当前位置:文档之家› 怎样推导梁的应力公式、变形公式

怎样推导梁的应力公式、变形公式

怎样推导梁的应力公式、变形公式
怎样推导梁的应力公式、变形公式

05、基本知识 怎样推导梁的应力公式、变形公式(供参考) 同学们学习下面内容后,一定要向老师回信(849896803@https://www.doczj.com/doc/363014684.html, ),说出你对本资料的看法(收获、不懂的地方、资料有错的地方),以便考核你的平时成绩和改进我的工作。回信请注明班级和学号的后面三位数。

1 * 问题的提出 ........................................................................................................................... 1

2 下面就用统一的步骤,研究梁的应力公式和变形公式。 ................................................... 2

3 1.1梁的纯弯曲(纯弯曲:横截面上无剪力的粱段)应力公式推导 ................................. 2

4 1.2 梁弯曲的变形公式推导(仅研究纯弯曲) ....................................................................

5 5 1.3 弯曲应力公式和变形公式的简要推导 ............................................................................

6 6 1.4 梁弯曲的正应力强度条件和刚度条件的建立 ................................................................

7 7 2.1 梁剪切的应力公式推导 ....................................................................................................

8 8 2.2 梁弯曲的剪应力强度条件的建立 ....................................................................................

9 9

3. 轴向拉压、扭转、梁的弯曲剪切,应力公式和变形公式推导汇总表 (9)

1

* 问题的提出

在材料力学里,分析杆件的强度和刚度是十分重要的,它们是材料力学的核心内容。 强度条件就是工作应力不超过许用应力,即,[]σσ许用应力工作应力≤、[]ττ≤; 刚度条件就是工作变形不超过许用变形,即,[]y y 许用变形工作变形≤、[]θθ≤。 如,梁

弯曲强度条件:[]σσ≤=W

M max max

;剪切强度条件:[]τρτρ≤?=

b I S F z Q *

max

,max 刚度条件:挠度

??

?

???≤l y l y max ;转角[]??≤max 这里带方括号的,是材料的某种许用值。由材料实验确定出破坏值,再除以安全系数,

即得。

显然,不等式左侧的工作应力和工作变形计算公式,是十分重要的。如果把各种应力公式和变形公式的来历搞明白,对于如何进行强度分析和刚度分析(这是材料力学的主要内容)就会得心应手。

杆件的基本变形一共四种:轴向拉压、扭转、剪切和弯曲变形。它们分别在轴向拉压杆、扭转轴、梁的各章讲授。

其对应的公式各异,但是,推导这些公式的方法却是一样的,都要从静力、几何、物理三个方面考虑,从而导出相应的《应力公式》,在导出应力公式之后,就可以十分方便地

获得《变形公式》。

2 下面就用统一的步骤,研究梁的应力公式和变形公式。

一般来说,多按静力、几何、物理的顺序分析和讲解这三个方面的问题。

力是看不见、摸不着的,只能够感知自身所受的力,或者理性思考、感悟、想象自身以外的物体所承受的力(这是力学难学的根本之所在)。

变形是可以观测的,或者借助易变形的橡胶模型观测到。由于物体运动可以观测到,速度、加速度不难理解,而绝大部分物体的变形很难肉眼观测,研究平衡状态下的内力和变形的难度进一步加深。

物理方面是指材料的力学性质,主要是应力应变关系,这必须试验确定。在材料力学中主要用到线弹性材料胡克定律,基本上没有难度。

故,本文按先易后难的顺序(几何、物理、静力)展开分析和研究。

1 梁的弯曲

3 1.1梁的纯弯曲(纯弯曲:横截面上无剪力的粱段)应力公式推导

1.1.1 几何学方面——变形协调:连续介质在变形后仍然是连续介质。

考察一端固定,一端受弯矩M作用的梁(纯弯曲)。根据“平截面假设”,其变形图示如下:

从橡胶棒的纯弯曲试验,我们观测到纯弯曲时,各横截面绕面内的某轴(中性轴Z )转过一个角度(如图1-1、1-2中的d φ),横截面仍然保持为平面,

公式(1)表明:各纵向纤维(x 方向)的单位长度伸长量εx (线应变、正应变)可表

示为()dx

y ε=

x ,同一截面各点(y 坐标不同)对应的纵向纤维原长dx 是一样的,但伸长量yd υ不同,随y 线性变化。对于对应的纵向纤维,故各条纵向纤维的单位长度伸长量εx (y)是不一样大的。主题字母ε表示物理量为应变,下标x 表示该量ε的方向,圆括号(y)内的y 表示εx 的自变量是y ,即εx (y)表示x 方向的纵向纤维线应变,它随y 值变化。

应变εx 沿y

方向线性分布,沿z 方向不变。在y=0,即中性轴z 轴上各点的应变为零。正弯曲作用的梁段上,中性层(为xz 坐标面)以下的纵向纤维伸长,中性层以上的纵向纤维缩短。

1.1.2 物理学方面——应力应变关系(物质本构关系):假设组成杆件的材料是线弹性的。

()2 εσE =

1.1.3 静力学方面——合力定理:合力等于分力之和。

在梁的横截面上的“广义合力”为作用在xy 面内的力偶M (弯矩),故横截面上各点“正应力”向z 轴取力矩的代数和,应该等于弯矩M 。

把该横截面划分为若干个微小的矩形截面dA=bdy ,设作用在dA 截面的平均正应力为σ,则一个矩形微截面上的轴向力为dA dF N σ=。它对z 轴的力矩为N ydF dM =,y 为微截面dA 形心到中性轴z 的距离。

根据“合力偶等于分力偶之和”,则

()3 ??==A

A

dA y ydF M σ

1.1.4 由上述三个关系式可以推导出轴向拉压杆的横截面应力公式。

为了方便推导和阅读,把上面的几何学、物理学、静力学三个方面的公式汇集如下:

()()1 y c y x x =ε,()2 εσE =,()3 ?=A

dA y M σ

为了求得应力公式,推导如下;

()()()

()42123 z x A

x A

x A

A

A

I Ec dA y Ec ydA yc E dA y E dA yE dA y M ======?????εεσ

式中,()52 ?

A

z dA y I ,称为横截面对形心轴z 的惯性矩,显然,其单位为长度的4

次方。

将(1)(2)式回代到(4):

()()

()

()6/214 z z z z x I y

I y

E

E

I y

E

I Ec M σ

σε

=

===

将(6

(7)式表明梁的正应力沿梁高方向y 成线性分布。

注1:推导(4)式的目的是把含有非几何量的积分式()3 ?

=A

dA y M σ,恒等变

形为不显含积分的表达式()4 z EkI M =,积分

?

A

dA y 2,则隐含在惯性矩的定义式中,

?≡A

z dA y I 2,该积分仅仅是横截面形状、大小的函数,与内力(弯矩M )无关,即可以

对不同形式截面的惯性矩事先予以计算。

注2:在梁的横截面上有线性分布的正应力,但是,它们的合力为零,即梁的横截面上没有轴向力。现证明如下:

()

02

2

/2

/22

/2

/b

h 7==

=

===--?

?

?

?h h z h h z

A

z A z

A

N y I Mb ybdy I M

ydA

I M ydA I M dA F 宽设梁高为σ

注3:实验和进一步的理论研究都指出,纯弯曲的应力公式可以应用于横力弯曲,只要梁长不小于梁高的5倍,即长梁,其计算精度满足土木工程要求。

注4:由()52 ?

≡A

z dA y I 和图1-4所示矩形截面,可导出矩形截面的惯性矩。

4

1.2 梁弯曲的变形公式推导(仅研究纯弯曲)

性关系式()2 εσE =

便可得到梁的变形公式。

()()()dx d Ey E y I M z ?εσ127===,整理后,得 ()8 z

EI M

dx d =?

(8)式中的

dx d ?是曲率,由数学知:()()[]

y y y y y dx d ''±≈'+±

'

'='+'

'=3

2

2/3211?,考

虑到坐标轴y 向下为正和对弯矩正负号的规定,故应取 ()9- y dx

d ''=?

,把(9)代入(8)得

此即是梁的弯曲微分方程。对它积分一次得梁的转角方程(11)式,积分两次得梁的挠曲方程(12)式。

两式中的积分常数c 1和c 2由梁的转角和挠度边界条件确定。

5

1.3 弯曲应力公式和变形公式的简要推导

为了方便读者理清上述推导的思路,将其浓缩如下: 1.3.1 建立三个关系

物理关系:()2 εσE = 静力关系:()3 ?

=

A

dA y M σ

1.3.2 推导应力公式

为了求得应力公式,推导如下;

()()()

()42123 z x A

x A

x A

A

A

I Ec dA y Ec ydA yc E dA y E dA yE dA y M ======?????εεσ

定义()52 ?

A

z dA y I ,称为横截面对形心轴z 的惯性矩,其单位为长度的4次方。

()

()

()

()6/214 z z z z x I y

I y

E

E

I y

E

I Ec M σ

σε

=

===

将(6

1.3.3 推导变形公式 根据 、()2 εσE =

()()()dx d Ey E y I M z ?εσ127===,整理后,得 ()9 z

EI M

dx d =?

由数学知曲率:

()

()[]

y y y y y dx d ''±≈'+±'

'=

'+'

'=3

2

2

/32

11?,考虑到坐标轴y 向下为正

和对弯矩正负号的规定,故应取

()10- y dx

d ''=?

,把(10)代入(9)得

12)式,积分两次得梁的挠曲方程(13)式。

两式中的积分常数c 1和c 2由梁的转角和挠度边界条件确定。

6

1.4 梁弯曲的正应力强度条件和刚度条件的建立

强度条件就是工作应力不超过许用应力,即,[]σσ许用应力工作应力≤; 刚度条件就是工作变形不超过许用变形,即,??

?

???≤l y l

许用相对挠度

工作相对挠度y

2 梁横力弯曲中的剪切

7 2.1 梁剪切的应力公式推导

由于纯弯曲中没有剪力,故不存在剪应力。由于纯弯曲的正应力公式可以用于横力弯曲,在横力弯曲中存在剪力,故用梁的弯曲正应力公式可得梁的剪应力公式。

dx微

段梁(dx,b,h)的一部分梁块(dx,b,h/2-y)。

8

2.2 梁弯曲的剪应力强度条件的建立

强度条件就是工作应力不超过许用应力,即,[]ττ许用应力工作应力≤;

9

3. 轴向拉压、扭转、梁的弯曲剪切,应力公式和变形公

式推导汇总表

同学们:请根据上述各行的1、2、3列公式,自主推导出相应的应力公式和应变公式,以便自我检查你们的学习成果。

注1:相应的强度条件:

1、[]σσ许用正应力工作正应力≤,适用于轴向拉压正应力和梁的正应力;

2、[]ττ许用剪应力工作剪应力≤,适用于扭转剪应力和梁的剪应力。 注2:相应的刚度条件:

1、[]l l ?≤?许用长度变形量工作长度变形量, 适用于轴向拉压变形:[]l l ?≤?,适用于梁的挠度:[]y y ≤,

2、[]??许用角度变形量工作角度变形量≤ 适用于扭转变形(扭转角):[]??≤,适用于梁的转角:[]θθ≤

三角恒等变换公式大全

三角函数 cos (a+ B)=CoS a'-cos B - sin a - sin B cos (a-B)=cos a-cos B + sin a - sin B sin (a+ B)=S in a'-cos B cos a - sin B sin (a-B)=sin a-cos B - cos ,a?sin B tan (a+ B)=(ta n a+ta n B)/ (1-tan a - tan B) tan (a-B)=(ta n a-ta n B)/ (1+ta n a - tan B) 二 倍 角 sin (2a) =2sin a - cos a =2tan (a) /[1-ta门(a)] cos (2 a) =cosA2 (a) -si 门八2 (a) =2cosA2 (a)-1=1-2si nA2 (a)=[1-ta 门 八(a)]/[1+tanA2 (a)] tan (2a) =2tan a /[1 -ta门八2 (a)] 三倍角 sin3 a =3sin a -4sinW (a) C0S3 a =4COS A3 (a) - 3C0S a tan3 a = (3tan a -ta门八3 (a))*( 1-3ta门八2 (a)) sin3 a =4sin aX sin ( 60- a) sin (60+a) C0S3 a =4cos aX COS ( 60- a) C0s ( 60+a) tan3 a =tan aX tan ( 60- a) tan (60+a) 半角公式 sin A2 (a /2 )= (1-cos a) /2 cosA2 (a /2 )= (1+cos a) /2 tan A2 (a /2 )= (1-CoS a) / ( 1+cos a) tan ( a /2 ) =sin a / ( 1+cos a) = ( 1- CoS a) /si n a 半角变形 sinA2 (a /2 ) = (1-cos a) /2 sin(a/2 ) =V[ (1-cos a) /2] a/2 在一、二象限 =-V[ (1-cos a) /2] a/2 在三、四象限 C0SA2 (a /2 ) = (1+cos a) /2 cos(a/2 ) =V[ (1+cos a) /2] a/2 在一、四象限 =-V[ (1+cos a) /2] a/2 在二、三象限 tan A2 (a 12 ) = ( 1-COS a) / ( 1+COS a) tan (a /2 ) =S in a / ( 1+COS a) =( 1- COS a) /si n a =V[ ( 1-COS a) / ( 1+COS a)] a/2在一、三象限 =-V [ ( 1- COS a) / ( 1+COS a) ] a/2 在二、四象限

材料力学实验指导书(矩形截面梁纯弯曲正应力的电测实验)

矩形截面梁纯弯曲正应力的电测实验 一、实验名称 矩形截面梁纯弯曲正应力的电测实验。 二、实验目的 1.学习使用电阻应变仪,初步掌握电测方法; 2.测定矩形截面梁纯弯曲时的正应力分布规律,并与理论公式计算结果进行比较,验证弯曲正应力计算公式的正确性。 三、实验设备 1.WSG-80型纯弯曲正应力试验台 2.静态电阻应变仪 四、试样制备及主要技术指标 1、矩形截面梁试样 材料:20号钢,E=208×109Pa; 跨度:L=600mm,a=200mm,L1=200mm; 横截面尺寸:高度h=28mm,宽度b=10mm。

2.载荷增量 载荷增量ΔF=200N (砝码四级加载,每个砝码重10N 采用1:20杠杆比放大),砝码托作为初载荷,F0=26 N 。 3.精度 满足教学实验要求,误差一般在5%左右。 五、实验原理 如图1所示,CD 段为纯弯曲段,其弯矩为a 2 1 F M = , 则m N M ?=6.20,m N M ?=?20。根据弯曲理论,梁横截面上各点的正应力增量为: z I y M ?= ?理σ (1) 式中:y 为点到中性轴的距离;Iz 为横截面对中性轴z 的惯性矩,对于矩 形截面, 12 bh I 3 z = (2) 由于CD 段是纯弯曲的,纵向各纤维间不挤压,只产生伸长或缩短,所以各点均为单向应力状态。只要测出各点沿纵向的应变增量ε?,即可按胡克定律计算出实际的正应力增量实σ?。 εσ?=?E 实 (3) 在CD 段任取一截面,沿不同高度贴五片应变片。1片、5片距中性轴z 的 距离为h/2,2片、4片距中性轴z 的距离为h/4,3片就贴在中性轴的位臵上。 测出各点的应变后,即可按(3)式计算出实际的正应力增量实σ?,并画出正应力实σ?沿截面高度的分布规律图,从而可与(1)式计算出的正应力理论值理σ?进行比较。 六、实验步骤 1.开电源,使应变仪预热。

第11章梁的弯曲应力要点

第11章梁的弯曲应力 教学提示:梁纯弯曲和横力弯曲时横截面上的正应力;梁横力弯曲时横截面上的切应力;提高弯曲强度的若干措施、薄壁杆件的切应力流和弯曲中心。 教学要求:掌握梁纯弯曲时横截面上正应力计算公式的推导过程,理解横力弯曲正应力计算仍用纯弯曲公式的条件和近似程度。掌握中性层、中性轴和翘曲等基本概念和含义。熟练掌握弯曲正应力和剪应力强度条件的建立和相应的计算。了解什么情况下需要对梁的弯曲切应力进行强度校核。从弯曲强度条件出发,掌握提高弯曲强度的若干措施。 在外荷载作用下,梁截面上一般都有弯矩和剪力,相应地在梁的横截面上有正应力和剪应力。弯矩是垂直于横截面的分布内力的合力偶矩;而剪力是切于横截面的分布内力的合力。本章研究正应力σ和剪应力τ的分布规律,从而对平面弯曲梁的强度进行计算。 11.1梁的弯曲正应力 平面弯曲情况下,一般梁横截面上既 有弯矩又有剪力,如图11.1所示梁的AC、 DB段。而在CD段内,梁横截面上剪力等 于零,而只有弯矩,这种情况称为纯弯曲。 下面推导梁纯弯曲时横截面上的正应力公 式。应综合考虑变形几何关系、物理关系 和静力学关系等三个方面。 11.1.1 弯曲正应力一般公式 1、变形几何关系 为研究梁弯曲时的变形规律,可通过 试验,观察弯曲变形的现象。取一具有对 称截面的矩形截面梁,在其中段的侧面上, 画两条垂直于梁轴线的横线mm和nn,再 在两横线间靠近上、下边缘处画两条纵线 ab和cd,如图11.2(a)所示。然后按图 11.1(a)所示施加荷载,使梁的中段处于纯弯曲 状态。从试验中可以观察到图11 .2(b)情况: (1)梁表面的横线仍为直线,仍与纵线正 交,只是横线间作相对转动。

完全平方公式之恒等变形

§1.6 完全平方公式(2) 班级: 姓名: 【学习重点、难点】 重点: 1、弄清完全平方公式的结构特点; 2、会进行完全平方公式恒等变形的推导. 难点:会用完全平方公式的恒等变形进行运算. 【学习过程】 ● 环节一:复习填空 ()2_____________a b += ()2_____________a b -= ● 环节二: 师生共同推导完全平方公式的恒等变形 ①()222_______a b a b +=+- ②()222_______a b a b +=-+ ③()()22_______a b a b ++-= ④()()22_______a b a b +--= ● 典型例题及练习 例1、已知8a b +=,12ab =,求22a b +的值 变式训练1:已知5a b -=,22=13a b +,求ab 的值 变式训练2:已知6ab =-,22=37a b +,求a b +与a b -的值 方法小结:

提高练习1:已知+3a b =,22+30a b ab =-,求22a b +的值 提高练习2:已知210a b -=,5ab =-,求224a b +的值 例2、若()2=40a b +,()2=60a b -,求22a b +与ab 的值 小结: 课堂练习 1、(1)已知4x y +=,2xy =,则2)(y x -= (2)已知2()7a b +=,()23a b -=,求=+22b a ________,=ab ________ (3)()()2222________a b a b +=-+ 2、(1)已知3a b +=,4a b -=,求ab 与22a b +的值 (2)已知5,3a b ab -==求2()a b +与223()a b +的值。 (3)已知224,4a b a b +=+=,求22a b 与2()a b -的值。

三角恒等变换公式

三角恒等变换公式 1.两角和与差的三角函数 和(差)角公式: sin(α±β)=sin αcos β±cos αsin β cos(α±β)=cos αcos β sin αsin β tan(α±β)= β αβαtan tan 1tan tan ± 倍角公式: sin 2α =2sin αcos α cos2α=cos 2α-sin 2α=2cos 2α-1=1 - sin 2α tan2α=αα2tan 1tan 2- 2.和差化积与积化和差公式 积化和差公式: 2sin αcos β=sin(α+β)+sin(α-β) 2cos αsin β= sin(α+β)-sin(α-β) 2cos αcos β= cos(α+β)+cos(α-β) -2sin αsin β=cos(α+β)-cos(α-β) 和差化积公式: sin α+ sin β=2sin 2βα+cos 2 β α- sin α- sin β=2cos 2βα+sin 2 βα- cos α+ cos β=2cos 2βα+cos 2 βα- cos α- cos β=-2sin 2βα+sin 2βα- 3.万能公式与半角公式 万能公式:

sin α=2tan 12tan 22 αα+ cos α=2tan 12tan 12 2 αα+- tan α=2tan 12tan 22 αα- 半角公式: sin 2 cos 12αα -±= cos 2 cos 12αα+±= tan ααα cos 1cos 12+-± ==ααsin cos 1-=ααcos 1sin + 其他: cos 2 2cos 12αα+= sin 22cos 12αα-= 1+cos2α=2cos α2 1-cos2α=2sin α2

纯弯曲正应力分布规律实验

实验三纯弯曲正应力分布规律实验 一、实验目的 1.用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律并与理论值进行比较; 2.验证纯弯曲梁的正应力计算公式; 3.掌握运用电阻应变仪测量应变的方法。 二、实验仪器和设备 1.多功能组合实验装置一台或弯曲梁试验装置; 2.TS3860型静态数字应变仪一台; 3.纯弯曲实验梁一根; 4.温度补偿块一块; 5.游标卡尺 3-1 多功能组合实验装置 3-2弯曲梁试验装置 1—弯曲梁 2—铸铁架 3—支架 4—加载杆 5—加载螺杆系统 6—载荷传感器 7和8—组成电子秤 三、实验原理和方法 弯曲梁的材料为钢,其弹性模量E=200GN/m2,泊松比μ=0.29。用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:

x M y I σ= (3-2) 式中:M 为弯矩;I x 为横截面对中性轴的惯性矩;y 为所求应力点至中性轴的距离。由上式可知,沿横截面高度正应力按线性规律变化。 实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。当增加压力ΔP 时,梁的四个受力点处分别增加作用力ΔP /2,如图3-3所示。 为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了7片应变片(见图3-3)(对多功能组合装置:b =18.3mm ;h =38mm ;c =133.5mm ),各应变片的粘贴高度见弯曲梁上各点的标注。此外,在梁的下表面沿横向粘贴了应变片8# 。 如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的胡克定律公式σ=E ε,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。 若由实验测得应变片7#和8#的应变ε7,和ε8满足 87||εμε≈ 则证明梁弯曲时近似为单向应力状态,即梁的纵向纤维间无挤压的假设成立。 图3-3弯曲梁布片图 四、实验步骤 1.检查或测量(弯曲梁试验装置)矩形截面梁的宽度b 和高度h 、载荷作用点到梁支点距离c ,及各应变片到中性层的距离y i 。 2.检查压力传感器的引出线和电子秤的连接是否良好,接通电子秤的电源线。检查应变仪的工作状态是否良好。然后把梁上的应变片按序号接在应变仪上的各不同通道的接线柱A 、B 上,公共温度补偿片接在接线柱B 、C 上。相应电桥的接线柱B 需用短接片连接起来,而各接线柱C 之间不必用短接片连接,因其内部本来就是相通的。因为采用半桥接线法,故应变仪应处于半桥测量状态,应变仪的操作步骤见应变仪的使用说明书。 3.根据梁的材料、尺寸和受力形式,估计实验时的初始载荷P 0(一般按P 0=0.1σS 确定)、最大载荷P max (一般按P max ≤0.7σS 确定)和分级载荷ΔP (一般按加载4~6级考虑)。

工程力学第九章梁的应力及强度计算

课时授课计划 掌握弯曲应力基本概念; 掌握弯曲正应力及弯曲剪应力的计算;掌握弯曲正应力的强度计算; 掌握弯曲剪应力强度校核。

I D (d

根据[M],用平衡条件确定许用外载荷。 在进行上列各类计算时,为了保证既安全可靠又节约材料的原则,设计规范还规定梁内的最大正应力允许稍大于[σ],但以不超过[σ]的5%为限。即 3、进行强度计算时应遵循的步骤 (1)分析梁的受力,依据平衡条件确定约束力,分析梁的内力(画出弯矩图)。(2)依据弯矩图及截面沿梁轴线变化的情况,确定可能的危险截面:对等截面梁,弯矩最大截面即为危险截面。 (3)确定危险点 (4)依据强度条件,进行强度计算。 第三节梁的剪应力强度条件 一、概念 梁在横弯曲作用下,其横截面上不仅有正应力,还有剪应力。 对剪应力的分布作如下假设: (1)横截面上各点处剪应力均与剪力Q同向且平行; (2)横截面上距中性轴等距离各点处剪应力大小相。 根据以上假设,可推导出剪应力计算公式: 式中:τ—横截面上距中性轴z距离为y处各点的剪应力; Q—该截面上的剪力; b—需求剪应力作用点处的截面宽度; Iz—横截面对其中性轴的惯性矩; Sz*—所求剪应力作用点处的横线以下(或以上)的截面积A*对中性轴的面积矩。 剪应力的单位与正应力一样。剪应力的方向规定与剪力的符号规定一样。 二、矩形截面横梁截面上的剪应力 如图所示高度h大于宽度b的矩形截面梁。横截面上的剪力Q沿y轴方向作用。 将上式带入剪应力公式得: 上式表明矩形截面横梁截面上的剪应力,沿截面高度呈抛物线规律变化。 在截面上、下边缘处y=±h/2,则=0;在中性轴上,y=0,剪应力值最大,

§4.2 多项式的恒等变形

§4.2 多项式的恒等变形 教学目的:使学生掌握多项式的有关理论及多项式变形的方法,主要是 解析式的求法——拉格朗日插值公式,因式分解的常用方法。 教学重点与难点:解析式的求法——拉格朗日插值公式,因式分解的 常用方法。 课时安排:2课时。 教学内容如下: 一、 多项式的基本概念 多项式是由数与字母进行+、—、?运算而构成。 定义 设n 是一非负整数,形如1110()n n n n f x a x a x a x a --=++++ 的多项式,当0n a ≠时,叫做一元n 次多项式。 所有系数全为零的多项式叫做零多项式,记为0。零多项式是唯一不定义次数的多项式。 二、多项式的恒等定理(多项式的基本定理) 定理1 如果在给定的数域里,对于变数字母的任意值,多项式 1110()n n n n f x a x a x a x a --=++++ 的值都等于零,那么这个多项式的所 有系数都等于零。 证明 用数学归纳法 (1)当n=1时,10()f x a x a =+。因为对于x 的任意值,f(x)的值都等于零,所以令x=0,即得0 0a =。由此得1()0f x a x =≡, 再令x=1,则有10a =。因此,命题对于一次多项式成立。 (2)假定命题对于次数低于n 的多项式成立,现在来证明对于

n 次多项式也成立。 如果对于x 的任意值,都有 1 11 ()n n n n f x a x a x a x a --=++++ 0≡ ① 在等式①中,以2x 代x ,得 11 110(2)2220n n n n n n f x a x a x a x a ---=++++≡ ② ①2n ?—②,得1 12221202 (21)2(21)(21)0n n n n n n n a x a x a -------+-++-≡ ③ 这是一个次数低于n 次的多项式,它恒等于零,依归纳假定,它的所有系数都等于零,即 122 122(21)0,2(21)0,,n n n n a a -----=-= 02(21)0,,(21)0n k k n n k a a ---=-= 因为 20,210( 1,2,n k k k n -≠-≠= 所以 12100,0,,0,0 n n a a a a --=== = 代入①得,0n n a x ≡,令x=1,得0n a = 根据(1)、(2),命题对于任意的一元多项式都成立。 定理2 两个多项式 1110()n n n n f x a x a x a x a --=++++ (0n a ≠) 1m 110 g(x)=b (0)m m m m x b x b x b b --++++≠ 恒等的充分必要条件是它们的次数相等,且对应项系数相等,即 ,(1,2,,)i i n m a b i n === 证明 条件的充分性是显然的,下面证明必要性。 为了确定起见,不妨设n ≥m 。若两个多项式的次数不同,可以在次数较低的多项式中添系数为零的项,使

高一数学上期三角函数恒等变换知识归纳与整理

《三角函数恒等变换》知识归纳与整理 一、 基本公式 1、必须掌握的基本公式 (1) 两角和与差的三角函数 S S C C C βαβαβα =±) ( 同名乘积的和与差 S C C S S βαβαβα±=±) ( 异名乘积的和与差 T T T T T β αβαβα 1) (±=± (2) 二倍角的三角函数 C S S ααα22 = S C S C C 2 22222112ααααα -=-=-= 差点等于1 T T T 2 212α αα -= (3) 半角的三角函数 212 C S α α -± = 2 12 C C α α+± = C C T α α α +-± =112 θ θ θθθsin cos 1cos 1sin 2 -=+= T 2、理解记忆的其他公式 (1) 积化和差 ][2 1 )()(C C C C βαβαβ α-++=

=S S βα][21)()-(C C βαβα+- ][21)()(S S C S βαβαβα-++= ][21)()(S S S C βαβαβα-+-= (2) 和差化积 ][22 2 C S S S βα βαβα-+=+ ][22 2 C S S S βαβαβα+-=- ][22 2C C C C βα βαβα-+=+ ][22 2 S S C C βα βαβα-+-=- (3) 万能公式(全部用正切来表示另外的三角函数称为万能公式) T T S 2 2 212α α α += T T C 22 2 211α α α+-= T T T 2 2 212α α α- = (4) 辅助角公式 )sin(cos sin 2 2 ?++=+x x b x a b a 其中:a b = ?tan 常见的几种特殊辅助角公式: ① ) 4 sin(2cos sin π + =+x x x

实验五----纯弯曲梁正应力实验

实验五 纯弯曲梁正应力实验 一、试验目的 1、熟悉电测法的基本原理。 2、进一步学会静态电阻应变仪的使用。 3、用电测法测定钢梁纯弯曲时危险截面沿高度分布各点的应力值。 二、试验装置 1、材料力学多功能实验装置 2、CM-1C 型静态数字应变仪 三、试验原理 本试验装置采用低碳钢矩形截面梁,为防止生锈将钢梁进行电镀。矩形截面钢梁架在两支座上,加载荷时,钢梁中段产生纯弯曲变形最大,是此钢梁最危险的截面。为了解中段危险截面纯弯曲梁应力沿高度方向分布情况,采用电测法测出加载时钢梁表面沿高度方向的应变情况,再由σ实=E ε实得到应力的大小。试验前在钢梁上粘贴5片应变 片见图5—1,各应变片的间距为4 h ,即把钢梁4等分。在钢梁最外侧不受力处粘贴一片 R 6作为温度补偿片。 图5—1 试验装置示意图 对于纯弯曲梁,假设纵向纤维仅受单向拉伸或压缩,因此在起正应力不超过比例极限时,可根据虎克定律进行计算: σ实=E ε实 E 为刚梁的弹性模量,ε实是通过电测法用电阻应变仪测得的应变值。 四、电测法基本原理 1、电阻应变法工作原理 电测法即电阻应变测试方法是根据应变应力关系,确定构件表面应力状态的一种实验应力分析法。 将应变片紧紧粘贴在被测构件上,连接导线接到电桥接线端子上 当构件受力 构件产生应变 应变片电阻值随之变化 应变仪内部的惠斯登电桥

将电阻值的变化转变成正比的电压信号电阻应变仪内部的放大、相敏、检波电路转换显示器读出应变量。

2、电阻应变片 1)电阻应变片的组成 由敏感栅、引线、基底、盖层和粘结剂组成,其构造简图如图5—2所示。敏感栅能把构件表面的应变转换为电阻相对变化。由于它非常敏感,故称为敏感栅。它用厚度为0.002~0.005mm的铜合金或铬合金的金属箔,采用刻图、制版、光刻及腐蚀等工艺过程制成,简称箔式应变。它粘贴牢固、散热性能好、疲劳寿命长,并能较好的反映构件表面的变形,使测量精度较高。在各测量领域得到广泛的应用。 图5—2 电阻应变片构造简图 2)电阻应变片种类 电阻应变片按敏感栅的结构形状可分为: 单轴应变片:单轴应变片一般是指具有一个敏感栅的应变片。 应变花(多轴应变片):具有两个或两个以上轴线相交成一定角度的敏感栅制成的应变片称为多轴应变片,也称为应变花。其敏感栅可由金属丝或金属箔制成。采用应变花可方便地测定平面应变状态下构件某一点处的应变。 3)应变灵敏系数(K) 将应变片贴在单向应力状态的试件表面,且其轴向与应力方向重合。在单向应力作用下,应变片的电阻相对变化ΔR/P与试件表面沿应变片轴线方向的应变ε之比值,称为应变片的灵敏系数 K=(ΔR/P)/ε 应变片灵敏系数是使用应变片的重要数据。它主要取决于敏感栅的材料、型式和几何尺寸。应变片的灵敏系数受到多种因素的影响,无法由理论求得,是由制造厂经抽样在专门的设备上进行标定,并于包装上注明。常用的应变片灵敏度系数为2—2.4。 当我们使用应变片时,必须在测量前进行校准。校准方法:根据应变片的K值,查表5—1,再根据表内K值所对应的标定值,来调节静态应变仪。 K值 1.9 1.952 2.05 2.1 2.15 2.2 2.25 2.3 2.35 校准值 120Ω5263518250004878476246514545444443474255 3、CM-1C型静态数字应变仪

《纯弯曲时的正应力》教案

《纯弯曲时的正应力》教案 南京航空航天大学刘荣梅 一、教学目标 1.明确纯弯曲和横力弯曲的概念,理解基本假设。 2.掌握纯弯曲正应力公式的推导方法。 3.掌握弯曲正应力公式的应用,解决工程问题。 4.运用问题探索研究式教学方法,激发学生的求知欲和探索动机;锻炼学生分析问题解决问题的能力;培养学生应用实践能力。 二、教学重点和难点 1.纯弯曲和横力弯曲 (1)纯弯曲杆件横截面上仅有弯矩,而无剪力的状态称为纯弯曲。 (2)横力弯曲杆件的横截面上既有弯矩又有剪力的状态称为横力弯曲。 2.中性层和中性轴 (1)中性层杆件弯曲变形时,沿轴线方向既不伸长又不缩短的一层,称中性层。在教学中以立体图形的方 式加以解释。 (2)中性轴中性层和横截面的 交线,即横截面上正应力为零的各点 的连线,称为中性轴。在教学中以立 体图形的方式演示。 (3)中性轴的位置纯弯曲时,直梁的中性轴通过横截面的形心且垂直于载荷作用面。强调这一结论是在轴力为零的情况下得到的。

z M y I σ= m ax M W σ= 3.直梁横截面上弯曲正应力公式 横截面上任一点正应力的大小和该点至中性轴的距离成正比,中性轴一侧为拉应力,另一侧则为压应力。横截面上最大正应力 其中W 为抗弯截面模量,几种常见横截面的W 计算公式: (1) 矩形截面 2 6 bh W = (2) 实心圆截面 3 32 d W π= (3) 空心圆截面 3 4 (1) 32 D W πα = - (4) 型钢 查型钢表或用组合法求。 注意:如果中性轴不是横截面对称(如T 形钢),m ax y 有两个,对应W 也应有两个。 三、 教学手段 综合运用演示实验、多媒体课件等教学手段。 四、 教学方法 问题探索研究式教学方法。 五、 解决方案及时间安排

梁弯曲时横截面上的正应力

在确定了梁横截面的内力之后,还需要进一步研究横截面上的应力与截面内力之间的定量关系,从而建立梁的强度设计条件,进行强度计算。 1、纯弯曲与横力弯曲 从火车轴的力学模型为图2-53a 所示的外伸梁。画其剪力、弯矩图(见图2-53b 、c ),在其AC 、BD 段内各横截面上有弯矩M 和剪力F Q 同时存在,故梁在这些段内 发生弯曲变形的同时还会发生剪力变形,这种变形称为剪力弯曲,也称为横力弯曲。在其CD 段内各段截面,只有弯矩M 而无剪力F Q ,梁的这种弯曲称为纯弯曲。 2、梁纯弯曲时横截面上的正应力 如图2-54a 所示,取一矩形截面梁,弯曲前在其表面两条横向线m —m 和n —n ,再画两条纵向线a —a 和b —b ,然后在其两端外力偶矩M ,梁将发生平面纯弯曲变形(见图2-54b)。此时可以观察到如下变形现象: ⑴横向线m —m 和n —n 任为直线且与正向线正交,但绕某点相对转动了一个微小角度。 ⑵纵向线a —a 和b —b 弯成了曲线,且a —a 线缩短,而b —b 线伸长。 由于梁内部材料的变化无法观察,因此假设横截面在变形过程中始终保持为平面,这就是纯梁弯曲时的;平面假设。可以设想梁由无数条纵向纤维组成,且纵向纤维间无相互的挤压作用,处于单向受拉或受压状态。 从图2-54b 中可以看出,;梁春弯曲时,从凸边纤维伸长连续变化到凹边纤维缩短,期间必有一层纤维既不伸长也不缩短,这一纵向纤维层称为中性层(见图2-54c )。中性层与横截面的交线称为中性轴。梁弯曲时,横截面绕中心轴绕动了一个角度。 由上述分析可知,矩形截面梁弯曲时的应力分布有如下特点: ⑴中性轴的线应变为零,所以其正应力也为零。 ⑵距中性轴距离相等的各点,其线应变相等。根据胡克定律,它们的正应力也必相等。 ⑶在图2-54b 所示的受力情况下,中性轴上部分各点正应力为压应力(即负值),中性轴下部分各点正应力为拉应力(即正值)。 ⑷横截面上的正应力沿y 轴呈线性分布,即ky =σ(k 为特定常数),如图2-55、图2-56所示。最大正应力(绝对值)在离中性轴最远的上、下边缘处。 由于距离中性层上、下的纵向纤维的线应变与到中性层的距离y 成正比,当其正应力不超过材料的比例极限时,由胡克定律可知 y E y E E ?=?=?=ρρεσ 2-24 对于指定的横截面,ρE 为常数(即为上述k 的值)看,由于此时梁轴线的曲率 半径ρ还是一个未知量,通过静力学平衡关系∑z F )(=0,可得 图2-55 正应力分布图 图2-56 梁纯弯曲时横截面上的

高中数学三角函数恒等变形公式

三角函数恒等变形公式 以下总结了三角函数恒等变形公式含倍角公式、辅助角公式、三角和的三角函数、两角和与差的三角函数 两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)辅助角公式: Asinα+Bcosα=(A2+B2)^(1/2)sin(α+t),其中 sint=B/(A2+B2)^(1/2) cost=A/(A2+B2)^(1/2) tant=B/A Asinα-Bcosα=(A2+B2)^(1/2)cos(α-t),tant=A/B 倍角公式: sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α) tan(2α)=2tanα/[1-tan2(α)] 三倍角公式: sin(3α)=3sinα-4sin3(α)=4sinα·sin(60+α)sin(60-α) cos(3α)=4cos3(α)-3cosα=4cosα·cos(60+α)cos(60-α) tan(3α)=tan a · tan(π/3+a)· tan(π/3-a) 半角公式: sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2) tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα 降幂公式 sin2(α)=(1-cos(2α))/2=versin(2α)/2 cos2(α)=(1+cos(2α))/2=covers(2α)/2 tan2(α)=(1-cos(2α))/(1+cos(2α)) 万能公式: sinα=2tan(α/2)/[1+tan2(α/2)] cosα=[1-tan2(α/2)]/[1+tan2(α/2)] tanα=2tan(α/2)/[1-tan2(α/2)] 积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

纯弯曲梁的正应力实验参考书报告

《纯弯曲梁的正应力实验》实验报告 一、实验目的 1.测定梁在纯弯曲时横截面上正应力大小和分布规律 2.验证纯弯曲梁的正应力计算公式 二、实验仪器设备和工具 3.XL3416 纯弯曲试验装置 4.力&应变综合参数测试仪 5.游标卡尺、钢板尺 三、实验原理及方法 在纯弯曲条件下,梁横截面上任一点的正应力,计算公式为 σ= My / I z 式中M为弯矩,I z 为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。 为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。 实验采用半桥单臂、公共补偿、多点测量方法。加载采用增量法,即每增加等量的载荷△P,测出各点的应变增量△ε,然后分别取各点应变增量的平均值△ε实i,依次求出各点的应变增量 σ实i=E△ε实i 将实测应力值与理论应力值进行比较,以验证弯曲正应力公式。 四、实验步骤 1.设计好本实验所需的各类数据表格。 2.测量矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a及各应变 片到中性层的距离y i 。见附表1 3.拟订加载方案。先选取适当的初载荷P 0(一般取P =10%P max 左右),估 算P max (该实验载荷范围P max ≤4000N),分4~6级加载。 4.根据加载方案,调整好实验加载装置。

5. 按实验要求接好线,调整好仪器,检查整个测试系统是否处于正常工作状态。 6. 加载。均匀缓慢加载至初载荷P 0,记下各点应变的初始读数;然后分级 等增量加载,每增加一级载荷,依次记录各点电阻应变片的应变值εi ,直到最终载荷。实验至少重复两次。见附表2 7. 作完实验后,卸掉载荷,关闭电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。 附表1 (试件相关数据) 附表2 (实验数据) 载荷 N P 500 1000 1500 2000 2500 3000 △P 500 500 500 500 500 各 测点电阻应变仪读数 με 1 εP -33 -66 -99 -133 -166 △εP -33 -33 -34 -33 平均值 -33.25 2 εP -16 -3 3 -50 -67 -83 △εP -17 -17 -17 -16 平均值 16.75 3 εP 0 0 0 0 0 △εP 0 0 0 0 平均值 0 4 εP 1 5 32 47 63 79 △εP 17 15 1 6 16 平均值 16 5 εP 32 65 9 7 130 163 △εP 33 32 33 33 平均值 32.75 五、实验结果处理 1. 实验值计算 根据测得的各点应变值εi 求出应变增量平均值△εi ,代入胡克定律计算 各点的实验应力值,因1με=10-6ε,所以 各点实验应力计算: 应变片至中性层距离(mm ) 梁的尺寸和有关参数 Y 1 -20 宽 度 b = 20 mm Y 2 -10 高 度 h = 40 mm Y 3 0 跨 度 L = 620mm (新700 mm ) Y 4 10 载荷距离 a = 150 mm Y 5 20 弹性模量 E = 210 GPa ( 新206 GPa ) 泊 松 比 μ= 0.26 惯性矩I z =bh 3/12=1.067×10-7m 4 =106667mm 4

梁弯曲时横截面上的正应力

梁弯曲时横截面上的正应力 在确定了梁横截面的内力之后,还需要进一步研究横截面上的应力与截面内力之间的定量关系,从而建立梁的强度设计条件,进行强度计算。 1、纯弯曲与横力弯曲 从火车轴的力学模型为图2-53a所示的外伸梁。画其剪力、弯矩图(见图2-53b、 同时存在,故梁在这些段内c),在其AC、BD段内各横截面上有弯矩M和剪力F Q 发生弯曲变形的同时还会发生剪力变形,这种变形称为剪力弯曲,也称为横力弯 ,梁的这种弯曲称为纯弯曲。曲。在其CD段内各段截面,只有弯矩M而无剪力F Q 2、梁纯弯曲时横截面上的正应力 如图2-54a所示,取一矩形截面梁,弯曲前在其表面两条横向线m—m和n—n,再画两条纵向线a—a和b—b,然后在其两端外力偶矩M,梁将发生平面纯弯曲变形(见图2-54b)。此时可以观察到如下变形现象: ⑴横向线m—m和n—n任为直线且与正向线正交,但绕某点相对转动了一个微小角度。 ⑵纵向线a—a和b—b弯成了曲线,且a—a线缩短,而b—b线伸长。 由于梁内部材料的变化无法观察,因此假设横截面在变形过程中始终保持为平面,这就是纯梁弯曲时的;平面假设。可以设想梁由无数条纵向纤维组成,且纵

向纤维间无相互的挤压作用,处于单向受拉或受压状态。 从图2-54b 中可以看出,;梁春弯曲时,从凸边纤维伸长连续变化到凹边纤维缩短,期间必有一层纤维既不伸长也不缩短,这一纵向纤维层称为中性层(见图2-54c )。中性层与横截面的交线称为中性轴。梁弯曲时,横截面绕中心轴绕动了一个角度。 由上述分析可知,矩形截面梁弯曲时的应力分布有如下特点: ⑴中性轴的线应变为零,所以其正应力也为零。 ⑵距中性轴距离相等的各点,其线应变相等。根据胡克定律,它们的正应力也必相等。 ⑶在图2-54b 所示的受力情况下,中性轴上部分各点正应力为压应力(即负值),中性轴下部分各点正应力为拉应力(即正值)。 ⑷横截面上的正应力沿y 轴呈线性分布,即ky =σ(k 为特定常数),如图2-55、图2-56所示。最大正应力(绝对值)在离中性轴最远的上、下边缘处。 由于距离中性层上、下的纵向纤维的线应变与到中性层的距离y 成正比,当其正应力不超过材料的比例极限时,由胡克定律可知 y E y E E ?=?=?=ρρεσ 2-24 对于指定的横截面,ρE 为常数(即为上述k 的值)看,由于此时梁轴线的曲率 半径ρ还是一个未知量,通过静力学平衡关系∑z F )(=0,可得

三角恒等变换所有公式

WOIRD格式 三角恒等变换所有公式 两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α+β)=sinα·cosβ+cosα·sinβ sin(α-β)=sinα·cosβ-cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 二倍角公式: sin(2α)=2sinα·cosα cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] 三倍角公式: sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα 半角公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα 万能公式: 半角的正弦、余弦和正切公式(降幂扩角公式) sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] 和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 专业资料整理

纯弯曲梁的正应力实验

纯弯曲梁的正应力实验 一、实验目的: 1.测定梁在纯弯曲时横截面上正应力大小和分布规律 2.验证纯弯曲梁的正应力公式 二、实验设备及工具: 1.材料力学多功能试验台中的纯弯曲梁实验装置 2.数字测力仪、电阻应变仪 三、实验原理及方法: 在纯弯曲条件下,根据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上任意一点的正应力,计算公式:z M y I σ?= 为测量梁横截面上的正应力分布规律,在梁的弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。贴法:中性层一片,中性层上下1/4梁高处各一片,梁上下两侧各一片,共计五片。 采用增量法加载,每增加等量荷载△P (500N )测出各点的应变增量△ε,求的各点应变增量的平均值△ε实i ,从而求出应力增量: σ实i =E △ε实i 将实验应力值与理论应力值进行比较,已验证弯曲正应力公式。 四、原始数据:

五、实验步骤: 1. 打开应变仪、测力仪电源开关 2.连接应变仪上电桥的连线,确定第一测点到第五测点在电桥通道上的序号。 3. 检查测力仪,选择力值加载单位N或kg,按动按键直至显示N上的红灯亮起。按清零键,使测力计显示零。 4.应变仪调零。按下“自动平衡”键,使应变仪显示为零。 5.转动手轮,按铭牌指示加载,加力的学生要缓慢匀速加载,到测力计上显示500N,读数的学生读下5个测点的应变值,(注意记录下正、负号)。用应变仪右下角的通道切换键来显示第5测点的读数。以后,加力每次500N,到3000N为止。 6.读完3000N应变读数后,卸下载荷,关闭电源。 六、实验结果及处理:

1.各点实验应力值计算 根据上表数据求得应变增量平均值△εPi,带入胡克定律计算各点实验值: σ实i=E△εPi×10-6 2.各点理论应力值计算 载荷增量△P = 500N 弯矩增量△M = △P/2×L P 应力理论值计算(验证的就是它) 3.绘出实验应力值和理论应力值的分布图 以横坐标表示各测点的应力σ 实和σ 理 ,以纵坐标表示各测点距梁中性层的位置。 将各点用直线连接,实测用实线,理论用虚线。 σ y 4.实验值与理论值比较,验证纯弯曲梁的正应力公式

梁的弯曲应力

第8章梁得弯曲应力 梁在荷载作用下,横截面上一般都有弯矩与剪力,相应地在梁得横截面上有正应力与剪应力。弯矩就是垂直于横截面得分布内力得合力偶矩;而剪力就是切于横截面得分布内力得合力。所以,弯矩只与横截面上得正应力σ相关,而剪力只与剪应力τ相关。本章研究正应力σ与剪应力τ得分布规律,从而对平面弯曲梁得强度进行计算。并简要介绍一点得应力状态与强度理论。 8.1梁得弯曲正应力 平面弯曲情况下,一般梁横截面上既有弯 矩又有剪力,如图8、1所示梁得AC、DB 段。而在CD段内,梁横截面上剪力等于零,而 只有弯矩,这种情况称为纯弯曲。下面推导梁 纯弯曲时横截面上得正应力公式。应综合考虑 变形几何关系、物理关系与静力学关系等三个 方面。 8.1.1弯曲正应力一般公式 1、变形几何关系 为研究梁弯曲时得变形规律,可通过试验, 观察弯曲变形得现象。取一具有对称截面得矩 形截面梁,在其中段得侧面上,画两条垂直于梁 轴线得横线mm与nn,再在两横线间靠近上、 下边缘处画两条纵线ab与cd,如图8、2(a)所 示。然后按图8、1(a)所示施加荷载,使梁得 中段处于纯弯曲状态。从试验中可以观察到图 8、2(b)情况: (1)梁表面得横线仍为直线,仍与纵线正交,只 就是横线间作相对转动。 (2)纵线变为曲线,而且靠近梁顶面得纵线缩 短,靠近梁底面得纵线伸长。 (3)在纵线伸长区,梁得宽度减小,而在纵线 缩短区,梁得宽度则增加,情况与轴向拉、压时得 变形相似。 根据上述现象,对梁内变形与受力作如下假设: 变形后,横截面仍保持平面,且仍与纵线正交;同时, 梁内各纵向纤维仅承受轴向拉应力或压应力。前 者称为弯曲平面假设;后者称为单向受力假设。 根据平面假设,横截面上各点处均无剪切变形,因此,纯弯时梁得横截面上不存在剪应力。 根据平面假设,梁弯曲时部分纤维伸长,部分纤维缩短,由伸长区到缩短区,其间必存在一长度不变得过渡层,称为中性层,如图8、2(c)所示。中性层与横截面得交线称为中性轴。对于具有对称截面得梁,在平面弯曲得情况下,由于荷载及梁得变形都对称于纵向对称面,因而中性轴必与截面得对称轴垂直。

相关主题
文本预览
相关文档 最新文档