当前位置:文档之家› 电子齿轮比的计算

电子齿轮比的计算

电子齿轮比的计算
电子齿轮比的计算

电子齿轮比计算样例

CMX:电子齿轮比的分子是电机编码器反馈脉冲。

CDV:电子齿轮比的分母是上位机的给定脉冲(指令脉冲)。

电子齿轮比是伺服中经常要用到的,初学者对这个参数的设置有时会不解,先介绍两个伺服电子齿轮设置方面的2个小例子,供大家参考下。

例子1:已知伺服马达的编码器的分辨率是131072 P/R,额定转速为3000r/min,上位机发送脉冲的能力为200Kpulse/s,要想达到额定转速,那么电子齿轮比至少应该设为多少?

计算如下图所示

根据上图中的算法,可以算出电子齿轮比CMX/CDV的值

例子2:已知伺服马达的分辨率是131072 P/R,滚珠丝杠的进给量为 Pb =8mm。

(1) 计算反馈脉冲的当量(一个脉冲走多少)?

△Lo=

(2) 要求指令脉冲当量为0.1um/p ,电子齿轮比应为多少?

电子齿轮比=

(3) 电机的额定速度为3000rpm,脉冲频率应为多少?

Fc=

解答:

(1) 计算反馈脉冲的当量(一个脉冲走多少)?

△Lo= 8mm/131072

(2) 要求指令脉冲当量为0.1um/p ,电子齿轮比应为多少?

△Lo×电子齿轮比×1000=0.1

(3) 电机的额定速度为3000rpm,脉冲频率应为多少?

Fc×电子齿轮比=3000/60×131072

电子齿轮比与脉冲当量相关计算

1、什么是机械减速比(m/n)

答:机械减速比的定义是减速器输入转速与输出转速的比值,也等于从动轮齿数与主动轮齿数的比值。在数控机床上为电机轴转速与丝杠转速之比。

2、什么是电子齿轮比

答:电子齿轮比就是对伺服接受到上位机的脉冲频率进行放大或者缩小,其中一个参数为分子,一个为分母。如分子大于分母就是放大,如分子小于分母就是缩小。例如:上位机输入频率100HZ,电子齿轮比分子设为1,分母设为2,那么伺服实际运行速度按照50HZ的脉冲来进行。上位机输入频率100HZ,电子齿轮比分子设为2,分母设为1,那么伺服实际运行速度按照200HZ的脉冲来进行3、怎样计算电子齿轮比(B/A)

明白几个概念:

编码器分辨率(F):伺服电机轴旋转一圈所需脉冲数。看伺服电机的铭牌,在对驱动器说明书既可确

定编码器的分辨率。

每转脉冲数(f):丝杠转动一圈所需脉冲数。

脉冲当量(p):数控系统(上位机)发出一个脉冲时,丝杠移动的直线距离或旋转轴转动的度数,也是数控系统所能控制的最小距离。这个值越小,经各种补偿后越容易到更高的加工精度和表面质量。脉冲当量的设定值决定机床的最大进给速度,当进给速度速度满足要求的情况下,可以设定较小的脉冲当量。

螺距(d):螺纹上相邻两牙对应点之间的轴向距离。

电子齿轮比计算公式如下:

4、步进电机脉冲当量和细分数的关系

在实际调整时可先确定脉冲当量,在根据关系式计算细分数。或先确定细分数,在计算脉冲当量。

其中:x表示步进驱动器细分数,θ表示步进电机步距角。

5、关于旋转轴

与直线运动轴相比区别在于:旋转轴的螺距值为360,其它计算相同,只需将螺距值换为360。

框架伺服电机“电子齿轮比”的计算方法

电子齿轮比主要功能:

1、可以任意地设置每单位指令脉冲对应的电机的速度和位移量(脉冲当量);

2、当上位控制器的脉冲发生能力(最高输出频率)不足以获得所需速度时,可以通过电子齿轮功能(指令脉冲倍频)来对指令脉冲进行×N倍频。

当伺服电机用在电脑绣花机的框架上时,控制上的要求为主控发送1个脉冲框架得移动0.1mm。对电子齿轮比的计算有影响的主要为以下几个因素:电机编码器的分辨率;机械装置的二级传动比;框架皮带齿轮大小。

电机编码器的分辨率:伺服电机的编码器一般为2000线或者是2500线,也就是转一圈能产生2000或者2500个脉冲,而伺服驱动器对此脉冲进行4倍频处理,所以电机转一圈就能产生8000或

机械装置的二级传动比:机械装置二级传动比为电机轴和传动轴的比值如下图

经过二级传动装置后,框架运动的角度折算到电机上角度和二级传动比是成反比的,比如二级传动比为1/4,那么电机转过的角度就是传动轴转过的4倍。

框架齿轮大小:

目前市场上主要有两种齿轮:绣框移动0.1mm时所需转过的角度为0.36°和0.45°。大部分机器都是采用0.36°的齿轮。

综上所述可以得知电子齿轮比的公式如下

采用丝杆结构的话,电子齿轮比的计算方式稍微有些不同

因为一般的,电机和丝杆轴之间是1:1的皮带传动,丝杆的螺距为M毫米/圈,那么计算公式为

电子齿轮在伺服驱动器上可以设置,运动控制卡上也可以设置。就拿交流伺服电机举例吧,这种伺服电机上有一个编码器,电机每旋转一圈即可输出n个脉冲。把这个脉冲取回来就可以构成一个闭环系统,提高控制精度。这样,你发给驱动器n个脉冲,电机就旋转一圈。

但是这个n有的时候不是100的倍数,比如有可能为720之类的,另外,电机通过丝杠之类的机构驱动执行器时,有一个变速比,也不一定是正好的数。最后会造成,你想让执行器移动1mm,得发送m个脉冲。这个m不是10或100的倍数,甚至不是整数。给你的编程带来了麻烦。

因此在驱动器里设置电子齿轮,把这个比例输进去。你就可以选择任意的1个脉冲对应执行器的移动距离了,比如可以设成1个脉冲对应0.01mm。这样编程就容易多了。

但是这个参数的设置也是有一定范围限制的。

微量进给、脉冲速度以及滚珠丝杠导程之间的关系

1、使用步进电机时的最小进给量S=E*Ph*A/360

S:最小进给量,mm

E:步进电机和驱动器的步进角度,度

Ph:滚珠丝杠的导程,mm

A:减速比,即滚珠丝杠转速/电机转速

2、使用伺服电机时的分辨率S=Ph*A/B

S:最小进给量,mm

Ph:滚珠丝杠的导程

A:减速比,即滚珠丝杠转速/电机转速

B:角度测试仪和驱动器的分辨率,即每转脉冲数,p/rev

3、使用步进电机时脉冲速度的计算F=V*1000/S

F:脉冲速度,Hz

V:进给速度,m/s

S:最小进给量,mm

4、滚珠丝杠导程的计算Ph=60000V/N/A

Ph:滚珠丝杠的导程

V:进给速度,m/s

N:电机的额定转速,rpm

A:减速比,即滚珠丝杠转速/电机转速

总结:从上述公式知道,滚珠丝杠的最小进给量和其精度没有关系,在实际使用中不要认为系统的最小进给量越小则其丝杠的精度也越高。要想使最小进给量实现更小(即提高系统的分辨率)可以:

①:相应提高步进电机和驱动器的细分数/伺服电机角度测试仪和驱动器的分辨率;

②:减小丝杠的导程,

③:改变减速比。

伺服电子齿轮比设置

2-50  以滚珠丝杠驱动机械为例示例。 设滚珠丝杠螺距为L [mm],则相对移动量指令P1[P]的滚珠丝杠实际移动量M [mm]如下式(1)所示。 M =P1×(D/E)×(1/R)×L …………………………(1)因此,位置分辨率(每1指令脉冲的移动量△M)如下式(2)所示。 ΔM =(D/E)×(1/R)×L …………………………(2)将公式(2)变形,指令分倍频比D 可由式(3)求得。 D =(ΔM×E×R)/L (3) 此外,相对于移动速度指令F 的滚珠丝杠实际移动速度V[mm /s]如式(4)所示,此时电机转速N 如下式(5)所示。 V =F×(D/E)×(1/R)×L (4) N =F×(D/E)×60 …………………………(5)将公式(5)变形,指令分倍频比D 可由式(6)求出。 D =(N×E)/(F×60) …………………………(6)①.位置分辨率ΔM 应考虑机械误差,参考值请为机械定位精度Δε的1/5?1/10左右。②.Pr0.09、Pr0.10值在1?230范围内可任意设定。 ③.设定值可用分母、分子值进行任意设定,但若设定为过分的分频比或倍频比,则无法保证该动作。关于可取分频、倍频比范围,请在1/1000?1000倍的范围之内使用。 .此外,即使为以上范围之内,若倍频比较高时,由于指令脉冲输入的不一致及噪音的影响,可能发生 Err27.2(指令脉冲倍频异常保护)的情况。 ④ 驱动器 编码器脉冲数:E [P/r] *1048576(=20bit) *131072(=17bit)电机的滚珠丝杠驱动示意图

2-511 在 使用 之 前3 连 接4 设 定5 调 整6 出现问题时7 资 料 关联页面?P.4-8「参数详情」

电子齿轮比是伺服中经常要用到的,初学者对这个参数的设置有时会不解

电子齿轮比计算样例 电子齿轮比是伺服中经常要用到的,初学者对这个参数的设置有时会不解,先介绍两个伺服电子齿轮设置方面的2个小例子,供大家参考下。 例子1:已知伺服马达的编码器的分辨率是131072 P/R,额定转速为3000r/min,上位机发送脉冲的能力为200Kpulse/s,要想达到额定转速,那么电子齿轮比至少应该设为多少? 计算如下图所示 根据上图中的算法,可以算出电子齿轮比CMX/CDV的值 例子2:已知伺服马达的分辨率是131072 P/R,滚珠丝杠的进给量为 Pb =8mm。 (1) 计算反馈脉冲的当量(一个脉冲走多少)? △Lo= (2) 要求指令脉冲当量为0.1um/p ,电子齿轮比应为多少? 电子齿轮比= (3) 电机的额定速度为3000rpm,脉冲频率应为多少? Fc= 解答: (1) 计算反馈脉冲的当量(一个脉冲走多少)? △Lo= 8mm/131072 (2) 要求指令脉冲当量为0.1um/p ,电子齿轮比应为多少? △Lo×电子齿轮比×1000=0.1 (3) 电机的额定速度为3000rpm,脉冲频率应为多少? Fc×电子齿轮比=3000/60×131072 电子齿轮比与脉冲当量相关计算 1、什么是机械减速比(m/n) 答:机械减速比的定义是减速器输入转速与输出转速的比值,也等于从动轮齿数与主动轮齿数的比值。在数控机床上为电机轴转速与丝杠转速之比。 2、什么是电子齿轮比 答:电子齿轮比就是对伺服接受到上位机的脉冲频率进行放大或者缩小,其中一个参数为分子,一个为分母。如分子大于分母就是放大,如分子小于分母就是缩小。例如:上位机输入频率100HZ,电子齿轮比分子设为1,分母设为2,那么伺服实际运行速度按照50HZ的脉冲来进行。上位机输入频率100HZ,电子齿轮比分子设为2,分母设为1,那么伺服实际运行速度按照200HZ的脉冲来进行3、怎样计算电子齿轮比(B/A) 明白几个概念: 编码器分辨率(F):伺服电机轴旋转一圈所需脉冲数。看伺服电机的铭牌,在对驱动器说明书既可确定编码器的分辨率。 每转脉冲数(f):丝杠转动一圈所需脉冲数。

电子齿轮比与脉冲当量相关计算

脉冲当量或电子齿轮的调整方法 1 什么是脉冲当量或电子齿轮 脉冲当量是数控系统控制精度的关键参数,每个脉冲信号机床运动部件的位移量称为脉冲当量,与电子齿轮的关系为:电子齿轮分子/分母比----脉冲当量X 1000, 单位:毫米。 例:系统脉冲当量是0.008 毫米,其电子齿轮分子/分母 = 8/1 。 2 什么时候要调整脉冲当量或电子齿轮 a机床安装调试或更换系统; b更换电子盘(DOM); c机床运行过程中加工精度不够; d进行参数初始化以后。 3 如何调整调整脉冲当量或电子齿轮 电子齿轮比 = 丝杠螺距×1000/(360×细分数/步距角×传动比)。 为便于生产现场调整,可用如下简单方式进行调整: a 先粗设一个电子齿轮比,在系统主界面按参数设置,进入后选择机床参数,将电子齿轮值设为 8:1,按存储(无存储按钮的按 F1) b 在系统主界面下按 F1,进入自动方式,选择F8手动辅助,选择点动,输入点动增量1000

c 在机床轨道上做好当前所在位置的标记,然后按下箭头,让机床向远离标志的方向行走一个点动增量; d 测量轨道上的实际行走距离; e 带入下面公式计算 分子/分母=8×[测量值]/1×1000 将上式化简成最简分数即可。 例:初设电子齿轮比,例:8:1,点动1000毫米,实际走650毫米 分子/分母=8×650/1×1000=26 / 电子齿轮比与脉冲当量相关计算 1、什么是机械减速比(m/n) 答:机械减速比的定义是减速器输入转速与输出转速的比值,也等于从动轮齿数与主动轮齿数的比值。在数控机床上为电机轴转速与丝杠转速之比。 2、什么是电子齿轮比 答:电子齿轮比就是对伺服接受到上位机的脉冲频率进行放大或者缩小,其中一个参数为分子,一个为分母。如分子大于分母就是放大,如分子小于分母就是缩小。 例如:上位机输入频率100HZ,电子齿轮比分子设为1,分母

电子齿轮比与脉冲当量相关计算

电子齿轮比与脉冲当量相关计算1、什么是机械减速比(m/n) 答:机械减速比的定义是减速器输入转速与输出转速的比值,也等于从动轮齿数与主动轮齿数的比值。在数控机床上为电机轴转速与丝杠转速之比。 2、什么是电子齿轮比 答:电子齿轮比就是对伺服接受到上位机的脉冲频率进行放大或者缩小,其中一个参数为分子,一个为分母。如分子大于分母就是放大,如分子小于分母就是缩小。例如:上位机输入频率100HZ,电子齿轮比分子设为1,分母设为2,那么伺服实际运行速度按照50HZ的脉冲来进行。上位机输入频率100HZ,电子齿轮比分子设为2,分母设为1,那么伺服实际运行速度按照200HZ的脉冲来进行3、怎样计算电子齿轮比(B/A) 明白几个概念:

编码器分辨率(F):伺服电机轴旋转一圈所需脉冲数。看伺服电机的铭牌,在对驱动器说明书既可确定编码器的分辨率。每转脉冲数(f):丝杠转动一圈所需脉冲数。 脉冲当量(p):数控系统(上位机)发出一个脉冲时,丝杠移动的直线距离或旋转轴转动的度数,也是数控系统所能控制的最小距离。这个值越小,经各种补偿后越容易到更高的加工精度和表面质量。脉冲当量的设定值决定机床的最大进给速度,当进给速度速度满足要求的情况下,可以设定较小的脉冲当量。 螺距(d):螺纹上相邻两牙对应点之间的轴向距离。 电子齿轮比计算公式如下: 4、步进电机脉冲当量和细分数的关系 在实际调整时可先确定脉冲当量,在根据关系式计算细分数。或先确定细分

数,在计算脉冲当量。 其中:x表示步进驱动器细分数,θ表示步进电机步距角。 5、关于旋转轴 与直线运动轴相比区别在于:旋转轴的螺距值为360,其它计算相同,只需将螺距值换为360。

电子齿轮比计算公式

电子齿轮比计算公式 已知伺服马达的分辨率是131072 P/R,滚珠丝杠的进给量为Pb =8mm。 (1) 计算反馈脉冲的当量(一个脉冲走多少)?△Lo= (2) 要求指令脉冲当量为0.1um/p ,电子齿轮比应为多少? 电子齿轮比= (3) 电机的额定速度为3000rpm,脉冲频率应为多少? Fc= 解答: (1) 计算反馈脉冲的当量(一个脉冲走多少)? △Lo= 8mm/131072 (2) 要求指令脉冲当量为0.1um/p ,电子齿轮比应为多少? △Lo×电子齿轮比×1000=0.1 (3) 电机的额定速度为3000rpm,脉冲频率应为多少? Fc×电子齿轮比=3000/60×131072 已知编码器分辨率131072脉冲频率200Khz要使转速达到3000r/min求电子齿轮比。 脉冲接口的最大频率是200KHZ,对应最大转速3000转每分,这样

的设定能使定位模块发挥伺服的最高速。 代入以下公式: 马达转速(3000rpm) / 60 = 脉冲频率(200000Hz)* (分子/分母)/ 伺服分辨率(131072) 约分下来电子齿轮分子4096 ,电子齿轮分母125 这样的设置结果4000个脉冲转一圈,200Khz的频率对应3000RPM 的转速 将伺服马达编码器的分辨率设为分子,马达转一圈所需的脉冲数设为分母” 如果再装减速器的话,PLC原来所发脉冲数再乘以减比。 以三菱MR-J2-S举个例子: 伺服马达编码器的分辨率131072,我设计为PLC每发一个脉冲伺服马达转0.5度,那么伺服马达转一圈(360。)需要720个脉冲,电子齿轮就设为131072 / 720 化简分数后为8192 / 45 这样PLC每次发720个脉冲伺服马达转一圈 如果还想接个减速器,举个例子接个减比为5比1的减速器时,原来电子齿轮所设分数不变,PLC原来所发脉冲数再乘以5(720*5=3600),即现在伺服马达转一圈PLC发3600个脉冲就可以了。

电子齿轮比的计算

电子齿轮比计算样例 CMX:电子齿轮比的分子是电机编码器反馈脉冲。 CDV:电子齿轮比的分母是上位机的给定脉冲(指令脉冲)。 电子齿轮比是伺服中经常要用到的,初学者对这个参数的设置有时会不解,先介绍两个伺服电子齿轮设置方面的2个小例子,供大家参考下。 例子1:已知伺服马达的编码器的分辨率是131072 P/R,额定转速为3000r/min,上位机发送脉冲的能力为200Kpulse/s,要想达到额定转速,那么电子齿轮比至少应该设为多少? 计算如下图所示 根据上图中的算法,可以算出电子齿轮比CMX/CDV的值 例子2:已知伺服马达的分辨率是131072 P/R,滚珠丝杠的进给量为 Pb =8mm。 (1) 计算反馈脉冲的当量(一个脉冲走多少)? △Lo= (2) 要求指令脉冲当量为0.1um/p ,电子齿轮比应为多少? 电子齿轮比= (3) 电机的额定速度为3000rpm,脉冲频率应为多少? Fc= 解答: (1) 计算反馈脉冲的当量(一个脉冲走多少)? △Lo= 8mm/131072 (2) 要求指令脉冲当量为0.1um/p ,电子齿轮比应为多少? △Lo×电子齿轮比×1000=0.1 (3) 电机的额定速度为3000rpm,脉冲频率应为多少? Fc×电子齿轮比=3000/60×131072 电子齿轮比与脉冲当量相关计算 1、什么是机械减速比(m/n) 答:机械减速比的定义是减速器输入转速与输出转速的比值,也等于从动轮齿数与主动轮齿数的比值。在数控机床上为电机轴转速与丝杠转速之比。 2、什么是电子齿轮比 答:电子齿轮比就是对伺服接受到上位机的脉冲频率进行放大或者缩小,其中一个参数为分子,一个为分母。如分子大于分母就是放大,如分子小于分母就是缩小。例如:上位机输入频率100HZ,电子齿轮比分子设为1,分母设为2,那么伺服实际运行速度按照50HZ的脉冲来进行。上位机输入频率100HZ,电子齿轮比分子设为2,分母设为1,那么伺服实际运行速度按照200HZ的脉冲来进行3、怎样计算电子齿轮比(B/A) 明白几个概念: 编码器分辨率(F):伺服电机轴旋转一圈所需脉冲数。看伺服电机的铭牌,在对驱动器说明书既可确

电子齿轮比计算公式

对于那些想学习PLC的人来说,第一件事就是控制伺服电机。要控制伺服电机,必须联系电子传动比的概念。这是从初学者到初学者的门槛。很多人被困在这里,无法进入。虽然你可以通过别人的文章或介绍粗略地设置电子传动比,但总是毫无意义。因此,今天笔者将详细介绍电子传动比的相关概念和设置方法,为大家解决难题。 1齿轮传动比 我相信每个人都熟悉齿轮。通常,齿轮成对出现。两个齿轮的模数相同,但齿数不同。这样,旋转后就会形成速度差。通常,产生这种速度差的方法称为传动比:干货:电子传动比的超详细计算方法 在上图中,大齿轮和小齿轮的传动比为2:1,因此传动比为1:2。小轮旋转两次,大轮子旋转一次。电动机驱动小轮,小轮作驱动轮,大轮作从动轮,减速比为1:2。 2电子传动比

在物理上理解了传动比后,更容易理解电子传动比,因为电机的控制是由上位机发送的脉冲,电机的转速是由编码器测量的。然而,当伺服电机旋转时,主机发送的脉冲数与测量到的脉冲数之间没有一一对应关系。它们之间有一个比率,叫做“比率”。 干货:电子传动比的超详细计算方法 改变 干货:电子传动比的超详细计算方法 第一种情况:伺服电机直接连接到丝杠上 干货:电子传动比的超详细计算方法 此时减速比为1:1,螺距设置为5mm,伺服电机编码器的分辨率为131072。当我们要上位机发送脉冲时,丝杠移动0.001mm,螺杆移动5mm,上位机需要发送5000个脉冲,电机旋转一次,编码器采集的值为131072,电子传动比为: 干货:电子传动比的超详细计算方法

由于分子和分母同时除以最大公约数8,电子齿轮的分子为16384,分母为625。当然,你也可以直接写分子为131072,分母为5000 在第二种情况下,伺服电机和丝杠通过减速机构连接 干货:电子传动比的超详细计算方法 假设减速比为2:3,伺服电机旋转3次,丝杠旋转2次,计算减速比,使每5000脉冲达到5mm。丝杠旋转一圈(5mm),电机旋转1.5圈(3/2=1.5),编码器采集的实际值为131072*3/2,电子传动比为 干货:电子传动比的超详细计算方法 分子是24576分母是625。这是电子传动比算法。 三。每转脉冲数 同时,伺服电机还可以设定每转脉冲数,因此不需要花费脑细胞来计算电子传动比。实际原理与电子传动比的形式相同,但方法简单。或者以上面的例子为例。如果电机每转10000脉冲,减速比为2:3,螺杆旋转一圈,行走距离为5mm,当螺杆旋转2时,电机接收10000

电子齿轮比设定方法

电子齿轮比: 如丝杠导程为5mm,电机与丝杠直连,那么,电机转一圈负载移动5mm。若要求精度为0.001mm,那么电机要5000个脉冲才转一圈;若要求精度为0.002mm,那么电机要2500个脉冲才转一圈;等等。 电子齿轮比的分子是电机编码器分辨率,分母为电机旋转一圈所需要的脉冲数。 电子齿轮比是通过更改电子齿轮比的分倍频,来实现不同的脉冲当量。 伺服系统的精度是编码器的线数决定,但这个仅仅是伺服电机的精度。 在实际运用中,连接不同的机械结构,如滚珠丝杠,蜗轮蜗杆副,螺距、齿数等参数不同,移动最小单位量所需的电机转动量是不同的。 电子齿轮比是匹配电机脉冲数与机械最小移动量的 举个例子: 车床用10mm丝杠,那么电机转一圈机械移动10mm,每移动0.001mm就需要电机旋转1/10000圈 而如果连接5mm丝杠,且直径编程的话,每0.001的移动量就需要1/5000转 这个是电子齿轮的作用。 电子齿轮就电机编码器反馈脉冲与指令脉冲的一个比值 电子齿轮功能是指可将相当于指令控制器输入指令1脉冲的工件移动量设定为任意值的功能,分为电子齿轮(分子)Pn 202、电子齿轮(分母)Pn 203两部分参数。 在无减速比条件下设定时,根据当前电机的编码器规格把相对应的编码器脉冲数 13位:2048P/R 16位:16384P/R 17位:32768P/R 乘以分频比4后,写入Pn 202。将负载轴旋转一圈的脉冲数写入Pn 203。 例如:电机的编码器规格为16位时,把16384*4=65535写入电子齿轮(分子)Pn 202 想要36000个脉冲转一圈的话,在电子齿轮(分母)Pn 203中写入36000 伺服电机每转一圈的脉冲数 是由编码器的位数和电子齿轮比决定的. 例如编码器是13位,电子齿轮比是4,那么脉冲数=2的13次方/4=2048 伺服电机编码器脉冲数是2的n次方,以2的16次方来说,就是65536,即电机每转一圈就会产生65536个脉冲,反过来说,如果齿轮比是1/1,就是发送65536个脉冲给伺服器,电机就会转一圈,要使伺服电机转X圈,就得发送65536*X个脉冲,如果要电机转的圈数很多,脉冲数将会很大,所以要设一个合适的齿轮比,使PLC发送的脉冲数不会很大,又能满足精度要求.(下面的话比较容易理解,请注意)一般最好设置2的整数次方,比如256,那么意思是PLC发送一个脉冲,就相当于给伺服器发送了256个脉冲,要使电机转一圈,只需要发65536/256=256个脉冲就行

三菱伺服电子齿轮比算法

三菱伺服电子齿轮比算法 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 三菱MR-J2S 伺服放大器电子齿轮比 电子齿轮比的分子是电机编码器分辨率(反馈脉冲)CMX,分母是电机旋转一圈所需要的脉冲数(指令脉冲)CDV。 电子齿轮比就是电机编码器反馈脉冲与指令脉冲的一个比值。 电子齿轮比是通过更改电子齿轮比的分倍频,来实现不同的脉冲当量。 举例公式计算解析: 已知伺服电机编码器分辨率是131072,额定转速为3000R/MIN,上位机发出脉冲能力为200Kp/S,那么电子齿轮设置为多少? 如果不设置电子齿轮比,用默认值,速度是:200×1000×60 ∕131072 = 91.55 r/min

200×1000×(CMX/CDV)= (3000∕60)×131072 ,CMX/CDV = 4096 /125 200×1000×60:题中上位机发送脉冲的能力为200Kpuise(脉冲)/s ,所以每秒发出脉冲数是200×1000,60是一分钟60s 。一分钟上位机发送200×1000×60个脉冲。131072 p/r:三菱MR-J2S伺服放大器编码器的分辨率。也就是说三菱MR-J2S伺服电机接受到131072个脉冲转一圈。 200×1000×60 ∕131072 = 91.55 r/min :上位机每分钟发出的脉冲除以三菱MR-J2S伺服放大器编码器的分辨率等于伺服电机每分钟的旋转圈数(速度)。 200×1000×(CMX/CDV)= (3000∕60)×131072 3000 ∕60 :伺服电机的额定转速是3000 r / min ,每秒的转速则:(3000∕60)r / s ,因为上位机发出的脉冲是200X1000 puise / s ,所以计算时都要用相同的计量单位。(3000∕60)×131072 :伺服电机每秒钟旋转的脉冲数。 上面公式的解析:上位机每秒钟发出的脉冲数X电子齿轮比= 伺服电机每秒钟旋转的脉冲数。 转化:电子齿轮比= 伺服电机每秒钟旋转的脉冲数∕上位机每秒钟发出的脉冲数 三菱MR-J2S伺服放大器的电子齿轮设定范围:1/50 <CMX/CDV <500

电子齿轮比计算公式

想要学习PLC的朋友的第一件事就是控制伺服电机。要控制伺服电机,您必须联系电子齿轮比的概念。这是从初学者到初学者的门槛。许多人被困在这里,无法进门。尽管您可以通过其他人的文章或介绍来大致设置电子齿轮比,但这始终毫无意义。因此,今天我将详细介绍与电子齿轮比相关的概念和设置方法,以供大家解决难题。 1,齿轮比 我相信每个人都熟悉齿轮。通常,齿轮成对出现。两个齿轮的模数相同,但齿数不同。这样,旋转后会形成速度差。通常,产生这种速度差的方法称为齿轮比: 干货:电子齿轮比的超详细计算方法 在上图中,大齿轮和小齿轮的齿数比为2:1,因此速比为1:2。小轮旋转两次,大轮旋转一圈。如果电动机驱动小轮,小轮作为驱动轮,大轮作为从动轮,则减速比为1:2。 2,电子齿轮比

在物理上理解了齿轮比之后,就更容易理解电子齿轮比了,因为电动机的控制是上位计算机发送的脉冲,电动机的旋转由编码器测量。但是,上位机发送的脉冲数与伺服电机旋转时测得的脉冲数不是一一对应的,它们之间存在一个比率,称为“比率”。。 干货:电子齿轮比的超详细计算方法 更改 干货:电子齿轮比的超详细计算方法 第一种情况:伺服电机直接与丝杠连接 干货:电子齿轮比的超详细计算方法 此时,减速比为1:1,螺丝螺距设置为5mm,伺服电机编码器的分辨率为131072。当我们希望上位机发送脉冲时,丝杠移动0.001mm,螺丝移动5mm,上位机需要发送5000个脉冲,电机旋转一次,编码器采集的值为131072,则电子齿轮比为: 干货:电子齿轮比的超详细计算方法

由于分子和分母同时被最大公约数8除,因此电子齿轮的分子为16384,分母为625。当然,也可以直接将分子写为131072,将分母写为5000 在第二种情况下,伺服电机和丝杠通过减速机构连接 干货:电子齿轮比的超详细计算方法 假设减速比为2:3,伺服电机旋转3次,丝杠旋转2圈,则应计算减速比,以使每5000个脉冲达到5 mm。当丝杠旋转一圈(5毫米)时,电动机旋转1.5圈(3/2 = 1.5),编码器收集的实际值为131072 * 3/2,则电子齿轮比为 干货:电子齿轮比的超详细计算方法 因此分子是24576,分母是625,这是电子齿轮比的算法。 3,每转脉冲数 同时,伺服电动机还可以设置每转形式的脉冲数,因此无需花费脑细胞来计算电子齿轮比。实际原理和电子齿轮比是相同的形式,只是简化了方式。或以上面的示例为例,如果电机每转有10000个脉冲,减速比为2:3,丝杠旋转一圈,行走距离为5mm,则当丝杠旋转

电子齿轮比与脉冲当量相关计算

电子齿轮比与脉冲当量相关计算 为方便客户,我们提供vc电子齿轮比计算程序。请点击下载电子齿轮比计算 1、什么是机械减速比(m/n) 答:机械减速比的定义是减速器输入转速与输出转速的比值,也等于从动轮齿数与主动轮齿数的比值。在数控机床上为电机轴转速与丝杠转速之比。 2、什么是电子齿轮比 答:电子齿轮比就是对伺服接受到上位机的脉冲频率进行放大或者缩小,其中一个参数为分子,一个为分母。如分子大于分母就是放大,如分子小于分母就是缩小。例如:上位机输入频率100HZ,电子齿轮比分子设为1,分母设为2,那么伺服实际运行速度按照50HZ的脉冲来进行。上位机输入频率100HZ,电子齿轮比分子设为2,分母设为1,那么伺服实际运行速度按照200HZ的脉冲来进行 3、怎样计算电子齿轮比(B/A) 明白几个概念: 编码器分辨率(F):伺服电机轴旋转一圈所需脉冲数。看伺服电机的铭牌,在对驱动器说明书既可确定编码器的分辨率。 每转脉冲数(f):丝杠转动一圈所需脉冲数。 脉冲当量(p):数控系统(上位机)发出一个脉冲时,丝杠移动的直线距离或旋转轴转动的度数,也是数控系统所能控制的最小距离。这个值越小,经各种补偿后越容易到更高的加工精度和表面质量。脉冲当量的设定值决定机床的最大进给速度,当进给速度速度满足要求的情况下,可以设定较小的脉冲当量。 螺距(d):螺纹上相邻两牙对应点之间的轴向距离。 电子齿轮比计算公式如下: 4、步进电机脉冲当量和细分数的关系 在实际调整时可先确定脉冲当量,在根据关系式计算细分数。或先确定细分数,在计算脉冲当量。 其中:x表示步进驱动器细分数,θ表示步进电机步距角。 5、关于旋转轴 与直线运动轴相比区别在于:旋转轴的螺距值为360,其它计算相同,只需将螺距值换为360。 电子齿轮比与脉冲当量相关计算

电子齿轮比计算公式

电子齿轮比计算公式: 已知编码器分辨率131072,脉冲频率200Khz要使转速达到3000r/min求电子齿轮比。 脉冲接口的最大频率是200KHZ,对应最大转速3000转每分,这样的设定能使定位模块发挥伺服的最高速。 代入以下公式: 马达转速(3000rpm)/60=脉冲频率(200000Hz)*(分子/分母)/伺服分辨率(131072) 约分下来电子齿轮分子4096,电子齿轮分母125。 这样的设置结果4000个脉冲转一圈,200Khz的频率对应3000RPM的转速。 将伺服马达编码器的分辨率设为分子,马达转一圈所需的脉冲数设为分母。 如果再装减速器的话,PLC原来所发脉冲数再乘以减比。 举个例子: 伺服马达编码器的分辨率131072,我设计为PLC每发一个脉冲伺服马达转0.5度,那么伺服马达转一圈(360。)需要720个脉冲。 电子齿轮就设为131072/720化简分数后为8192/45这样PLC 每次发720个脉冲伺服马达转一圈。 如果还想接个减速器,举个例子接个减比为5比1的减速器时,原来电子齿轮所设分数不变,PLC原来所发脉冲数再乘以5

(720*5=3600),即现在伺服马达转一圈PLC发3600个脉冲就可以了。 简单的说,比如说电子齿轮比是1(系统默认),脉冲当量是 1mm(就是物体在你发1个脉冲时运行的距离,注意是控制脉冲,就是你PLC发给伺服放大器的脉冲),当你把电子齿轮比改为2时,对应的脉冲当量就变成2mm。 可把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。 伺服电机旋转时,速度表现重于精度表现时候,希望将电机速度性能完全表现出来;而对于旋转分辨率要求较低的时。 已知编码器分辨率131072脉冲频率200Khz要使转速达到3000r/min求电子齿轮比。 脉冲接口的最大频率是200KHZ,对应最大转速3000转每分,这样的设定能使定位模块发挥伺服的最高速。 代入以下公式: 马达转速(3000rpm)/60=脉冲频率(200000Hz)*(分子/分母)/伺服分辨率(131072) 约分下来电子齿轮分子4096,电子齿轮分母125 这样的设置结果4000个脉冲转一圈,200Khz的频率对应3000RPM的转速

电子齿轮比

1、什么是机械减速比(m/n) 答:机械减速比的定义是减速器输入转速与输出转速的比值,也等于从动轮齿数与主动轮齿数的比值。在数控机床上为电机轴转速与丝杠转速之比。 2、什么是电子齿轮比 答:电子齿轮比就是对伺服接受到上位机的脉冲频率进行放大或者缩小,其中一个参数为分子,一个为分母。如分子大于分母就是放大,如分子小于分母就是缩小。例如:上位机输入频率100HZ,电子齿轮比分子设为1,分母设为2,那么伺服实际运行速度按照50HZ的脉冲来进行。上位机输入频率100HZ,电子齿轮比分子设为2,分母设为1,那么伺服实际运行速度按照200HZ的脉冲来进行 3、怎样计算电子齿轮比(B/A) 明白几个概念: 编码器分辨率(F):伺服电机轴旋转一圈所需脉冲数。看伺服电机的铭牌,在对驱动器说明书既可确定编码器的分辨率。 每转脉冲数(f):丝杠转动一圈所需脉冲数。 脉冲当量(p):数控系统(上位机)发出一个脉冲时,丝杠移动的直线距离或旋转轴转动的度数,也是数控系统所能控制的最小距离。这个值越小,经各种补偿后越容易到更高的加工精度和表面质量。脉冲当量的设定值决定机床的最大进给速度,当进给速度速度满足要求的情况下,可以设定较小的脉冲当量。 螺距(d):螺纹上相邻两牙对应点之间的轴向距离。 电子齿轮比计算公式如下: 4、步进电机脉冲当量和细分数的关系 在实际调整时可先确定脉冲当量,在根据关系式计算细分数。或先确定细分数,在计算脉冲当量。 其中:x表示步进驱动器细分数,θ表示步进电机步距角。 5、关于旋转轴 与直线运动轴相比区别在于:旋转轴的螺距值为360,其它计算相同,只需将螺距值换为360。

电子齿轮比计算公式

电子齿轮比计算公式 伺服电机“电子齿轮比”的计算方法 电子齿轮比主要功能: 1、可以任意地设置每单位指令脉冲对应的电机的速度和位移量(脉冲当量); 2、当上位控制器的脉冲发生能力(最高输出频率)不足以获得所需速度时,可以通过电子齿轮功能(指令脉冲倍频)来对指令脉冲进行×N倍频。 当伺服电机用在电脑绣花机的框架上时,控制上的要求为主控发送1个脉冲框架得移动0.1mm。对电子齿轮比的计算有影响的主要为以下几个因素:电机编码器的分辨率;机械装置的二级传动比;框架皮带齿轮大小。

电机编码器的分辨率:伺服电机的编码器一般为2000线或者是2500线,也就是转一圈能产生2000或者2500个脉冲,而伺服驱动器对此脉冲进行4倍频处理,所以电机转一圈就能产生8000或者10000个脉冲,也就是分辨率为8000或者10000。 经过二级传动装置后,框架运动的角度折算到电机上角度和二级传动比是成反比的,比如二级传动比为1/4,那么电机转过的角度就是传动轴转过的4倍。 框架齿轮大小: 目前市场上主要有两种齿轮:绣框移动0.1mm时所需转过的角度为0.36°和0.45°。大部分机器都是采用0.36°的齿轮。 所谓电子齿轮比就是对伺服接收到的上位机脉冲频率进行放大或者缩小,在实际运用中,连接不同的机械结构,如滚珠丝杠,蜗轮蜗杆副,螺距、齿数等参数不同,移动最小单位量所需的电机转动量是不同的,电子齿轮比是匹配电机脉冲数与机械最小移动量,通过电子齿轮设定可以使指令脉冲设为任意值,电子齿轮设置不当机床运行过程中将会出现故障,不能加工出符合尺寸要求的工件。 当电子齿轮比分子大于分母时,系统允许的最高转速将下降。当

电子齿轮比

电子齿轮比 电子齿轮比: 如丝杠导程为5mm,电机与丝杠直连,那么,电机转一圈负载移动5mm。若要求精度为0.001mm,那么电机要5000个脉冲才转一圈;若要求精度为0.002mm,那么电机要2500个脉冲才转一圈;等等。 电子齿轮比的分子是电机编码器分辨率,分母为电机旋转一圈所需要的脉冲数。 电子齿轮比是通过更改电子齿轮比的分倍频,来实现不同的脉冲当量。 伺服系统的精度是编码器的线数决定,但这个仅仅是伺服电机的精度。 在实际运用中,连接不同的机械结构,如滚珠丝杠,蜗轮蜗杆副,螺距、齿数等参数不同,移动最小单位量所需的电机转动量是不同的。 电子齿轮比是匹配电机脉冲数与机械最小移动量的 举个例子: 车床用10mm丝杠,那么电机转一圈机械移动10mm,每移动0.001mm就需要电机旋转1/10000圈 而如果连接5mm丝杠,且直径编程的话,每0.001的移动量就需要1/5000转 这个是电子齿轮的作用。

电子齿轮就电机编码器反馈脉冲与指令脉冲的一个比值 电子齿轮功能是指可将相当于指令控制器输入指令1脉冲的工件移动量设定为任意值 的功能,分为电子齿轮(分子)Pn 202、电子齿轮(分母)Pn 203两部分参数。 在无减速比条件下设定时,根据当前电机的编码器规格把相对应的编码器脉冲数 13位:2048P/R 16位:16384P/R 17位:32768P/R 乘以分频比4后,写入Pn 202。将负载轴旋转一圈的脉冲数写入Pn 203。 例如:电机的编码器规格为16位时,把16384*4=65535写入电子齿轮(分子)Pn 202 想要36000个脉冲转一圈的话,在电子齿轮(分母)Pn 203中写入36000 伺服电机每转一圈的脉冲数 是由编码器的位数和电子齿轮比决定的. 例如编码器是13位,电子齿轮比是4,那么脉冲数=2的13次方/4=2048 伺服电机编码器脉冲数是2的n次方,以2的16次方来说,就是65536,即电机每转一圈就会产生65536个脉冲,反过来说,如果齿轮比是1/1,就是发送65536个脉冲给伺服器,电机就会转一圈,要使伺服电机转X圈,就得发送65536*X个脉冲,如果要电机转的圈数很多,脉冲数将会很大,所以要设一个合适的齿轮比,使PLC发送的脉冲数不会很大,又能满足精度要求.(下面的话比较容易理解,请注意)一般最好设置2的整数次方,比如256,那么意思是PLC发送一个脉冲,就相当于给伺服器发送了256个脉冲,要使电机转一圈,只需要发65536/256=256个脉冲就行了,要使电机转X圈,只需要发送256*X个脉冲.

伺服电子齿轮比的计算方法

伺服电子齿轮比的计算方法 电子齿轮比主要功能: 1、可以任意地设置每单位指令脉冲对应的电机的速度和位移量(脉冲当量); 2、当上位控制器的脉冲发生能力(最高输出频率)不足以获得所需速度时,可以通过电子齿轮功能(指令脉冲倍频)来对指令脉冲进行×N倍频。 当伺服电机用在电脑绣花机的框架上时,控制上的要求为主控发送1个脉冲框架得移动0.1mm。对电子齿轮比的计算有影响的主要为以下几个因素:电机编码器的分辨率;机械装置的二级传动比;框架皮带齿轮大小。 电机编码器的分辨率:伺服电机的编码器一般为2000线或者是2500线,也就是转一圈能产生2000或者2500个脉冲,而伺服驱动器对此脉冲进行4倍频处理,所以电机转一圈就能产生8000或者10000个脉冲,也就是分辨率为8000或者10000。 电机型号 编码器线数 电机编码器的分辨率 三洋P2、P5电机 2000 8000 大豪伺服 2500 10000 以三洋伺服电机为例:当控制器给驱动器发送一个脉冲时,伺服电机转过的角度为 经过二级传动装置后,框架运动的角度折算到电机上角度和二级传动比是成反比的,比如二级传动比为1/4,那么电机转过的角度就是传动轴转过的4倍。 框架齿轮大小: 目前市场上主要有两种齿轮:绣框移动0.1mm时所需转过的角度为0.36°和0.45°。大部分机器都是采用0.36°的齿轮。 综上所述可以得知电子齿轮比的公式如下

采用丝杆结构的话,电子齿轮比的计算方式稍微有些不同 因为一般的,电机和丝杆轴之间是1:1的皮带传动,丝杆的螺距为M毫米/圈,那么计算公式为 框架伺服电机“电子齿轮比”的计算方法 电子齿轮比主要功能: 1、可以任意地设置每单位指令脉冲对应的电机的速度和位移量(脉冲当量); 2、当上位控制器的脉冲发生能力(最高输出频率)不足以获得所需速度时,可以通过电子齿轮功能(指令脉冲倍频)来对指令脉冲进行×N倍频。 当伺服电机用在电脑绣花机的框架上时,控制上的要求为主控发送1个脉冲框架得移动0.1mm。对电子齿轮比的计算有影响的主要为以下几个因素:电机编码器的分辨率;机械装置的二级传动比;框架皮带齿轮大小。 电机编码器的分辨率:伺服电机的编码器一般为2000线或者是2500线,也就是转一圈能产生2000或者2500个脉冲,而伺服驱动器对此脉冲进行4倍频处理,所以电机转一圈就能产生8000或者10000个脉冲,也就是分辨率为8000或者10000。 电机型号 编码器线数 电机编码器的分辨率 三洋P2、P5电机 2000 8000 大豪伺服 2500 10000 以三洋伺服电机为例:当控制器给驱动器发送一个脉冲时,伺服电机转过的角度为 经过二级传动装置后,框架运动的角度折算到电机上角度和二级传动比是成反比的,比如二级传动比为1/4,那么电机转过的角度就是传动轴转过的4倍。 框架齿轮大小: 目前市场上主要有两种齿轮:绣框移动0.1mm时所需转过的角度为0.36°和0.45°。大部分机器都是采用0.36°的齿轮。 综上所述可以得知电子齿轮比的公式如下

电子齿轮计算公式

指令脉冲当量(电机转1圈脉冲量)电子齿轮计算公式如下: 脉冲量*分子/分母=分辨率。 额定转速(电机转1分钟脉冲量)电子齿轮计算公式如下: 脉冲量*分子/分母=电机转速/60秒*分辨率。 指令脉冲当量带减速比(电机转1圈脉冲量)电子齿轮计算公式如下: 脉冲量*分子/分母=分辨率*m/n。M减速比分子;n减速比分母。 额定转速带减速比(电机转1分钟脉冲量)电子齿轮计算公式如下: 脉冲量*分子/分母=电机转速/60秒*分辨率*m/n。M减速比分子;n减速比分母。 例1: 1)上位机发出脉冲能力为200Kp/S,200×1000/s,200×1000×60/min; 2)电机额定转速为3000R/ min,3000/60s; 3)伺服电机编码器分辨率是131072; 4)丝杆螺距是10mm; 求: 1、电机额定转速运行时的电子齿轮比? 根据公式:脉冲量*分子/分母=电机转速/60秒*分辨率。 200*1000*分子/分母=3000/60*131072 200000*分子/分母=50*131072 200000*分子/分母=6553600 分子/分母=6553600/200000 分子/分母=32.768 2、如果电子齿轮比是1,伺服电机的转速? 1.如果电子齿轮比是1:1 2.上位机发出的1个脉冲=编码器输出检测反馈的1个脉冲: 3.上位机发出脉冲能力时发出的脉冲频率=200×1000/s; 4.伺服电机的转速是=200×1000/s×60/131072= 91.55 r/min 3、生产时,设定指令脉冲当量,确定电子齿轮比? 1.丝杆螺距是10mm, 2.要求上位机每发一个指令脉冲,工件移动0.001mm,即指令脉冲当量为0.001mm, 也可以说指令脉冲单位为0.001mm: 3.如果伺服转一周,丝杆转一周,减速比是1:1 4.丝杆转一周,上位机应该发出的指令脉冲为10mm/0.001mm=10000(个); 5.伺服转一周,编码器检测反馈脉冲为131072(个); 6.根据公式:脉冲量*分子/分母=分辨率。 10000*分子/分母=131072 分子/分母=131072/10000 分子/分母=13.7012. 4、电机的额定速度为3000rpm,脉冲频率应为多少? 脉冲频率×电子齿轮比=3000/60×131072 脉冲频率×电子齿轮比=6553600

伺服电机电子齿轮比的算法

伺服电机电子齿轮比的算 法 The final edition was revised on December 14th, 2020.

伺服电机电子齿轮比的算法 一般来说主要由三大因素组成: 1、要知道电机转一圈雕刻机的X/Y/Z走多少距离; 2、上位机脉冲当量的单位:“毫米/脉冲”还是“脉冲/毫米”; 3、伺服电机电子齿轮比的分子与分母。而分子的基数一般是固定的,只需输入此值就行,而常见的国内分体的伺服电机,它的分子的值与编码器精度有关,精度说法不外乎有两种:一、讲多少线的,比如常见的为2500线,那么它的分子的值为2500的四倍,即10000,如我司分体的就是这样算的。二、讲多少位,位是指2的幂次方,比如安川的17位、20位就是2的17或20次方。 第1个:要知道电机转一圈雕刻机的X/Y/Z走多少距离 1、丝杆机:这个简单,只要知道丝杆的导程(现场一般叫螺距,但书面上来说两 者的是不一样的概念。我们可从它们的相同点来说只要是单头螺纹的丝杆这两者的说法就无区别),然后知道传动比(这又分为减速的传动比还是加速的传动比),然后按以下算法: 电机转一圈距离=导程X传动比 注:减速传动比一般分子比分母小,如1/3、1/5等等,加速传动比般为分子比分母大,如3/1、5/1等等。 2、齿轮齿条机;按以下算法: 电机转一圈距离=齿轮模数X齿轮齿数传动 第2个:“毫米/脉冲”与“脉冲/毫米”转换关系如下: “毫米/脉冲”转“脉冲/毫米”:脉冲/毫米=1 /输入的“毫米/脉冲”数值,比如输入值为,那么就等于100脉冲/毫米。 “脉冲/毫米”转“毫米/脉冲”:毫米/脉冲=1 //输入的“脉冲/毫米”数值,比如输入值为100,那么就等于毫米/脉冲 第3个:电子齿轮比的分母或脉冲当量(单位为毫米/脉冲)的算法 电子齿轮比的分母=电机转一圈距离/脉冲当量 从这个算法公式可看出,电子齿轮比的分母或脉冲当量这两者必须有一个是人为任意设置一个数值(只要不超过说明书的许可范围,一般电子齿轮比的分母不超过分子,脉冲当量不超过),另一个才可能求出。

伺服电机电子齿轮比的算法

伺服电机电子齿轮比的算法 一般来说主要由三大因素组成: 1、要知道电机转一圈雕刻机的X/Y/Z走多少距离; 2、上位机脉冲当量的单位:“毫米/脉冲”还是“脉冲/毫米”; 3、伺服电机电子齿轮比的分子与分母。而分子的基数一般是固定的,只需输入此值就行,而常见的国内分体的伺服电机,它的分子的值与编码器精度有关,精度说法不外乎有两种:一、讲多少线的,比如常见的为2500线,那么它的分子的值为2500的四倍,即10000,如我司分体的就是这样算的。二、讲多少位,位是指2的幂次方,比如安川的17位、20位就是2的17或20次方。 第1个:要知道电机转一圈雕刻机的X/Y/Z走多少距离 1、丝杆机:这个简单,只要知道丝杆的导程(现场一般叫螺距,但书面上来说两者的是 不一样的概念。我们可从它们的相同点来说只要是单头螺纹的丝杆这两者的说法就无区别),然后知道传动比(这又分为减速的传动比还是加速的传动比),然后按以下算法:电机转一圈距离=导程X传动比 注:减速传动比一般分子比分母小,如1/3、1/5等等,加速传动比般为分子比分母大,如3/1、5/1等等。 2、齿轮齿条机;按以下算法: 电机转一圈距离=齿轮模数X齿轮齿数X3.1415X传动 第2个:“毫米/脉冲”与“脉冲/毫米”转换关系如下: “毫米/脉冲”转“脉冲/毫米”:脉冲/毫米=1 /输入的“毫米/脉冲”数值,比如输入值为0.01,那么就等于100脉冲/毫米。 “脉冲/毫米”转“毫米/脉冲”:毫米/脉冲=1 //输入的“脉冲/毫米”数值,比如输入值为100,那么就等于0.01毫米/脉冲 第3个:电子齿轮比的分母或脉冲当量(单位为毫米/脉冲)的算法 电子齿轮比的分母=电机转一圈距离/脉冲当量 从这个算法公式可看出,电子齿轮比的分母或脉冲当量这两者必须有一个是人为任意设置一个数值(只要不超过说明书的许可范围,一般电子齿轮比的分母不超过分子,脉冲当量不超过0.1),另一个才可能求出。

电子齿轮分子分母计算个人笔记

本人经多次研究总结了一下经验:得出一种简单的电子齿轮设定方法,适用于初学者,高手请勿见笑!请大家支持原创,水平有限,不正之处请各位不吝指教! 这种简单的电子齿轮设定方法为“将伺服马达编码器的分辨率设为分子,马 达转一圈所需的脉冲数设为分母” 如果再装减速器的话,PLC原来所发脉冲数再乘以减比。 以三菱MR-J2-S举个例子: 伺服马达编码器的分辨率131072,我设计为PLC每发一个脉冲伺服马达转0.5度,那么伺服马达转一圈(360。)需要720个脉冲, 电子齿轮就设为131072 / 720 化简分数后为8192 / 45 这样PLC每次发720个脉冲伺服马达转一圈 如果还想接个减速器,举个例子接个减比为5比1的减速器时,原来电子齿轮所设分数不变,PLC原来所发脉冲数再乘以5(720*5=3600),即现在伺服马达转一圈PLC发3600个脉冲就可以了。 2

3 电子齿轮比(CMX/CDV)的计算及其意义 刘志斌2011.03.21 已知: 1)上位机发出脉冲能力为200Kp/S,200×1000/s,200×1000×60/min;2)电机额定转速为3000R/ min,3000/60s; 3)伺服电机编码器分辨率是131072; 4)丝杆螺距是10mm; 求: 1、电机额定转速运行时的电子齿轮比? 2、如果电子齿轮比是1,伺服电机的转速?

3、生产时,设定指令脉冲当量,确定电子齿轮比? 解: 1、当上位机满额发出脉冲时,伺服恰好额定速度运行: 1)电机额定转速为3000r/ min,3000r/60s=50r/s; 2) 伺服电机编码器分辨率是131072; 3)电机额定转速时编码器输出检测反馈脉冲频率是131072×50r/s;; 4)上位机发出脉冲能力时发出的脉冲频率=200×1000/s; 5)当上位机满额发出脉冲时,伺服恰好额定速度运行,这时的电子齿轮比: 电子齿轮比=反馈脉冲频率/上位机满额发出脉冲频率 =(131072×50r/s)/ 200×1000/s =6553600/200000 =3.2768 2、如果电子齿轮比是1: 1)上位机发出的1个脉冲=编码器输出检测反馈的1个脉冲: 2)上位机发出脉冲能力时发出的脉冲频率=200×1000/s; 3)伺服电机的转速是=200×1000/s×60/131072= 91.55 r/min 3、如果丝杆螺距是10mm, 1)要求上位机每发一个指令脉冲,工件移动0.001mm,即指令脉冲当量为0.001mm,也可以说指令脉冲单位为0.001mm: 2)如果伺服转一周,丝杆转一周,减速比是1; 3)丝杆转一周,上位机应该发出的指令脉冲为10mm/0.001mm=10000(个);

相关主题
文本预览
相关文档 最新文档