当前位置:文档之家› 微波测量系统调试与频率测量

微波测量系统调试与频率测量

微波测量系统调试与频率测量
微波测量系统调试与频率测量

实验B1 微波测量系统调试与频率测量

【实验目的】

1.了解微波测量系统的基本组成,学会一般的调试方法。

2.了解反射速调管微波信号源原理及特性,掌握调整参数使微波源实现最佳工作状态的方法。 3.了解微波谐振腔的基本特性,掌握测量谐振腔的谐振频率和品质因数的基本方法。 4.学会用谐振腔波长表测量微波频率。

【实验原理】

一.微波测量系统

微波测量系统通常由等效电源、测量装置、指示仪器三部分组成。微波等效电源部分即微波发送器,包括微波信号源、工作状态(频率、功率等)监视单元、隔离器等。测量装置部分也称测量电路,包括测量线、调配元件、待测元件、辅助器件(如短路器、匹配负载等)以及电磁能量检测器(如晶体检波架、功率插头等)。测量指示仪器是显示测量信号特性的仪表,如直流电流表、测量放大器、选频放大器、功率计、示波器、数字频率计等。

二.反射速调管微波信号源

微波信号源有许多类型,本实验中使用的是反射式速调管信号源

1.反射速调管的工作原理

反射式速调管有阴极、阳极(谐振腔)、反射极三个电

极,结构原理如图2所示。阴极发射电子;阳极利用耦合环和同轴线输出微波功率;反射极用以反射电子。由阴极发出电子束,受直流电场加速后,进入谐振腔。电子以不同的速度从谐振腔飞出来而进入反射极空间。在谐振腔和反射极间的直流排斥电场,使电子未飞到反射极就停下来,反射回谐振腔。

2.反射式速调管的工作特性和工作状态

在一定条件下,反射式速调管的功率和频率特性曲线如图3所示。

(1)反射式速调管只有在某些特定的反射极电压值才能振荡。有振荡输出功率的区域叫做速调管的振荡模,用n 表示震荡模的序号。

(2)对于振荡模,当反射极电压V R 变化时,速调管的输出功率P 和振荡频率f 都随之变化。 (3)输出功率最大的振荡模叫最佳振荡模(图3中n =3的振荡模)。 (4)各个振荡模的中心频率f 0相同通常称为速调管的工作频率。

通常调整速调管的振荡频率有电子调谐和机械调谐两种方法。可利用反射极电压的变化无惯性的进行频率调节,这种方法称为“电子调谐”。如果要在比较大的范围内改变速调管的振荡频率,采用“机械调谐”的方法,改变腔体的固有谐振频率。

反射式速调管的工作状态一般有三种:连续振荡状态、方波调幅状态、锯齿波调频状态。

图2 反射式速调管的结构原理

(1)连续振荡工作状态在反射极上不加任何调制电压使反射式速调管处在最佳工作状态。

(2)方波(或矩形脉冲)调幅工作状态。使速调管处在连续振荡最佳位置,从连续状态变到调幅状态时,调节方波幅度使输出功率为连续状态的一半,此时幅度合适。

(3)锯齿波调频工作状态速调管反射极电压的直流工作点选择在某一振荡模的功率最大点,当锯齿波的幅度比振荡模的宽度小得多时,可以得到近似直线性的调频信号输出,而附加的调幅很小。

图3

三.谐振腔的基本参数

1.谐振频率

描述电磁能量在谐振腔中运动规律的物理量,指在谐振腔中激起的电磁振荡的工作频率。

2.品质因数

描述谐振系统频率选择性的优劣及电磁能量损耗程度的一个物理量。包括谐振腔品质因数、有载品质因数、外界品质因数。

3.耦合系数

谐振腔与外界耦合的强弱,引入的概念,定义为外界电路中的耗能与谐振腔中的耗能之比。

四.谐振腔Q值的测量

测量微波谐振腔Q值的常用方法有功率传输法、功率反射法、示波器法等。

五.微波频率的测量

谐振腔波长表可用两种不同方法与微波系统连接:传输型方法和吸收型方法。吸收式波长表的谐振腔只有一个输入端与能量传输线相接,调谐是从能量传输线路接收端的指示器的读数的降低而看出的,如图7(b)所示。

图7 谐振腔波长表与测量系统的连接及相应的谐振曲线

【实验器材】

反射速调管微波信号源、隔离器、谐振腔波长表、可变衰减器、波导测量线、环形器、谐振腔、单螺钉调配器、匹配负载、短路片、晶体检波器、检波指示器,双踪示波器、选频放大器、数字万用表等。

【基础性实验内容】

1.微波测量系统的认识

熟悉微波测量系统的基本组成和各种微波元件,了解其作用、主要性能及使用方法。 2.微波测量系统的调试

实验所用微波测量系统基本组成如图8所示。 (1)测量系统基本匹配状态的调整

开启速调管电源预热3分钟。调节反射极电压,使速调管进入振荡工作模区。调整系统的始端、终端的短路活塞,使检波指示器的指示为最大。这时,微波测量系统大致处于匹配状态。

图8 实验用微波测量系统

(2)反射速调管连续振荡工作状态的观测

在连续振荡(等幅)工作状态下,测量谐振腔电压即阳极V o ,从0~250V 逐步增加反射极电压V R ,确定反射速调管工作模区,参考图3。测出输出功率的最大值P max 、功率为零和最大值时对应的反射极电压V R ,画出输出功率与反射极电压的关系曲线。

测量输出功率最大的工作模区的中心振荡频率f 0。调节反射极电压,当信号源输出功率最大时,测量吸收式谐振腔波长表的谐振曲线,确定中心振荡频率。

微调反射极电压改变量为±

5V ,重新测量振荡频率f ,观察反射极电压,求?P /?|V r |和?f/?|V r |。 (3)反射速调管锯齿波调频工作状态的观测

在“锯齿波”调制工作方式下,连续缓慢地改变反射极电压,仔细调节晶体检波器的短路活塞和调配螺钉,使示波器上的工作模区图形对称,输出最大。测出功率最大的工作模区的中心振荡频率,观察并记录示波屏上图形。调节“调制幅度”增大锯齿波电压,观测工作模区图形的变化情况。

测量中心振荡频率时可调节吸收式波长表,直至工作模区波形图顶部出现一下降峰。这时,波长表上读数刻度对应的频率即为工作模区波形的中心频率f 0。调节反射极电压用波长表测量半功率点的频率f 1和f 2以及对应的反射极电压V R1和V R2,则反射式速调管的电子协调宽度为:

12||f f f ?=-

则反射速调管的电子调谐灵敏度为

1212||

||

e R R R

f f f W V V V -?=

=?- (14)

(4)反射速调管方波调幅工作状态的观测

首先,在最佳连续振荡工作条件下,缓慢调节反射极电压使输出功率逐渐下降为0;其次, 在“方波”调制工作方式下, 调节“调制幅度”逐步增大方波电压,直到输出功率最大。在整个调整过程中,观察示波屏上图形,测量振荡频率,记录波形变化情况,并加以解释。

【数据处理】

1.反射式速调管连续振荡工作状态观测。

①功率电压数据如下表所示:

表一 反射式速调管连续振荡工作状态数据表

V R /V 18 24 28 40 48 56 76 88 I/μA 0 9.4 0 0 22 0 0 36.2

V R /R 98 132 146 159 220 236 253 I/μA

48

50.2

由上表作U –I 曲线有

图9 反射式速调管工作模区U —I 曲线图

分析:如图所示,反射式速调管并非在任意的反射级电压值下都产生震荡,只有在某些特定的电压下才能产生震荡,从图中可以看出各振荡模的基本规律都是相同的,输出功率都实现增大后减小至零,且最大输出功率对应一个特定的频率值f 0 .

实验测得中心振荡频率f0 的波长λ0=8.86mm,查表得f0=9210(MHz)。

②实验测得最大功率附近±5V对应检波电流,列出表二:

表二反射极电压,振荡频率和功率数据表

由表可知

︱P/V R︱=︱(48.5-43.2)/(146-141)︱= 1.06

︱f/V R︱ =︱(9210-9202)/(146-141)︱= 1.6

2.反射式速调管锯齿波调频工作状态的观测。

①调节仪器得下图:

上图凸起的波形为锯齿波的模,表示有功率输出。

②选择较大的一个模,调节吸收式波长表。工作模区波形图顶部出现一个下降峰:

由上图可知,下降峰表示能量被吸收,即产生了谐振。此时下降峰最大,谐振最大。此时调谐尺寸为8.82mm.查表得中心振荡频率f 0 =9210MHz. 根据检波特性求得 f1,f2

-V R1=148V λ1=9.01mm f1=9190 MHz -V R2=173V λ2=8.65mm f2=9210 MHz 则反射式速调管电子调谐宽度为:

12||f f f ?=-=9190-9210=20MHz

电子调谐灵敏度为:

1212||

||

e R R R

f f f W V V V -?=

=?-=20÷25=0.8MHz ∕v 3.反射式速调管方波调幅工作状态的观测

在方波状态下,调节调制幅度,至输出功率最大,此时示波屏上的图案如下图所示:

此时: λ=8.85mm f=9210 MHz

上图不是严格的方波,可能原因为所取得反射极电压不是最佳。

【思考与讨论】

1. 反射式速调管有哪几种工作状态?应分别选用什么仪表作指示器?

答:一般有三种:连续振荡(等幅)状态,方波(或矩形脉冲)调幅状态和锯齿波(或正弦波)调幅状态。

可使用检波指示器观察连续振荡状态,示波器观察方波和锯齿波调幅状态。

2. 调整反射式速调管微波信号源的工作频率有哪几种常用方法?

答:通常调整速调管的振荡频率有电子调谐和机械调谐两种方法。

“电子调谐”是改变反射极电压,使电子渡越时间改变,电子团的电纳改变,速调管的振荡

频率也随之改变,同样也可以改变阳极电压从而改变速调管的振荡频率。

“机械调谐”是通过改变腔的大小和形状,从而改变其腔体的固有谐振频率。

3.一个典型的微波测量系统一般包括哪几部分?简述其主要元件、仪器设备。

答:微波测量系统通常由等效电源、测量装置、指示仪器三部分组成。微波等效电源部分即微波发送器,包括微波信号源、工作状态(频率、功率等)监视单元、隔离器等。测量装置部分也称测量电路,包括测量线、调配元件、待测元件、辅助器件(如短路器、匹配负载等)以及电磁能量检测器(如晶体检波架、功率插头等)。测量指示仪器是显示测量信号特性的仪表,如直流电流表、测量放大器、选频放大器、功率计、示波器、数字频率计等。

4.微波谐振腔波长表测量频率的基本原理是什么?

答:谐振腔波长表可用两种不同方法与微波系统连接:传输型方法(最大读数法)和吸收型法(最小读数法)。传输式谐振腔有两个耦合元件,一个将能量从微波系统输入谐振腔,另

一个将能量从谐振腔输出到指示器,当谐振腔调谐于待测频率时,能量传输最大,指示器

的读数也是最大。吸收式波长表的谐振腔只有一个输入端与能量传输线相接,调谐是从能

量传输线路接收端的指示器的读数的降低而看出的。

5.有时晶体检波器在速调管和检波二极管都完好的情况下,会出现输出信号很小的现象,如何调

节?

答:(1)速调管并没有处于工作模区,而处于非工作模区,此时输出功率很低,接近于零,方法是:调节速调管电压,当指示器的示数变到到最大时,即得到了匹配状态。

(2)为了调大信号可适当调节衰减器,并且调节反射极电压以及始、终端短路活塞,使输出增大。

【实验总结】

①通过本实验,了解到微波测量系统的基本组成,并对各部件的用法有了了解。

②学会了如何调节“匹配状态”,并在实验中调试了系统的匹配状态,并对匹配状态进行了测量。

③观察测量了反射式速调管的三种不同工作状态,并分别测量了中心振荡频率f.

④在测量中心振荡频率中,利用了多种测量方法,波长表法,示波器法,以及方法状态下最佳振

荡的方法。

射频和微波开关测试系统基础 (1)

射频和微波开关测试系统基础 绪论 无线通信产业的巨大成长意味着对于无线设备的元器件和组件的测试迎来了大爆发,包括对组成通信系统的各种RF IC 和微波单片集成电路的测试。这些测试通常需要很高的频率,普遍都在GHz范围。本文讨论了射频和微波开关测试系统中的关键问题,包括不同的开关种类,RF开关卡规格,和有助于测试工程师提高测试吞吐量并降低测试成本的RF开关设计中需要考虑的问题。 射频开关和低频开关的区别 将一个信号从一个频点转换到另一个频点看起来挺容易的,但要达成极低的信号损耗该如何实现呢?设计低频和直流(DC)信号的开关系统都需要考虑它们特有的参数,包括接触电位、建立时间、偏置电流和隔离特性等。 高频信号,与低频信号类似,需要考虑其特有的参数,它们会影响开关过程中的信号性能,这些参数包括VSWR(电压驻波比)、插入损耗、带宽和通道隔离等等。另外,硬件因素,比如端接、连接器类型、继电器类型,也会极大的影响这些参数。 开关种类和构造 继电器内的容性是限制开关的信号频率的常见因素。继电器的材料和物理特性决定了其构成的内部电容。比如,在超过40GHz的射频和微波开关中,在机电继电器中采用了特殊的接触架构来获得更好的性能。图1显示了一个典型的构造,共同端接位于两个开关端接之间。所有信号的连接线路都是同轴线,来保证最佳的信号完整性(SI)。在这种情况下,连接器是SMA母头。对于更加复杂的开关结构,共同端接被各个开关端接以放射状围绕。 一系列复杂的开关拓扑在RF开关中得以采用。矩阵式开关可以实现每个输入与每个输出的连接。有两种类型的矩阵在微波开关架构中得以采用——blocking和non-blocking架构。一个blocking矩阵可将任意一个输入和任意一个输出进行连接,因此其他的输入和输出就不能同时连接。这对只需在一个时刻切换到一个信号频率的应用是一个有效的低成本方案,信号完整性也更好,因为有更少的继电器路径,特别是避免了相位延迟的问题。而 non-blocking矩阵允许多个路径的同时连接,这种架构具有更多的继电器和线缆,因此灵活性更强,不过价格也更高。

微波电路S参数测量实验报告

微波电路S参数测量实验报告 一、实验目的 掌握微波电路S参数的基本概念、测试的原理和方法。 二、实验内容 用矢量网络分析仪测试微波滤波器的二端口S参数。 三、基本原理 网络分析仪中最常用的应用是矢量网络分析仪,它是用来测量、分析各种微波器件和组件S参数的高精度仪器,在整个行业中使用率极高,作为重要仪器很多从事产品研发和测试的电子工程师都有可能需要使用。矢量网络分析仪的原理如图1所示。 图1 矢量网络分析仪的原理图 上图中各部分的功能如下: A、信号源:提供被测件激励输入信号,被测器件通过传输和反射对激励波作出响应,被测器件的频率响应可以通过信号源扫频来获取,由于测试结构需要考虑多种不同的信号源参数对系统造成的影响,故一般我们采用合成扫频信号源。 B、信号分离装置:含功分器和定向耦合器,分别提取被测件输入和反射信号,从而测量出它们各自的相位和幅度大小,测试装置可以单独也可以集成到分析仪的内部。 C、接收机:对被测件的反射、传输和输入信号进行测试;采用调谐接收机可以提供最好的灵敏度和动态范围,还能抑制谐波和寄生信号。 D、处理显示单元:对测试结果进行处理和显示,它作为多通道一起,需要有基准通道和测试通道,通过二者的比较才能知道测试的精准度,它的显示功能很强大并且灵活,如多种标记功能、极限线功能等,给系统和元器件的性能和参数测试带来很大的便利性。

矢量网络分析仪本身自带了一个信号发生器,可以对一个频段进行频率扫描. 如果是单端口测量的话,将激励信号加在端口上,通过测量反射回来信号的幅度和相位,就可以判断出阻抗或者反射情况。而对于双端口测量,则还可以测量传输参数。 图2 利用网络分析仪测微波电路的S参数 微波滤波器可看作是一个二端口网络,具有选频的功能,可以分离阻隔频率,使得信号在规定的频带内通过或被抑制。 滤波器按其插入衰减的频率特征来分有四种类型:(1)低通滤波器:使直流与某一上限角频率ωC(截至频率)之间的信号通过,而抑制频率高于截至频率ωC的所有信号;(2)高通滤波器:使下限频率ωC以上的所有信号通过,抑制频率在ωC以下的所有信号;(3)带通滤波器:使ω1至ω2频率范围内的信号通过,而抑制这个频率范围外的所有信号。(4)带阻滤波器:抑制ω1至ω2频率范围内的信号,而此频率范围外的信号可以通过。 测试前需要特别注意的一点是,如果待测件是有源器件,连接待测件前一定先将网络分析仪的两个端口的输出功率降到-25dBm以下。否则不但不会得到正确的测试结果,而且还有可能将网络分析仪损坏。这一点是测量有源器件时需要特别注意的一点。 四、微波滤波器技术指标 工作频率:9.36GHz; 电压驻波比:<1.3; 插入损耗:< 1dB。 五、实验步骤 1、矢量网络分析仪开机; 2、矢量网络分析仪校准; 3、连接矢量网络分析仪与被测器件; 4、按下“PRESET”键,准备进行设置,并设置监视的频率范围:按下“FREQ”键,按下“CENTER”软键,使用数字键输入扫频段的中心频率,例如9360,然后按下“MHz”软键。同时按下“SPAN”软键,输入测量带宽,使用数字键输入“500”,然后按下“MHz”软键。

微波基本参数的测量原理

微波基本参数的测量 一、实验目的 1、了解各种微波器件; 2、了解微波工作状态及传输特性; 3、了解微波传输线场型特性; 4、熟悉驻波、衰减、波长(频率)和功率的测量; 5、学会测量微波介质材料的介电常数和损耗角正切值。 二、实验原理 微波系统中最基本的参数有频率、驻波比、功率等。要对这些参数进行测量,首先要了解电磁波在规则波导内传播的特点,各种常用元器件及仪器的结构原理和使用方法,其次是要掌握一些微波测量的基本技术。 1、导行波的概念: 由传输线所引导的,能沿一定方向传播的电磁波称为“导行波”。导行波的电场E 或磁场H 都是x 、y 、z 三个方向的函数。导行波可分成以下三种类型: (A) 横电磁波(TEM 波): TEM 波的特征是:电场E 和磁场H 均无纵向分量,亦即:0=Z E ,0=Z H 。电场E 和磁场H ,都是纯横向的。TEM 波沿传输方向的分量为零。所以,这种波是无法在波导中传播的。 (B) 横电波(TE 波): TE 波即是横电波或称为“磁波”(H 波),其特征是0=Z E ,而0≠Z H 。亦即:电场E 是纯横向的,而磁场H 则具有纵向分量。 (C) 横磁波(TM 波): TM 波即是横磁波或称为“电波”(E 波),其特征是0=Z H ,而0≠Z E 。亦即:磁场H 是纯横向的,而电场E 则具有纵向分量。 TE 波和TM 波均为“色散波”。矩形波导中,既能传输mm TE 波,又能传输mm TM 波(其中m 代表电场或磁场在x 方向半周变化的次数,n 代表电场或磁场在y 方向半周变化的次数)。 2、波导管: 波导管是引导微波电磁波能量沿一定方向传播的微波传输系统,有同轴线波导管和微带等,波导的功率容量大,损耗小。常见的波导管有矩形波导和圆波导,本实验用矩形波导。 矩形波导的宽边定为x 方向,内尺寸用a 表示。窄边定为y 方向,内尺寸用b 表示。10TE 波以圆频率ω自波导管开口沿着z 方向传播。在忽略损耗,且管内充满均匀介质(空气)下,波导管内电磁场的各分量可由麦克斯韦方程组以及边界条件得到: ()sin()j t z o y x E j e ωβωμππα-=-, ()sin()j t z o x x H j e ωβμαππα -=

固有频率测定方式

实验三振动系统固有频率的测量 一、实验目的 1、了解和熟悉共振前后利萨如图形的变化规律和特点; 2、学习用“共振法”测试机械振动系统的固有频率(幅值判别法和相位判别法); 3、学习用“锤击法”测试机械振动系统的固有频率(传函判别法); 4、学习用“自由衰减振动波形自谱分析法”测试振动系统的固有频率(自谱分析法)。 二、实验装置框图 实验装置3-1图框图三、实验原理对于振动系统,经常要测定其固有频率,最常用的方法就是用简谐力激振,引起系统共振,从而找到系统的各阶固有频率。 另一种方法是锤击法,用冲击力激振,通过输入的力信号和输出的响应信号进行传函分析,得到各阶固有频率。以下对这两种方法加以说明:1、简谐力激振简谐力作用下的强迫振动,其运动方程为:XX?方程式的解由这两部分组成:21CC、常数由初始条件决定:式中21其中 ??22????q2?q F ee?A?A0???q?? , 212222222222????????4??4?? ,m eeee

XX代表阻尼强迫振动项。代表阻尼自由振动基,21?2?T自由振动周期:D?D. ?2?T强迫振动项周期:e?e由于阻尼的存在,自由振动基随时间不断得衰减消失。最后,只剩下后两项,也就是通常讲的定常强动,即强迫振动部分:通过变换可写成2?/q22?AA?A? 式中21222???42ee?(1?)42?????e Dw??,代入公式设频率比?2?/q?A则振幅 2222??D?1?4)(?D2?g?arct滞后相位角:2??1FFK2?00xstq/???/:成幅A可写的静位移,所以振起干为弹簧受扰力峰因为值作用引Kmm1?xx?.A? stst2222??D4)??(11???其中称为动力放大系数:222??D?)(1?42动力放大系数β是强迫振动时的动力系数即动幅值与静幅值之比。这个数值对拾振器和单自由度体系的振动的研究都是很重要的。 ??1,即强迫振动频率和系统固有频率相等时,动力系数迅速增加,引起系统共振,由式:当?)?A?sin(wtX e可知,共振时振幅和相位都有明显变化,通过对这两个参数进行测量,我们可以判别系统是否达到共振动点,从而确定出系统的各阶振动频率。 (一)幅值判别法 在激振功率输出不变的情况下,由低到高调节激振器的激振频率,通过示波器,我们可以观察到在某一频率下,任一振动量(位移、速度、加速度)幅值迅速增加,这就是机械振动系统的某阶固有频率。这种方法简单易行,但在阻尼较大的情况下,不同的测量方法的出的共振动频率稍有差别,不同类型的振动量对振幅变化敏感程度不一样,这样对于一种类型的传感器在某阶频率时不够敏感。 (二)相位判别法 相位判别是根据共振时特殊的相位值以及共振前后相位变化规律所提出来的一种共振判别法。在简谐力激振的情况下,用相位法来判定共振是一种较为敏感的方法,而且共振是的频率就是系统的无阻尼固有频率,可以排除阻尼因素的影响。 ?tFF?sin激振信号为: ??)Y sin(?ty?位移信号为:? ) ωt-=ωYcos(y速度信号为:2? ) ωt-=-ωsin(y加速度信号为:(三)位移判别法 将激振动信号输入到采集仪的第一通道(即x轴),位移传感器输出信号或通过ZJT-601A型振动教学仪积分档输出量为位移的信号输入第二通道(即y轴),此时两通道的信号分别为: F=Fsinωt 激振信号为:?) t-y=Y sin(ω位移信号为:?=π/2,πω=ω/2,根据利萨如图原理可知,y轴 信号的相位差为x,共振时,轴信号和nωω时,图象都将由正椭圆变为斜椭圆,其变化过屏幕上的图象将是一个正椭圆。当或略小于ω略大于nn程如下图所示。因此图象由斜椭圆变为正椭圆的频率就是振动体的固有频率。 ω<ωω=ωω>ωn n n 图3-2 用位移判别法共振的利萨如图形 (四)速度判别共振

射频和微波开关测试系统基础

射频和微波开关测试系统基础 无线通信产业的巨大成长意味着对于无线设备的元器件和组件的测试迎来了大爆发,包括对组成通信系统的各种RF IC 和微波单片集成电路的测试。这些测试通常需要很高的频率,普遍都在GHz范围。本文讨论了射频和微波开关测试系统中的关键问题,包括不同的开关种类,RF开关卡规格,和有助于测试工程师提高测试吞吐量并降低测试成本的RF开关设 计中需要考虑的问题。 射频开关和低频开关的区别 将一个信号从一个频点转换到另一个频点看起来挺容易的,但要达成极低的信号损耗该如何实现呢?设计低频和直流(DC)信号的开关系统都需要考虑它们特有的参数,包括接触电位、 建立时间、偏置电流和隔离特性等。 高频信号,与低频信号类似,需要考虑其特有的参数,它们会影响开关过程中的信号性能,这些参数包括VSWR(电压驻波比)、插入损耗、带宽和通道隔离等等。另外,硬件因素,比如端接、连接器类型、继电器类型,也会极大的影响这些参数。 开关种类和构造 继电器内的容性是限制开关的信号频率的常见因素。继电器的材料和物理特性决定了其构成的内部电容。比如,在超过40GHz的射频和微波开关中,在机电继电器中采用了特殊的接触架构来获得更好的性能。图1显示了一个典型的构造,共同端接位于两个开关端接之间。所有信号的连接线路都是同轴线,来保证最佳的信号完整性(SI)。在这种情况下,连接器是SMA母头。对于更加复杂的开关结构,共同端接被各个开关端接以放射状围绕。 一系列复杂的开关拓扑在RF开关中得以采用。矩阵式开关可以实现每个输入与每个输出的连接。有两种类型的矩阵在微波开关架构中得以采用——blocking和non-blocking架构。一个blocking矩阵可将任意一个输入和任意一个输出进行连接,因此其他的输入和输出就不能同时连接。这对只需在一个时刻切换到一个信号频率的应用是一个有效的低成本方案,信号完整性也更好,因为有更少的继电器路径,特别是避免了相位延迟的问题。而non-blocking 矩阵允许多个路径的同时连接,这种架构具有更多的继电器和线缆,因此灵活性更强,不过 价格也更高。 层叠开关架构是多位置开关的一种替代形式。它采用多个继电器将一个输入连接到多个输出。路径长度(同时决定了相位延迟)是由信号经过的继电器的数量决定的。 树形架构是层叠开关架构的一种替代。相比层叠架构,对于同等规格的系统,树形技术需要更多的继电器,然而,选定的路经和其他不用的路经之间的隔离会更好,这样降低了继电器和通道之间的crosstalk。树形架构具备一些优势,包括无端接残余(unterminated stubs),各个通道特性也会相似。然而,在选定路经上具有多个继电器意味着损耗会更大,信号完整性 也令人堪忧。 RF开关卡架构 在测试仪器主机上的RF开关卡应用中,为保证信号完整性,需要理解许多电性能指标。

微波偏振实验报告

篇一:电磁场与微波实验六报告——偏振实验 偏振实验 1. 实验原理 平面电磁波是横波,它的电场强度矢量e和波长的传播方向垂直。如果e在垂直于传播方向的平面内沿着一条固定的直线变化,这样的横电磁波称为线极化波,在光学中也称偏振波。电磁场沿某一方向的能量有sin2 φ的关系,这就是光学中的马吕斯定律:i=i0cos2 φ,式中i0为初始偏振光的强度,i为偏振光的强度,φ是i与i0之间的夹角。 2. 实验步骤 系统构建图 由于喇叭天线传输的是由矩形波导发出的te10波,电场的方向为与喇叭口天线相垂直的系列直线,中间最强。dh926b型微波分光仪的两喇叭天线口面互相平行,并与 地面垂直,其轴与偏振实验线在一条直线上。由于接收喇叭口天线是和一段旋转短波导 连在一起的,在旋转波导的轴承环的90度范围内,每隔5度有一刻度,所以接收喇叭天线的转角可从此处读到。 在主菜单页面点击“偏振实验”,单击“ok”进入“输入采集参数”界面。 本实验默认选取通道3作为光栅通道插座和数据采集仪的数据接口。采集点数可根据提示选取。 顺时针或逆时针(但只能沿一个方向)匀速转动微波分光仪的接收喇叭,就可以得到转角与接收指示的一组数据。 终止采集过程后,按下“计算结果”按钮,系统软件将本实验根据实际采集过程处理得到的理论和实际参数。 注意事项: ①为避免小平台的影响,最好将其取下。 ②实验用到了接收喇叭天线上的光栅通道(光传感头),应将该通道与数据采集仪通道3用电缆线连接。 ③转动接收喇叭天线时应注意不能使活动臂转动。 ④由于轴承环处的螺丝是松的,读取电压值时应注意,接收喇叭天线可能会不自觉偏离原来角度。最好每隔一定读数读取电压值时,将螺丝重新拧紧。 ⑤接收喇叭天线后的圆盘有缺口,实验过程中应注意别将该缺口转动经过光栅通道,否则在该处软件将读取不到数据。 3. 实验结果

微波频率及波导波长的测量

开放项目讲义 微波频率及波导波长的测量 1、微波的性质 微波技术是近代发展起来的一门尖端科学技术,它不仅在通讯、原子能技术、空间技术、量子电子学以及农业生产等方面有着广泛的应用,在科学研究中也是一种重要的观测手段,微波的研究方法和测试设备都与无线电波的不同。从图1可以看出,微波的频率范围是处于光波和广播电视所采用的无线电波之间,因此它兼有两者的性质,却又区别于两者。与无线电波相比,微波有下述几个主要特点 图1 电磁波的分类 (1).波长短(1m —1mm):具有直线传播的特性,利用这个特点,就能在微波波段制成方向性极好的天线系统,也可以收到地面和宇宙空间各种物体反射回来的微弱信号,从而确定物体的方位和距离,为雷达定位、导航等领域提供了广阔的应用。 (2).频率高:微波的电磁振荡周期(10-9一10-12s)很短,已经和电子管中电子在电极间的飞越时间(约10-9s)可以比拟,甚至还小,因此普通电子管不能再用作微波器件(振荡器、放大器和检波器)中,而必须采用原理完全不同的微波电子管(速调管、磁控管和行波管等)、微波固体器件和量子器件来代替。另外,微波传输线、微波元件和微波测量设备的线度与波长具有相近的数量级,在导体中传播时趋肤效应和辐射变得十分严重,一般无线电元件如电阻,电容,电感等元件都不再适用,也必须用原理完全不同的微波元件(波导管、波导元件、谐振腔等)来代替。 (3).微波在研究方法上不像无线电那样去研究电路中的电压和电流,而是研究微波系统中的电磁场,以波长、功率、驻波系数等作为基本测量参量。 (4).量子特性:在微波波段,电磁波每个量子的能量范围大约是10-6~10-3eV,而许多原子和分子发射和吸收的电磁波的波长也正好处在微波波段内。人们利用这一特点来研究分子和原子的结构,发展了微波波谱学和量子电子学等尖端学科,并研制了低噪音的量子放大器和准确的分子钟,原子钟。 (5).能穿透电离层:微波可以畅通无阻地穿越地球上空的电离层,为卫星通讯,宇宙通讯和射电天文学的研究和发展提供了广阔的前途。 综上所述微波具有自己的特点,不论在处理问题时运用的概念和方法上,还是在实际应用的微波系统的原理和结构上,都与普通无线电不同。微波实验是近代物理实验的重要组成部分。 2、微波的用途 (1)微波炉 微波炉是一种相当简单的系统,由高功率源、波导馈线和炉腔所成。源一般是工作在2.45GHz的磁控管,它的输出功率通常在500~1500W之间。炉腔具有金属壁,电气尺寸相对较大,为了减小由于炉子内存在驻波所引起的不均匀加热,用一种“模扰动器”扰乱腔内场

固有频率测定方式

实验三振动系统固有频率的测量 、实验目的 1、了解和熟悉共振前后利萨如图形的变化规律和特点; 2、学习用“共振法”测试机械振动系统的固有频率(幅值判别法和相位判别法) 3、学习用“锤击法”测试机械振动系统的固有频率(传函判别法); 4、学习用“自由衰减振动波形自谱分析法”测试振动系统的固有频率(自谱分析法)、实验装置框图

图3-1实验装置框图 三、实验原理 对于振动系统,经常要测定其固有频率, 最常用的方法就是用简谐力激振, 引起系统共 振,从而找到系统的各阶固有频率。 另一种方法是锤击法,用冲击力激振, 通过输入的力信 号和输出的响应信号进行传函分析,得到各阶固有频率。以下对这两种方法加以说明: 1、简谐力激振 简谐力作用下的强迫振动,其运动方程为: mx Cx Kx = F o sin e t 方程式的解由X ! X 2这两部分组成: X^^t (C 1 cosw D t C 2 si nw D t) 式中C 1、C 2常数由初始条件决定: 的定常强动,即强迫振动部分: x 2 cos e t 7^ s in 'e t 2 4 2 r ;2』 通过变换可写成 其中 X 2 A cosw e t A sinw e t A = E _讯$十4名2coj 【2 2q e ; F 0 q - m X 1 代表阻尼自由振动基, x 2代表阻尼强迫振动项。 自由振动周期: T D 强迫振动项周期: T e ■D 2 二 ■e 由于阻尼的存在, 自由振动基随时间不断得衰减消失。最后, 只剩下后两项, 也就是通常讲 2q e

X = Asin (w e t - :) q/ ‘2 2 ,22 (1 -笃II CO o 2? ~2 2 皎—叽丿 滞后相位角: 二a r ct j D ; 1— y 2 F K F 因为q/ 「计齐若xst 为弹簧受干扰力峰值作用引起的静位移,所以振幅 其中[称为动力放大系数: 「 ------------ 1 — (1」2)2+442D 2 动力放大系数3是强迫振动时的动力系数即动幅值与静幅值之比。 这个数值对拾振器和 单自由度体系的振动的研究都是很重要的。 当- 1 ,即强迫振动频率和系统固有频率相等时, 动力系数迅速增加,引起系统共振, 由式: X = Asi n (W e t -】) 可知,共振时振幅和相位都有明显变化, 通过对这两个参数进行测量, 我们可以判别系统是 否达到共振动点,从而确定出系统的各阶振动频率。 (一) 幅值判别法 在激振功率输出不变的情况下, 由低到高调节激振器的激振频率, 通过示波器,我们可 以观察到在某一频率下,任一振动量(位移、速度、加速度)幅值迅速增加,这就是机械振 动系统的某阶固有频率。这种方法简单易行,但在阻尼较大的情况下,不同的测量方法的出 的共振动频率稍有差别,不同类型的振动量对振幅变化敏感程度不一样, 这样对于一种类型 的传感器在某阶频率时不够敏感。 (二) 相位判别法 相位判别是根据共振时特殊的相位值以及共振前后相位变化规律所提出来的一种共振 判别法。在简谐力激振的情况下,用相位法来判定共振是一种较为敏感的方法, 而且共振是 式中 设频率比 则振幅 」=—,;=Dw 代入公式 o q/co 2 (1 _ J .2)2 - 4」 2 D 2 写成: _______ 1 _______ (1 _」2 )2 4」 2D 2 X st ?X st

微波湿度测试系统

MOIST300B 手持式微波湿度测试系统 一、MOIST300B 手持式微波湿度测试系统概述 德国HF SENSOR MOIST300B 手持式微波湿度测试系统用于土木工程中混凝土、砖、EIFS材料、瓷砖、砂岩、沥青路面、木材、合成材料、屋顶材料和其它建筑材料的湿度测试及湿度分布成像。 德国HFSENSOR MOIST 300B手持式微波湿度测试系统微处理器主机配合MOIST系列微波探头,通过内部数据处理,可以即时在主机屏幕上直接显示湿度分布图像。主机可以保存1000个阵列的一百万个湿度读数,可通过MOISTANALYZE 软件进行数据处理,也可通过USB线把数据传输到电脑。 二、MOIST300B 手持式微波湿度测试系统技术规格 1、湿度范围:0%

6、探测深度:MOIST-R1M探头:2~3cm MOIST-R2M探头:5~7cm MOIST-DM 探头:10~12cm MOIST-PM探头:20~30cm MOIST-SM探头:60~80cm 7、电源:4节1.5V电池(可充电碱性电池) 8、屏幕:TFT,320*240,256色 9、软件:MOISTANALYZE3.2 11、携带箱:模制塑料箱 12、电缆:USB连接电缆 13、电池充电:220V AC电池充电器 14、主机尺寸:195*95*40mm(3.5寸显示屏) 15、探头尺寸:130*50mm 三、MOIST300B 手持式微波湿度测试仪配置: 1、MOIST300B测试主机:1台 2、MOIST-R1M探头:1支 3、MOIST-R2M探头:1支 4、MOIST-DM探头:1支 5、MOIST-PM探头:1支 6、MOIST-SM探头:1支 7、USB连接电缆:1根 8、MOISTANALYZE分析成像软件:1份 9、操作手册:1份

微波测量实验 实验三

实验三复反射系数(复阻抗)测量 121180166 赵琛 一、实验目的 1、了解测量线的基本结构和调谐方法,掌握微波晶体检波律的校 准方法 2、了解驻波测量与阻抗测量的意义与相互关系,熟练掌握用测量 线测量反射系数,即复阻抗的基本方法。 3、熟悉Smith阻抗圆图的应用 4、了解阻抗调配器作用及阻抗调配方法 二、实验原理 参看序言 1.3有关部分,1.5.2谐振式波长计,讲义第四部分YM1124单频点信号发生器,YM3892/YM3892A选频放大器使用说明。测试框图:

三、实验要求与步骤 1 在测量线后接短路片。按仪器使用说明正确调试微波信号源,放大器等。在调试中,一般测量线的探针调节旋钮无需调动,将信号调至最大,并用波长计测出信号源工作频率f,由此计算导波长λg。 2 在测量线后接短路片,用交叉读数法测出各最小点位置Dmin,求导波长λg,并与上面计算得到λg做比较。 3 在测量线后接匹配负载,用直接法测出其驻波系数。 4 在测量线后接膜片+匹配负载,用直接法、二倍最小法、功率衰减法测量其驻波系数,并测出最小点位置,计算该负载的输入阻抗及输入导纳。功率衰减器的刻度通过查表得到衰减量。 5 取下负载,测量线开口,测一下此时驻波系数ρ及Dmin,计算终端开口时的等效阻抗值。 6 在测量线后接短路片,测量晶体检波律。 四、实验数据与实验分析 1 用频率计算λg。 波长计示数为8.45,波长计型号为9507,查表可得,此时 f=9.3735GHz a=2.286cm, 带入公式可求得,λg=44.7mm 2 短路法测导波长λg

最小读数法读数:(单位:mm) 与计算得到λg对比:由数据可见,最小读数法测得的λg稍大于计算频率得到的λg,这个是符合预期的,因为这是由于测量线上开槽线的影响,使得在测量线中测得的导波长比不开槽的相同截面举行波导中的导波长要稍微长一点。因此,测量线测得的波长稍高于波长计测得的波长。 3 用直接法测阻抗匹配时的驻波系数: 分析:可以看出,由于此时阻抗匹配,ρ近似等于1。但是,由于ρ很小,驻波场最大值和最小值区别不大,且变化不尖锐,导致不易测

微波检测原理

微波检测原理 微波是指频率为300MHz-3000GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到0.1毫米之间的电磁波,是分米波、厘米波、毫米波和亚毫米波的统称。微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。微波作为一种电磁波也具有波粒二象性.微波量子的能量为1 99×l0 -25~1.99×10-22j。 微波的基本性质通常呈现为穿透、反射、吸收三个特性。对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。对于水和食物等就会吸收微波而使自身发热。而对金属类东西,则会反射微波。 从电子学和物理学观点来看,微波这段电磁频谱具有不同于其他波段的如下重要特点: 穿透性 微波比其它用于辐射加热的电磁波,如红外线、远红外线等波长更长,因此具有更好的穿透性。微波透入介质时,由于介质损耗引起的介质温度的升高,使介质材料内部、外部几乎同时加热升温,形成体热源状态,大大缩短了常规加热中的热传导时间,且在条件为介质损耗因数与介质温度呈负相关关系时,物料内外加热均匀一致。 选择性加热 物质吸收微波的能力,主要由其介质损耗因数来决定。介质损耗因数大的物质对微波的吸收能力就强,相反,介质损耗因数小的物质吸收微波的能力也弱。由于各物质的损耗因数存在差异,微波加热就表现出选择性加热的特点。物质不同,产生的热效果也不同。水分子属极性分子,介电常数较大,其介质损耗因数也很大,对微波具有强吸收能力。而蛋白质、碳水化合物等的介电常数相对较小,其对微波的吸收能力比水小得多。因此,对于食品来说,含水量的多少对微波加热效果影响很大。 热惯性小 微波对介质材料是瞬时加热升温,能耗也很低。另一方面,微波的输出功率随时可调,介质温升可无惰性的随之改变,不存在“余热”现象,极有利于自动控制和连续化生产的需要。 似光性和似声性 微波波长很短,比地球上的一般物体(如飞机,舰船,汽车建筑物等)尺寸相对要小得多,或在同一量级上。使得微波的特点与几何光学相似,即所谓的似光性。因此使用微波工作,能使电路元件尺寸减小;使系统更加紧凑;可以制成体积小,波束窄方向性很强,增益很高的天线系统,接受来自地面或空间各种物体反射回来的微弱信号,从而确定物体方位和距离,分析目标特征。 由于微波波长与物体(实验室中无线设备)的尺寸有相同的量级,使得微波的特点又与声波相似,即所谓的似声性。例如微波波导类似于声学中的传声筒;喇叭天线和缝隙天线类似与声学喇叭,萧与笛;微波谐振腔类似于声学共鸣腔非电离性 微波的量子能量还不够大,不足与改变物质分子的内部结构或破坏分子之间的键。再有物理学之道,分子原子核原子核在外加电磁场的周期力作用下所呈现的许多共振现象都发生在微波范围,因而微波为探索物质的内部结构和基本特性提供了有效的研究手段。另一方面,利用这一特性,还可以制作许多微波器件。信息性

实验1微波测试系统的认识与调试0

实验一微波调试系统的认识与调试 【实验目的】 1.了解微波测试系统. 2.熟悉和掌握微波测试系统中各种常用设备的结构原理和使用方法; 【实验内容】 1. 观看按图1-1和图1-2装置的微波测试系统。了解微波测量的几种方法。 2. 观看常用微波元件的形状、结构,并了解其作用、主要特性及使用方法。 【实验原理】 一、微波测试系统 微波测试系统通常有同轴和波导两种系统。同轴系统频带宽,一般用在较低的微波频段(2cm波段以下);波导系统(常用举行波导)损耗低、功率容量大,一般用在较高频段(厘米波直至毫米波段)。 微波测试系统通常由三部分组成,如图1-2所示。 图1-2微波测试系统 (1)微波发送部分(等效电源部分),主要包括微波信号源、衰减器、隔离器、有的还附加了功率、频率监测单元。 信号源是微波测试系统的心脏。测量技术要求具有足够的功率电平和一定频率的微

波信号,同时要求一定的功率和频率稳定度。功率和频率监测单元是由定向耦合器取出一小部分能量,经过检测指示来观察源的稳定情况,以便及时调整。为了减小负载对信号源的影响,电路中采用了隔离器。 (2)测量装置部分(测量电路部分),主要包括驻波测量线、调配元件、待测元件、辅助器件(如短路器、匹配负载等)以及电磁能量检测器(晶体检波器、功率计探头等)。 (3)指示器部分(测量接收器),指示器是显示测量信号特性的仪器,如直流微安表、选频放大器(或测量放大器)、示波器、功率计、数字频率计等。 当对微波信号的功率和频率稳定度要求不太高时,测量系统就可简化如图1-3所示,微波信号源直接与测量装置连接,其工作频率可由波长计测得。 图1-3 微波测试系统简化框图 二、主要微波测量线和频率计的原理结构和使用方法 (4)驻波(开槽)测量线 【仪器简介】 驻波测量线用于微波波段测量电压驻波比、波长及阻抗等参量。主要组成部分有:开槽传输线段(按开槽线段截面形状可分为同轴测量线和波导测量线)、探头装置(包括探针、检波晶体和调谐器)以及传动机构和位置测量装置。探针有传动机构带动,沿开槽线的槽缝平稳移动,检取开槽线中的高频能量,经晶体检波后送至指示器。此指示器的读数与对应位置处的电场或功率成正比(视晶体检波律而言)。随探针沿槽缝移动,可测得电场幅值沿线分布,从而确定系统的驻波、阻抗等参量。测量线结构简单,用途广

微波测量实验报告一

近代微波测量实验报告一 姓名:学号: 学院:时间:年月 一实验名称 频谱仪的使用及VCO测量 二实验目的 了解频谱仪原理,熟悉频谱仪的参数设置及使用方法;掌握信号频率、功率、相位噪声和谐波的测试方法。 三实验内容 1、点频信号测试 测试信号源输出点频信号1GHz的二次和三次谐波抑制比(输出功率分别为-20dBm和20dBm),测试信号的相噪(@10KHz、@100KHz、@1MHz),考察仪器分辨力带宽、视频带宽等设置对测试结果的影响; 2、VCO测试 测试VCO的输出频率范围、输出功率(包括对应的控制电压),测试某频率点的相噪(@1MHz)和二次、三次谐波抑制比。 四实验器材 RS公司SMBV信号源、FSL6频谱仪、APS3005S直流稳压电源、VCO、微波同轴电缆、微波转接头。 五实验原理及实验步骤 相位噪声:在频域内,一个理想正弦波信号的表现是一个单谱线;实际信号除了主信号之外还包括一些离散的谱线,它们是随机的幅度和相位的抖动,在正常信号的左右两边以边带调制的形式出现。在频域内信号的所有不稳定度总和表现为载波两侧的噪声边带,边带噪声是一个间接的测量与射频信号功率频谱相关噪声功率的指标。边带噪声可以表述为调频边带噪声和调幅边带噪声。大多数的被相位噪声测试系统测量信号的调幅边带功率相对调频边带功率来说都很小,所以对大多数信号来说测量的边带噪声就是调频边带噪声(即相位噪声也称单边带相位噪声)。它的定义为1Hz带宽内相位调制边带的功率和信号总功率的比值,

单位为dBc/Hz。在信号频谱分析仪上,边带噪声是相位噪声和幅度噪声的总和,通常当已知调幅噪声远小于相位噪声时(小于10dB以上),在频谱仪上读出的边带噪声即为相位噪声。 实验步骤 a)设置矢量信号源,分别产生产生频率为1GHz,功率为20dBm和-20dBm 的正弦信号; b)连接信号源与频谱仪; c)设置频谱分析仪,设置中心频率为1GHz,通过调整Res BW和Video BW, 显示被测信号; d)测试在偏离信号10KHz、100KHz、1MHz时的相位噪声; e)调整频谱仪起始、终止频率或带宽使得屏幕足够显示频率为1GHz信号 的二次和三次谐波; f)通过Mkr键选择Delta设置,测量并标示出二次谐波和三次谐波抑制比; g)关闭矢量信号源,连接直流稳压电源、VCO及频谱分析仪; h)通过调节直流稳压电源的电压大小,在频谱仪上观察信号的频率和输出 功率的变化,记录下最大和最小功率,可得VCO的输出频率范围; i)选定频率点:控制电压7.4V,输出功率14.38dBm,频率1.502817GHz, 测试该频率点的相噪(@1MHz)和二次、三次谐波抑制比。 六实验结果 1、点频信号测试数据及图片 数据图片: a)输入功率为20dBm时 二次、三次谐波抑制比

实验三--微波波导波长与频率的测量

实验三--微波波导波长与频率的测量

实验三微波波导波长与频率的测量、分析和计算 一、实验目的 (1)熟悉微波测量线的使用; (2)学会测量微波波导波长和信号源频率; (3)分析和计算波导波长及微波频率。 二、实验原理 测量线的基本测量原理是基于无耗均匀传输线理论,当终端负载与测量线匹配时测量线内是行波;当终端负载为短路或开路时,传输线上为纯驻波,能量全部反射。根据驻波分布的特性,在波导系统终端短路时,传输系统中会形成纯驻波分布状态,在这种情况下,两个驻波波节点之间的距离即为波导波长的1/2 ,所以只要测量出两个驻波波节点之间的距离,就可以得到信号源工作频率所对应的波导波长。 方法一:通过测量线上的驻波比,然后换算出反射系数模值,再利用驻波最小点位置d min 便可得到反射系数的幅角以及微波信号特性、网络特性等。根据这一原理,在测得一组驻波最小点位置d1,d2,d3,d4… 后,由于相邻波节点的距离是波导波长的1/2,这样便可通过下式算出波导波长。

??????-+-+-+-=0min 10min 20min 30min 423421d d d d d d d d g λ (3-1) 方法二:交叉读数法测量波导波长,如图 3-1 所示。 图 3-1 交叉读数法测量波节点位置 为了使测量波导波长的精度较高(接近实际的波导波长),采用交叉读数法测量波导波长。在测试系统调整良好状态下,通过测定一个驻波波节点两侧相等的电流指示值 I 0 (可选取最大值的 20%)所对应的两个位置 d 1、d 2,则取 d 1、d 2 之和的平均值,得到对应驻波波节点的位置 d min1 。用同样的方法测定另一个相邻波节点的位置 d min2 ,如图 3-1 所示,则 d min1 、 d mi n2 与系统中波导波长之间的关系为: )(21);(214 32min 211min d d d d d d +=+= (3-2)

北理工微波实验报告总结

实验一一般微波测试系统的调试 一、实验目的 1.了解一般微波测试系统的组成及其主要元、器件的作用,初步掌握它们的调整方法。 2.掌握频率、波导波长和驻波比的测量方法。 3.掌握晶体校正曲线的绘制方法。 二、实验装置与实验原理 常用的一般微波测试系统如1-1所示(示意图)。 微波 信号源 隔离 器 可变衰减器 频率计精密 衰减 器 测量线终端 负载 测量放大器图1-1 本实验是由矩形波导(3厘米波段, 10 TE模)组成的微波测试系统。其中,微波信号源(固态源或反射式速调管振荡器)产生一个受到(方波)调制的微波高频振荡,其可调频率范围约为7.5~12.4GHz。隔离器的构成是:在一小段波导内放有一个表面涂有吸收材料的铁氧体薄片,并外加一个恒定磁场使之磁化,从而对不同方向传输的微波信号产生了不同的磁导率,导致向正方向(终端负载方向)传播的波衰减很小,而反向(向信号源)传播的波则衰减很大,此即所谓的隔离作用,它使信号源能较稳定地工作。频率计实际上就是一个可调的圆柱形谐振腔,其底部有孔(或缝隙)与波导相通。在失谐状态下它从波导内吸收的能量很小,对系统影响不大;当调到与微波信号源地频率一致(谐振)时,腔中的场最强,从波导(主传输线)内吸收的能量也较多,从而使测量放大器的指示数从某一值突然降到某一最低值,如图1-2(a)所示。此时即可从频率计的刻度上读出信号源的频率。从图1-1可知,腔与波导(主传输线)只有一个耦合元件(孔),形成主传输线的分路,这种连接方式称为吸收式(或称反应式)连接方法。另一种是,腔与主传输线有两个耦合器件,并把腔串接于主传输线中,谐振时腔中的场最强,输出的能量也较多,因而测量放大器的指示也最大,如

实验三微波波导波长与频率的测量

实验三微波波导波长与频率的测量、分析和计算 一、 实验目的 (1) 熟悉微波测量线的使用; (2) 学会测量微波波导波长和信号源频率; (3) 分析和计算波导波长及微波频率。 二、 实验原理 测量线的基本测量原理是基于无耗均匀传输线理论,当终端负载与测量线匹配时测量 线内是行波;当终端负载为短路或开路时,传输线上为纯驻波,能量全部反射。根据驻波分 布的特性,在波导系统终端短路时,传输系统中会形成纯驻波分布状态,在这种情况下,两 个驻波波节点之间的距离即为波导波长的 1/2,所以只要测量出两个驻波波节点之间的距 离,就可以得到信号源工作频率所对应的波导波长。 方法一:通过测量线上的驻波比,然后换算出反射系数模值,再利用驻波最小点位置 d min 便可得到反射系数的幅角以及微波信号特性、网络特性等。根据这一原理,在测得一组 驻波最小点位置 d i , d 2, d 3, d 4…后,由于相邻波节点的距离是波导波长的 1/2,这样便 可通过下式算出波导波长。 1 色沁.心皿.心^ (3-1) 2 1 4 3 2 方法二:交叉读数法测量波导波长,如图 3-1所示。 图3-1交叉读数法测量波节点位置 为了使测量波导波长的精度较高 (接近实际的波导波长),采用交叉读数法测量波导波长。 在测试系统调整良好状态下,通过测定一个驻波波节点两侧相等的电流指示值 I 。(可选取最 大值的20%)所对应的两个位置 d“ d 2,则取d“ d 2之和的平均值,得到对应驻波波节点 的位置d min1。用同样的方法测定另一个相邻波节点的位置 d min2 ,如图3-1所示,贝U d min1、 d mi n2与系统中波导波长之间的关系为: 1 1 d min1 =?? d 2);d min2 二?^ d 4) (3-2) (3-3) 在波导中,还可利用下面公式计算波导波长: —2 d min2 — d min1

固有频率测定方式

固有频率测定方式

————————————————————————————————作者: ————————————————————————————————日期: ?

实验三 振动系统固有频率的测量 一、实验目的 1、了解和熟悉共振前后利萨如图形的变化规律和特点; 2、学习用“共振法”测试机械振动系统的固有频率(幅值判别法和相位判别法); 3、学习用“锤击法”测试机械振动系统的固有频率(传函判别法); 4、学习用“自由衰减振动波形自谱分析法”测试振动系统的固有频率(自谱分析法)。 二、实验装置框图 激振信 动态分 计算机系 打印机或 简 振动 激振 力传

图3-1实验装置框图 三、实验原理 对于振动系统,经常要测定其固有频率,最常用的方法就是用简谐力激振,引起系统共振,从而找到系统的各阶固有频率。另一种方法是锤击法,用冲击力激振,通过输入的力信号和输出的响应信号进行传函分析,得到各阶固有频率。以下对这两种方法加以说明: 1、简谐力激振 简谐力作用下的强迫振动,其运动方程为: t F Kx x C x m e ωsin 0=++ 方程式的解由21X X +这两部分组成: ) sin cos (211t w C t w C e X D D t +=-ε 21D w w D -= 式中1C 、2C 常数由初始条件决定: t w A t w A X e e sin cos 212+= 其中 ( ) () 2 2 2 22 2 214e e e q A ω εω ω ωω+--= , () 22 222 242e e e q A ω εω ω ε ω+-= , m F q 0= 1X 代表阻尼自由振动基,2X 代表阻尼强迫振动项。 自由振动周期: D D T ωπ 2= 强迫振动项周期: e e T ωπ 2= 由于阻尼的存在,自由振动基随时间不断得衰减消失。最后,只剩下后两项,也就是通常讲的定常强动,即强迫振动部分: ( ) () () t q t q x e e e e e e e e ωω εω ω ε ωωω εω ω ωωsin 42cos 422 222 22 2 22 2 2+-+ +--= 通过变换可写成

微波毫米波RCS测试系统-Ceyear

微波毫米波RCS测试系统 产品综述 微波毫米波RCS测试系统主要应用于飞机、战车、导弹、舰船等装备雷达隐身性能测试与评估领域,具有RCS精确测试与评估、目标体强散射分布成像与诊断、目标局部散射特性成像分析、隐身涂层修复效果评估等功能。系统以矢量网络分析仪为核心仪器,通过外配天线、校准件、运动装置等设备,可满足1~40GHz频段雷达散射特性测试需要,选配扩频设备后,可实现到325GHz毫米波频段的覆盖。系统具有智能化程度高、配置灵活、测量速度快、精度高、参数种类齐全等特点。在该系统平台基础上,中电科仪器仪表有限公司还可提供近/远场测试方法、暗室/室外场测试方案选型及场地环境设计,扫描架/转台及测试仪器设备对比选型,以及全系统集成设计与施工等服务,全面满足用户需求。

主要特点 ◆一维、二维、三维RCS成像功能,可实现目标体强散射分布的成像诊断分析; ◆目标体局部散射特性快速成像功能,可在现场环境近距离下完成快速成像; ◆近场测试外推远场RCS技术,扩展用户测试范围; ◆系统配置形式灵活,可以灵活选择本振、发射源的形式,快速方便地实现频率扩展; ◆多域测量功能,系统提供频域、时域、角域三种测量模式; ◆RCS测量校准功能,可有效消除测量误差对测量结果的影响,提高测量精度; ◆硬件时域门功能,利用脉冲测量技术实现背景干扰抑制,提高测量精度; ◆独立的外部中频输入接口,可以实现外部中频接入,提高系统使用灵活性; ●一维、二维、三维RCS成像功能 系统具备一维、二维、三维RCS成像能力,满足用户对各种复杂目标体散射点分布情况进行分析诊断的测试需要。 ●局部散射特性快速成像功能 系统采用天线阵列电扫控制技术、近场多维空间散射成像与干扰滤波处理技术,实现了非标准外场环境下的快速成像,成像分辨率达厘米级。 ●毫米波高分辨率成像功能 系统利用毫米波频率高、带宽大的特点,采用线性调频工作体制,配合扫描架快速二维扫描,获取待测目标的全3D信息,实现高分辨率三维成像或二维层析成像,可广泛用于

相关主题
文本预览
相关文档 最新文档