当前位置:文档之家› 高中数学专题讲义-线性规划

高中数学专题讲义-线性规划

高中数学专题讲义-线性规划
高中数学专题讲义-线性规划

【例1】 设O 为坐标原点,(1,1)A ,若点B 满足2222101212x y x y x y ?+--+????≥≤≤≤≤,

则OA OB ?u u u v u u u v 的最小值为( )

A .2

B .2

C .3

D .22+

【例2】 已知变量,x y 满足120x y x y ????-?

≥≤≤,则x y +的最小值为( )

A .2

B .3

C .4

D .5

【例3】 不等式组0,10,

3260x x y x y ??--??--?≥≥≤所表示的平面区域的面积等于 .

典例分析

线性规划

【例4】设变量,x y满足约束条件

3

1

x y

x y

+

?

?

--

?

,则目标函数2

z y x

=+的最小值为()

A.1B.2C.3D.4

【例5】设变量,x y满足

0,

10

3260

y

x y

x y

?

?

--

?

?--

?

,则该不等式组所表示的平面区域的面积等

于,z x y

=+的最大值为.

【例6】目标函数2

z x y

=+在约束条件

30

20

x y

x y

y

+-

?

?

-

?

?

?

下取得的最大值是________.

【例7】下面四个点中,在平面区域

4

y x

y x

<+

?

?

>-

?

内的点是()

A.(0,0)B.(0,2)C.(3,2)

-D.(2,0)

-

【例8】已知平面区域

1

||1

(,)0,(,)

1

y x

y x

x y y M x y

y

x

??

+

?

??

-+

?

??

???

Ω==

??????

?

??

?????

?

??

,向区域Ω内

随机投一点P,点P落在区域M内的概率为()

A.1

4

B.

1

3

C.

1

2

D.

2

3

【例9】若x,y满足约束条件

30

03

x y

x y

x

+

?

?

-+

?

?

?

≤≤

,则2

z x y

=-的最大值为.

【例10】已知不等式组

y x

y x

x a

?

?

-

?

?

?

,表示的平面区域的面积为4,点()

,

P x y在所给平面区

域内,则2

z x y

=+的最大值为______.

【例11】设,x y∈R,且满足20

x y

-+=,则22

x y

+的最小值为;若,x y又

满足4

y x

>-,则y

x

的取值范围是.

【例12】“关于x的不等式220

x ax a

-+>的解集为R”是“01

a<

≤”的()A.充分非必要条件B.必要非充分条件

C.充分必要条件D.既非充分又非必要条件

【例13】已知不等式组

1

1

x y

x y

y

+

?

?

--

?

?

?

表示的平面区域为M,若直线3

y kx k

=-与平面区域

M有公共点,则k的取值范围是()

A.

1

,0

3

??

-??

??

B.

1

,

3

??

-∞

?

??

C.

1

0,

3

??

?

??

D.

1

,

3

??

-∞-

?

??

【例14】已知不等式组

02

20

20

x

x y

kx y

?

?

+-

?

?-+

?

≤≤

所表示的平面区域的面积为4,则k的值为()

A.1 B.3-C.1或3-D.0

【例15】 已知函数6(3)3,7(),

7x a x x f x a x ---?=?>?≤,若数列{}n a 满足()(*)n a f n n =∈N ,且{}n a 是递增数列,则实数a 的取值范围是( )

A .9,34??????

B .9,34?? ???

C .()2,3

D .()1,3

【例16】 设O 为坐标原点,(1,1)A ,若点B 满足2222101212x y x y x y ?+--+????≥≤≤≤≤,

则OA OB ?u u u v u u u v 的最小值为( )

A

B .2

C .3 D

.2+

【例17】 已知变量,x y 满足120x y x y ????-?

≥≤≤,则x y +的最小值为( ) A .2 B .3 C .4 D .5

【例18】不等式组

0,

10,

3260

x

x y

x y

?

?

--

?

?--

?

所表示的平面区域的面积等于.

【例19】设变量,x y满足约束条件

3

1

x y

x y

+

?

?

--

?

,则目标函数2

z y x

=+的最小值为()

A.1B.2C.3D.4

高中数学(人教版A版必修五)配套单元检测:第3章:3.3.2 简单的线性规划问题(二)

3.3.2 简单的线性规划问题(二) 课时目标 1.准确利用线性规划知识求解目标函数的最值. 2.掌握线性规划实际问题中的两种常见类型. 1.用图解法解线性规划问题的步骤: (1)分析并将已知数据列出表格; (2)确定线性约束条件; (3)确定线性目标函数; (4)画出可行域; (5)利用线性目标函数(直线)求出最优解; 根据实际问题的需要,适当调整最优解(如整数解等). 2.在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务,问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小. 一、选择题 1.某厂生产甲产品每千克需用原料A 和原料B 分别为a 1、b 1千克,生产乙产品每千克需用原料A 和原料B 分别为a 2、b 2千克,甲、乙产品每千克可获利润分别为d 1、d 2元.月初一次性购进本月用的原料A 、B 各c 1、c 2千克,要计划本月生产甲产品和乙产品各多少千克才能使月利润总额达到最大.在这个问题中,设全月生产甲、乙两种产品分别为x 千克、y 千克,月利润总额为z 元,那么,用于求使总利润z =d 1x +d 2y 最大的数学模型中,约束条件为( ) A.????? a 1x +a 2y ≥c 1, b 1 x +b 2 y ≥c 2 ,x ≥0,y ≥0 B.????? a 1x +b 1y ≤c 1, a 2 x +b 2 y ≤c 2 , x ≥0, y ≥0 C.????? a 1x +a 2y ≤c 1, b 1 x +b 2 y ≤c 2 ,x ≥0,y ≥0 D.????? a 1x +a 2y =c 1, b 1 x +b 2 y =c 2 , x ≥0, y ≥0 2. 如图所示的坐标平面的可行域内(阴影部分且包括边界),若使目标函数z =ax +y (a >0)取得最大值的最优解有无穷多个,则a 的值为( ) A.14 B.35 C .4 D.53 3.某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对

高中数学线性规划问题

高中数学线性规划问题 一.选择题(共28小题) 1.(2015?马鞍山一模)设变量x,y满足约束条件:,则z=x ﹣3y的最小值() A.﹣2 B.﹣4 C.﹣6 D.﹣8 2.(2015?山东)已知x,y满足约束条件,若z=ax+y的最大值为4,则a=() A.3 B.2 C.﹣2 D.﹣3 3.(2015?重庆)若不等式组,表示的平面区域为三角形,且其面积等于,则m的值为() A.﹣3 B.1 C.D.3 4.(2015?福建)变量x,y满足约束条件,若z=2x﹣y的最大值为2,则实数m等于() A.﹣2 B.﹣1 C.1 D.2 5.(2015?安徽)已知x,y满足约束条件,则z=﹣2x+y的最大值是()

A.﹣1 B.﹣2 C.﹣5 D.1 6.(2014?新课标II)设x,y满足约束条件,则z=2x﹣ y的最大值为() A.10 B.8 C.3 D.2 7.(2014?安徽)x、y满足约束条件,若z=y﹣ax取得最 大值的最优解不唯一,则实数a的值为() A.或﹣1 B.2或C.2或1 D.2或﹣1 8.(2015?北京)若x,y满足,则z=x+2y的最大值为()A.0 B.1 C.D.2 9.(2015?四川)设实数x,y满足,则xy的最大值为()A. B. C.12 D.16 10.(2015?广东)若变量x,y满足约束条件,则z=3x+2y 的最小值为() A.4 B. C.6 D. 11.(2014?新课标II)设x,y满足约束条件,则z=x+2y 的最大值为() A.8 B.7 C.2 D.1

12.(2014?北京)若x,y满足且z=y﹣x的最小值为﹣4, 则k的值为() A.2 B.﹣2 C.D.﹣ 13.(2015?开封模拟)设变量x、y满足约束条件,则目标函 数z=x2+y2的取值范围为() A.[2,8] B.[4,13] C.[2,13] D. 14.(2016?荆州一模)已知x,y满足约束条件,则z=2x+y 的最大值为() A.3 B.﹣3 C.1 D. 15.(2015?鄂州三模)设变量x,y满足约束条件,则s= 的取值范围是() A.[1,] B.[,1] C.[1,2] D.[,2] 16.(2015?会宁县校级模拟)已知变量x,y满足,则u= 的值范围是() A.[,] B.[﹣,﹣] C.[﹣,] D.[﹣,]

人教版高中数学总复习[知识梳理简单的线性规划(基础)

简单的线性规划 【考纲要求】 1.了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景。 2.会从实际情境中抽象出一元二次不等式模型。 3.会从实际情境中抽象出二元一次不等式组;了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组; 4.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。 5.熟练应用不等式性质解决目标函数的最优解问题。 【知识网络】 【考点梳理】 【不等式与不等关系394841 知识要点】 考点一:用二元一次不等式(组)表示平面区域 二元一次不等式Ax+By+C >0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 要点诠释: 画二元一次不等式0(0)Ax By C ++>≥或0(0)Ax By C ++<≤表示的平面区域的基本步骤: ①画出直线:0l Ax By C ++=(有等号画实线,无等号画虚线); ②当0≠C 时,取原点作为特殊点,判断原点所在的平面区域;当0C =时,另取一特殊点判断; ③确定要画不等式所表示的平面区域。 简称:“直线定界,特殊点定域”方法。 考点二:二元一次不等式表示哪个平面区域的判断方法 因为对在直线Ax+By+c=0同一侧的所有点(x ,y),实数Ax+By+c 的符号相同,所以只需在此直线的某一侧任取一点(x 0, y 0)(若原点不在直线上,则取原点(0,0)最简便).把它的坐标代入Ax+By+c ,由其值的符号即可判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧. 要点诠释: 判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧的方法: 因为对在直线Ax+By+C =0同一侧的所有点(x ,y),数Ax+By+C 的符号相同,所以只需在此直线的某一侧任取一点(x 0, y 0)(若原点不在直线上,则取原点(0,0)最简便),它的坐标代入Ax+By+c ,由其值的符号 简单的线性规划 二元一次不等式(组)表示的区域 简单应用 不等式(组)的应用背景

人教版 高中数学 简单的线性规划问题教案

简单的线性规划问题 一、教学内容分析 普通高中课程标准教科书数学5(必修)第三章第3课时 这是一堂关于简单的线性规划的“问题教学”. 线性规划是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,它能解决科 学研究、工程设计、经济管理等许多方面的实际问题. 简单的线性规划(涉及两个变量)关心的是两类问题:一是在人力、物力、资金等资源 一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以 最少的人力、物力、资金等资源来完成.突出体现了优化的思想. 教科书利用生产安排的具体实例,介绍了线性规划问题的图解法,引出线性规划等的概 念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用. 二、学生学习情况分析 本节课学生在学习了不等式、直线方程的基础上,又通过实例,理解了平面区域的意义, 并会画出平面区域,还能初步用数学关系式表示简单的二元线性规划的限制条件,将实际问 题转化为数学问题. 从数学知识上看,问题涉及多个已知数据、多个字母变量,多个不等关 系,从数学方法上看,学生对图解法的认识还很少,数形结合的思想方法的掌握还需时日, 这都成了学生学习的困难. 三、设计思想 本课以问题为载体,以学生为主体,以数学实验为手段,以问题解决为目的,以几何画 板作为平台,激发他们动手操作、观察思考、猜想探究的兴趣。注重引导帮助学生充分体验 “从实际问题到数学问题”的建构过程,“从具体到一般”的抽象思维过程,应用“数形结 合”的思想方法,培养学生的学会分析问题、解决问题的能力。 四、教学目标 1.了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域和最优解等概念;理解线性规划问题的图解法;会利用图解法求线性目标函数的最优解. 2.在实验探究的过程中,让学生体验数学活动充满着探索与创造,培养学生的数据分析能力、探索能力、合情推理能力及动手操作、勇于探索的精神; 3、在应用图解法解题的过程中,培养学生运用数形结合思想解题的能力和化归能力,体验数学来源于生活,服务于生活,体验数学在建设节约型社会中的作用. 五、教学重点和难点 求线性目标函数的最值问题是重点;从数学思想上看,学生对为什么要将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题?以及如何想到要这样转化?存在一定疑虑及困难;教学应紧扣问题实际,通过突出知识的形成发展过程,引入数学实验来突破这一难点.

线性规划的常见题型及其解法(教师版,题型全,归纳好)

线性规划问题是高考的重点,而线性规划问题具有代数和几何的双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透,自然地融合在一起,使数学问题的解答变得更加新颖别致. 归纳起来常见的命题探究角度有: 1.求线性目标函数的最值. 2.求非线性目标函数的最值. 3.求线性规划中的参数. 4.线性规划的实际应用. 本节主要讲解线性规划的常见基础类题型. 【母题一】已知变量x ,y 满足约束条件???? ? x +y ≥3,x -y ≥-1, 2x -y ≤3,则目标函数z =2x +3y 的取值范围为( ) A .[7,23] B .[8,23] C .[7,8] D .[7,25] 求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求 直线的截距z b 的最值,间接求出z 的最值. 【解析】画出不等式组???? ? x +y ≥3,x -y ≥-1, 2x -y ≤3, 表示的平面区域如图中阴影部分所示, 由目标函数z =2x +3y 得y =-23x +z 3,平移直线y =-2 3 x 知在点B 处目标函数取到最小值,解方程组 ????? x +y =3,2x -y =3,得????? x =2, y =1,所以B (2,1),z min =2×2+3×1=7,在点A 处目标函数取到最大值,解方程组????? x -y =-1,2x -y =3,得????? x =4,y =5, 所以A (4,5),z max =2×4+3×5=23. 【答案】A

【母题二】变量x ,y 满足???? ? x -4y +3≤0,3x +5y -25≤0, x ≥1, (1)设z =y 2x -1,求z 的最小值; (2)设z =x 2+y 2,求z 的取值范围; (3)设z =x 2+y 2+6x -4y +13,求z 的取值范围. 点(x ,y )在不等式组表示的平面区域内,y 2x -1=12·y -0 ??? ? x -12表示点(x ,y )和????12,0连线的斜率;x 2+y 2表示点(x ,y )和原点距离的平方;x 2+y 2+6x -4y +13=(x +3)2+(y -2)2表示点(x ,y )和点(-3,2)的距离的平方. 【解析】(1)由约束条件???? ? x -4y +3≤0,3x +5y -25≤0, x ≥1, 作出(x ,y )的可行域如图所示. 由 ????? x =1,3x +5y -25=0,解得A ????1,22 5. 由????? x =1, x -4y +3=0,解得C (1,1). 由? ???? x -4y +3=0,3x +5y -25=0,解得B (5,2). ∵z = y 2x -1 =y -0x -12 ×12 ∴z 的值即是可行域中的点与????12,0连线的斜率,观察图形可知z min =2-05- 12×12=29 . (2)z =x 2+y 2的几何意义是可行域上的点到原点O 的距离的平方. 结合图形可知,可行域上的点到原点的距离中, d min =|OC |=2,d max =|OB |=29. ∴2≤z ≤29. (3)z =x 2+y 2+6x -4y +13=(x +3)2+(y -2)2的几何意义是: 可行域上的点到点(-3,2)的距离的平方. 结合图形可知,可行域上的点到(-3,2)的距离中, d min =1-(-3)=4, d max =(-3-5)2+(2-2)2=8 ∴16≤z ≤64.

高中数学必修5常考题型:简单的线性规划问题

简单的线性规划问题 【知识梳理】 线性规划的有关概念 【常考题型】 题型一、求线性目标函数的最值 (X+2Q2, 【例1】设变重X, *满足约束条件〈2x+ y<4, 则目标函数z= 3x- V的取值范围 〔4*- - 1, 是() 3 A. -6 C. [-L6] D. -6, 3. "+2E, [解析]约束条件〈2X+V<4,y> - 1所表示的平面区域如图阴影部分,直线y= 3x- Z斜率为

3 z 取最小值- 3 .??z=3x-y 的取值范围为6」,故选A. [答案]A 【类题通法】 解线性规划问题的关键是准确地作出可行域,正确理解z 的几何意义,对一个封闭图形而 言,最优解一般在可行域的边界上取得.在解题中也可由此快速找到最大值点或最小值点. 【对点训练】 X- 4y< -3, 3x+5y<25, 求z 的最大值和最小值. Q1, [解]作出不等式组表示的平面区域,即可行域,如图所示.把z=2x+>变形为v=-2x +乙则得到斜率为-2,在)/轴上的截距为乙旦随z 变化的一组平行直线.由图可以看出, 当直线z=2x+*经过可行域上的点/时,截距z 最大,经过点8时,截距z 最小. |x-4y+3 = 0, 解方程组i3H5 =。,得/点坐标为厚), X=l, 解方程组L-4*+3 =。,得8点坐标为("), 大值 = 2x5 + 2=12, z 建小值=2x 1 + 1 = 3. ( 于4尸 3=0 =0

题型二、求非线性目标函数的最值 ( X- y+5>0, X+VA O,x<3. ⑴求"=/+必的最大值与最小值; V ⑵求 >=六的最大值与最小值. X— O [解]画出满足条件的可行域如图所示, (1) /+,=。表示一组同心圆(圆心为原点Q,旦对同一圆上的点】+必的值都相等,由图可知:当(X, M在可行域内取值时,当旦仅当圆。过c点时,〃最大,过(0,0)时,〃最小.又Q3,8),所以u意大也=73、"缺小值=0. y (2) v^=—表示可行域内的点Rx, H到定点Q(5,0)的斜率,由图可知,蜘最大,处。最 A— O 小,又03,8), 8(3, -3), -3 3 8 所以/ 是大渲= 3 — 5 = 1',照小坦=3 _ 5 = 一4? 【类题通法】 非线性目标函数最值问题的求解方法 ⑴非线性目标函数最值问题,要充分理解非线性目标函数的几何意义,诸如两点间的距离(或平方),点到直线的距离,过已知两点的直线斜率等,充分利用数形结合知识解题,能起到事半功倍的效果?

高中数学线性规划经典题型

高考线性规划归类解析 一、平面区域和约束条件对应关系。 例1、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是() (A)0003x y x y x -≥??+≥??≤≤? (B)0003x y x y x -≥?? +≤??≤≤? (C) 003x y x y x -≤?? +≤??≤≤? (D) 0003x y x y x -≤?? +≥??≤≤? 解析:双曲线224x y -=的两条渐近线方程为y x =±,与直线3x =围 成一个三角形区域(如图4所示)时有0 003x y x y x -≥?? +≥??≤≤? 。 点评:本题考查双曲线的渐近线方程以及线性规划问题。验证法或排除法是最效的方法。 例2:在平面直角坐标系中,不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域的面积是() (A)42 (B)4 (C) 22 (D)2 解析:如图6,作出可行域,易知不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域是一个三角形。容 易求三角形的三个顶点坐标为A(0,2),B(2,0),C(-2,0).于是三角形的面积为: 11 ||||42 4.22 S BC AO =?=??=从而选B。 点评:有关平面区域的面积问题,首先作出可行域,探求平面区域图形的性质;其次利用面积公式整体或部分求解是关键。 二、已知线性约束条件,探求线性截距——加减的形式(非线性距离——平方的形式,斜率——商的形式)目标关系最值问题(重点) 例3、设变量x 、y 满足约束条件?? ? ??≥+-≥-≤-1122y x y x y x ,则 ①y x 32+的最大值为 。(截距) 解析:如图1,画出可行域,得在直线 2x-y=2与直线x-y=-1 的交点A(3,4)处,目标函数z 最大值为18 点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。数形结合是数学思想的重要手段之一。 ②则2 2 x y +的最小值是 . ③1y x =+的取值范围是 . 图1

最新高中数学线性规划各类习题精选

线性规划 1 基础知识: 2 一、知识梳理 3 1. 目标函数: P=2x+y是一个含有两个变量x和y的函数,称为4 目标函数. 5 2.可行域:约束条件所表示的平面区域称为可行域. 6 3. 整点:坐标为整数的点叫做整点. 7 4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问 8 题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法9 来解决. 10 5. 整数线性规划:要求量取整数的线性规划称为整数线性规划. 11 二:积储知识: 12 一. 1.点P(x 0,y )在直线Ax+By+C=0上,则点P坐标适合方程,即Ax +By +C=0 13 2. 点P(x 0,y )在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax +By +C>0; 14 当B<0时,Ax 0+By +C<0 15 3. 点P(x 0,y )在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax +By +C<0; 16 当B<0时,Ax 0+By +C>0 17 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C, 18 所得实数的符号都相同, 19 (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数20 的符号相反, 21 即:1.点P(x 1,y 1 )和点Q(x 2 ,y 2 )在直线 Ax+By+C=0的同侧,则有(Ax 1 +By 1 +C) 22

( Ax 2+By 2+C)>0 23 2.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的两侧,则有(Ax 1+By 1+C )24 ( Ax 2+By 2+C)<0 25 二.二元一次不等式表示平面区域: 26 ①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线27 Ax+By+C=0某一侧所有点组成的平面区域. 不. 包括边界; 28 ②二元一次不等式Ax+By+C ≥0(或≤0)在平面直角坐标系中表示直线29 Ax+By+C=0某一侧所有点组成的平面区域且包括边界; 30 注意:作图时,不包括边界画成虚线;包括边界画成实线. 31 三、判断二元一次不等式表示哪一侧平面区域的方法: 32 取特殊点检验; “直线定界、特殊点定域 33 原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)34 代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一35 个特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax+By+C>0表示直线哪一侧的36 平面区域.特殊地, 当C ≠0时,常把原点作为特殊点,当C=0时,可用(0,37 1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需38 画的区域,否则是另一侧区域为需画区域。 39 40 例题: 41 1. 如图1所示,已知ABC ?中的三顶点(2,4),(1,2),(1,0)A B C -,点(,) P x y 42 在ABC ?内部及边界运动,请你探究并讨论以下问题:若目标函数是z = 43 或23 1y z x +=+,你知道其几何意义吗?你能否借助其几何意义求得min z 44 和max z ? 45 2. 如图1所示,已知ABC ?中的三顶点(2,4),(1,2),(1,0)A B C -, 46

高中数学必修5:简单的线性规划问题 知识点及经典例题(含答案)

简单的线性规划问题 【知识概述】 线性规划是不等式应用的一个典型,也是数形结合思想所体现的一个重要侧面.近年的考试中,通常考查二元一次不等式组表示的平面区域的图形形状以及目标函数的最大值或最小值,或求函数的最优解等问题.通过这节课的学习,希望同学们能够掌握线性规划的方法,解决考试中出现的各种问题. 解决线性规划的数学问题我们要注意一下几点 1.所谓线性规划就是在线性约束条件下求线性目标函数的最值问题; 2.解决线性规划问题需要经历两个基本的解题环节 (1)作出平面区域;(直线定”界”,特“点”定侧); (2)求目标函数的最值. (3)求目标函数z=ax+by最值的两种类型: ①0 b>时,截距最大(小),z的值最大(小); ②0 b>时,截距最大(小),z的值最小(大); 【学前诊断】 1.[难度] 易 满足线性约束条件 23, 23, 0, x y x y x y +≤ ? ?+≤ ? ? ≥ ? ?≥ ? 的目标函数z x y =+的最大值是() A.1 B.3 2 C.2 D.3 2.[难度] 易 设变量,x y满足约束条件 0, 0, 220, x x y x y ≥ ? ? -≥ ? ?--≤ ? 则32 z x y =-的最大值为( ) A.0 B.2 C.4 D.6

3. [难度] 中 设1m >,在约束条件1y x y mx x y ≥??≤??+≤? 下,目标函数z x my =+的最大值小于2,则m 的取 值范围为( ) A .(1,1 B .(1)+∞ C .(1,3) D .(3,)+∞ 【经典例题】 例1. 设变量,x y 满足约束条件1,0,20,y x y x y ≤??+≥??--≤? 则2z x y =+的最大值为( ) A.5 B.4 C.1 D.8 例2. 若变量,x y 满足约束条件1,0,20,y x y x y ≤??+≥??--≤? 则2z x y =-的最大值为( ) A.4 B.3 C.2 D.1 例3. 设,x y 满足约束条件2208400,0x y x y x y -+≥??--≤??≥≥? ,若目标函数(0,0)z abx y a b =+>>的最小 值为8,则a b +的最小值为____________. 例4. 在约束条件下0,0,,24, x y x y s x y ≥??≥??+≤??+≤?当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是( )

高中数学线性规划汇总

直线与线性规划 由已知条件写出约束条件,并作出可行域,进而通过平移直线 在可行域内求线性目标函数的最优解是最常见的题型,除此之外, 还有以下七类常见题型。 一、求线性目标函数的取值范围 例1、 若x 、y 满足约束条件222x y x y ≤??≤??+≥? ,则z=x+2y 的取值范围是 ( ) A 、[2,6] B 、[2,5] C 、[3,6] D 、(3,5] 变式训练1:已知x ,y 满足约束条件 30 5≤≥+≥+-x y x y x ,则y x z -=4的最小值为______________. 变式训练2:若?? ?≥+≤≤2,22y x y x ,则目标函数 z = x + 2 y 的取值范围是 ( ) A .[2 ,6] B . [2,5] C . [3,6] D . [3,5] 二、求可行域的面积 例2、不等式组260302x y x y y +-≥??+-≤??≤? 表示的平面区域的面积为 ( ) A 、4 B 、1 C 、5 D 、无穷大 变式训练1:由12+≤≤≤x y x y 及围成的几何图形的面积是多少? 变式训练2:已知),2,0(∈a 当a 为何值时,直线422:422:2221+=+-=-a y a x l a y ax l 与及坐标轴围 成的平面区域的面积最小? 三、求可行域中整点个数 例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个 变式训练1:不等式3<+y x 表示的平面区域内的整点个数为 ( ) A . 13个 B . 10个 C . 14个 D . 17个 变式训练2:.在直角坐标系中,由不等式组230,2360,35150,0 x y x y x y y ->??+-

高中数学解题方法谈线性规划求最值问题

线性规划求最值问题 一、与直线的截距有关的最值问题 例1 已知点()P x y ,在不等式组2010220x y x y -??-??+-? ,,≤≤≥表示的平面区域上运动,则z x y =-的 取值范围是( ). (A )[-2,-1] (B )[-2,1] (C )[-1,2] (D )[1,2] 解析:由线性约束条件画出可行域如图1,考虑z x y =-, 把它变形为y x z =-,这是斜率为1且随z 变化的一族平行 直线.z -是直线在y 轴上的截距.当直线满足约束条件且 经过点(2,0)时,目标函数z x y =-取得最大值为2; 直线经过点(0,1)时,目标函数z x y =-取得最小值为-1.故选(C ). 注:本题用“交点法”求出三个交点坐标分别为(0,1),(2,1),(2,0),然后再一一代入目标函数求出z=x-y 的取值范围为[-1,2]更为简单.这需要有最值在边界点取得的特殊值意识. 二、与直线的斜率有关的最值问题 例2 设实数x y ,满足20240230x y xc y y --??+-??-? ,,,≤≥≤,则y z x =的最大值是__________. 解析:画出不等式组所确定的三角形区域ABC (如图2),00y y z x x -==-表示两点(00)()O P x y ,,,确定的直线的斜率,要求z 的最大值,即求可行域内的点与原点连线的斜率的最大值.由图2可以看出直线OP 的斜率最大,故P 为240x y +-=与230y -=的交点,即A 点. ∴312P ?? ???,.故答案为32 . 注:解决本题的关键是理解目标函数00y y z x x -= =-的 几何意义,当然本题也可设y t x =,则y tx =,即为求 y tx =的斜率的最大值.由图2可知,y tx =过点A 时, t 最大.代入y tx =,求出32 t =, 即得到的最大值是32 . 三、与距离有关的最值问题

巧用线性规划知识解决高中数学难题

巧用线性规划知识解决高中数学难题 福建省光泽第一中学胡长才 摘要:近年来,全国高考卷每年都考到了线性规划问题。线性规划成了高考数学的热点问题,这说明了线性规划知识重要性。而学好线性规划知识,不仅可以解决现实生活中的最优化问题,还可以解决一系列高中数学难题。 关键词:线性规划解决数学难题 在线性约束条件下,求线性目标函数的最大值或最小值问题,统称为线性规划问题。线性规划是高中数学的重要内容。利用线性规划知识,不仅可以解决与线性约束条件有关的问题,还可以解决生活中的最优化等一系列问题。因此,线性规划知识具有广泛的实用性。 一、利用线性规划知识解决直线与线段相交问题 与直线或线段有关的问题,通常与线性约束条件有关,因此常常可以利用线性规划知识求解。 例1、已知点A(1,1)和点B(-2,5),若直线l:y=ax?1与线段AB相交,求a的取值范围。 分析:如果直接联立直线与线段的方程求解,需要考虑线段的自变量范围,这种解法有一定的难度。 [一般解法]利用数形结合思想求解。首先,在平面直角坐标系中作出点A、点B和直线l的图象,显然,直线l:y=ax?1经过定点C (0,-1),易得直线AC的斜率k1=2,直线BC的斜率k2=?3,直线l:y=ax?1要与线段AB相交,其斜率a必须大于k1=2,或小于k2=

?3,故a 的取值范围是(?∞,?3]∪[2,+∞)。 这种解法体现了数形结合思想,要求学生会作图,对直线的斜率有关性质非常熟练,有一定难度。 [快速解法]利用线性规划知识求解。直线l :ax ?y ?1=0要与线段AB 相交,等价于线段两端点A (1,1)和点B (-2,5)分别在l :y =ax ?1的异侧, 等价于(a ?1?1?1)与[a ?(?2)?5?1]异号, 等价于(a ?1?1?1)?[a ?(?2)?5?1]=?2(a ?2)(a +3)≤0, 故a 的取值范围是(?∞,?3]∪[2,+∞)。 这种解法比较简便,采用了等价转化思想方法,线性规划知识在解题中的运用体现得淋漓尽致。 二、利用线性规划知识解决不等式难题 有些问题,如果单独考察个体范围,较易出错。而注意各部分之间的整体联系,进行整体换元,等价转化,再利用线性规划知识求解,就容易得解。 例2、已知21≤-≤b a ①,且42≤+≤b a ②,求b a 24-的范围。 [错解]由21(①+②)得:323≤≤a ③, 由21(①+②?(-1))得:230≤≤b ④ ③?4+④?(-2)得:12243≤-≤b a 。 这个答案是错误的,产生错误的原因是单独求a 与b 的范围时采用了非同解变形,扩大了a 与b 的取值范围,从而造成错误。 [正解]令a ?b =x ,a +b =y ,4a ?2b =z , 则a =x +y 2,b =

高中数学解题方法系列:线性规划中的11种基本类型及策略

高中数学解题方法系列:线性规划中的11种基本类型及策略 一.线性目标函数问题 当目标函数是线性关系式如()时,可把目标函数变形为 ,则可看作在上的截距,然后平移直线法是解决此类问题的常用方法,通过比较目标函数与线性约束条件直线的斜率来寻找最优解.一般步骤如下: 1.做出可行域; 2.平移目标函数的直线系,根据斜率和截距,求出最优解. 二.非线性目标函数问题的解法 当目标函数时非线性函数时,一般要借助目标函数的几何意义,然后根据其几何意义,数形结合,来求其最优解。近年来,出现了求目标函数是非线性函数的范围问题.这些问题主要考察的是等价转化思想和数形结合思想,出题形式越来越灵活,对考生的能力要求越来越高.常见的有以下几种: 1. 比值问题 当目标函数形如时,可把z 看作是动点与定点连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。 例2已知变量x ,y 满足约束条件?????x -y +2≤0,x ≥1,x +y -7≤0, 则y x 的取值范围是(). (A )[95,6] (B )(-∞,95 ]∪[6,+∞) (C )(-∞,3]∪[6,+∞)(D )[3,6] 解析 y x 是可行域内的点M (x ,y )与原点O (0,0)连线的斜率,当直线OM 过点(52,92)时,y x 取得 最小值95;当直线OM 过点(1,6)时,y x 取得最大值6.答案A 2..距离问题 当目标函数形如时,可把z 看作是动点与定点距离的平方,这样目标函数的最值就转化为 PQ 距离平方的最值。 例3已知?????2x +y -2≥0,x -2y +4≥0,3x -y -3≤0, 求x 2+y 2的最大值与最小值. 解析作出不等式组表示的平面区域(如图). 设x 2+y 2=z ,则z 是以原点为圆心的圆的半径的平方. 当圆x 2+y 2=z 过点B (2,3)时,z 取得最大值,从而z 取得最大值z max =22+32=13; 当圆x 2+y 2=z 与直线AC :2x +y -2=0相切时,z 取得最小值,从而z 取得最小值. 设切点坐标为(x 0,y 0),则 ?????2x 0+y 0-2=0,y 0x 0 ·(-2)=-1. z ax by c =++0b ≠a z c y x b b -=-+z c b -y 在轴y a z x b -=-(,)P x y (,)Q b a 22()()z x a y b =-+-(,)P x y (,)Q a b

简单线性规划-高中数学知识点讲解

简单线性规划 1.简单线性规划 【概念】 线性规划主要用于解决生活、生产中的资源利用、人力调配、生产安排等问题,它是一种重要的数学模型.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出.我们高中阶段接触的主要是由三个二元一次不等式组限制的可行域,然后在这个可行域上面求某函数的最值或者是斜率的最值. 【例题解析】 ?+2?≤8 例:若目标函数z=x+y 中变量x,y 满足约束条件 { 0≤?≤4 . 0≤?≤3 (1)试确定可行域的面积; (2)求出该线性规划问题中所有的最优解. 解:(1)作出可行域如图:对应得区域为直角三角形ABC, 其中B(4,3),A(2,3),C(4,2), 则可行域的面积S =1 2????? = 1 2×1×2=1. (2)由z=x+y,得y=﹣x+z,则平移直线y=﹣x+z, 则由图象可知当直线经过点A(2,3)时,直线y=﹣x+z 得截距最小,此时z 最小为z=2+3=5, 当直线经过点B(4,3)时,直线y=﹣x+z 得截距最大, 此时z 最大为z=4+3=7,

1/ 5

故该线性规划问题中所有的最优解为(4,3),(2,3) 这是高中阶段接触最多的关于线性规划的题型,解这种题一律先画图,把每条直线在同一个坐标系中表示出来,然后确定所表示的可行域,也即范围;最后通过目标函数的平移去找到它的最值. 【典型例题分析】 题型一:二元一次不等式(组)表示的平面区域 典例 1:若不等式组所表示的平面区域被直线y=kx+分为面积相等的两部分,则k 的值是() 7343 A.3B.7C.3D. 4 4 4 分析:画出平面区域,显然点(0,)在已知的平面区域内,直线系过定点(0,),结合图形寻找直线平分平 33 面区域面积的条件即可. 解答:不等式组表示的平面区域如图所示. 由于直线y=kx +44 过定点(0,).因此只有直线过AB 中点时,直线y=kx + 33 4 3 能平分平面区域. 15 因为A(1,1),B(0,4),所以AB 中点D(,). 22 当y=kx +4155 过点(,)时, 3222 = ? 2 + 4 3 ,所以k = 7 3 . 答案:A. 点评:二元一次不等式(组)表示平面区域的判断方法:直线定界,测试点定域. 注意不等式中不等号有无等号,无等号时直线画成虚线,有等号时直线画成实线.测试点可以选一个,也可以选多个,若直线不过原点,则测试点常选取原点. 题型二:求线性目标函数的最值

高中数学_线性规划知识复习

高中必修5线性规划 最快的方法 简单的线性规划问题 一、知识梳理 1. 目标函数: P=2x+y是一个含有两个变量x和y的函数,称为目标函数. 2.可行域:约束条件所表示的平面区域称为可行域. 3. 整点:坐标为整数的点叫做整点. 4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决. 5. 整数线性规划:要求量取整数的线性规划称为整数线性规划. 二、疑难知识导析 线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务. 1.对于不含边界的区域,要将边界画成虚线. 2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若直线不过原点,通常选择原点代入检验. 3. 平移直线y=-kx+P时,直线必须经过可行域. 4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点. 5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解. 积储知识: 一. 1.点P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+By0+C=0 2. 点P(x0,y0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax0+By0+C>0;当B<0时,Ax0+By0+C<0 3. 点P(x0,y0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax0+By0+C<0;当B<0时,Ax0+By0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同, (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的同侧,则有(Ax1+By1+C)(Ax2+By2+C)>0 2.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的两侧,则有(Ax1+By1+C)( Ax2+By2+C)<0 二.二元一次不等式表示平面区域: ①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的 平面区域. 不.包括边界; ②二元一次不等式Ax+By+C≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成 的平面区域且包括边界; 注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法: 方法一:取特殊点检验; “直线定界、特殊点定域 原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0),从Ax0+By0+C的正负即可判断 Ax+By+C>0表示直线哪一侧的平面区域.特殊地,当C≠0时,常把原点作为特殊点,当C=0时,可用

高中数学解题方法谈 线性规划问题新解法

线性规划问题新解法 简单的线性规划问题是高中数学新课标教材的重点内容,也是近年高考命题的热点.线性规划问题的常规解法是“截距法”,即利用线性目标函数(0)z ax by b =+≠的几何意义:“z b 是直线a z y x b b =-+在y 轴上的截距”来求解.而对于有些线性规划问题.也可以运用新的视角探究其解法.现以近年高考题为例向同学们介绍,以拓广同学们的解题思路. 一、函数单调性法 例1 (高考福建卷)非负实数x y ,满足24030x y x y ?+-??+-?? ,,≤≤则3x y +的最大值是 . 解析:在平面直角坐标系中作出不等式组表示的平面区域,如右图. 令3z x y =+,由图知,使目标函数3z x y =+取得最大值的 点一定在边界240x y +-=或30x y +-=上取得. 由24030x y x y +-=??+-=?,,解得12x y =??=? ,. (1)当01x ≤≤时,33(3)29z x y x x x =+=+-+=-+, 在[01],上为减函数,0x =∴时,max 9z =; (2)当12x ≤≤时,33(24)512z x y x x x =+=+-+=-+, 在[1 2],上也为减函数,1x =∴时,max 7z =; 综上知当0x =时,3z x y =+有最大值为9. 点评:本解法是将二元一次函数转化为一元一次函数,然后利用函数单调性求解的.既体现了函数与不等式的密切转化关系,也说明了线性规划问题的“返璞归真”. 二、待定系数法 例2 (高考浙江卷)设z x y =-式中变量x 和y 满足条件3020x y x y ?+-??-?? ,,≥≥则z 的最小值为( ) A.1 B.1- C.3 D.3- 解析:令()(2)()(2)z x y m x y n x y m n x m n y =-=++-=++-, 则121m n m n +=??-=-?,,解得1323m n ?=????=?? ,. 于是1212()(2)3013333 z x y x y x y =-=++-?+?=≥, 当且仅当320x y x y +=??-=? ,时,z 取最小值1.故选A.

高中数学线性规划经典题型

高考线性规划归类解析 一、平面区域和约束条件对应关系。 例1、已知双曲线22 4x y -=的两条渐近线与直线3x =围成一个三角形 区域,表示该区域的不等式组是() (A)0003x y x y x -≥??+≥??≤≤? (B)0003x y x y x -≥??+≤??≤≤? (C) 0003x y x y x -≤??+≤??≤≤? (D) 0003x y x y x -≤??+≥??≤≤? 解析:双曲线224x y -=的两条渐近线方程为y x =±,与直线3x =围 成一个三角形区域(如图4所示)时有00 03x y x y x -≥??+≥??≤≤? 。 点评:本题考查双曲线的渐近线方程以及线性规划问题。验证法或排除法是最效的方法。 例2:在平面直角坐标系中,不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域的面积是() (A)42 (B)4 (C) 22 (D)2 解析:如图6,作出可行域,易知不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域是一个三角形。容 易求三角形的三个顶点坐标为A(0,2),B(2,0),C(-2,0).于是三角形的面积为:11||||42 4.22 S BC AO =?=??=从而选B。 点评:有关平面区域的面积问题,首先作出可行域,探求平面区域图形的性质;其次利用面积公式整体或部分求解是关键。 二、已知线性约束条件,探求线性截距——加减的形式(非 线性距离——平方的形式,斜率——商的形式)目标关系最 值问题(重点) 例3、设变量x 、y 满足约束条件?? ???≥+-≥-≤-1122y x y x y x ,则 ①y x 32+的最大值为 。(截距) 解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1 的交点A(3,4)处,目标函数z 最大值为18 点评:本题主要考查线性规划问题,由线性约束条件画出可 行域,然后求出目标函数的最大值.,是一道较为简单的送分 题。数形结合是数学思想的重要手段之一。 ②则22x y +的最小值是 . ③1y x =+的取值范围是 . 图1

相关主题
文本预览
相关文档 最新文档