=1.42,当用此热电阻测量50℃温 度时,其电阻值为多少?若测温时的电阻值为92Ω,则被测温度是多少? 解:由 W (100)=R 100 /R 0 =1.42,则其灵敏度为 () C 42010042010010042010042101000000100o /..R .R R .R R K Ω=?==-=--= 则温度为50℃时,其电阻值为 R 50 = R 0 +K×50=100+0.42×50=121() 当R t =92时,由R t = R 0 +Kt ,得 t=( R t ﹣R 0)/K=(92﹣100)/0.42=﹣19(℃) 5、 将一灵敏度为0.08mV/℃的热电偶与电位计相连接测量其热电势,电位计接线端是30℃,若电位计上读数是60mV ,热电偶的热端温度是多少? 解: C C C mV mV t ?=?+?=78030/08.060 6、参考电极定律有何实际意义?已知在某特定条件下材料A 与铂配对的热电势为13.967mV ,材料B 与铂配对的热电势是8.345mV ,求出在此特定条件下,材料A 与材料B 配对后的热电势。 解:由标准电极定律 E (T,T 0 )=E A 铂(T,T 0 )﹣E B 铂 (T,T 0 ) =13.967﹣8.345=5.622(mV) 7、 镍铬—镍硅热电偶灵敏度为0.04mV/℃,把它放在温度为1200℃处,若以指示仪表作为冷端,此处温度为50℃,试求热电势大小。 解: E(1200,50)= (120050)×0.04=46(mV) 8、 热电偶温度传感器的输入电路如习题图7-20所示,已知铂铑—铂热电偶在温度0~100℃之间变化时,其平均热电势波动为6μV/℃,桥路中供桥电压为4V ,三个锰铜电阻(R l 、R 2、R 3)的阻值均为1Ω,铜电阻的电阻温度系数为α=0.004/℃,已知当温度为0℃时电桥平衡,为了使热电偶的冷端温度在0~50℃范围其热电势得到完 全补偿,试求可调电阻的阻值只R 5。 解:热电偶冷端补偿电势 E(t,0)=kt , 式中,k 为热电偶灵敏度(k=6V/℃), 而补偿电桥输出电压(见习题图7-20) t U R t R U R R U U i i αα4440==??= 冷端补偿时有 V k U t U kt i i μαα6000004.06444=?==?==6mV 根据电桥电路,其等效电路为R 1、R cu 和R 2、R 3分别串联后再并联,然后与电源、R 串联,桥臂电阻串并联后为1Ω,由此可得 1×U i =1E/(R+1) 所以 R=E/ U i ﹣1=4000/6﹣1=665.7(Ω) 9、在某一瞬间,电阻温度计上指示温度θ2=50℃,而实际温度θ1=100℃,设电阻温度计的动态关系为 )(212θθθ-=k dt d 其中,k=0.2/s 。试确定温度计达到稳定读数(0.995θ1)所需时间。

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量 (取决于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T 的微分热电势为热电势率, 又称塞贝克系数。塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度差。 2. 热电偶的种类

热电式传感器在生活中的应用

鲁东大学信息与电气工程学院软件二班20102212504 马鑫 热电式传感器在生活中的应用 本系统使用镍铬—镍硅热电偶,被测温度范围为0~655℃,冷端补偿采用补偿电桥法,采用不平衡电桥产生的电势来补偿热电偶因冷端温度变化而引起的热电势变化值。不平衡电桥由电阻R1、R2、R3(锰铜丝绕制)、Rcu(铜丝绕制)四桥臂和桥路稳压源组成,串联在热电偶回路中。Rcu与热电偶冷端同处于±0℃,而R1=R2=R3= 1Ω,桥路电源电压为4V,由稳压电源供电,Rs为限流电阻,其阻值因热电偶不同而不同,电桥通常取在20℃时平衡,这时电桥的四个桥臂电阻R1=R2=R3=Rcu,a、b端无输出。当冷端温度偏离20℃时,例如升高时,Rcu增大,而热电偶的热电势却随着冷端温度的升高而减小。Uab与热电势减小量相等,Uab与热电势迭加后输出电势则保持不变,从而达到了冷端 补偿的自动完成。 测量放大电路 实际电路中,从热电偶输出的信号最多不过几十毫伏(<30mV),且其中包含工频、静电和磁偶合等共模干扰,对这种电路放大就需要放大电路具有很高的共模抑制比以及高增益、低噪声和高输入阻抗,因此宜采用测量放大电路。测量放大器又称数据放大器、仪表放大器和桥路放大器,它的输入阻抗高,易于与各种信号源匹配,而它的输入失调电压和输入失调电流及输入偏置电流小,并且温漂较小。由于时间温漂小,因而测量放大器的稳定性好。由三运放组成测量放大器,差动输入端R1和R2分别接到A1和A2的同相端。输入阻抗很高,采用对称电路结构,而且被测信号直接加到输入端,从而保证了较强的抑制共模信号的能力。A3实际上是一差动跟随器,其增益近似为1。测量放大器的放大倍数为:AV= V0/(V2-V1),AV=RF/R(1+(Rf1+Rf2)/RW)。在此电路中,只要运放A1和A2性能对称(主要指输入阻抗和电压增益),其漂移将大大减小,具有高输入阻抗和共模抑制比,对微小的差模电压很敏感,适宜于测量远距离传输过来的信号,因而十分易于与微小输出的传感器配合使用。RW是用来调整放大倍数的外接电阻,在此用多圈电位器。 实际电路中A1、A2采用低漂移高精度运放OP-07芯片,其输入失调电压温漂αVIOS和输入失调电流温漂αIIOS都很小,OP-07采用超高工艺和“齐纳微调”技术,使其VIOS、IIOS、αVIOS和αIIOS都很小,广泛应用于稳定积分、精密加法、比校检波和微弱信号的精密放大等。OP-07要求双电源供电,使用温度范围0~70℃,一般不需调零,如果需要调零可采用RW进行调整。A3采用741芯片,它要求双电源供电,供电范围为±(3~18)V,典型供电为±15V,一般应大于或等于±5V,其内部含有补偿电容,不需外接补偿电容。 A/D(模数)转换电路 经过测量放大器放大后的电压信号,其电压范围为0~5V,此信号为模拟信号,计算机无法接受,故必须进行A/D转换。实际电路中,选用ICL7109芯片。ICL7109是一种高精度、低噪声、低漂移、价格低廉的双积分型12位A/D转换器。由于目前12位逐次逼近式A/D 转换器价格较高,因此在要求速度不太高的场合,如用于称重测压力、测温度等各种传感器信号的高精度测量系统中时,可采用廉价的双积分式12位A/D转换器ICL7109。ICL7109主要有如下特性:(1)高精度(精确到1/212=1/4096);(2) 低噪声(典型值为15μVP-P);(3)低漂移(<1μV/℃);(4)高输入阻抗(典型值1012Ω);(5)低功耗(<20mW);(6)转换速度最快达30

热电式温度传感器作业与习题

热电式传感器作业与习题 作业习题 1.判断题: a) 热电偶使用时,常配用冷端延长线,延长线可以采用任何一种金属 材料制造。 b) 把N 支相同型号的热电偶依次将正、负极连接,则串联线路的相对 误差会减少。 c) 两种金属相接触时会产生接触电势,两种半导体也会产生接触电势, 但金属和半导体间不会产生接触电势。 d) 热电偶传感器的中间导体定律保证了接入热电偶回路中的第三甚至 第四种导体只要它们几端的温度相同就一定不会影响回路的总电势。 e) 热电偶的补偿导线法与零度恒温法一样,可完全消除冷端温度变化 带来的测温误差。 f) 热电偶的工作机理是导体的热电效应。而热电势的产生必须具备两 个条件,即两种导体材质不同且两个节点的温度不同。 2.已知铜热电阻Cu100的百度电阻比W(100)=1.42,当用此热电阻测量50℃温度时,其电阻值为_______欧;若测温时的电阻值为83欧,则被测温度是_______℃(保留小数点后两位) 3. 叙述并证明热电偶参考电极定律,其中k 为玻尔兹曼常数;e 为电子电荷量; n A 、n B 、 n C 分别为材料A 、B 、C 的自由电子密度;A σ、B σ、C σ分别为材料A 、B 、 C 的汤姆逊系数。且已知在某特定条件下材料A 与铂配对的热电势为13.967mV ,材料B 与铂配对的热电势是8.345mV ,求出在此特定条件下,材料A 与材料B 配对后的热电势。(材料A 在前,材料B 在后) 4.将一灵敏度为0.08 mV/℃的热电偶与电压表相连接,电压表接线端是50℃,若电位计上读数是60mV ,热电偶的热端温度是___________________。 T C T B T

《传感器与检测技术(第2版)》课后习题8 热电式传感器(113)

第8章热电式传感器 一、单项选择题 1、热电偶的基本组成部分是()。 A. 热电极 B. 保护管 C. 绝缘管 D. 接线盒 2、在实际应用中,用作热电极的材料一般应具备的条件不包括()。 A. 物理化学性能稳定 B. 温度测量范围广 C. 电阻温度系数要大 D. 材料的机械强度要高 3、为了减小热电偶测温时的测量误差,需要进行的温度补偿方法不包括()。 A. 补偿导线法 B. 电桥补偿法 C. 冷端恒温法 D. 差动放大法 4、用热电阻测温时,热电阻在电桥中采用三线制接法的目的是()。 A.接线方便 B. 减小引线电阻变化产生的测量误差 C. 减小桥路中其它电阻对热电阻的影响 D. 减小桥路中电源对热电阻的影响 5、目前,我国生产的铂热电阻,其初始电阻值有()。 A.30Ω B.50Ω C.100Ω D.40Ω 6、我国生产的铜热电阻,其初始电阻R0为()。 A.50ΩB.100Ω C.10ΩD.40Ω 7、目前我国使用的铂热电阻的测量范围是() A.-200~850℃ B.-50~850℃ C.-200~150℃ D.-200~650℃ 8、我国目前使用的铜热电阻,其测量范围是()。 A.-200~150℃ B.0~150℃ C.-50~150℃ D.-50~650℃ 9、热电偶测量温度时() A. 需加正向电压 B. 需加反向电压 C. 加正向、反向电压都可以 D. 不需加电压 10、热敏电阻测温的原理是根据它们的( )。 A.伏安特性 B.热电特性 C.标称电阻值 D.测量功率

11、热电偶中热电势包括() A.感应电势 B.补偿电势 C.接触电势 D.切割电势 12、用热电阻传感器测温时,经常使用的配用测量电路是()。 A.交流电桥 B.差动电桥 C.直流电桥 D. 以上几种均可 13、一个热电偶产生的热电势为E0,当打开其冷端串接与两热电极材料不同的第三根金属导体时,若保证已打开的冷端两点的温度与未打开时相同,则回路中热电势()。 A.增加 B.减小 C.增加或减小不能确定 D.不变 14、热电偶中产生热电势的条件有()。 A.两热电极材料相同 B.两热电板材料不同 C.两热电极的几何尺寸不同 D.两热电极的两端点温度相同 15、利用热电偶测温时,只有在()条件下才能进行。 A.分别保持热电偶两端温度恒定 B.保持热电偶两端温差恒定 C.保持热电偶冷端温度恒定 D.保持热电偶热端温度恒定 16、通常用热电阻测量()。 A.电阻 B.扭矩 C.温度 D.流量 17、实用热电偶的热电极材料中,用的较多的是()。 A.纯金属 B.非金属 C.半导体 D.合金 18、工程(工业)中,热电偶冷端处理方法不包括()。 A.热电势修正法 B.温度修正法 C.0℃恒温法 D.补偿导线法 19、下列关于热电偶传感器的说法中,()是错误的。 A.热电偶必须由两种不同性质的均质材料构成 B.计算热电偶的热电势时,可以不考虑接触电势 C.在工业标准中,热电偶参考端温度规定为0℃ D.接入第三导体时,只要其两端温度相同,对总热电势没有影响 20、在实际的热电偶测温应用中,引用测量仪表而不影响测量结果是利用了热电偶的哪个基本定律()。 A. 中间导体定律 B. 中间温度定律 C. 标准电极定律 D. 均质导体定律 21、热电偶温度计采用补偿导线的目的是为了() A.节省热电偶的长度 B. 避免使用冷端补偿

常用温度传感器的对比分析及选择

常用温度传感器的对比分析及选择 大致的要点: 1.温度传感器概述:应用领域,重要性; 2.四种主要的温度传感器类型的横向比较 3.热电偶传感器 4.热电阻传感器 5.热敏电阻传感器 6.集成电路温度传感器以及典型产品举例 7.温度传感器的正确选择及应用 在各种各样的测量技术中,温度的测量可能是最为常见的一种,因为任何的应用领域,掌握温度的确切数值,了解温度与实际状态之间的差异等,都具有极为重要的意义。就以测量为例,在力的测量,压力,流量,位置及电平高低等测量的过程中,为了提高测量精度,通常都会要求对温度进行监视,如压力或力的测量,往往是使用惠斯登电阻电桥,但组成电桥的电阻随温度变化引起的误差,往往会大大超过待测力引起的电阻值变化,如不对温度进行监控并据此校正测量结果,则测量完全不可能进行或者毫无效果。其他参数测量也有类似问题,可以说,各种的物理量都是温度的函数,要得到精确的测定结果,必须针对温度的变化,作出精确的校正。本文就是帮助读者针对特定的用途,选择最为合适的温度传感器,并进行精确的温度测量。 工业上常用的温度传感器有四类:即热电偶、热电阻RTD、热敏电阻及集成电路温度传感器;每一类温度传感器有自己独特的温度测量范围,有自己适用的温度环境;没有一种温度传感器可以通用于所有的用途:热电偶的可测温度范围最宽,而热电阻的测量线性度最优,热敏电阻的测量精度最高。表1是四类传感器的各自独特的性能特性及相互比较。表2是四类传感器的典型应用领域。

热电偶--通用而经济 热电偶由二根不同的金属线材,将它们一端焊接在一起构成,如图1所示;参考端温度(也称冷补偿端)用来消除铁-铜相联及康铜-铜联接端所贡献的误差;而两种不同金属的焊接端放置于需要测量温度的目标上。 两种材料这样联接后会在未焊接的一端产生一个电压,电压数值是所有联接端温度的函数,热电偶无需电压或电流激励。实际应用时,如果试图提供电压或电流激励反而会将误差引进系统。 鉴于热电偶的电压产生于两种不同线材的开路端,其与外界的接口似乎可通过直接测量两导线之间的电压实现;如果热电偶的的两端头不是联接至另外金属,通常是铜,那末事情真会简单至此。 但热电偶需与另外一种金属联接这一事实,实际上又建立了新的一对热电偶,在系统中引入了极大的误差,消除此误差的唯一办法是检测参考端的温度(参见图1),以硬件或硬件-软件相结合的方式将这一联接所贡献的误差减掉,纯硬件消除技术由于线性化校正的因素,比软件-硬件相结合技术受限制更大。一般情况下,参考端温度的精确检测用热电阻RTD,热敏电阻或是集成电路温度传感器进行。原则上说,热电偶可由任意的两种不同金属构建而成,但在实践中,构成热电偶的两种金属组合已经标准化,因为标准组合的线性度及所产生的电压与温度的关系更趋理想。 表3与图2是常用的热电偶E,J,T,K,N,S,B R的特性。

第九章热电偶传感器习题及答案

1、简述热电偶与热电阻的测量原理的异同。 答:(1). 相同点:都能测温度且只能直接测温度量 (2). 不同点:热电阻传感器原理为阻值大小变化对应温度变化,而热电偶传感器为热电动势大小变化对应温度变化 2、设一热电偶工作时产生的热电动势可表示为E AB(t , t0),其中A、B、t、t0各代 表什么意义?t0在实际应用时常应为多少? 答:A、B——两热电极 T——热端温度,即被测温度 t0————冷端温度 t0常应为0℃ 3、用热电偶测温时,为什么要进行冷端补偿?冷端补偿的方法有哪几种? 答:因工作现场常常缺乏使热电偶传感器的冷端保持在0℃的条件 4、热电偶在使用时为什么要连接补偿导线? 答:因为在使用热电偶测温时,必须将热电偶的参考端温度保持恒定,但在现场使用时,热电偶参考端往往处于高温热源附近,必须将它远离热源,移动到温度较为稳定的场所,又因补偿导线在规定使用温度范围内具为与热电偶相同的温度—热电势关系,因而它可以起到延长热电偶的作用,所以热电偶在使用时要连接补偿导线 5、什么叫测温仪表的准确度等级? 答:测温仪表的准确度等级是指测温仪表准确度的数字部分,也就是仪表的准确度去掉百分号。 6、什么是热电偶? 答:热电偶是通过测量电势从而测量温度的一种感温元件,是由两种不同成分的导体焊接在一起构成的。当两端温度不同时,在回路中就会有热电势产生,将温度信号转变为电信号,再由显示仪表显示出来。 7、为什么要进行周期检定? 答:各种计量器具由于在频繁的使用中会发生变化和磨损,失去原有的精度,从而影响量值的准确性。为使测量的数据准确,必须对各种计量器具进行周期检定。

8、利用热电偶测温具有什么特点? 答:测量精度高;结构简单;动态响应快;可作远距离测量;测量范围广。 计算题 1、用一K型热电偶测量温度,已知冷端温度为40℃,用高精度毫伏表测得此时的热电动势为29.186mV,求被测的温度大小? 1、E AB(t0,t)= E AB(t0,t n)+ E AB(t n,t) 即E AB(0,t)= E AB(0,40℃)+ E AB(40℃,t)查表,得: E AB(0,40℃)=1.612 所以:E AB(0,t)=1.612+29.186=30.798(mV) 查表,得t=740℃ 2、用一K型热电偶测钢水温度,形式如图示。已知A、B分别为镍铬、镍硅材料制成,A`、B`为延长导线。问: 1)满足哪些条件时,此热电偶才能正常工作? t01=t02,t n1=t n2 2)A、B开路是否影响装置正常工作?原因? 不影响。因钢水导电且温度处处相同。 3)采用A`、B`的好处?为了使冷端远离高温区,降低测量成本 4)若已知t01=t02=40℃,电压表示数为37.702mV,则钢水温度为多少? 由E AB(t,t0)= E AB(t,t n)+ E AB(t n,t0)得: E AB(t,t0)=1.612+37.702=39.314(mV) 查表得t=950℃ 5)此种测温方法的理论依据是什么?中间温度定律

MAX6675的温度传感器报告

课程设计 课程名称:传感器原理及应用 实验项目:热电偶温度传感器的设计 实验地点:信息学院传感器实验室 专业班级:电科1401班学号:2014001864 学生姓名:李康泽 2018年12月26日

太原理工大学课程设计任务书 1.课程设计完成后,学生提交的归档文件应按照:封面—任务书—说明书—图纸的顺序进行装订上交(大张图纸不必装订)。 2.可根据实际内容需要续表,但应保持原格式不变。

一、设计方案 设计中采用了两个方案,具体的方案见方案一和方案二。 方案一:分立元气件冷端补偿方案 该方案的热电偶冷端温度补偿器件是由分立元件构成的,其体积大,使用不够方便,而且在改变桥路电源或热电偶类型时需要重新调整电路的元件值。主要包括温度采集电路、信号放大电路、A/D转换电路、热电偶冷端补偿电路、数码管显示电路等。其系统框图如图1。 图1:分立元气件冷端补偿 方案二:集成电路温度补偿方案 采用热电偶冷端补偿专用芯片MAX6675,MAX6675温度转换芯片具有冷端温度补偿及对温度进行数字化测量这两项功能。一方面利用内置温度敏感二极管将环境温度转换成补偿电压,另一方面又通过模数转换器将热电势和补偿电压转换为代表温度的数字量, 将二者相加后从串行接口输出测量结果,即为实际温度数据。主要包括温度采集电路、MAX6675温度转换电路、数码管显示电路等。其系统框图如图2。 图2:集成电路温度补偿方案

测温的模拟电路是把当前K型热电偶传感器的电阻值,转换为容易测量的电压值,经过放大器放大信号后送给A/D转换器把模拟电压转为数字信号,再传给单片机AT89S51,单片机再根据公式换算把测量得的温度传感器的电阻值转换为温度值,并将数据送出到数码管进行显示。 综合对比以上两种方案,方案一电路复杂,且测量不精确照成误差较大,方案二采用集成温度转换芯片不仅能很好的解决冷端温度补偿及温度数值化问题,并消除由热电偶非线性而造成的测量误差,且精确度高,可实现电路的优化设计。故最后采用方案二。 二、传感器的选择: 物体的冷热水平可以通过温度来衡量,从分子水平看,又可以表示物体分子运动状态,温度越高,分子运动越猛烈。物体温度改变后显示出的一些特点只可以由温度间接测量。最基本的环境方法——温度,对周边环境会产生重要影响、和人们的衣食住行、农业生产等方面密不可分。温度的测量在工业、农业生产中必不可少,在工业生产中甚至需要时刻观察温度的变化。所以通过对温度的测量和测温设备的研究具有非比寻常的意义。 在社会生产力的不断提高下,对温度测量系统收集的温度数据方法要求越来越高,已经渗透到社会方方面面。温度的测量主要应用于工业、农业这两大领域。在这两大领域中,无论是机械的正常运转还是农作物的蓬勃生长,都离不开温度的测量。在工业生产中,由于生产环境的限制,员工不可长时间停留观察设备运行正常或因为其他原因不能在现场。这是找到最佳的方式收集数据的迫切需要,将数据发送到一个比较好操作的控制室,便于工作人员对数据的分析与处理;在农业生产上,对温室大棚的温度监测,以前都是选择分区取样的人工处理方式,工作辛苦,精确度不高。而且在实际操作中,因为大棚的诸多环境限制因素,例如占地面积广、测量点分散而且数目多,所以这种测量方式已经被淘汰。当前的科技水平下,为了取得更大的效益促使我们必须找到一种精确、简便易行的温度采集测量方法。在科学技术的不断发展下,现代社会对各种参数:准确度和精密度的要求有一个几何增长。在以此基础上,如何快速、准确获取这些参数需要依

常用温度传感器比较

一.主题:温度传感器 二.内容 接触式温度传感器 1.热电偶: (1)测温原理: 两种不同成分的导体(称为热电偶丝或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电动势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表连接,显示出热电偶所产生的热电动势,通过查询热电偶分度表,即可得到被测介质温度。 (2)测温范围: 常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 (3)常用热电偶型号: (4)实例: T型热电偶,测温范围-40~350℃。 2.热电阻: (1)测温原理: 热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。 目前主要有金属热电阻和半导体热敏电阻两类。 金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即: R t=R t0[1+α(t-t0)] 式中,R t为温度t时的阻值;R t0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。半导体热敏电阻的阻值和温度关系为: R t =Ae B/t 式中R t为温度为t时的阻值;A、B取决于半导体材料的结构的常数。

(2)测温范围: 金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠。 半导体热敏电阻测温范围只有-50~300℃左右, 且互换性较差,非线性严重,但温度系数更大,常温下的电阻值更高(通常在数千欧以上)。 (3)常用热电阻: 目前应用最广泛的热电阻材料是铂和铜:铂电阻精度高,适用于中性和氧化性介质,稳定性好,具有一定的非线性,温度越高电阻变化率越小;铜电阻在测温范围内电阻值和温度呈线性关系,温度线数大,适用于无腐蚀介质,超过150℃易被氧化。 中国最常用的有R0=10Ω、R0=100Ω和R0=1000Ω等几种,它们的分度号分别为Pt10、Pt100、Pt1000;铜电阻有R0=50Ω和R0=100Ω两种,它们的分度号为Cu50和Cu100。其中Pt100和Cu50的应用最为广泛。 (4)实例: Pt100为正温度系数热敏电阻传感器,测量范围-200℃~850℃,允许温度偏差值0.15+0.002|t|,最小置入深度200mm,最大允许电流5mA。 3.集成温度传感器: <1>模拟式温度传感器: (1)原理: 将驱动电路、信号处理电路以及必要的逻辑控制电路集成在单片IC上,具有实际尺寸小、使用方便、灵敏度高、线性度好、响应速度快等优点。 (2)常见模拟式温度传感器: 电压输出型: LM3911、LM335、LM45、AD22103。 电流输出型: AD590。 (3)实例: LM135\235\335系列是美国国家半导体公司(NS)生产的一种高精度易校正的集成温度传感器,是电压输出型温度传感器,工作特性类似于齐纳稳压管。该系列器件灵敏度为10mV/K,具有小于1Ω的动态阻抗,工作电流范围从400μA 到5mA,精度为1℃,LM135的温度范围为-55℃~+150℃,LM235的温度范围为-40℃~+125℃,LM335为-40℃~+100℃。封装形式有TO-46、TO-92、SO-8。该器件广泛应用于温度测量、温差测量以及温度补偿系统中。详细信息见LM135,235,335.pdf。 AD590是美国模拟器件公司的电流输出型温度传感器,供电电压范围为3~30V,可以承受44V正向电压和20V反向电压,测温范围为-55℃~+150℃,输出电流为223μA~423μA,输出电流变化1μA相当于温度变化1℃,最大非线性误差为±0.3℃,响应时间仅为20μs,重复性误差低至±0.05℃,功耗约为2mW,输出电流信号的传输距离可达到1km以上,作为一种高阻电流源,最高可达20MΩ,所以它不必考虑选择开关或CMOS多路转换器所引入的附加电阻造成的误差,适用于多点温度测量和远距离温度测量的控制。 4.数字式温度传感器: (1)原理: 将敏感元件、A/D转换单元、存储器等集成在一个芯片上,直接输出反应被

相关主题
文本预览
相关文档 最新文档